
ABSTRACT

The aims of this study were to conduct a single-step 
genome-wide association to identify genomic regions as-
sociated with milk urea (MU) and to estimate genetic 
correlations between MU and milk yield (MY), milk 
composition (calcium content (CC), fat percentage 
(FP), protein percentage (PP), and casein percentage 
(CNP)), and cheese-making properties (CMP) (co-
agulation time (CT), curd firmness after 30 min from 
rennet addition (a30), and titratable acidity (TA)). 
The used data have been collected from 2015 to 2020 
on 78,073 first-parity (485,218 test-day records), and 
48,766 s-parity (284,942 test-day records) Holstein cows 
distributed in 671 herds in the Walloon Region of Bel-
gium. Data of 565,533 single nucleotide polymorphisms 
(SNP), located on 29 Bos taurus autosomes (BTA) of 
6,617 animals (1,712 males) were used. Random regres-
sion test-day models were used to estimate genetic pa-
rameters through the Bayesian Gibbs sampling method. 
The SNP solutions were estimated using a single-step 
genomic BLUP approach. The proportion of the total 
additive genetic variance explained by windows of 50 
consecutive SNPs (with an average size of ~216 Kb) was 
calculated, and the top-3 genomic regions explaining 
the largest rate of the genetic variance were considered 
promising regions and used to identify potential candi-
date genes. Mean (standard deviation) MU was 25.38 
(8.02) mg/dl and 25.03 (8,06) mg/dl in the first and 
second lactation, respectively. Mean heritability esti-
mates for daily MU were 0.21 and 0.23 for the first and 
second lactation, respectively. The genetic correlations 
estimated between MU and MY, milk composition, and 
CMP were quite low (ranged from −0.10 (CC) to 0.10 
(TA) and −0.05 (CT) to 0.13 (TA) for the first and 
second lactations, respectively). The top-3 regions as-
sociated with MU were located from 80.61 to 80.74 Mb 
on BTA6, 103.26 to 103.41 Mb on BTA11, and 1.59 to 

2.15 Mb on BTA14. Genes including KCNT1, MROH1, 
SHARPIN, TSSK5, CPSF1, HSF1, TONSL, DGAT1, 
SCX, and MAF1 were identified as positional candidate 
genes for MU. The findings of this study can be used 
for a better understanding of the genomic architecture 
underlying MU in Holstein cattle.
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INTRODUCTION

Nitrogen (N) emissions from livestock can have harm-
ful effects on biodiversity, soil, water and air quality, as 
they account for 23% of global nitrous oxide and 60% 
of global ammonia emissions (Uwizeye et al., 2020). Ni-
trogen is released to the environment through the feces 
and urine of livestock as undigested N fractions and as 
the end products of N metabolism, respectively (Müller 
et al., 2021). Nitrogen, as oxides or ammonia, is one of 
the greenhouses gases contributing to air pollution and 
through leaching to rivers and ground water resources. 
Therefore, reducing N excretion by dairy cattle is de-
sirable due to global concerns about the agricultural 
contribution to environmental pollution by N. The first 
requirement for conducting a successful genetic selec-
tion is to establish a method to measure the traits or 
phenotypes of interest on large number of animals with 
a low cost.

The breakdown of protein, both in the rumen and 
in the small intestine, results in the production of am-
monia, which is then detoxified by conversion to urea in 
the liver or kidneys. The urea can then be recycled into 
the rumen via saliva or by direct diffusion across the 
rumen wall, be excreted in urine (urinary urea; UU), or 
be secreted in milk (milk urea; MU) (Alio et al., 2000). 
Although most urea is eliminated from blood with 
urine excretion, UU is difficult to measure. MU can be 
measured at a low cost and is included as a standard 
part in most milk recording systems and is positively 
correlated with UU (Burgos et al., 2007, Burgos et al., 
2010). Furthermore, the content of urea in milk repre-
sents approximately 48% of NPN in milk and is known 
as an important parameter of milk quality. Moreover, 
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MU is associated with milk yield composition (e.g., fat 
and protein contents) (Chen et al., 2022a). It has been 
reported that MU is associated with cheese-making 
properties (CMP) and that higher MU is associated 
with greater coagulation time required for milk (Gui-
not-Thomas, 1992). In addition, MU has been shown to 
be correlated with nitrogen utilization efficiency and is 
considered as an on-farm indicator to guide nutritional 
strategies in dairy cows (Schepers and Meijer, 1998, 
Nousiainen et al., 2004, Chen et al., 2022a). There is a 
strong positive relationship between blood urea (BU) 
nitrogen and MU (Butler et al., 1996, van den Berg 
et al., 2021). Furthermore, it has been shown that an 
increased BU is associated with a decreased uterine 
pH and a decreased in the probability of conception 
in dairy cows (Elrod and Butler, 1993, Elrod et al., 
1993, Butler et al., 1996). It has been reported that an 
increased MU is associated with a decreased reproduc-
tive performance in dairy cattle (Rajala-Schultz et al., 
2001, Guo et al., 2004, Hojman et al., 2004).

