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Abstract: Cereal production plays a major role in both animal and human diets throughout the world.
However, cereal crops are vulnerable to attacks by fungal pathogens on the foliage, disrupting their
biological cycle and photosynthesis, which can reduce yields by 15–20% or even 60%. Consumers are
concerned about the excessive use of synthetic pesticides given their harmful effects on human health
and the environment. As a result, the search for alternative solutions to protect crops has attracted
the interest of scientists around the world. Among these solutions, biological control using beneficial
microorganisms has taken on considerable importance, and several biological control agents (BCAs)
have been studied, including species belonging to the genera Bacillus, Pseudomonas, Streptomyces,
Trichoderma, Cladosporium, and Epicoccum, most of which include plants of growth-promoting rhizobac-
teria (PGPRs). Bacillus has proved to be a broad-spectrum agent against these leaf cereal diseases.
Interaction between plant and beneficial agents occurs as direct mycoparasitism or hyperparasitism
by a mixed pathway via the secretion of lytic enzymes, growth enzymes, and antibiotics, or by an
indirect interaction involving competition for nutrients or space and the induction of host resistance
(systemic acquired resistance (SAR) or induced systemic resistance (ISR) pathway). We mainly
demonstrate the role of BCAs in the defense against fungal diseases of cereal leaves. To enhance a
solution-based crop protection approach, it is also important to understand the mechanism of action
of BCAs/molecules/plants. Research in the field of preventing cereal diseases is still ongoing.

Keywords: leaf cereal diseases; wheat; rice; maize; biocontrol

1. Introduction

Cereals, which include wheat (Triticum spp.), rice (Oryza sativa L.), and maize (Zea mays L.),
make up the bigger part of crop production and account for 90% of the world’s cereal
production [1]. Since they were originally domesticated thousands of years ago [2], they
have been the primary source of nutrition for humans [2,3], accounting for more than 56%
of daily calories and 50% of daily protein. Wheat is among the most widely grown small
grains in the world [4]. Half of the world’s wheat is produced by the top five producers,
which are France, Russia, China, India, and the United States [5]. However, these cultivated
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plants are subject to leaf diseases caused by pathogenic fungi (ascomycetes, basidiomycetes,
etc.). They can be classified as biotrophic, necrotrophic, and hemibiotrophic based on their
trophic biology [6], thus establishing a long-term relationship with the host and living
inside the cellular plant. They are highly specialized and can absorb nutrients from plant
cells causing cell death [7].

Cereal leaf diseases have been managed by eliminating alternative hosts [8], tillage
as a cultural practice, and selecting resistant cultivars [9,10]. Biological and chemical
control is also a key tool for reducing the severity of the disease and minimizing yield
losses [11]. Although fungicides provide selective pressure that favors the evolution of
fungicide-resistant plant pathogens [12]. Due to the high cost of fungicide treatment and
the environmental and health risks posed by weather conditions, the adoption of genetic
resistance has long been the preferred strategy [13]. For this reason, stakeholders need
to develop a variety of management measures that rely mainly on chemical, biological,
genetic, and agronomic aspects to ensure effective crop growth [14].

Currently, biocontrol products account for around 5% of the world market for crop
protection (worth approximately USD 3 billion), and it is expected that by 2025, biocon-
trol products will grow at an annual rate of 8.84%, representing above 7% of the global
crop protection market (valued at more than USD 4.5 billion) [15,16]. The use of antag-
onistic biocontrol agents (BCAs)—specifically, species belonging to the genera Bacillus,
Pseudomonas, Streptomyces, Cladosporium, Epicoccum, and Trichoderma—against cereal fo-
liar disease pathogens like species belonging to the genera Puccinia, Septoria, Blumeria,
Pyrenophora, and Bipolaris has been widely reported. Many of these BCAs not only inhibit
pathogen development but also directly stimulate plant growth [15].

In this paper, we review the essential alternatives to chemical applications for control-
ling foliar cereal diseases using BCAs as a good choice for disease prevention as well as
their interactions with the plant and their mechanisms of action.

In this work, we retrieved bibliometric data on the biocontrol of the leaf diseases of
cereals by using the SCOPUS database of which we chose the specific keywords to carry out
this operation: “Cereals” or “Wheat” or “Rice” or “Maize” or “Biological Control Agents”
or “Leaf diseases”. The VOS viewer (v1.6.9., Leiden University, Leiden, The Netherlands)
processing software was used to create the bibliometric analysis. The study displays the
distribution of the most pertinent publications regarding the biocontrol of diseases infecting
cereal leaves by advantageous microorganisms. The results of the network analysis show
a relationship between the keywords discovered and the general perspective of current
investigations in the field (Figure 1).

Plants 2023, 12, x FOR PEER REVIEW 3 of 26 
 

 

 
Figure 1. Relevant articles (n = 940) from the Scopus database were subjected to a bibliometric 
analysis using particular keywords such as “Cereals”, “Wheat”, “Rice”, “Maize”, “Biological Con-
trol Agents”, and “Leaf diseases”. 

2. The Main Foliar Diseases Affecting Cereals 
2.1. Fungal Leaf Diseases of Wheat 

Rusts are fungal diseases of higher plants including cereals. The pathogens respon-
sible are obligate parasitic basidiomycetes of the genus Puccinia that colonize, grow, and 
reproduce only in living plant tissue, affecting photosynthesis by reducing leaf area and 
increasing the plant’s transpiration rate [17]. This leads to large incidents and significant 
yield losses under favorable environmental conditions [18–20]. There are two main 
wheat leaf rusts: brown rust (Puccinia triticina) and yellow rust (Puccinia striiformis f. sp. 
tritici). These pathogens have a dispersal capacity and short development cycles that en-
able them to spread rapidly in cultivated fields and induce explosive epidemics [20] 
(Figure 2). 

