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Abstract

Policy gradients are effective reinforcement learning algorithms.
e During optimization, the policy should remain sufficiently stochastic.

e Why does optimizing stochastic policies perform better 7

In practice, we achieve this result with intrinsic exploration bonuses.

e How good is this new learning objective ?
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Introduction



Reinforcement Learning

Reinforcement learning agents make decisions in a system based on the observed
states in order to maximize the expected sum of future rewards gathered.

Environment

State

| Action
~Reward |
Numerical Value
RL agent
e Requires an oracle model.
e Differentiates between optimization and execution time.

e Solves offline a nonconvex stochastic optimization problem.
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Some reinforcement learning notations:

e s € S for the states,

e a € A for the actions,

e 1 € H for the histories of states and actions,

e po for the initial state distribution,

e p for the transition distribution,

e p for the reward function,

e 7)(alh) for the history-dependent stochastic policies,
e m(als) for the stationary Markov stochastic policies,

e 4u(s) for the stationary Markov deterministic policies.
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Direct Policy Search — Optimization problem

Definition (Problem Statement)

In direct policy search we look for a policy 7" maximizing the expected
discounted sum of rewards (i.e., the expected return of the policy):

J(n) = E {Z ”/LP(SuaL)} .

s0~po () —
at~n(-|ht) ¢=0
st1~p(+|st,at)

Policy-gradient algorithms maximize this objective by iterative local optimization
of a parametric function, typically a neural network by stochastic gradient ascent.
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Direct Policy Optimization

Different types of policies

e Stochastic history-dependent policy 79 € € = H — P(A)
Stochastic Markov policy mp € I =8 — P(A) C &

e Gaussian policy 7% (als) = N (aljto(5), So(s))

e Deterministic policy g € S - A=M CII C &

A policy is said to be affine, if the function approximators used to construct the
functional form of the policy are affine functions of the parameter 6.

5/34



Direct Policy Search — Requirement

The policy shall remain sufficiently stochastic during the optimization procedure
to avoid converging towards a locally optimal solution.
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The role of the stochasticity of the policy



Optimization by Continuation

Research question
What is the effect of the choice of the functional parameterization of the policy
on the learning objective and how shall it be optimized to converge towards an

optimal policy.
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Optimization by Continuation

We optimize a surrogate objective function f? called continuation, of the true
objective f, of the form
ffl@)y="E [g(y)] .

T y~p(le)

e ¢ is any function over a latent space ).
e p is the continuation distribution.
e There exists a p* for which f”* =f.

Algorithm 1 Optimization by Continuation

1: Provide a sequence pg > p1 > -+ > pr—1

2: Provide an initial variable value g € X

3: forall: =0,1,...,] —1do

4. x;,,; < Optimize the continuation f?¢ by local
search initialized at 2

end for

return z;

SAY
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Optimization by Continuation — Illustration

Hlustration for Gaussian continuations:

fr(@) = fwl -

y~N (o)

T
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Optimization Policies by Continuation

We define a continuation for the optimization variable x = 6 and the latent

variable y = sg, 0o, ao, s1, ..., where
p(ylz) = p(so) [ [ ne. (aclhe) a(8:16, A(he)) p(stsa|se, ar)
t=0
9W) = V'plsi,ar) .
t=0

Continuation of the return

The continuation fi = f? of the return of the policy ng € £ corresponding to
the distribution ¢ and covariance function A, is defined V0 € R as:

fX(H): E |:Z’YP 9f7af:|

s0~po ()
0¢~q(-|6,A(ht))
at~mng, (-|ht)
st+1~p(:|st,at)

The continuation converges towards the return of 79 in the limit as a covariance
function A approaches zero. 10/34



Optimization Policies by Continuation

e Smoothing effect of the continuation through marginalizing the variables.
e Policy parameters may vary differently based on the time step.

e Factorization represents the causal effect of actions.

Result

Show that optimizing by policy-gradient (1) a policy with discounted variance,
and (2) a policy with discounted entropy regularization, is equivalent to

optimizing the continuation of the return of another policy.
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Mirror Policies and Policy Optimization

Definition. We call a mirror policy of the original policy 7, under the
continuation distribution ¢ and covariance function A, any history-dependent
policy 7, € € such that V0 € R?e:

fa(0) = J(ny) .
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Properties of mirror policies

Existence of deterministic original policies

Let WEP' be an affine Gaussian policy with mean function pg, and with
covariance function ¥, = ¥’ constant with respect to the parameters of the
policy (i.e., a function depending solely on the state). If d4 < de and if
Vope(s) is full rank, then, there exists a continuation, with covariance A
proportional to ', for which 7T9GP/ is a mirror policy of the original policy .

If we schedule the variance of this Gaussian policy WEP/ and optimize it by
stochastic gradient ascent, it is equivalent to optimize the policy po by

continuation.
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Illustration

We consider a car moving on a double-cliffed valley, and denote by x its position
and by v its speed. The car starts in the highest cliff and perceives rewards
proportional to the depth in the valley, an optimal sequence of actions would

bring the car in the deepest cliff ztarget.

-4 -3 -2 -1 0 1 2 3 4
Position z
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Illustration

e Directly optimizing a deterministic policy po(s) = 0 X (x — Ziarger) would
result in a locally optimal policy.

e We optimize the Gaussian WQGPI(a|s) = N(a|pe(s),0") instead.