Reducing MU can have many benefits, such as reduc-
ing N emissions, improving feed efficiency and animal 
health, milk quality and reproductive performance; 
therefore, this trait could be a potential selection crite-
rion for breeding dairy cattle (Ariyarathne et al., 2021). 
However, a comprehensive knowledge of the genetic 
background of MU is needed before it is included into 
the breeding program. Furthermore, identification of 
genomic regions and individual genes responsible for 
genetic variation in MU will improve our understanding 
about the biological pathways involved and can be used 
for decreasing MU.

Although MU has been included in the regular milk 
recording of dairy cows in the Walloon Region of Bel-
gium for more than 2 decades, the potential contribu-
tion of this trait in the breeding program of Walloon 
dairy cows is still under investigation. The genetic 
parameters for MU and its genetic correlations with 
traditional traits have previously been investigated in 
Walloon Holstein (Chen et al., 2021, 2022b); however, 
no comprehensive study has been conducted to investi-
gate the genomic architecture of MU for the whole pe-
riod of lactation and the potential genetic relationships 
between MU and milk technological traits (e.g., CMP) 
has not been investigated in this population of dairy 
cattle. Therefore, the aims of this study were to iden-
tify genomic regions associated with MU concentration 
and to estimate genetic correlation between MU and 
selected cheese-making traits in Walloon Holstein cows.

MATERIALS AND METHODS

Phenotypic Data

The data used consisted of test-day records of traits 
including milk yield (MY), milk urea (MU), mid-
infrared (MIR) prediction of fat percentage (FP), 
protein percentage (PP), casein percentage (CNP), 
calcium content (CC), titratable acidity (TA), coagu-
lation time (CT), and curd firmness at 30 min after 
coagulant addition (a30). MIR prediction equations 
used to predict CNP, CC, TA, CT, and a30 were ob-
tained from various studies (Soyeurt et al., 2009, Co-
linet et al., 2010, Colinet et al., 2013, Colinet et al., 
2015). The data were collected from 2015 to 2020 on 
78,073 animals distributed in 671 herds in the Walloon 
Region of Belgium. Data were edited to include only 
cows with known birth date, calving date, and parity 
number. Only records from the first 2 parities that had 
data for all included traits on a given test-day were 
kept. Records from days in milk (DIM) lower than 5 
d and greater than 365 d were eliminated. Age at the 
first calving (AFC) was calculated as the difference 
between birth date and first calving date and restricted 
to the range of 540 to 1200 d. Daily MY, FP, and PP 
were restricted to range from 3 to 99 kg, 1.5 to 9% and 
1 to 7%, respectively (ICAR, 2022). Test-day records 
of the rest of the considered traits were edited to re-
move records outside the range of mean ± 3 standard 
deviations (SD). The number of test-day records in the 
first- and second-parity cows were 485,218 (on 78,073 
cows) and 284,942 (on 48,766 cows), respectively. On 
average across the data set, 5.51 test-day records were 
available per cow per lactation. Pedigree depth of the 
animals was traced back to 5 generations. Full pedigree 
records included 186,548 females and 10,076 males.

Genotypic Data

Genotypic data were available for 6,617 (1,712 
males) phenotyped animals or those animals included 
in the pedigree. Individuals were genotyped using the 
BovineSNP50 Beadchip v1 to v3 and EuroG MD (SI) 
v9 (Illumina, San Diego, CA, USA). Single nucleotide 
polymorphisms (SNP) in common among the 4 chips 
were kept. Non-mapped SNP, SNP located on sexual 
chromosomes, and triallelic SNPs were excluded. A 
minimum GenCall Score of 0.15 and a minimum Gen-
Train Score of 0.55 were used to keep SNP. Then, 
the genotypes were imputed to HD with a reference 
population of 4,352 HD individuals (1,046 males) using 
FImpute V2.2 software (Sargolzaei et al., 2014). SNP 
with Mendelian conflicts, and those with minor allele 
frequency (MAF) less than 5% were excluded. The 
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difference between the observed and expected heterozy-
gosity was estimated, and if the difference was greater 
than 0.15, the SNP was excluded (Wiggans et al., 
2009). Finally, 565,533 SNPs located on 29 Bos taurus 
autosomes (BTA) were used in the genomic analyses.