Yellow rust (Yr) caused by P. striiformis a biotrophic wheat pathogen, is considered 
to be one of the principal threats to wheat production in past centuries [21,22]. It can re-
duce yields by 10–70% [23] if the wheat cultivar is susceptible and weather conditions 
are conducive to disease development [24,25]. Sudden epidemics in cultivars that were 
previously thought to be resistant have been produced by the P. striiformis pathogen’s 
dynamics to develop current races, and especially since 2010, the discovery and quick 
dissemination of current destructive races has caused catastrophic losses [26,27]. P. strii-
formi alternates between separate hosts during its life cycle; it lives on grasses during the 
asexual phase and on Berberis spp. during the sexual phase [28]. The life cycle of P. strii-
formis comprises five species of spores: urediniospores, basidiospores, and teliospores on 
wheat; pycniospores and aeciospores on Berberis spp. Urediniospores and teliospores are 
dicaryotic and teliospores generate haploid basidiospores [23]. The pycnial and aecidial 
spore stages have only recently been discovered [28]. When the supply of nutrients from 
infected tissues diminishes, the telial phase begins. As the urediniospores germinate, the 
germ tubes develop and penetrate the leaf stomata [29], triggering the stomatal cavity’s 
main infection hyphal development. When the hypha reaches the mesophyll or epider-
mal cells, the mother cells of the haustorium are formed. The haustorium then settles be-
tween the host cell’s plasma membrane and its cell wall [30]. The haustorium feeds the 

Figure 1. Relevant articles (n = 940) from the Scopus database were subjected to a bibliometric
analysis using particular keywords such as “Cereals”, “Wheat”, “Rice”, “Maize”, “Biological Control
Agents”, and “Leaf diseases”.



Plants 2023, 12, 4162 3 of 23

2. The Main Foliar Diseases Affecting Cereals
2.1. Fungal Leaf Diseases of Wheat

Rusts are fungal diseases of higher plants including cereals. The pathogens respon-
sible are obligate parasitic basidiomycetes of the genus Puccinia that colonize, grow, and
reproduce only in living plant tissue, affecting photosynthesis by reducing leaf area and
increasing the plant’s transpiration rate [17]. This leads to large incidents and significant
yield losses under favorable environmental conditions [18–20]. There are two main wheat
leaf rusts: brown rust (Puccinia triticina) and yellow rust (Puccinia striiformis f. sp. tritici).
These pathogens have a dispersal capacity and short development cycles that enable them
to spread rapidly in cultivated fields and induce explosive epidemics [20] (Figure 2).

Yellow rust (Yr) caused by P. striiformis a biotrophic wheat pathogen, is considered
to be one of the principal threats to wheat production in past centuries [21,22]. It can
reduce yields by 10–70% [23] if the wheat cultivar is susceptible and weather conditions
are conducive to disease development [24,25]. Sudden epidemics in cultivars that were
previously thought to be resistant have been produced by the P. striiformis pathogen’s
dynamics to develop current races, and especially since 2010, the discovery and quick
dissemination of current destructive races has caused catastrophic losses [26,27]. P. striiformi
alternates between separate hosts during its life cycle; it lives on grasses during the asexual
phase and on Berberis spp. during the sexual phase [28]. The life cycle of P. striiformis
comprises five species of spores: urediniospores, basidiospores, and teliospores on wheat;
pycniospores and aeciospores on Berberis spp. Urediniospores and teliospores are dicaryotic
and teliospores generate haploid basidiospores [23]. The pycnial and aecidial spore stages
have only recently been discovered [28]. When the supply of nutrients from infected tissues
diminishes, the telial phase begins. As the urediniospores germinate, the germ tubes
develop and penetrate the leaf stomata [29], triggering the stomatal cavity’s main infection
hyphal development. When the hypha reaches the mesophyll or epidermal cells, the mother
cells of the haustorium are formed. The haustorium then settles between the host cell’s
plasma membrane and its cell wall [30]. The haustorium feeds the fungus by absorbing
nutrients and water from the host plant cells [31]. Most of each haustorium is located in leaf
mesophyll cells, but some are present in the leaf epidermal layer [32]. Secondary infection
occurs from the hyphae of primary infection. These hyphae grow within the mesophyll
cells’ intracellular area and branch the mesophyll layer to create a dense mycelial network.
About a week after infection, the first bands of pustules begin to appear, and chlorotic
spots are seen on the leaf surface. Ten to fourteen days after infection, sporulated pustules
appear through the leaf epidermis with characteristic yellow spores. On adult plants, once
the pustules become visible on the leaf surface, they appear in characteristic bands, as the
leaves of adult plants, unlike young plants, have well-developed vascular bundles [33].

The wheat leaf rust (Lr) pathogen is renamed and referred to as Puccinia triticina Eriks.
A healthy plant must go through several stages of growth before becoming affected by
a disease. These steps are as follows: a pathogen enters the host, attaches to the host,
recognizes the host, produces an aerosol, penetrates the host, infects the host, colonizes
the host, and spreads, frequently by water and/or air. The five spore phases produced by
the causal agent of leaf rust are urediniospores, teliospores, basidiospores (on the primary
host), pycniospores, and aeciospores (on secondary hosts). The fungus produces spores
repeatedly during the growth season because it is macrocyclic. According to climatic
factors, host age, and genotype, fresh infections may happen every 7 to 10 days since each
new spore can reinfect wheat [34]. Leaf rust can form ovoid to circular pustules on the
adaxial and abaxial surfaces of leaves, with a diameter of up to 1.5 mm [34]. When leaf rust
infections take place during the development stage from heading to senescence, around
20,000 spores can be generated per pustule [34]. The urediniospores germinate to form
a germ tube after they touch down on a receptive host. According to Roelfs et al. [35],
optimal spore germination takes place between 15 and 20 ◦C with constant dew for four to
eight hours. It will move the germ tube over the leaf’s surface toward the stomata after
germination [34]. The protoplasm of the germ tube accumulates at the tip of the hypha and
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forms a membrane when a stomata is present [34]. As a result of the appressorium, the
stomata shut, allowing a penetrating peg to push through and into the substomatal region
of the host [34]. A sub-stomatal vesicle is created by the penetrating dowel hydra. The
substomatal vesicle interacting with the mesophilic cell is the source of invasion hyphae
and the mother cell haustorial [34]. Nutrients can be transferred from the host to the fungus
thanks to a strong interaction between their membranes [36].

Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is currently the
most detrimental disease of leaves affecting wheat crops, particularly in areas with favorable
climatic conditions like Western Europe [37]. During severe epidemics, wheat crops may
decrease considerably by 50% [38]. In the asymptomatic phase of a hemibiotrophic fungus,
fungus hyphae develop between the cells of the leaf’s mesophyll without inducing host
necrosis. A brief necrotrophic stage that lasts for approximately a week follows and is
marked by a rise in fungal biomass, the synthesis of cell wall-degrading enzymes, the
emergence of necrosis, and the growth of pycnidia [38,39]. Around 10 days after the
infection process begins, the switch from biotrophy to necrotrophy happens rapidly [39],
but this brief period might depend on the infected cultivar and natural circumstances [40].
As most wheat varieties lack significant host resistance to (STB), the disease is mainly
controlled by the application of conventional fungicides. However, it commonly develops
resistance to fungicidal substances and bypasses host resistance; the effectiveness of genetic
and chemical control measures is generally threatened in the field [41,42], as well as its
frequency of sexual reproduction and genetic recombination, which affect its high level of
biological fitness [15,43,44].

