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Abstract

• Policy gradients are effective reinforcement learning algorithms.

• During optimization, the policy should remain sufficiently stochastic.

• Why does optimizing stochastic policies perform better ?

• In practice, we achieve this result with intrinsic exploration bonuses.

• How good is this new learning objective ?
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Introduction



Reinforcement Learning

Reinforcement learning agents make decisions in a system based on the observed

states in order to maximize the expected sum of future rewards gathered.

• Requires an oracle model.

• Differentiates between optimization and execution time.

• Solves offline a nonconvex stochastic optimization problem.
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Notations

Some reinforcement learning notations:

• s ∈ S for the states,

• a ∈ A for the actions,

• h ∈ H for the histories of states and actions,

• p0 for the initial state distribution,

• p for the transition distribution,

• ρ for the reward function,

• η(a|h) for the history-dependent stochastic policies,

• π(a|s) for the stationary Markov stochastic policies,

• µ(s) for the stationary Markov deterministic policies.
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Direct Policy Search – Optimization problem

Definition (Problem Statement)

In direct policy search we look for a policy η∗ maximizing the expected

discounted sum of rewards (i.e., the expected return of the policy):

J(η) = E
s0∼p0(·)

at∼η(·|ht)
st+1∼p(·|st,at)

[
∞∑
t=0

γtρ(st, at)

]
.

Policy-gradient algorithms maximize this objective by iterative local optimization

of a parametric function, typically a neural network by stochastic gradient ascent.
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Direct Policy Optimization

Different types of policies

• Stochastic history-dependent policy ηθ ∈ E = H → P(A)

• Stochastic Markov policy πθ ∈ Π = S → P(A) ⊊ E

• Gaussian policy πGP (a|s) = N (a|µθ(s),Σθ(s))

• Deterministic policy µθ ∈ S → A = M ⊊ Π ⊊ E

A policy is said to be affine, if the function approximators used to construct the

functional form of the policy are affine functions of the parameter θ.
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Direct Policy Search – Requirement

The policy shall remain sufficiently stochastic during the optimization procedure

to avoid converging towards a locally optimal solution.
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The role of the stochasticity of the policy



Optimization by Continuation

Research question

What is the effect of the choice of the functional parameterization of the policy

on the learning objective and how shall it be optimized to converge towards an

optimal policy.
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Optimization by Continuation

We optimize a surrogate objective function fp called continuation, of the true

objective f , of the form

fp(x) = E
y∼p(·|x)

[g(y)] .

• g is any function over a latent space Y.

• p is the continuation distribution.

• There exists a p∗ for which fp∗ = f .
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Policy Gradient Algorithms Implicitly Optimize by Continuation

set of probability measures P(Y), such that p(y|x) is the
associated density function for any random event y ∈ Y
given x ∈ X . The continuation of the function f under the
distribution p and deformation function g is defined as the
function fp : X → R such that ∀x ∈ X :

fp(x) = E
y∼p(·|x)

[g(y)] . (5)

For the optimization by continuation described hereafter,
there must exist a conditional distribution p∗ for which fp

equals f in the limit as p approaches p∗. A typical example
is to choose the function g equal to f , and to use a Gaus-
sian distribution with a constant diagonal covariance matrix
for the distribution p. We then have so-called Gaussian
continuations (Mobahi & Fisher III, 2015).

Finally, optimizing a function f by continuation involves
iteratively locally optimizing its continuation for a sequence
of conditional distributions approaching p∗ with decreasing
spread. Formally, let p0 � p1 � · · · � pI−1 be a sequence
of conditional distributions (monotonically) approaching p∗

with strictly decreasing covariance matrices1. Then, opti-
mizing f by continuation consists in locally optimizing its
continuation fpi with a local-search algorithm initialized at
x∗i for each iteration i. This general procedure is summa-
rized in Algorithm 1. Particular instances of this algorithm
are described by Hazan et al. (2016) and Shao et al. (2019).