Variance Component Estimation

The (co)variance components and breeding values 
for MU were estimated based on the integration of the 
random regression test-day model (RR-TDM) into 
the single-step GBLUP procedure (SS RR-TDM) us-
ing the following single-trait, multiple-lactation (first 2 
lactations) model (Paiva et al., 2022):
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where yijklmn is the test-day record of MU belonging to 
the DIM n of cow m in parity l, belonging to ith class 
of HTDp, jth class of AS, and kth class of HY; HTDp 
is the fixed effect of herd-testday-parity; AS is the fixed 
effect of age-season of calving defined as follows: age at 
calving class (6, and 4 classes of age at calving were 
created for the first and second parity, respectively) × 
season of calving (4 seasons: winter from January to 
March, spring from April to June, summer from July to 
September and autumn from October to December); 
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efficients of herd-year of calving, permanent environ-
mental, and additive effects modeled using Legendre 
polynomials of order 3; and eijklmn is the residual effect. 
The herd-year of calving, permanent environment, ad-
ditive genetic, and residual variances were assumed as 
follows:
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where HY is the 8 × 8 covariance matrix of the herd-
year of calving regression coefficients; I is an identity 
matrix; ⊗ represents the Kronecker product function; P 
is the 8 × 8 covariance matrix of the permanent envi-
ronmental regression coefficients; Ga is the 8 × 8 cova-
riance matrix of the additive genetic regression coeffi-

cients; blocks within R rp=
+

∑  contain residual variance 

(r) that depends on parity (p). Residual variance was 
assumed to be the same within each parity. The H is a 
matrix that combines pedigree and genomic relation-
ships, which its inverse consists on the integration of 
additive and genomic relationship matrices, A and G, 
respectively (Aguilar et al., 2010):
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where A is the numerator relationship matrix based 
on the pedigree for all animals; A22 is the numerator 
relationship matrix for genotyped animals; and G is 
the weighted genomic relationship matrix obtained us-
ing the following function:

	 G G A= × + ×* 0 95 0 0522. . .

The G* is the genomic relationship matrix obtained 
using the following function described by VanRaden 
(2008):

	 G
ZDZ* ,=

−( )
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i

M
i i
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where Z is a matrix of gene content adjusted for allele 
frequencies (0, 1 or 2 for aa, Aa and AA, respectively); 
D is a diagonal matrix of weights for SNP variances (D 
= I); M is the number of SNPs, and pi is the MAF of 
the ith SNP. The H matrix was built scaling G based 
on A22 considering that the average of the diagonal of 
G is equal to the average of the diagonal of A22 and, 
the average of the off-diagonal G is equal to the aver-
age of the off-diagonal A22.

The (co)variance components were estimated by 
Bayesian inference using the GIBBS3F90 software 
(Aguilar et al., 2018). Gibbs sampling was used to 
obtain marginal posterior distributions for the various 
parameters using a single chain of 200,000 iterates with 
a sampling interval of 20 samples. The first 50,000 iter-
ates of the chain were regarded as a burn-in period to 
allow sampling from the proper marginal distributions. 
Genetic (co)variances on each test-day were calculated 
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using the equation described by Jamrozik and Schaeffer 
(1997). Daily heritability was defined as the ratio of 
genetic variance to the sum of the additive genetic, per-
manent environmental, herd-year calving, and residual 
variances at a given DIM.

The vector of genomic estimated breeding values 
(GEBV) of MU for each animal i, which included 
daily GEBV from all DIM (5 to 365) in each parity, was 
estimated by multiplying the vector of additive genetic 
predicted regression coefficients by the matrix of Leg-
endre orthogonal polynomial covariates; that is, 
GEBV Tgi i= ˆ , where ĝi is the vector of additive genetic 
predicted regression coefficients for animal i; and T is a 
matrix of orthogonal covariates associated with the 
Legendre orthogonal polynomial functions.

In addition, the same RR-TDM through multiple-
trait (2 traits), multiple-lactation (first 2 lactations) 
was used to estimate correlation between MU and the 
studied traits of milk yield, milk composition, and CMP. 
Moreover, phenotypic trend for MU was obtained by 
linear regression of phenotypic values over calving year.

Genome-Wide Association Study

GEBV of animal i through the entire lactation (DIM 
5 to 365) were obtained by averaging the daily GEBV 
solutions of all DIM; that is,

	 GEBV GEBV GEBV GEBVi i i i
ˆ ˆ ˆ ˆ / ,= + +…+( )5 6 365 361

where GEBViˆ  is the GEBV of animal i through the en-
tire lactation, obtained by averaging the GEBV from 5 
to 365.