One of the largest threats to the majority of cereal crops, including barley, oats, wheat,
and triticale, is powdery mildew, which is caused by the biotrophic obligatory fungus
Blumeria graminis [45]. It can only finish its life cycle on a live host and does not grow in
axenic crops. B. graminis has a finely synchronized, strictly controlled asexual life cycle [46].
Ascospores and conidia serve a considerable role in the pathogenesis of the fungi that cause
powdery mildew. As the disease progresses, B. graminis primarily reproduces asexually by
perpetually producing conidia [46]. B. graminis conidia and ascospores germinate once they
touch an appropriate surface of a host leaf, and they subsequently develop the appressorium
and the infection structure to pierce their hosts [47]. Conidia with young conidiophores can
act as an inoculum for the infection of volunteer plants produced by conidia and ascospore
colonies after successful infection and haustorium development [48]. Therefore, conidia
production and dissemination are essential to B. graminis pathogenesis [49]. The epidemic
development of powdery mildew is highly influenced by the cultivars’ resistance and the
impact of applied fungicides [24]. The disease has recently expanded more significantly in
warmer, drier areas where agriculture practices have intensified due to increased irrigation,
higher sowing rates, and the usage of nitrogen fertilizers [50], widely dispersed in regions
with cool and dry temperatures. Although larger losses have been reported in other places,
powdery mildew-related losses to wheat output in Western Europe are typically less than
10% [37], which may be due to the low seeding rates used, or when infection occurs very
early and results in the death of individual tillers or whole plants. Historically, powdery
mildew has largely been controlled by race-specific resistance genes, while cultivars have
often been shown to be dependent on the emergence of new virulent races. B. graminis has
a well-known and ubiquitous fungicide resistance problem [51].

One of the principal diseases of bread wheat is tan spot, often referred to as yellow
spot, which is brought on by the fungus Pyrenophora tritici-repentis. Wheat leaves are
affected by this disease, which results in chlorotic patches and necrotic lesions. The result
is a reduction in the photosynthetic surface of the plant, which eventually causes leaf
mortality and a decline in leaf quality [52,53]. Small oval- to diamond-shaped spots that
appear periodically on wheat and triticale leaves are the symptoms of the leaves [54]. This
disease may destroy plant vegetative parts like leaves, causing the infected plants to die
before heading [55]. P. tritici-repentis conidia have a significant genetic diversity that has a
good impact on host range and virulence [56,57]. They can also live for extended periods
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on plant debris and traverse great distances [58]. According to Lamari and Strelkov [59],
yield losses might be as high as 50%. In all of the main wheat-growing countries of Syria,
Brazil, Argentina, Australia, Algeria, the United States, Russia, Canada, and a few other
nations, the brown-black leaf spot is a common occurrence [57,60,61]. ToxA, ToxB, and
ToxC are the three known effectors produced by tan spots of wheat [54,62–64]. While ToxC
is yet unidentified and considered to be a metabolite, ToxA and ToxB are proteins [54,64].
Biological control techniques, adequate agricultural practices, and developing resistant
cultivars can all be used to manage disease in the field [54].

Spot disease is a common disease of wheat on all continents [65–68]. Bipolaris sorokini-
ana is the causal agent of wheat spot disease [65,69,70]. Losses are high, particularly in
warmer parts of the world [71], including South Asia [72,73]. Leaf brown lesions represent
the spot symptoms with a yellow halo that spreads over time to cover a larger area of
the leaf. Lesions may be olive-brown, particularly under humidity, which favors fungal
spore formation [67,68,74]. B. sorokiniana leaf infection can come through seeds, roots, or
the atmosphere. The stomata of the hypocotyl can become infected if the pathogen is
present in the soil, and the fungus can then spread to the roots, shoots, and coleoptiles [71].
B. sorokiniana may penetrate the cuticle and stomata, and its spores can germinate in
4 to 6 h [71,75].

2.2. Fungal Leaf Diseases of Rice

Magnaporthe oryzae, also known as Pyricularia oryzae, is a hemibiotrophic fungal disease
that causes rice blast in staple crops including rice, millet, and barley. It may infect more
than 50 different grass species [76]. The fungus infects the leaves, stems, nodes, panicles,
and roots of rice plants at all phases of growth. The infection process begins when a
conidium touches the cuticle of a rice leaf and adheres there [77]. In every part of the
world where rice is grown, rice blast annually results in harvest losses of about 6% [78,79].
A conidium’s landing and adhesion to the rice leaf cuticle initiates the infection process.
The germination conidium secretes an adhesive that facilitates adhesion to the cuticle.
In favorable circumstances, the conidium germinates to form a germ tube, which then
develops into an appressorium. The melanin layer that separates the appressorium’s cell
wall from the cell membrane is unique, and the cell wall is differentiated. This layer
facilitates the production of turgor pressure, which is then converted by the penetration
peg into mechanical force and aids in penetrating the leaf cuticle. After entering the cell,
hyphae proliferate quickly, causing disease and obvious blast symptoms [77].

Bipolaris oryzae (teleomorph: Cochliobolus miyabeanus), which causes rice brown spot
(RBS), is a significant disease for rice around the world [80,81]. The most typical surviving
structures and key inoculum sources are conidia and mycelia on seeds and in crop residues.
The fungus affects grain hulls, panicles, glumes, stems, and sheaths [81]. Conidia and
mycelia are considered to be the most prevalent survival structures and key inoculum
sources on seeds and in crop leftovers. This fungal infection occurs in the seedling stage
of rice and causes the majority of symptoms, weakening the plants and lowering grain
yield [81]. Brown spotting symptoms begin to appear on both young and old leaves during
the seedling stage. Less tillering results from a reduction in nutritional absorption and
photosynthesis due to smaller leaves; conversely, a later stage of infection may cause less
grain filling, as well as discolored, spotted, and shriveled grains. It is often referred to
as poor farmers’ disease because it causes significant harm in the cool summer months,
particularly on nutrient-deficient soils. The outcomes of the experiment demonstrated
that environmental conditions directly impacted the spread of brown spot disease and the
pathogen’s persistence in seed and soil. The relative humidity and temperature at which
seeds are stored have an impact on the pathogen’s capacity to survive [82].

