

Leaf-spring suspension of a vertical inertial sensor for active seismic isolation

M. Zeoli, A. Amorosi, L. Amez-Droz, C. Collette

Active seismic isolation

High frequency isolation

Active seismic isolation

Active seismic isolation

Methodology

Numerical tests

Experimental tests

Python software developed by the Aerospace & Mechanical Engineering department from ULiège

Horizontally movable support External clamping point 4

Locus of the points for which equilibrium is reached

L fix, *dx* and *dy* vary

= 1 configuration at equilibrium (boom horizontal)
= 1 simulation

$$f_0^{(1)} = \frac{1}{2\pi} \sqrt{\frac{k_{\rm LF} r_s^2 + \kappa_{\rm flex}}{I}}$$

$$f_0^{(1)} = \frac{1}{2\pi} \sqrt{\frac{k_{\rm LF} r_s^2 + \kappa_{\rm flex}}{I}}$$

$$f_0^{(1)} = \frac{1}{2\pi} \sqrt{\frac{k_{\rm LF} r_s^2 + \kappa_{\rm flex}}{I}}$$

6

QZS mechanism

dy has the strongest impact on $f_0^{(1)}$

Shift clamping point downward to decrease $f_0^{(1)}$

dx has the strongest impact on the restoring moment

dx is used to guarantee the **equilibrium**

- Plastic mass & hinge
- L fixed & dx and dy variable \rightarrow repetition for several L

- Plastic mass & hinge
- L fixed & dx and dy variable \rightarrow repetition for several L

A longer leaf-spring attenuates the impact of *dy* (lower variation range for larger *L*)

- Plastic mass & hinge
- L fixed & dx and dy variable \rightarrow repetition for several L

A longer leaf-spring attenuates the impact of *dy* (lower variation range for larger *L*)

Initial
$$f_0^{(1)}$$
 value decreases as *L* is increased

- Plastic mass & hinge
- L fixed & dx and dy variable \rightarrow repetition for several L

A longer leaf-spring attenuates the impact of *dy* (lower variation range for larger *L*)

Initial
$$f_0^{(1)}$$
 value decreases as *L* is increased

Trade-off

- Steel mass (µVINS) & CuBe₂ hinge
- L and θ fixed & dx and dy variable \rightarrow repetition for several θ

- Steel mass (µVINS) & CuBe₂ hinge
- L and θ fixed & dx and dy variable \rightarrow repetition for several θ

- Steel mass (µVINS) & CuBe₂ hinge
- L and θ fixed & dx and dy variable \rightarrow repetition for several θ

- Steel mass (µVINS) & CuBe₂ hinge
- L and θ fixed & dx and dy variable \rightarrow repetition for several θ

Above a given angle, $f_0^{(1)}$ does not decrease anymore but the internal stress increases

Ŧ

 $= 0^{\circ}$

 $= 14^{\circ}$

 $= 33^{\circ}$

 $\theta = 47^{\circ}$

 θ

• Steel mass (µVINS) & CuBe₂ hinge

Increasing θ delays

the frequency drop

• L and θ fixed & dx and dy variable \rightarrow repetition for several θ

Above a given angle, $f_0^{(1)}$ does not decrease anymore but the internal stress increases

Ŧ

 $\theta = 0^{\circ}$

 $= 14^{\circ}$

 $\theta = 33^{\circ}$

 $\theta = 47^{\circ}$

Ē.

0.68

dy [mm]

8.

0.44

-20

-10

Conclusion & Design suggestion

The leaf-spring suspension can be tuned into a Quasi-Zero Stiffness mechanism

 $dy \rightarrow f_0^{(1)}$ Shift the clamping point downwards to decrease the sensor resonance frequency and thus widen the measurement bandwidth

 $\theta \rightarrow \text{instability point}$ Optimum angle that gives the lowest $f_0^{(1)}$ Trade-off on L

larger *L* lowers the initial resonance frequency but slows down its decrease

dx → restoring moment Guarantees the sensor equilibrium

Reduction by **1 order of magnitude** of μVINS resonance frequency

Thank you for your attention!

Any questions?

Contact: morgane.zeoli@uclouvain.be

Additional slides

Design proposition

- Leaf-spring: 115 x 0.24 x 45 mm
- *dy* = -24.15 mm
- *dx* = -3.543 mm (ref: 17.78 mm)
- $\theta = 10^{\circ}$

	μVINS	VINS	iSTS1	iSeis
$f_0^{(1)}$ [Hz]	0.14	0.26	0.19	0.39
$f_0^{(2)}$ [Hz]	172.57	-	-	-
Size [mm]	104 x 104 x 103	120 x 17	70 x 180	-

Influence of dx, dy and L - 1 fixed, 2 variable $(f_0^{(1)})$

Influence of dx, dy and L – 1 fixed, 2 variable $(f_0^{(2)})$

Numerical validation - Locus

Numerical validation – Resonance frequency

Valid numerical model

Influence of the hinge stiffness

$$f_0^{(1)} = \frac{1}{2\pi} \sqrt{\frac{k_{\rm LF} + k_{\rm flex}}{I}}$$

