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Abstract 

Aging is an inevitable process in life and the primary risk factor for 

most neurodegenerative diseases including Alzheimer’s disease (AD), 

the most common form of dementia. As life expectancy continues to 

increase, AD prevalence is expected to rise. AD-related pathological 

processes unfold decades before the emergence of clinical signs of 

cognitive decline and involve brain changes such as atrophy, 

accumulation of amyloid-beta plaques and tau neurofibrillary tangles 

(NFT), synaptic and neuronal loss, demyelination, and iron accumulation 

that would eventually lead to cognitive impairment.  

Here, to assess brain myelin and iron content in vivo, quantitative 

MRI (qMRI) maps like magnetization transfer saturation (MTsat), 

Effective transverse relaxation rate (R2*), and proton density (PD) were 

used. And synaptic density was measured using the total volume 

distribution map (Vt) of [F18] UCB-H PET images. 

In this thesis, we examined the simultaneous occurrence of these 

brain changes in aging and AD, identifying significant differences in the 

hippocampus and amygdala. Demyelination emerged as a key 

distinguishing factor between AD and healthy groups. The effects of age 

on various brain characteristics were re-evaluated in a multivariate 

model, with proton density being the most age-related factor in healthy 

aging. 

Finally, we attempted to examine the association of cognitive 

performance and the rate of cognitive decline with qMRI maps and GM 

and WM volume. The univariate regression analyses at baseline revealed 

correlations between different cognitive scores and brain tissue 

properties within the cerebellum, hippocampus, middle temporal, and 

medial orbitofrontal cortex. Moreover, the multivariate analysis shows 

that cognitive performance was related to combined tissue properties in 

the middle frontal gyrus, insula, and cerebellum. There were only a few 
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results for the rate of cognitive decline, with univariate correlations 

within the left fusiform between longitudinal relaxation rate (R1) maps 

in GM and attention and memory decline.  

To conclude, our findings shed light on the complex relationships 

between changes in aging and AD brains. Furthermore, we emphasize 

the importance of multivariate analysis for detecting subtle 

microstructural changes associated with aging that may motivate 

interventions to mitigate cognitive decline in older adults.  
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Glossary 

Term Definition 

Dementia Dementia is an umbrella term, describing the 
progressive deterioration of cognitive abilities, such 
as memory, thinking, and reasoning, that 
significantly impairs an individual's daily functioning 
and quality of life (Duong et al., 2017) 

longitudinal 
relaxation time (T1) 

T1 refers to the time it takes for the longitudinal 
magnetization of a tissue to return to about 63% of 
its equilibrium state after being perturbed by an 
external radiofrequency (RF) pulse. 

Transverse 
relaxation time(T2) 

T2 reflects the length of time it takes for the 
transverse magnetization to decrease by about 37% 

T2* The T2 constant is only theoretical; in practice, the 
physical decay is more rapid, and affected by local 
perturbations present in the static field B0. The 
actual transverse relaxation time is noted T2* and 
satisfies the condition T2*<T2. 

Effective transverse 
relaxation rate (R2*) 

R2* corresponds to the inverse effective transverse 

relaxation time (1
T2*⁄ ). R2* is an indicator of iron 

content in the brain (Cercignani et al., 2021; Lorio et 
al., 2014). T2* is measured in seconds (in the ms 
range), and thus R2* is measured in Hertz. 

Longitudinal 
relaxation rate (R1) 

R1 corresponds to the inverse longitudinal relaxation 

time (1 T1⁄ ). T1 is measured in seconds (in the ms 

range), and thus R1 is measured in Hertz. T1 and 
therefore R1 is affected by multiple properties in the 
brain tissue such as myelin, iron, and water content 
(Gelman et al., 2001; Lutti et al., 2014). 

Magnetization 
Transfer Saturation 
(MTsat) 

MTsat is minimally affected by T1 relaxation and less 
sensitive to B1 inhomogeneities (Lema et al., 2017). 
It is obtained with a linear transformation of the 
inverse MT FLASH signal, combining PDw and T1w 
acquisitions, and represents the percentage 
saturation ensued from one off-resonance pulse 
during the repetition time. Considering the fact that 
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MTsat reflects mainly the macromolecular content 
of tissue it is widely accepted that myelin has a large 
contribution to measured MTsat in brain (Bjarnason 
et al., 2005; Henkelman et al., 2001; Stanisz et al., 
1999). MTsat is usually reported in percent units 
(p.u.). 

Proton density (PD) 
 

PD is the most basic MRI measure, representing the 
apparent concentration of water protons (mobile 
hydrogen atoms) in each voxel (Cercignani et al., 
2021). Effective proton density (PD) are estimated 
from the signal amplitude maps by adjusting for 
global and local receive sensitivity differences 
(Weiskopf et al., 2013). PD is usually reported in 
percent units (p.u.). 