2.3. Fungal Leaf Diseases of Maize

Exserohilum turcicum (syn. Setosphaeria turcica), a hemibiotrophic fungus including
in the class Dothideomycetes [83,84], is the pathogen that causes northern leaf blight
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(NLB) of maize (Zea mays L.), which is a widespread disease in maize-growing regions
worldwide [85,86]. Losses in yield that vary from 15% to 30% [84] can mostly be attributed
to the decrease in photosynthetic leaf surface caused by leaf wilting [87,88]. Tiny chlorotic
patches that appear on the leaves following infection are among the earliest symptoms of
NLB [89,90]. When an infection develops in the upper leaves through grain filling before
silking, the condition becomes worse [91,92]. Conidia are the primary inoculum by which
the disease spreads from one plant to another. It initially lives as a biotroph, feeding off
living host tissue; subsequently, it switches to a necrotrophic lifestyle, killing the infected
cells of the host [84].

The ascomycete Cochliobolus heterostrophus (Southern corn leaf blight, SCLB) is a com-
mon fungus distributed in maize planting areas worldwide [93]. A necrotrophic fungal
infection called Cochliobolus heterostrophus, teleomorph (Nisikado) Helminthosporium may-
dis is the cause of SCLB disease [94,95]. Most often, the disease is discovered in humid
corn-growing regions throughout the summer [96]. According to Feng et al. [97], maize
leaf blight is responsible for 20–30% of maize output losses. The maize plant can become
infected by both asexual and sexual ascospores throughout the disease’s polycyclic life
cycle [96]. The conidies are released from the maize-infected lesions under hot and humid
circumstances, and they spread to nearby plantules by wind or raindrops [98,99]. After
the conidies appear on the leaf of a healthy plant, they develop on the leaf’s tissue by the
process of producing germination tubes that can enter through the leaf’s tissue or through
natural openings like stomates or hydathode to cause infection [96].

Grey leaf spot (GLS), induced by Cercospora spp., is one of the major diseases that
impact the production of maize widely [100]. The disease was first reported in 1925 and has
spread to the United States, China, Africa, Brazil, and Nepal [100,101] and currently repre-
sents a considerable threat to maize production [102]. Wet, dark, and tiny spots surrounded
by a yellowish color are the first signs of GLS [103]. C. zeae-maydis generates conidia in
debris in the late spring, and these conidia are propagated by rain or wind to infect fresh
maize crops [103,104]. On the underside of young leaves, where conidia are generated on
the leaf surface and enter via the stomata through a flattened hyphal structure known as
the appressorium, primary inoculation occurs. The introduction of resistant hybrids is the
most economical and ecologically responsible method of managing this disease [102,105].
The introduction of resistance alleles into the genetic resources of breeding programs is
made possible by marker-assisted selection (MAS) [102,106]. Improving GLS resistance in
maize breeding techniques requires the rapid discovery of GLS-resistant quantitative loci
(QTL)/genes [102,107].
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STB of wheat (C) [110]; Powdery mildew of wheat (D) [51]; Tan spot of bread wheat (E) [111]; Bipolaris
sorokiniana; spot disease of wheat (F) [112]; Rice blast (G) [113]; Rice brown spot (H) [114]; Northern
leaf blight of maize (I) [115]; Southern corn leaf blight (J) [116]; Grey leaf spot of maize (K) [117].

3. Current Control Strategies for Cereal Leaf Pathogens
3.1. Chemical Control

It is known that several fungicides, including those from the chemical families DMI
(triazoles), Qols (strobilurins), SDHI (succinate dehydrogenase inhibitors), and chloroni-
triles (including chlorothalonil), are effective against diseases on cereal leaves. Reduced
rates can be used early on to effectively manage stripe rust; however, late treatments are
less cost-effective [118]. Triadimefon was widely utilized in China and North America
to combat yellow rust [119]. Several different fungicide molecules—Triadimefon [19],
Propiconazole [120], Fluoxastrobin, Tebuconazole, Propiconazole + Trifloxystrobin, Azoxys-
trobin, Azoxystrobin + Propiconazole, Prothioconazole + Tebuconazole [118,121], and
Azoxystrobin + Flutriafol [122]—have recently been registered and shown to be very ef-
fective in controlling rusts and fungal leaf spots worldwide. In planta coumoxystrobin, a
new fungicide based on strobilurin, has shown a good inhibitory effect on the mycelial
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growth of M. oryzae [123]. The use of fungicides is still controversial due to their increased
costs, harmful impacts on the environment, and risks to community health despite their
effectiveness in managing disease and safeguarding production. Due to decades of exten-
sive fungicide usage, the likelihood of resistance emerging cannot be completely ruled
out [124,125].

3.2. Management of Foliar Diseases Using Antagonists

Various national action plans in Europe have been drawn up to reduce the application
of traditional synthetic fungicides in farming and actively support the development of
environmentally and less harmful plant protection agents [126]. BCAs, commonly known
as bio fungicides, are a viable alternative strategy for cereal pests and protection, fostering
sustainable agriculture practices through their environmentally friendly use. BCAs exert a
direct antagonistic impact on the pathogen through parasitism, antibiosis, or competition,
achieved by secreting natural compounds. They also exert their biocontrol activity indirectly
by induced systemic resistance (ISR) in cereals. Widely studied for its potential benefits, this
approach aims to reduce reliance on chemical substances for plant protection, effectively
controlling cereal diseases [127,128] (Figure 3).
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While BCAs are recognized for their effectiveness in managing pathogenic species,
certain essential aspects of their functioning remain delicate and susceptible to various
influences. Factors such as the growth and survival of BCAs are particularly influenced
by natural conditions, including moisture, temperature, and nutrient availability, as well
as application timing (curative vs. preventative) [129]. The interplay of these elements,
along with the surrounding microbial environment, the targeted pathogen, and the intrin-
sic characteristics of the biocontrol agent itself, contributes to the intricate dynamics of
biological control [130]. Ultimately, optimal outcomes are more likely to be achieved when
favorable conditions are met, especially through the synergistic use of diverse BCAs, such
as combinations of bacterial and fungal species. This approach is particularly advantageous
when the modes of action of these agents are complementary [131,132].