Algorithm 1 Optimization by Continuation
1: Provide a sequence p0 � p1 � · · · � pI−1

2: Provide an initial variable value x∗0 ∈ X
3: for all i = 0, 1, . . . , I − 1 do
4: x∗i+1 ← Optimize the continuation fpi by local

search initialized at x∗i
5: end for
6: return x∗I

3.2. Continuation of the Return of a Policy

The direct policy optimization problem usually consists in
maximizing a nonconvex function. Optimization by contin-
uation is thus a good candidate for computing a solution. In
this section, we introduce a novel continuation adapted to
the return of policies.

The return of a policy depends on the probability of a
sequence of actions through the product of the density
ηθ(at|st) of each action at for a given parameter θ, see
equation (1). We define the continuation of interest as the
expectation of the return where each factor in the prod-
uct of densities depends on a different parameter vector.
This expectation is taken according to a distribution that

1In this work, we consider the L2-norm of functions and the
Loewner order over the set of covariance matrices (Siotani, 1967).

disturbs these parameter vectors at each time step with a
variance depending on the history. Formally, using the no-
tations from Section 3.1, we optimize the function f that
for all x = θ equals the return, f(θ) = J(πθ), over the set
X = RdΘ . Let the covariance function Σ : H → RdΘ×dΘ

be a function mapping a history ht ∈ H to a covariance
matrix Σ(ht). Let the continuation distribution q be a dis-
tribution such that q(θt|θ,Σ(ht)) is the density of θt dis-
tributed with mean θ and covariance matrix Σ(ht). Then,
let Y =

(
S ×A× RdΘ

)N
be the set of (infinite) sequences

of states, actions and parameters and let p and g, the two
functions defining the continuation, be as follows:

p(y|x) = p(s0)
∞∏
t=0

ηθt(at|ht)pθ(θt|ht)p(st+1|st, at) (6)

g(y) =
∞∑
t=0

γtρ(st, at) , (7)

where pθ(θt|ht) = q(θt|θ,Σ(ht)) such that the spread of pθ
depends on the function Σ. Taken together, the continuation
fqΣ = fp of the return of the policy ηθ ∈ E corresponding
to the distribution q and covariance function Σ, is defined
∀θ ∈ RdΘ as:

fqΣ(θ) = E
s0∼p0(·)

θt∼q(·|θ,Σ(ht))
at∼ηθt (·|ht)
st+1∼p(·|st,at)

[ ∞∑
t=0

γtρ(st, at)

]
. (8)

Finally, the continuation equation (8) converges towards
the return of ηθ in the limit as the covariance function Σ
approaches zero, as required in Section 3.1.

This continuation is expected to be well-suited for removing
local extrema of the return for three main reasons. First,
marginalizing the variables of a function as in our contin-
uation is expected to smooth this function and therefore
remove local extrema – the particular case of Gaussian blur-
ring has been widely studied in the literature (Mobahi &
Fisher, 2015; Nesterov & Spokoiny, 2017). Second, we
underline the interest of considering a continuation in which
the disturbance of the policy parameters may vary based
on the time step. Indeed, changing the parameter vector of
the policy at different time steps (and changing the action
distributions) may modify the objective function in signif-
icantly different ways. Third, we justify the factorization
of the conditional distribution pθ equation (6) by the causal
effect of actions in the MDP. As the actions only influence
the rewards to come, the past history is expected to provide
a sufficient statistic for disturbing the parameters in order to
remove local optima. We therefore chose parameter prob-
abilities conditionally independent given the past history.
This history-dependency is encoded through the covariance
function Σ in equation (8).
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Optimization by Continuation – Illustration

Illustration for Gaussian continuations:

fp(x) = E
y∼N (·|x,σ)

[f(y)] .
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Optimization Policies by Continuation

We define a continuation for the optimization variable x = θ and the latent

variable y = s0, θ0, a0, s1, . . . , where

p(y|x) = p(s0)

∞∏
t=0

ηθt(at|ht) q(θt|θ,Λ(ht)) p(st+1|st, at)

g(y) =
∞∑
t=0

γtρ(st, at) .