The SNP effects were estimated using the postGSf90 
software (Aguilar et al., 2014). The animal effects were 
decomposed into those for genotyped (ag) and ungeno-
typed animals (an). The animal effects of genotyped 
animals are a function of the SNP effects, ag = Zu, 
where Z is a matrix relating genotypes of each locus 
and u is a vector of the SNP marker effect. The vari-
ance of animal effects was assumed as:

	 Var Var   u aa Zu ZDZ Gg( ) = ( ) = =′σ σ2 2 ,

where D is a diagonal matrix of weights for variances of 
markers (D = I) and σu

2 is the additive genetic variance 
captured by each SNP marker when the weighted rela-
tionship matrix (G) was built with no weight. The SNP 
effects were obtained using the following equation:
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where λ was defined by VanRaden (2008) as a normal-
izing constant, as described below:
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The percentage of the total additive genetic variance 
explained by the ith genomic region was estimated as 
following:
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where ai is the genetic value of the ith region that con-
sists of 50 adjacent SNPs; σa

2 is the total additive ge-
netic variance; Zj is the vector of the SNP content of 
the jth SNP for all individuals; and û j is the marker 
effect of the jth SNP within the ith region. The propor-
tion of the total additive genetic variance explained by 
windows of 50 consecutive SNPs (with an average size 
of ~216 Kb) was calculated, and the top-3 genomic re-
gions explaining the largest rate of the total additive 
genetic variance were considered promising regions and 
used to identify potential candidate genes (Soares et 
al., 2021). The concept of grouping SNP into windows 
was adopted as a way to better capture the genetic in-
formation such as the extent of linkage disequilibrium 
(LD) in neighboring SNPs (Habier et al., 2011). In ad-
dition, we performed a GWAS with frequentist p-values 
to detect single SNP associated with MU. The thresh-
olds of the Bonferroni corrected p values for 5% and 1% 
genome-wide significance associations were set as 
8.84E−8 (0.05 divided by the number of SNPs) and 
1.74E−8 (0.01 divided by the number of SNPs), respec-
tively.

Identification of positional candidate genes for the 
studied traits

The animals included in this study were genotyped 
using the BovineSNP50 Beadchip v1 to v3 and EuroG 
MD (SI) v9 (Illumina, San Diego, CA, USA); then, 
the genotypes were imputed to the BovineHD Bead-
chip which are based on the bovine reference genomes 
assembly UMD3.1. However, new bovine reference 
genome assembly ARS-UCD1.2, assembled using long 
sequencing reads, filled gaps and resolved repetitive 
regions of the UMD3.1 assembly, and has more cred-
ible annotation information (Rosen et al., 2020). The 
Lift Genome Annotations tool, available through a 
simple web interface (https:​/​/​genome​.ucsc​.edu/​cgi​
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-bin/​hgLiftOver) was used to convert coordinate ranges 
of the identified genomic regions from the UMD3.1 to 
the ARS-UCD1.2 assembly. Then, to identify possible 
positional candidate genes associated with MU, genes 
located within the identified genomic regions (i.e., 
between the start and end of genomic coordinates of 
the identified regions based on the ARS-UCD1.2 as-
sembly) were further investigated. We identified genes 
using the National Center for Biotechnology Informa-
tion (NCBI) Map Viewer tool for the ARS-UCD1.2 
assembly as the reference map. The list of identified 
positional candidate genes was uploaded to Enrichr 
to perform gene ontology (GO) enrichment analyses 
(Kuleshov et al., 2016). Significantly enriched terms 
were identified based on the retrieved adjusted P value.

RESULTS

The descriptive statistics for studied traits are pre-
sented in Table 1. Mean (SD) MU was 25.38 (8.02) and 
25.03 (8.06) mg/dl for the first and second lactation, 
respectively. Daily MY averaged 24.2 kg (4.01% fat, 
3.38% protein, and 2.59% casein), and 27.9 kg (4.10% 
fat, 3.46% protein, and 2.63% casein) in the first and 
second lactations. The trend in concentrations of MU 
across DIM is given in Figure 1. The lowest value for 
MU was found at the beginning of lactation, increased 
rapidly by increasing DIM, reached its peak at the 
middle of lactation, then slightly decreased by increas-
ing DIM to the end of the lactation. The coefficient of 
variation (CV%) of MU was 32% in both lactations. 
Environmental factors including herd, calving year, 
calving season, age at first calving, parity and lacta-
tion stage affected MU (P < 0.05). Phenotypic trend, 

obtained by linear regression of MU phenotypic values 
over calving year, showed a positive trend of 0.73 and 
0.79 mg/dl milk for the first and second lactations, re-
spectively (Figure S1) (https:​/​/​github​.com/​hadiatashi/​
Holstein​-MU).