3.2.1. Biocontrol with Bacillus spp. as BCAs

Bacillus spp., one of the frequently endophytic bacteria, garnered a lot of atten-
tion among the beneficial microbes [133] that produce cyclic lipopeptides, amphiphilic
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molecules with a short peptide chain coupled to the lipid tail, mainly responsible for the
biological control impact of pathogens [134,135]. The majority of Bacillus species synthe-
size physiologically active lipopeptides, including B. subtilis, B. velezensis, B. megaterium,
B. amyloliquefaciens, B. safensis, B. cereus, and B. tequilensis, which devote between five and
eight percent of the synthesis of their full genome to bioactive secondary metabolites,
including lipopeptides, bacteriocins and siderophores [136]. According to Qiao et al. [137],
the wheat root bacteria B. subtilis E1R-j has an inhibitory impact on a variety of plant
diseases and can stop yellow rust growth mostly by rupturing germ tubes and uredin-
iospores and releasing protoplasm. The effectiveness of this BCA against the pathogen
was examined using three formulations produced by E1R-j, FLBC, FL, and BCS [138,139].
Instead of inducing host resistance, directly inhibiting the impact on the rust pathogen
was responsible for the decrease in disease severity shown in the greenhouse trial (Table 1).
B. subtilis E1R-j, if pre-sprayed or concurrently with Pst inoculation, reduces the severity
of the disease, underscoring the significance of the timing of the application of B. subtilis
products [140,141]. Serenade ASO (B. subtilis QST713) is a biofungicide used to lessen the
severity of Pst in winter wheat and Blumeria graminis, offering moderate control of 20–65%.
However, for best results, it must be applied in combination with other products [139].
Matzen et al. [45] describe the mechanism of action of Bacillus species such as microbial
disruptors of pathogenic cell membranes. According to a few studies, B. subtilis may also be
able to increase host plant resistance, which might explain some of these effects [141–143].
Contrary to chemical treatment, biofungicide’s ability to control yellow rust varies sig-
nificantly from place to place and year to year [139]. This suggests that B. subtilis, as a
biofungicide, mostly prevents the disease from developing and only serves as a cure at the
very beginning. Additionally, B. subtilis inhibits the germination, extension, and penetration
of germ tubes in spores [141,144,145]. Mejri et al. [15] conducted in vitro and in planta
study to demonstrate the biological activity of three cyclic lipopeptides extracted from
B. subtilis (Fengycin F, mycosubtilin M, and surfactin S) as well as two mixes (S + M) and
(S + M + F) on wheat against STB. When these biomolecules were applied on the foliar part
of the wheat varieties “Dinosor” and “Alixan” at a rate of 100 mg L−1 two days post-fungal
inoculation, the severity of the disease was significantly reduced (disease decrease of up
to 82% with S + Mon Dinosor), indicating that rather than acting as biofungicides, these
lipopeptides operate on wheat against Z. tritici to promote resistance [15].

Two B. velezensis phyllosphere bacteria isolated from wheat ears, S1 and S6, and their
cell-free culture filtrates indicated considerable antifungal activity against STB in vitro. For
the culture filtrate, the semi-maximal and minimal inhibitory dilutions were 1.4% and
3.7%, respectively, for strain S1, and 7.4% and 15% for strain S6. Both strains generated
cyclic lipopeptides from several families, but only strain S1 produced bacillomycin D,
according to a MALDI-ToF study [136]. Natural elicitors, which are now among the most
promising BCAs, produce plant resistance to a wide range of diseases. To boost wheat’s
defenses against the challenging fungus Z. tritici, this study focuses on the eliciting qualities
of cyclic surfactin lipopeptide [15,146,147]. Surfactin from B. amyloliquefaciens S499 was
tested in greenhouse tests for its ability to defend against Z. tritici, similar to the chemical
elicitor reference Bion® 50WG, which provided 70% protection for wheat against it [148].
When the cell-free culture filtrate or cell suspension of B. subtilis TE3 was applied under
extremely optimal conditions (100% relative humidity and 28 ◦C), there was a significant
reduction in B. sorokiniana (98%) [149]. The extract and culture filtrate of B. subtilis XZ16-1
also exhibited significant inhibition of B. graminis spore germination. In comparison to the
chemical fungicide triadimefon, the control effects of 100% culture filtrate on B. graminis
in wheat were 81% and 83%, respectively [150]. In vitro, B. velezensis BZR 517 and BZR
336 g had an antagonistic effect against P. tritici-repentis, inhibiting mycelial growth by 72
to 94% and inducing degenerative changes [57]. In pot trials, spraying and seed treatment
with a bacterial suspension of B. subtilis BJ-1 suppressed rice blast by more than 50% [151];
other Bacillus strains have shown antagonistic activity against rice blast, such as Bacillus
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methylotrophicus BC79, Bacillus safensis B21, B. tequilensis JN-369, B. cereus YN917, and
B. velezensis ZW10 [152–156].

3.2.2. Biocontrol with Pseudomonas spp. as BCAs

Pseudomonas spp. produces a wide range of secondary metabolites, including an-
tibiotics such as phenazines, diacetyl phloroglucinol, and hydrogen cyanide (HCN). The
production of phenazines demonstrates the potential for use as a BCA against numerous dis-
eases affecting various crops. Phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide
(PCN), pyocyanin (PYO), and hydroxy phenazines (OH-PHZ) are directly involved in
reducing several diseases caused by bacteria, fungi, and oomycetes [157,158]. In vitro,
P. putida BK8661 inhibited S. tritici and P. recondita f. sp. tritici on wheat leaves, achieving re-
ductions of 71% and 94%, respectively. P. putida BK8661 produces antibiotics, siderophores,
and minor quantities of hydrogen cyanide. Pleiotropic mutants of strain BK8661 lacking
the ability to synthesize siderophores and antibiotics were less successful in symptom
suppression than the wild type. By integrating the hcnABC gene cluster from P. fluorescens
CHAO, pleiotropic mutants were derived, resulting in HCN-overproducing derivatives.
In the absence of antibiotics and siderophores, overproduction of HCN by this bacterium
resulted in a minor but statistically significant increase in the suppression of symptoms
caused by P. recondita and Z. tritici on wheat seedling leaves [128,159]. Similarly, other plant
pathogenic bacteria and fungi were suppressed in vitro by P. fluorescens PFM2, which also
attacks S. tritici. The liquid glycerol–peptone–phosphate medium, in which strain PFM2
was cultured for four weeks, yielded three inhibitory chemicals. The most abundantly
recovered chemical (70 mg L−1) was 2,4-diacetyl phloroglucinol [160]. When applied to
wheat seedlings three hours before the pathogens inoculation, soil-isolated Pseudomonas
aeruginosa LEC 1 reduced STB by 88% and brown rust by 98%. Antibiotics phenazine-1-
hydroxyphenazine (phOH) and chlororaphine were produced by the fractionation and
characterization of two inhibitory substances obtained from cultures of P. aeruginosa LEC
1 on thin-layer chromatography plates. In wheat seedlings, 160 mg L−1 phOH reduced
STB by 61% and brown rust by 75% [161]. It also increased the cellular activity of one of
the three isozymes, catalase, the only superoxide dismutase produced by S. tritici, while
decreasing the activity of peroxidase. The potential for the proteolysis of fungal proteins is
examined concerning the synergy between the phenazine derivative and the protease in
the development of oxidative stress [162] (Table 1).