Continuation of the return

The continuation fq
Λ = fp of the return of the policy ηθ ∈ E corresponding to

the distribution q and covariance function Λ, is defined ∀θ ∈ RdΘ as:

fq
Λ(θ) = E

s0∼p0(·)
θt∼q(·|θ,Λ(ht))
at∼ηθt (·|ht)

st+1∼p(·|st,at)

[
∞∑
t=0

γtρ(st, at)

]
.

The continuation converges towards the return of ηθ in the limit as a covariance

function Λ approaches zero. 10/34



Optimization Policies by Continuation

• Smoothing effect of the continuation through marginalizing the variables.

• Policy parameters may vary differently based on the time step.

• Factorization represents the causal effect of actions.

Result

Show that optimizing by policy-gradient (1) a policy with discounted variance,

and (2) a policy with discounted entropy regularization, is equivalent to

optimizing the continuation of the return of another policy.
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Mirror Policies and Policy Optimization

Definition. We call a mirror policy of the original policy ηθ, under the

continuation distribution q and covariance function Λ, any history-dependent

policy η′
θ ∈ E such that ∀θ ∈ RdΘ :

fq
Λ(θ) = J(η′

θ) .
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Properties of mirror policies

Existence of deterministic original policies

Let πGP ′
θ be an affine Gaussian policy with mean function µθ, and with

covariance function Σ′
θ = Σ′ constant with respect to the parameters of the

policy (i.e., a function depending solely on the state). If dA ≤ dΘ and if

∇θµθ(s) is full rank, then, there exists a continuation, with covariance Λ

proportional to Σ′, for which πGP ′
θ is a mirror policy of the original policy µθ.

If we schedule the variance of this Gaussian policy πGP ′
θ and optimize it by

stochastic gradient ascent, it is equivalent to optimize the policy µθ by

continuation.
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Illustration

We consider a car moving on a double-cliffed valley, and denote by x its position

and by v its speed. The car starts in the highest cliff and perceives rewards

proportional to the depth in the valley, an optimal sequence of actions would

bring the car in the deepest cliff xtarget.
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Illustration

• Directly optimizing a deterministic policy µθ(s) = θ × (x− xtarget) would

result in a locally optimal policy.

• We optimize the Gaussian πGP ′
θ (a|s) = N (a|µθ(s), σ

′) instead.

• πGP ′
θ is a mirror policy of µθ with continuation variance

λ = σ′/(x− xtarget)
2.
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A sufficiently large variance removes the local extrema of the the return of the

mirror policy. 15/34



Discussion

• Exploration in the sense of enforcing the entropy of the policy has a

smoothing effect on the return.

• The variance or entropy of the policy is part of the optimization process and

shall be adjusted to avoid local extrema and not to locally maximize the

return.

• As the variance has a smoothing role, there may be advantages to optimize

history-dependent policies.
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Learning objective with intrinsic exploration



Intrinsic Exploration

Learning objective

Policy gradient algorithms optimize by SGA the learning objective:

L(θ) =
1

1− γ
E

s∼dπθ,γ(·)
a∼πθ(·|s)

[
ρ(s, a) +

K−1∑
i=0

λiρ
int
i (s, a)

]
= J(πθ) + J int(πθ) .

• Uncertainty-based motivations where the reward depends on a model

prediction error.

• Entropy-based motivations where the reward depends on the state-action

probability, typically :

ρs(s, a) = − log dπθ,γ(ϕ(s))

ρa(s, a) = − log πθ(a|s) .
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Research question

We optimize a surrogate learning objective but we want the final solution

computed by (stochastic) gradient ascent to be a near-optimal policy.

Research question

What are the required conditions to compute an optimal policy by (stochastic)

gradient ascent on a learning objective ?
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Convergence of SGA

Let us assume that we have unbiased gradient estimates of the learning objective

function, and that we perform stochastic gradient ascent steps.

• Stochastic gradient ascent is guaranteed to converge towards a local

maximum under mild conditions.

• If the function is (pseudo or quasi) concave, stochastic gradient ascent

converges towards the global maximum.
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Study of the Learning objective – Coherence

1. Coherence criterion

A learning objective L is ε-coherent if and only if

J(πθ∗)− J(πθ†) ≤ ε , (1)

where θ∗ ∈ argmaxθJ(πθ) and where θ† ∈ argmaxθL(θ).