Mean heritability estimates for daily MU was 0.21 
(SD = 0.02; range = 0.15 to 0.23), and 0.23 (SD = 0.02; 
range = 0.19 to 0.24) for the first and second lactation, 
respectively. Genetic correlations between MU in the 
first and second lactation ranged from 0.84 to 0.97 with 
a mean of 0.95. Genetic correlations estimated between 
MU and the studied traits are presented in Table 2. 
Genetic correlations between MU and milk yield traits 
ranged from −0.10 (CC) to 0.05 (MY) and −0.02 (CC) 
to 0.12 (FP) for the first and second lactation, respec-
tively. Low genetic correlations ranged from 0.00 (a30) 
to 0.10 (TA) and from −0.05 (CT) to 0.13 (TA) were 
estimated between MU and cheese-making traits in the 
first and second lactation, respectively.

General information about the results of single-step 
GWAS for MU concentration are described in Data S1 
and Data S2 (https:​/​/​github​.com/​hadiatashi/​Holstein​
-MU). The Manhattan plots of the proportion of total 
additive genetic variance explained by 50-SNP windows 
are shown in Figures 2. The top 3 windows explaining the 
highest percentage of the genetic variance for MU along 
with corresponding genes are presented in Table 3. The 
identified regions were located from 80.61 to 80.74 Mb 
on BTA6, 103.26 to 103.41 Mb on BTA11, and 1.59 to 
2.15 Mb on BTA14 (UMD3.1 assembly) and combined 
explained 0.99% and 1.04% of the total additive genetic 
variance for MU at the first and second lactations, re-
spectively. The region identified on BTA6 was 0.13 Mb 
in size and explained 0.34% of the total additive genetic 
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Table 1. Descriptive statistics for milk yield traits and cheese making properties in Walloon Holstein cows1

Trait

First lactation

 

Second lactation

Mean SD CV (%) Mean SD CV (%)

Milk yield (kg) 24.2 6.01 24.86 27.9 8.29 29.68
Fat percentage (%) 4.01 0.68 15.94 4.10 0.67 16.37
Protein percentage (%) 3.38 0.34 10.04 3.46 0.37 10.73
Casein percentage (%) 2.59 0.29 11.23 2.63 0.31 11.69
Calcium content (mg/kg milk) 1155 100.0 8.66 1172 106.9 9.13
Titratable acidity (°D)2 16.52 1.41 8.52 16.0 1.44 9.03
Coagulation time3 18.16 2.99 16.46 18.25 3.05 16.72
Curd firmness (a30)4 32.11 2.30 7.17 32.31 2.44 7.54
Milk urea (mg/dl milk) 25.38 8.02 31.61 25.03 8.06 32.22
1The number of data were 485,218 test-day records (on 78,073 animals), and 284,942 test-day records (on 
48,766 animals) in the first and second lactations, respectively.
2Milk titratable acidity in Dornic degree (°D).
3Coagulation time is defined here as the sum of the rennet coagulation time (RCT) plus the time to a curd 
firmness of 20 mm (k20) measured by the Computerized Renneting Meter.
4Curd firmness is defined as the curd firmness measured 30 min after enzyme addition by the Computerized 
Renneting Meter.

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://github.com/hadiatashi/Holstein-MU
https://github.com/hadiatashi/Holstein-MU
https://github.com/hadiatashi/Holstein-MU
https://github.com/hadiatashi/Holstein-MU
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variance of MU in the first and second lactation. The 
region found on BTA11 was 0.14 Mb in size, harbors 
the potassium sodium-activated channel subfamily T 
member 1 (KCNT1) gene, and explained 0.39% and 
0.40% of the total additive genetic variance of MU in 
the first and second lactation, respectively. The region 
found of BTA14 explained 0.26% and 0.30% of the total 
additive genetic variance of MU in the first and second 
lactation, respectively. This region was 0.56 Mb in size 
and harbors genes including diacylglycerol O-acyltrans-

ferase 1 (DGAT1), and scleraxis bHLH transcription 
factor (SCX). Regulation of protein polyubiquitination, 
regulation of gastrulation, regulation of double-strand 
break repair and monoacylglycerol biosynthetic process 
are among the most important biological process terms 
enriched by the candidate genes identified for MU. The 
results of the p-value based GWAS analyses showed 
that total number of SNP associated with MU differed 
slightly between lactations (Data S3; Data S4). How-
ever, the SNP identified using the single-SNP p-value 

Atashi et al.: Genomic analysis of milk urea in Holstein

Figure 1. Lactation curves for milk urea (MU) concentration (mg/dl milk) for the first (blue), and second (red) parity in Walloon Holstein 
cows.