3.2.3. Other Antagonistic Bacteria as BCAs

Although Streptomyces spp. rarely live on plant leaves, it has been demonstrated
that foliar spraying these organisms’ bioactive compounds can reduce the symptoms of
microbial infections [163]. In a recent study, Streptomyces tauricus XF, which can colonize
the surface of leaves, was isolated from the rhizospheric soil of a peony. It had a biocontrol
effect on the rust disease by applying a fermentation filtrate, which resulted in a lethality
rate of 61.47% and inhibited the germination of urediniospores by up to 99% by causing
the release of their cytoplasm and the deformation of the germ tube [164]. The generation
and germination rate of urediniospores were decreased by the hyperparasite Cladosporium
cladosporioides isolated from Pst taupe-colored uredinia, and the color of the uredinia
changed from yellow to taupe [165]. In another study, the inhibitory potential of the
endophyte Epicoccum nigrum HE20, isolated from native wheat, was tested in vitro and
showed high suppression (96%) of yellow rust uredospore germination. GC-MS analysis of
the E. nigrum HE20 filtrate showed the production of substances with an antifungal effect
such as lactic acid, butyric acid, hexanoic acid, α-linolenic acid, 10,12-tricosadiynoic acid,
and pentadecanoic acid. The use of this bacterium also promoted growth, and wheat leaves
have more overall photosynthetic pigments as well [165] (Table 1).
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3.2.4. Biocontrol with Trichoderma spp. as BCAs

Eighteen strains of fungi (Trichoderma spp.) were selected for their significant potential
in controlling Septoria species. This potential could be explained by the different modes of
action of these antagonists, including competition, mycoparasitism, and antibiosis, as de-
scribed previously [166–171]. In vitro experiments carried out by Villa-Rodriguez et al. [172]
showed that the chitinolytic system of strain TSM39 reacts to B. sorokiniana via a signaling
pathway, which could have potential biotechnological applies to enhance its biocontrol
activity. Trichoderma atroviride (SG3403) and Trichoderma harzianum (SH2303) have shown
strong biocontrol activity against the SCLB pathogen [96,173]. Seventy-three Trichoderma
spp. endophytes obtained from maize leaves from central and northeastern Thailand were
tested for their potential to control leaf blight disease caused by Exserohilum turcicum. In
the field, an application of the fresh formulation of T. harzianum KUFA0710 indicated the
highest disease reduction at 56%, while the dry formulation caused 47% disease reduction,
followed by T. harzianum KUFA0713 at 50% and 44% disease reduction when applied with
these two formulations, respectively [174] (Table 1).

Table 1. Main beneficial bacteria against leaf diseases for cereal crops.

Antagonist Strains Origin Target Organism
Pathogen

Targeted
Crop Results

Antifungal
Metabolites/Mode

of Action
References

B. subtilis BBG13,
BBG125, and Bs2504

ProBioGEM, Centre
Wallon de Biologie

Industrielle
Zymoseptoria tritici Wheat

In vitro and in vivo studies:
Mycosubtiline formulations

inhibit STB growth, with
demi-maximal inhibitory
doses of 1.4 mg L−1 for M

and (M + S) and 4.5 mgL−1

for (M + S + F), respectively.

Mycosubtiline,
surfactin, fengycin

bacillomycin D
[15]

B. megaterium 6A
Paneibacillus

xylanexedens 7A
Yellow rust-resistant

wheat
Puccinia striiformis

tritici Wheat

In semi-field:
Decreased severity by 46.07%

and 44.47% for the FLBC
effect in curative, while
65.16% and 61.11% in

protective effect, respectively.

Antioxidant enzymes:
SOD, POD, PPO,

and PAL;
PR proteins

[145]

B. subtilis XZ16-1 _ Blumeria graminis Wheat

Preventive and therapeutic
efficacy against powdery
mildew was 83.72% and

81.18, respectively.

Solubilize phosphate, fix
nitrogen, hydrolases,

lipopeptides,
siderophores, IAA

[150]

B. subtilis QST713 Serenade® ASO, Bayer
CropScience

Puccinia striiformis,
Blumeria graminis

spp.
Wheat

In the field:
Decreased the severity of

stripe rust, offering up to 60%
at BBCH development stages
65–69, and powdery mildew

with moderate control
between 20% and 65%.

Mycoparasitism/
Metabolites [45,139]

B. subtilis E1R-j Wheat roots Puccinia striiformis f.
sp. tritici (Pst) Wheat

In a condition-controlled
greenhouse:

Protective mode reduces the
severity of disease, and the

control efficacy ranged
between 54.0% and 87.7%.

Mycoparasitism/
Metabolites [138]

B. subtilis TE3 Native Wheat Bipolaris sorokiniana Wheat

In vivo biological control:
Reduced the number of

lesions/cm2 to 3.06 ± 0.6 and
3.74 ± 0.70 as well as the

visual damage to 3–5 and 4–6,
respectively.

Chitinase, glucanase;
siderophores, indoles,

and biosurfactants
[149]

B. velezensis (S1, S6) Wheat ears Zymoseptoria tritici wheat

Regarding culture filtrates,
the minimum inhibitory

dilution and the
semi-maximum inhibitory

dilution were, 15% and 7.4%
for strain S6 and 3.7% and

1.4% for strain S1,
respectively.

Bacillomycine D [136]

B. megaterium
MKB135, P. fluorescens
MKB21 and MKB91

Barley leaves and
grain, oat chaff, and
wheat rhizospheres

Zymoseptoria tritici wheat STB development was
postponed (by up to 80%).

Mycoparasitism/
Metabolites [175]
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Table 1. Cont.

Antagonist Strains Origin Target Organism
Pathogen

Targeted
Crop Results

Antifungal
Metabolites/Mode

of Action
References

B. amyloliquefaciens
S499 Rhizosphere Zymoseptoria tritici Wheat

Surfactin provided wheat
with a 70% defense against Z.

tritici in greenhouse tests.