Metal homeostasis 
 

It refers to the ability of individual cells to maintain a 
healthy level of metal within the cell. 

Free radicals It can be defined as any molecular species capable of 
independent existence that contains an unpaired 
electron in as atomic orbital. 

Orientation dispersion 
index (ODI) 

On the other hand, the ODI reflects the discrete 
feature of neurites by assessing their orientation 
coherence, such as the complexity of dendritic 
structures in the gray matter and the distribution of 
fiber orientations in the white matter (Zhang et al., 
2012). 

Neurite density index 
(NDI) 

The NDI is used to assess the volume fraction within 
the neurite range, measuring the packing density of 
axons or dendrites. A significant decrease in NDI 
indicates a decrease in neurite density and reflects 
underlying neurite loss (Zhong et al., 2023). 
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1.1 Aging and Alzheimer’s Disease 

The effect of aging on the brain and cognition are widespread and 
have multiple etiologies which impact both working capacity and quality 
of life (Reitz and Mayeux, 2014). There is, however, large interindividual 
variability in the decline of cognitive function, ranging from (almost) no 
changes to the pathological deterioration found in dementia, e.g. 
Alzheimer’s disease (AD) (Christensen et al., 1999). Alzheimer’s disease 
affects around 10% of people aged 65 and above (Azam et al., 2021; Hou 
et al., 2019). Similarly, brain alterations vary considerably from one 
individual to another.   

Autopsy studies confirm the presence of Amyloid plaques, 
neurofibrillary tangles, Lewy bodies, inclusions of TAR DNA-binding 
protein 43 (TDP-43), synaptic dystrophy, the loss of neurons and the loss 
of brain volume in most of the brains of aged people who had not been 
diagnosed with a neurological disease (Elobeid et al., 2016; Wyss-Coray, 
2016). Therefore, brain aging might be a measure to scale the 
progression of neurodegeneration (Wyss-Coray, 2016). Although age is 
characterized as a primary risk factor for most neurodegenerative 
diseases, the exact mechanisms through which aging is associated with 
neurodegeneration are yet to be identified (Azam et al., 2021; Callaghan 
et al., 2014).  

Among the neurodegenerative diseases, AD which leads to cognitive 
impairments (Dean et al., 2017; Gonneaud and Chételat, 2018; Tan et 
al., 2014) is the most prevalent form of dementia accounting for 
approximately 60-80% of cases (Wimo et al., 2015). Age is the first risk 
factor for AD, followed by family history, the second strongest risk factor 
for Alzheimer disease (AD). Today, AD is characterized by the 
accumulation of amyloid plaques and neurofibrillary tangles in the brain, 
leading to the progressive loss of neurons and cognitive decline (Braak 
and Braak, 1991; Jack et al., 2018). It is recognized that AD pathological 
processes unfold decades before the emergence of clinical signs of 
cognitive decline (Dean et al., 2017; Gonneaud and Chételat, 2018; Tan 
et al., 2014).  
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Despite the prevalence of AD, the search for an effective drug or cure 
for the disease continues as none of the current drugs have the desired 
effect (Tatulian, 2022). Consequently, the most promising approach is to 
study this disease in its earliest stages to assess different risk factors 
(Perl, 2010) and promote prevention. 

BOX-1. Clinical stages of AD 

The clinical classification of AD is mainly based on the severity of 
cognitive decline and histopathological alterations (Perl, 2010). Four stages 
are usually described (McKhann et al., 2011): 

Mild cognitive impairment (MCI) due to AD: This phase marks the initial 
pathological changes affecting the entorhinal cortex and later the 
hippocampus. Individuals in this stage experience slight memory loss, 
particularly for recent memories, while their daily functioning remains 
relatively unaffected. 

Mild Alzheimer’s Disease: This phase marks the onset of cognitive 
symptoms with functional impact, as pathological changes extend to the 
cerebral cortex. Symptoms include difficulty recalling new information, 
forgetting appointments, reduced problem-solving abilities, impaired 
judgment, and executive function. Personality changes, mood swings, and 
diminished spontaneity are observed, along with states of confusion and 
disorientation. 

Moderate Alzheimer’s Disease: During this phase, symptom severity 
escalates as pathological damage extends to regions governing language, 
reasoning, and sensory processing in the cerebral cortex. In addition to 
heightened symptoms from earlier phases, behavioral issues and social 
withdrawal emerge. These are succeeded by language disorders and 
compromised visuo-spatial skills. Notably, individuals in this stage struggle 
with recognizing their loved ones. 