Table 2. Genetic correlation estimated between MU and milk yield, milk composition and cheese-making traits in Walloon Holstein cows1

Trait

First lactation

 

Second lactation

Mean SD Range Mean SD Range

Milk yield (kg) 0.05 0.01 0.03 to 0.09 −0.01 0.02 −0.04 to 0.08
Fat percentage (%) 0.04 0.01 −0.03 to 0.07 0.12 0.03 0.09 to 0.21
Protein percentage (%) 0.01 0.02 −0.02 to 0.04 0.06 0.06 −0.07 to 0.17
Casein percentage (%) 0.03 0.03 0.00 to 0.06 0.10 0.05 −0.02 to 0.21
Calcium content (mg/kg milk) −0.10 0.01 −0.15 to −0.08 −0.02 0.02 −0.08 to 0.04
Titratable acidity (°D)2 0.10 0.04 0.02 to 0.19 0.13 0.01 −0.04 to 0.20
Coagulation time3 0.03 0.02 −0.02 to 0.04 −0.05 0.01 −0.07 to −0.02
Curd firmness (a30)4 0.00 0.04 −0.04 to 0.07 0.09 0.01 −0.08 to 0.18
1The number of data were 485,218 test-day records (on 78,073 animals), and 284,942 test-day records (on 48,766 animals) in the first and second 
lactations, respectively.
2Milk titratable acidity in Dornic degree (°D).
3Coagulation time is defined here as the sum of the rennet coagulation time (RCT) plus the time to a curd firmness of 20 mm (k20) measured 
by the Computerized Renneting Meter.
4Curd firmness is defined as the curd firmness measured 30 min after enzyme addition by the Computerized Renneting Meter.



Journal of Dairy Science Vol. TBC No. TBC, TBC

method were the same as those identified using the 
window-based GWAS procedure (Figure S2) (https:​/​/​
github​.com/​hadiatashi/​Holstein​-MU).

DISCUSSION

Mean MU in the first and second lactations was 25.38 
and 25.03 mg/dl, respectively, which is in close agree-
ment with those previously reported for Holstein (Bas-
tin et al., 2009, Rzewuska and Strabel, 2015, Atashi 
and Hostens, 2021, Chen et al., 2021) and the Italian 
Brown Swiss cows (Samoré et al., 2007), but higher 
than that reported for the Dual-Purpose Belgian Blue 
(DPBB) cows (Atashi et al., 2022). The coefficient 
of variation was 32%. The CV for MU was 26% in 
Belgian Holstein (Atashi and Hostens, 2021), 33% in 
Dutch Holstein (Stoop et al., 2007), and 44% to 45% 
in the DPBB cows (Atashi et al., 2022). The trend in 
concentration of MU across DIM showed that lowest 
value for MU was found at the beginning of lactation, 
then increased rapidly by increasing DIM, reached the 
peak at the middle of lactation, then slightly decreased 
by increasing DIM to the end of the lactation. It is well 
documented that dairy cows are in a negative energy 
balance state in the early stage of the lactation when 
the feed intake cannot meet their requirements. During 
this time, it can be assumed that cows use N as ef-
ficiently as possible which can explain, at least in part, 
the obtained results (Chen et al., 2021).

Similar lactation curve pattern has been reported 
for MU by previous studies (Mucha and Strandberg, 
2011, Rzewuska and Strabel, 2013, Atashi and Hostens, 
2021, Atashi et al., 2022). Mean heritability estimates 
for daily MU were 0.21 and 0.23 for the first and second 
lactation, respectively. The heritability reported in the 
literature for MU range from 0.09 to 0.47, depending 
on the method used to measure the MU content, the 
population considered, the parity, and the model used 
to estimate variance components.