Gp’

e Tg is a mirror policy of pg with continuation variance

A= (T//(."I? - -Ttwr'_qet)Z-

60

Return

40

30

0

A sufficiently large variance removes the local extrema of the the return of the
mirror policy. 15/34



Discussion

e [ixploration in the sense of enforcing the entropy of the policy has a

smoothing effect on the return.

e The variance or entropy of the policy is part of the optimization process and
shall be adjusted to avoid local extrema and not to locally maximize the
return.

e As the variance has a smoothing role, there may be advantages to optimize

history-dependent policies.
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Learning objective with intrinsic exploration



Intrinsic Exploration

Learning objective

Policy gradient algorithms optimize by SGA the learning objective:

o 1 zn[ o int
L(H)l—fyswfl%-ﬁ(»)|: s,a +Z/\p sa:| = J(mo) + J"" (mg) .

armg(-|s)

e Uncertainty-based motivations where the reward depends on a model
prediction error.

e Entropy-based motivations where the reward depends on the state-action
probability, typically :

p’(s,a) = —logd™ " (¢(s))
p“(s,a) = —logme(als) .
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Research question

We optimize a surrogate learning objective but we want the final solution
computed by (stochastic) gradient ascent to be a near-optimal policy.

Research question

What are the required conditions to compute an optimal policy by (stochastic)
gradient ascent on a learning objective 7
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Convergence of SGA

Let us assume that we have unbiased gradient estimates of the learning objective
function, and that we perform stochastic gradient ascent steps.

e Stochastic gradient ascent is guaranteed to converge towards a local

maximum under mild conditions.

e If the function is (pseudo or quasi) concave, stochastic gradient ascent

converges towards the global maximum.
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Study of the Learning objective — Coherence

1. Coherence criterion
A learning objective L is e-coherent if and only if

J(mge) — J(mpt) <€, 1)

where 6" € argmax,J(mg) and where ' € argmax, L(6).

The optimal parameter 07 corresponds to a policy at most suboptimal by .
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Study of the Learning objective — Concavity

2. Pseudoconcavity criterion

A learning objective L is pseudoconcave if and only if

36T VL) =0A L) = max L(0) . (2)

If the pseudoconcavity criterion is respected, there is a single optimum, and it is
thus possible to globally optimize the learning objective function by (stochastic)
gradient ascent.
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Learning objective in the hill environment

We optimize the policy 7T (a|s) = N (a|K x (2 — Ztarget), o) with the objective

1
=—— E
1 —ys~d™o7()

anmg(-|s)

L(9) [p(s,) + Aup® (s, 0) + Aap” (s, 0)] .
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Learning objective in the hill environment
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Discussion

e There is a tradeoff between both criteria.
e Balancing the criteria can be achieved by scheduling the weights.

e Entropy bonuses do not hold the same role as in value-based RL.
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Related works

e The smoothing effect of entropy regularization has been long known.

e Optimizing entropy regularized objective is equivalent to robust

optimization.
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Research question

In practice, even pseudoconcave and coherent learning objective functions can be
challenging to optimize with stochastic approximations.

Research question

What are the required conditions for exploration to accelerate the convergence
speed of SGA 7
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Probability of improvement of SGA

The improvement of learning objective f following the update direction d is
X = f(0+ad) - f(6) ~ a(d,Vef(0)),
where (-, ) is the Euclidean scalar product.

e The asymptotic convergence is deduced from the expectation of this random
variable.

e In practice gradients are biased and the ascent algorithms modify the update
directions.

Let us assume that all ascent steps lead to a constant variation of the objective,
such that the policy improvement is proportional to P(X > 0).
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Study of the stochastic ascent direction — Efficiency

3. Efficiency criterion

An exploration strategy is efficient if and only if
V0 : P(D > 0) > P(G > 0), (3)

where D = (d, V¢J(mp)) and G = (g, VoJ(mp)).

Following the ascent direction d~ Vo L(0) has a higher probability of increasing
the return of the policy than following the direction g ~ Vo J (7).
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Study of the stochastic ascent direction — Attraction

4. Attraction criterion

An exploration strategy is d-attractive if and only if
3IB(6") : """ € B(6") AV®0 € B(6) : P(D > 0) >4, (4)

where 0" = argmax,J"™ (mp), B(0") is a ball centered in ', and
D = (d,V¢J(m)).

If the criterion is respected for large §, policy gradients will eventually tend to
improve the return of the policy if it approaches 0" and enters the ball B(07);
eventually converging towards 61,
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Sparse reward environment — Simple maze

Let us consider a maze environment consisting of a horizontal corridor composed

of S € N tiles.

e States s € {1,...,S5} and actions a € {—1 (Left), +1 (Right)}.
e Start at the first left-most state sp = 1.
e Stays idle with probability p = 7/10.

e Perceives a non-zero reward in the absorbing state s = S.

We optimize a one-parameter policy:

0 ifa=1
mo(als) = { 1-60  ifa=—1 (5)
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Learning objective functions in the maze

We consider two intrinsic reward bonuses:

p°(s,a) = —logd™7(s)

P (s,a) = —logmo(als)

pl(s,a) = (a—1)/2.

350 ‘
300 — J(mp) 30
250 — J%(mp) 25
2(_)0 Jd(ﬂ'g) 20
150 15
100 () 2
10

50
0 9 = 5
—50 0

00 02 04 06 08 1.0
0

(a) Return (b) Learning objectives
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Probability of improving the return in the maze

Let us compute the probability that the gradient is in the correct direction.

B B
1.0 B
0.81 /\
0.61 — P(G >0)
0.41 — P(D*>0)
0.9 — P(D?>0)

—— P(D">0)

0.01

00 02 04 06 08 10

32/34



Discussion

e Fxploration terms are proxies to have more suited objective functions.

The analysis is valid for any surrogate learning objective.

In practice, entropy bonuses have good smoothing properties.

Exploration is of paramount importance and further research could alleviate
some folklore.
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