Surfactin,
SA and JA signaling

pathways
[148]

B. velezensis BZR 517
and BZR 336 g

Rhizosphere
of winter wheat

Pyrenophora
tritcii repentis Wheat

In vitro: induced
degenerative alterations in

mycelium and decreased its
development by 72.4–94.3%.
In a three-year field study,

BZR 517 and BZR 336 g
increased yield by 5.0–7.6%.

Mycoparasitism/
Metabolites [57]

Pseudomonas putida
BK8661 Wheat leaves

Zymoseptoria tritici
and Puccinia

recondita f. sp. tritici
Wheat

On wheat leaves, Septoria
tritici and Puccinia recondita f.
sp. tritici are inhibited from

growing in vitro.

Siderophores,
antibiotics, HCN [128,159]

P. fluorescens PFM2 Wheat phyllosphere Zymoseptoria tritici Wheat

In vitro: After 3, 7, and
14 days, the zone of

inhibition increased from 0 to
9 cm, 1 to 6, and

1 to 9 cm, respectively.

2,4-
diacetylphloroglucinol [160]

Pseudomonas
aeruginosa LEC 1 Soil Zymoseptoria tritici Wheat

Inhibit Septoria tritici by 88%
and Puccinia recondita by 98%

when applied to wheat
seedlings 3 h before

inoculation with
the pathogens.

1-hyroxyphénazine
(phOH), catalase [161]

T. harzianum
sensu lato TSM39 Soil Bipolaris sorokoniata Wheat

Cellular elements of
B. sorokiniana stimulate the

chitinolytic system of
strain TSM39.

Mycoparasitism [172]

Streptomyces
tauricus XF

Rhizospheric soil
of peony Puccinia striiformis wheat

The control effects of FL and
AC reached 68.25%, and
65.48%, respectively, in

the greenhouse.
Using XF fermentation broth,
yellow rust disease indices

were considerably decreased
by 53.83%. in the field.

ROS, (PAL),
β-1,3-endoglucanases,

chitinases, endochitinase,
and peroxidase

[164]

Cladosporium
cladosporioides R23Bo Puccinia striiformis Puccinia striiformis Wheat

Reduce the urediospore
germination rate. The color

of uredinia went from yellow
to taupe.

Hyperparasitism [165]

Epicoccum
nigrum HE20 Healthy wheat Puccinia striiformis Wheat In the greenhouse: Reduction

of severity by 87.5%.

POD, PPO, and CAT,
butyric acid, hexanoic
acid, α-linolenic acid,

lactic acid, pentadecanoic
acid, and

10,12-tricosadiynoic acid
Defensive genes (JERF3,

GLU, and PR1)

[176]

B. subtilis BJ-1
Contaminated

Magnaporthe oryzae
culture plate

Magnaporthe oryzae Rice
Detached leaves were

inhibited by 108 CFUmL−1

(BC) or 5% (Fl) of BJ-1.

Surfactin, fengycin,
subtilin, and bacilysin.

ISR
[153]

Bacillus safensis B21 Osmanthus fragrans
Lour. Fruits Magnaortae oryzae Rice Inhibition of hyphal growth. Iturin A2, A6 [150,177]

B. tequilensis JN-369 Rice Magnaortae oryzae Rice

The efficacy of biocontrol in
protective tests and

therapeutic tests on detached
rice leaves was up to 74.08%

and 62.96%, respectively.

Plant growth and
resistance induction [154,177]

Bacillus cereus YN917 Rice leaf Magnaporthe oryzae Rice

The efficacity before and after
inoculation was 68.15%

65.61%, respectively, under
detached leaf and

greenhouse conditions.

IAA, siderophores,
protease, ACC deaminase,

cellulase, amylase,
β-1,3-glucanase, and

phosphate solubilization

[155]

B. subtilis B47 Tomato Bipolaris maydis Maize

In the field, the control
efficacy increased to 64.2%

when iturin A2 concentration
was raised to 500 mg kg−1.

Iturin A2 [97]

Trichoderma harzianum
SH2303

T. atroviride SG3403
Soil Cochliobolus

heterostrophus Maize

In-field and
greenhouse conditions:
synergistic application

difenoconazole-
propiconazole (DP). +SH2303

showed 60% of control.

SAR, PAL, CAT, SOD
SA pathway (PR1) [96,173]
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4. Induction of Cereals Defense Mechanisms

Plants are always under attack from diseases with various life strategies at any time
of the year. While some of these pathogens multiply exterior of plant tissue, others can
directly enter plant cells. The earliest contact between plants and pathogens occurs in the
apoplast, where membrane-based pattern recognition receptors (PRRs) recognize microbial
elicitors identified as pathogen-associated molecular patterns (PAMPs) in cereals [178].
Pathogens release many effectors to interfere with cellular processes throughout the in-
fection process. As opposed to PAMPs, effectors are more diverse and can include toxins,
proteins, chemical substances, or hormones. They boost the pathogen’s infectious potential
by using the pathogen or by reducing the host’s defenses. Defined as nucleotide-binding
domains, proteins with leucine-rich repeats (also known as NB-LRRs) are intracellular
receptors that detect certain effectors sent into the plant cell to activate effector-triggered
immunity (ETI). Recognition of microbial PAMPs via plant PRRs (receptor-like kinases)
triggers the first line of defense, known as PAMP-triggered immunity (PTI). The rapid
response involves an influx of extracellular Ca2+ into the cytoplasm, followed by the in-
duction of a cellular oxidative rupture that generates reactive oxygen species (ROS) and
stimulates mitogen-activated protein kinases, among other reactions. Choudhary et al. [179]
have accurately induced resistance and its mode of action in plants. Plants can obtain an
increased level of resistance to pathogens after being exposed to biotic stimuli provided by
different BCA applications and protect against foliar diseases [139,180] by inducing a stable
defense state or ISR in plants [142,181]. ISR depends on ethylene and jasmonate-regulated
pathways [182]. A network of interconnected signaling pathways regulates induced plant
defenses against pathogens, the main plant signaling molecules being salicylic acid (SA),
ethylene (ET), jasmonic acid (JA), and probably nitric oxide (NO) [183]. Based on activa-
tion, this mechanism of defense genes results in a quicker or more powerful reaction to
pathogen attack, and a rapid accumulation of H2O2 is observed against wheat mildew
and rice blast [184], indicating that ISR activates the first steps of plant protection [184].
SAR may be triggered by exposing the plant to avirulent, virulent, or non-pathogenic
microbes, in which there is an accumulation of proteins (PR) linked to pathogenesis, such
as glucanase, chitinase, and SA [181]. Treated seedlings also demonstrated a higher expres-
sion of pathogenesis-related protein genes (PR), β-1,3-endoglucanases (PR-2), antifungal
protein (PR-1), endochitinase (PR-4), ribonuclease (PR-10), and peroxidase (PR-9) against
Z. tritici [148]. This high expression of PR protein genes could be crucial to triggering
the host defense mechanism against yellow rust [145]. A study, using B. cereus YN917
showed the production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and
indole acetic acid (IAA), which is a significant trait of plant growth-promoting microor-
ganisms [155]. The NPR1 protein, a redox-mediated protein utilized as a transcriptional
co-activator of PR genes, is one of the essential elements controlling the SAR pathway. A
change structure of the protein is required to activate PR genes induced by the SA receptor
NPR1 gene [128,185] (Figure 4).
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Figure 4. Plant/pathogen interaction involves several metabolic pathways that are implicated in plant
immunity to harmful agents. Among these pathways, microbe- or pathogen-associated molecular
patterns (MAMPs/PAMPs) are transmitted by pathogen agents to the apoplast as apoplastic effectors,
or inside host cells as cytoplasmic effectors, to disrupt plant cell metabolism. MAMPs can be
sensed via cell surface receptor proteins (RLPs) or pattern recognition receptors (PRRs; receptor
kinases (RLKs) and trigger downstream phosphorylation cascades and cause elevated concentrations
of [Ca2+] and reactive oxygen species (ROS). Pathogenic effectors are recognized by intracellular
receptors, nucleotide-leucine-rich-repeat binding sites (NLRs or NB-LRRs), triggering downstream
responses, notably the accumulation of SA. Modulation of gene expression, protein synthesis (PR),
and the formation of antimicrobial metabolites are all effects of defense signaling.