High genetic correlation was found between MU in 
first and second lactation which is in a close agree-
ment previous studies (Miglior et al., 2007, Atashi and 
Hostens, 2021). The results showed that MU is weakly 
correlated with milk yield and composition. Genetic 
correlation between MU and milk yield traits has been 
investigated by several researchers, however the results 
are inconsistent. Atashi and Hostens (2021) reported 
that genetic correlations between MU with milk yield 
traits were close to zero in Holstein dairy cows. God-
den et al. (2001) reported a positive genetic correlation 
between MY and MU. Diab and Hillers (1996) reported 
a negative relationship between MU and milk yield. 
Samoré et al. (2007) reported that MU had a positive 
genetic relationship with FY (0.12), null with PY (0.03) 

and a negative genetic correlation with MY (−0.17) 
in Italian Brown Swiss dairy cattle. Research on the 
relationship between MU and cheese-making traits is 
limited. This study showed low genetic correlations 
between MU and cheese-making traits. Mean genetic 
correlation estimates between MU and TA ranged from 
0.10 to 0.13. Martin et al. (1997) reported that MU 
influences directly acidification kinetics, chemical com-
position and texture characteristics of cheeses. Guinot-
Thomas (1992) reported that higher MU is associated 
with greater coagulation time required for milk. The 
variation found for genetic correlation of MU with pro-
ductive traits in the literature can be explained by the 
differences in structure of the data, number of records, 
the statistical models used, and the length of the period 
of data collection.

Typically, GWAS methods are based on testing 
the significance of SNP effects on the traits of inter-
est. However, SNPs within a genomic region can be 
highly correlated and jointly influence the phenotype. 
Furthermore, the genetic information in neighboring 
SNPs, such as the extent of LD, is not considered in 
single SNP-based association study (Bao and Wang, 
2017). Therefore, window-based GWAS procedure 
have been proposed as an effective method to estimate 
the combined effect of several consecutive SNPs in a 
specific region and to identify genomic regions that 
explain a given amount of genetic variance (Aguilar et 
al., 2019). The common form for declaring significance 
is to use a threshold on the additive genetic variance 
explained by individual window (Aguilar et al., 2019). 
However, it is unclear what window size is optimal, and 
no standard presently exists to define the threshold on 
explained genetic variance. Therefore, determining the 
proper window size is usually subjective and research-
ers often have not justified their choices or sometimes 
have acknowledged that their choices are arbitrary 
(Beissinger et al., 2015). Medeiros de Oliveira Silva et 
al. (2017), using the BovineHD SNP panel, considered 
50-adjacent SNP windows (with an average of 280 kb) 
that explained at least 0.50% of additive genetic vari-
ance as the threshold to declare significance. Atashi 
et al. (2020), using the BovineHD SNP panel, consid-
ered 50-adjacent SNP windows that explained more 
than 1% of the total additive genetic variance as the 
threshold to declare significance for milk production 
and lactation curve parameters. Han and Peñagaricano 
(2016) considered 1.5-Mb windows that explained at 
least 0.50% of the total genetic variance as the thresh-
old to declare significance. Suwannasing et al. (2018) 
considered windows that explained more than 1% of 
the total genetic variance as the threshold to declare 
significance. Tiezzi et al. (2015) calculated the variance 
absorbed by 10-SNP moving windows and reported the 
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https://github.com/hadiatashi/Holstein-MU
https://github.com/hadiatashi/Holstein-MU


Journal of Dairy Science Vol. TBC No. TBC, TBC

10 windows explaining the largest amount of genomic 
variance as most important windows. In this study, a 
window-based GWAS through the single-step genomic 
best linear unbiased predictor (ssGBLUP) was used. 
The results were presented by the proportion of total 
genetic variance explained by window of 50 adjacent 
SNP with an average size of ~216 Kb and he top-3 

genomic regions explaining the largest rate of the total 
additive genetic variance were considered promising 
regions and used to identify potential candidate genes. 
We used 1 SNP as the moving step of the window, 
which ensured that we do not miss genomic regions 
potentially associated with the traits due to the combi-
nation of SNPs.

Atashi et al.: Genomic analysis of milk urea in Holstein

Figure 2. Additive genetic variance explained by windows of 50 adjacent SNP across chromosomes for milk urea concentration for the first 
(first row) and second (second row) lactation in Walloon Holstein cows. The red lines showed that the most important 3 windows explained more 
than 0.25% of the total additive genetic variance of MU in both lactations.
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The top-3 identified genomic regions were located 
from 80.61 to 80.74 Mb on BTA6, 103.26 to 103.41 
Mb on BTA11, and 1.59 to 2.15 Mb on BTA14 and 
combined explained 0.99% and 1.04% of the total ad-
ditive genetic variance for MU at the first and second 
lactations, respectively. The region identified on BTA6 
was 0.13 Mb in size and explained 0.34% of the total 
additive genetic variance of MU in the first and second 
lactation. It has been reported that SNPs inside this 
region are associated with traits including MY, fat 
yield (FY), protein yield (PY), milk fatty acid (FA) 
profile and CNP (Cole et al., 2011, Pausch et al., 2017, 
Sanchez et al., 2017b, Benedet et al., 2019). van den 
Berg et al. (2022) reported that this region is associ-
ated with MU nitrogen in Australian and New Zealand 
dairy cattle. Ma et al. (2023) reported that SNPs inside 
this region are associated with MU nitrogen in Holstein 
cows.