The optimal parameter θ† corresponds to a policy at most suboptimal by ε.
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Study of the Learning objective – Concavity

2. Pseudoconcavity criterion

A learning objective L is pseudoconcave if and only if

∃! θ† : ∇L(θ†) = 0 ∧ L(θ†) = max
θ

L(θ) . (2)

If the pseudoconcavity criterion is respected, there is a single optimum, and it is

thus possible to globally optimize the learning objective function by (stochastic)

gradient ascent.
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Learning objective in the hill environment

We optimize the policy πGP (a|s) = N (a|K × (x− xtarget), σ) with the objective

L(θ) =
1

1− γ
E

s∼dπθ,γ(·)
a∼πθ(·|s)

[ρ(s, a) + λ1ρ
s(s, a) + λ2ρ

a(s, a)] .
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Learning objective in the hill environment
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Discussion

• There is a tradeoff between both criteria.

• Balancing the criteria can be achieved by scheduling the weights.

• Entropy bonuses do not hold the same role as in value-based RL.
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Related works

• The smoothing effect of entropy regularization has been long known.

• Optimizing entropy regularized objective is equivalent to robust

optimization.
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Research question

In practice, even pseudoconcave and coherent learning objective functions can be

challenging to optimize with stochastic approximations.

Research question

What are the required conditions for exploration to accelerate the convergence

speed of SGA ?
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Probability of improvement of SGA

The improvement of learning objective f following the update direction d̂ is

X = f(θ + αd̂)− f(θ) ≈ α ⟨d̂,∇θf(θ)⟩ ,

where ⟨·, ·⟩ is the Euclidean scalar product.

• The asymptotic convergence is deduced from the expectation of this random

variable.

• In practice gradients are biased and the ascent algorithms modify the update

directions.

Let us assume that all ascent steps lead to a constant variation of the objective,

such that the policy improvement is proportional to P(X > 0).

27/34



Study of the stochastic ascent direction – Efficiency

3. Efficiency criterion

An exploration strategy is efficient if and only if

∀∞θ : P(D > 0) > P(G > 0) , (3)

where D = ⟨d̂,∇θJ(πθ)⟩ and G = ⟨ĝ,∇θJ(πθ)⟩.

Following the ascent direction d̂ ≈ ∇θL(θ) has a higher probability of increasing

the return of the policy than following the direction ĝ ≈ ∇θJ(πθ).
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Study of the stochastic ascent direction – Attraction

4. Attraction criterion

An exploration strategy is δ-attractive if and only if

∃B(θ†) : θint ∈ B(θ†) ∧ ∀∞θ ∈ B(θ†) : P(D > 0) ≥ δ , (4)

where θint = argmaxθJ
int(πθ), B(θ†) is a ball centered in θ†, and

D = ⟨d̂,∇θJ(πθ)⟩.

If the criterion is respected for large δ, policy gradients will eventually tend to

improve the return of the policy if it approaches θint and enters the ball B(θ†);

eventually converging towards θ†.
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Sparse reward environment – Simple maze

Let us consider a maze environment consisting of a horizontal corridor composed

of S ∈ N tiles.

• States s ∈ {1, . . . , S} and actions a ∈ {−1 (Left),+1 (Right)}.

• Start at the first left-most state s0 = 1.

• Stays idle with probability p = 7/10.

• Perceives a non-zero reward in the absorbing state s = S.

We optimize a one-parameter policy:

πθ(a|s) =

{
θ if a = 1

1− θ if a = −1 .
(5)
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Learning objective functions in the maze

We consider two intrinsic reward bonuses:

ρs(s, a) = − log dπθ,γ(s)

ρa(s, a) = − log πθ(a|s)

ρd(s, a) = (a− 1)/2 .
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Probability of improving the return in the maze

Let us compute the probability that the gradient is in the correct direction.
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Discussion

• Exploration terms are proxies to have more suited objective functions.

• The analysis is valid for any surrogate learning objective.

• In practice, entropy bonuses have good smoothing properties.

• Exploration is of paramount importance and further research could alleviate

some folklore.
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