5. Advancements in BCAs: Discussion on Screening, Application, and
Future Perspectives

BCAs, defined as organisms or microorganisms that combat plant pathogens, play
a crucial role in safeguarding cereal crops against diseases such as Tan spot (Pyrenophora
tritici-repentis), yellow rust (Puccinica striiformis), Fusarium ear blight (Fusarium culmorum),
and STB [186]. This article scrutinizes the expansive realm of BCAs, elucidating their
significance in resisting pest populations and averting crop diseases naturally. We explore
the diverse array of bacteria (Bacillus spp., Pseudomonas spp.) and fungi (Trichoderma spp.),
highlighting their pivotal role in large-scale pest management without causing damage to
the main crop [187].

5.1. Challenges of Conventional Practices

The conventional use of chemical pesticides, while boosting crop yields, raises sig-
nificant concerns for human health and ecosystems. Adverse effects include disruptions
to the ecological balance, posing risks of muscular or nerve disorders upon exposure,
and potential long-term impacts on the immune system, cellular respiration, and skin
health [188–190]. Environmental pollution and regulatory bans on hazardous pesticides
further underscore the need for alternative approaches.

5.2. BCAs as Sustainable Alternatives

Researchers are actively developing alternatives to potentially replace the chemical
pesticides, with BCAs emerging as a promising solution [188]. Coined by Harry Scott
Smith, the term “biocontrol agents” encompasses a broad spectrum of organisms used in
entomology and plant pathology to control pests. Microbes, extracts, or fermented products
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from natural sources also act as BCAs, offering versatile solutions with various effects on
target pathogens [191,192].

5.3. Field Application and Challenges

Although BCAs are extremely promising, challenges persist in their field application,
which could be compromised by climate change scenarios, where increased temperature
variations, humidity changes, altered rainfall patterns [193], and other weather conditions
may pose challenges to their performance, there were also parameters such as time of
application, inoculation technology, spore survival, formulation and storage which need to
be rigorously evaluated to optimize efficacy [194].

5.4. Biotechnological Insights and Environmental Impact

Advancements in plant and agricultural biotechnology have facilitated the isolation
of BCAs, including T. harzianum, T. viride, and T. koningii for controlling pathogens across
various crops [195–198]. However, challenges such as field applicability, cost considerations,
and potential environmental impact persist [108,199].

5.5. Systemic Resistance and Molecular Insights

BCAs applied to grain surfaces induce systemic resistance against fungal infections,
triggering changes in gene expression and enzymatic activities [200,201]. Molecular ap-
proaches unveil complex interactions between antagonistic microbes, hosts, and pathogens,
providing insights for tailored solutions [202,203].

5.6. Commercial Landscape and Future Perspectives

Commercially available BCAs continue to evolve, with an increasing number of species
and producers globally. The benefits of BCAs, including specificity and sustainability,
position them as a compelling alternative to chemical pesticides. Public acceptance, lower
risks to farmworkers, and potentially lower greenhouse gas emissions further underscore
their ecological appeal [14,204].

BCAs present a promising avenue for replacing chemical pesticides. As biopesticides,
biofertilizers, and plant development stimulators, BCAs offer diverse action mechanisms.
However, further research and development investments are crucial, focusing on dosage,
formulation, environmental impact, and their effects on native plant microflora. Under-
standing the genes, gene products, and signaling molecules responsible for antagonistic
activity is imperative for creating more effective BCAs. Advances in formulation processes,
encapsulation techniques, and mass production methods are essential to unlocking the full
potential of these agents for sustainable and effective pest management [205].

Exploring nanotechnology’s integration for enhanced efficiency, beneficial microor-
ganisms could be encapsulated in nanomaterials, enabling targeted delivery and improved
stability. Tailoring nanomaterials to enhance adhesion on plant leaves ensures prolonged
effectiveness, while controlled release mechanisms offer precision in disease prevention. In-
corporating nanosensors allows for early detection, and understanding nanomaterial–plant
interactions is crucial for optimizing protective effects. However, ethical considerations
and environmental risk assessments will be essential as this nanotechnological approach
unfolds [206].

6. Conclusions

In this study, the important pathogens causing diseases in wheat, rice, and maize leaves
were discussed along with their current control methods by highlighting the potential of
biological control with BCAs that is only beginning to emerge. This work demonstrated
how beneficial bacteria can be affiliated with plants’ defense against foliar diseases of cereals
by summarizing the general knowledge of the metabolic processes involved in interactions
between plants and pathogens. Current research focuses on BCA formulations and genetic
resistance for combating these diseases. While there have not been many exhaustive studies
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on this topic, the exploration of biological control techniques has recently gained significant
momentum. Biological control is particularly worth considering given the current trend to
reduce the amount of pesticide contamination that harms the environment.
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