The genomic region located from 103.26 to 103.41 
Mb on BTA11 was associated with MU in the first and 
second lactations. Previous studies showed that SNPs 
inside this region are associated with MY, FY, PY, FP, 
PP, CNP, somatic cell score (SCS), and CMP traits 
(Bennewitz et al., 2004, Chen et al., 2006, Kučerová 
et al., 2006, Schopen et al., 2009). This region harbors 
KCNT1 gene which encodes a sodium-activated potas-
sium channel subunit which is thought to function in 
ion conductance and developmental signaling pathways. 
KCNT1 gene has been reported to be associated with 
MY, FY, and PY in US Holstein (Cole et al., 2011).

The genomic region located from 1.59 to 2.15 Mb on 
BTA14 was associated with MU in the first and second 
lactation. Previous studies showed that SNPs inside 
this region are associated with MY, FY, PY, FP, PP, 
SCS, milk FA profile, and CNP in breeds of dairy cattle 
(Conte et al., 2010, Buitenhuis et al., 2016, Pedrosa 
et al., 2021). Chen et al. (2022b) reported that this 
region is associated with nitrogen efficiency index and 
milk true protein nitrogen in Holstein cows. Clancey 

et al. (2019) reported that SNP inside this region are 
associated with MY in Holstein cows. This region was 
0.56 Mb in size and harbors genes including the scratch 
family zinc finger 1 (SCRT1), diacylglycerol O-acyl-
transferase 1 (DGAT1), cleavage and polyadenylation 
specific factor 1 (CPSF1), tonsoku like, DNA repair 
protein (TONSL), and spermatogenesis and centriole 
associated 1 (SPATC1). The DGAT1, involves in the 
last step of the synthesis of triacylglycerol, has a ma-
jor effect on milk production traits (Jiang et al., 2010, 
Maxa et al., 2012, Clancey et al., 2019, Cruz et al., 
2019). Nayeri et al. (2016) reported that SNP located 
within CPSF1 and TONSL are associated with MY in 
Canadian Holstein cattle. The SHANK associated RH 
domain interactor gene (SHARPIN) is mapped inside 
this region. This product of this gene involved in the 
regulation of immune and inflammatory responses 
(Wang et al., 2012) and has been reported to be associ-
ated with the colostrum and serum albumin concentra-
tions in Holstein cows (Lin et al., 2020). Sanchez et 
al. (2017a) reported DGAT1, maestro heat like repeat 
family member 1 (MROH1), and ribosomal biogenesis 
factor (BOP1) as the most important genes explaining 
the majority of the variability of milk protein compo-
sition in Montbéliarde, Normande and Holstein dairy 
cattle.

CONCLUSION

This study showed that MU is moderately heritable 
and is weakly correlated with MY, milk composition, 
and cheese-making traits; therfore, selection for lower 
MU concentration would not influnce the production 
performance. In general, windows explained less than 
0.50% of the total additive genetic variance of MU and 
these low contributing regions were spread across the 
genome. This indicates that MU is highly polygenic, in 
which many regions across the genome contribute to its 
genetic variation.

Atashi et al.: Genomic analysis of milk urea in Holstein

Table 3. Genomic regions associated to milk urea concentration in the first and second lactations for Walloon Holstein cows1

Chromosome Position (bp)2 Position (bp)3 Gene4

BTA6 80,611,486 - 80,741,948 78,982,492 – 78,989,732  
BTA11 103,264,921– 103,409,247 103,309,149 – 103,336,835 KCNT1
BTA14 1,588,879 – 2,150,825 481,647 – 870,500 MROH1, SHARPIN, TSSK5, GPAA1, PLEC, VPS28, 

CPSF1, SLC39A4, HSF1, OPLAH, GRINA, SMPD5, 
WDR97, FBXL6, TONSL, SLC52A2, ADCK5, SCRT1, 
TMEM249, CYC1, HGH1, SPATC1, EXOSC4, BOP1, 
PARP10, DGAT1, SCX, MAF1, MIR1839

1The number of data were 485,218 test-day records (on 78,073 animals), and 284,942 test-day records (on 48,766 animals) in the first and second 
lactations, respectively.
2The positions of the identified genomic regions based on the UMD3.1 assembly.
3The positions of the identified genomic regions based on the ARS-UCD1.2 assembly.
4Genes inside the genomic region. Official gene symbol (Assembly ARS-UCD1.2, annotation release 105).
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