Severe Alzheimer’s Disease: In this phase, individuals lose their ability to 
perform daily activities independently. Pathological damage is thought to 
encompass all areas of the cortex. Cognitive abilities decline to their lowest 
point, accompanied by the emergence of systemic symptoms. These include 
challenges in executing learned motor tasks (dyspraxia), impaired sense of 
smell (olfactory dysfunction), disrupted sleep patterns, extrapyramidal motor 
signs like dystonia, akathisia, and symptoms akin to Parkinson's disease. 
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Note that another integral staging system is that of (Braak and Braak, 
1991) which divides AD progression into 6 stages based on the topographical 
staging of NFTs.  

1.2 AD Individual Risk Factors 

Genetic mutations have been shown to cause familial AD, which 
account for less than 5% of AD (Tanzi, 2012). On the other hand, several 
common gene polymorphisms have been associated with the sporadic 
form of AD and are currently intensively studied (Bettens et al., 2013). 
The strongest genetic risk factor for sporadic AD is the polymorphism of 
Apolipoprotein E (ApoE). Among the 3 polymorphic alleles (e2, e3 and 
e4), e4 is associated with an increased risk of developing AD whereas e2 
is linked to a decreased AD risk, relative to e3 homozygous individuals 
(Liu et al., 2013). However, not all ApoE e4 carriers develop AD and they 
are thus referred to being asymptomatic individuals at risk of AD (Dubois 
et al., 2014). 

More generally, non-genetic risk factors of AD have been identified: 
Cerebrovascular disease, hypertension, type 2 diabetes, increased body 
weight, dyslipidemia, metabolic syndrome, smoking, traumatic brain 
injury (Reitz and Mayeux, 2014). Many of these factors are gathered on 
the term “Allostatic load”, i.e. a strain put on a physiological system. 

1.3 AD Biomarkers 

A biomarker is an impartial quantification of a biological or 
pathological process that can be used to evaluate disease risk or 
prognosis, guide clinical diagnosis, or monitor therapeutic interventions. 
In AD, the pathological processes include a progressive accumulation of 
amyloid plaques and tau neurofibrillary tangles (NFT), in addition to 
synaptic and neuronal loss (Gulisano et al., 2018; Jack et al., 2013; 
Spillantini and Goedert, 2013; Tan et al., 2014; Xiaomin et al., 2021). 
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1.3.1 Amyloid-beta and Tau 

Amyloid-beta peptide spontaneous oligomerization is detrimental to 
synaptic function and its detection in the brain is associated with 
dementia (Mc Donald et al., 2010). Amyloid-beta deposition is believed 
to result from an imbalance between its production and clearance 
(Mawuenyega et al., 2010; Weller et al., 2009). 

BOX-2. Amyloid-beta aggregation and Tau accumulation 

The engagement of amyloid-beta in the pathological expression of AD has 
been known for over a century (Bilgel et al., 2018; Sprinz et al., 2018). This 
involves the aggregation of fibrillar amyloid-beta (Aβ) causing the creation of 
Aβ plaques in the brain (Braak et al., 1999; Goedert et al., 1989). The current 
hypothesis is that plaque accumulation induces multiple downstream 
alterations that lead to neurodegeneration and cognitive decline (Young et 
al., 2020). Our understanding of the downstream alterations has changed 
over the years and now includes not only inflammation but synaptic 
alterations, functional changes and alterations in tau protein (Goedert et al., 
1989; Krause and Müller, 2010). 

In AD, tau protein deposition seems to follow the staging pattern 
revealed by Braak and Braak, suggesting tau spreads from the entorhinal 
cortex (Braak I/II) to the inferolateral temporal and medial parietal lobes 
(Braak III/IV) and finally the neocortex (Braak V/VI) (Braak and Braak, 1991; 
Schöll et al., 2016). 

Tau NFT seems to collocate much more with synaptic and neuronal loss 
than amyloid neurotic plaques. Likewise, once AD cognitive symptoms are 
detected, tau NFT burden follows more closely cognitive decline than 
amyloid plaques (Musiek and Holtzman, 2015). However, amyloid plaques 
might be required for tau NFT to expand from subcortical to cortical areas 
(Jeremic et al., 2021). 

Tau is a protein essential to stabilize microtubules (Pîrşcoveanu et al., 
2017). During the course of AD, hyperphosphorylated tau detaches from 
the microtubules, and accumulated in the somatodendritic 
compartment which is toxic for neurons (Xiaomin et al., 2021).  
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 Thanks to brain positron emission tomography (PET), assessment of 
amyloid-beta and tau protein aggregation is not limited to histological 
studies. In PET, a radio ligand is injected with binding potential to a 
specific compound; for instance, [F18]flutemetamol, [F18]florbetapir, and 
[F18]florbetaben, are three tracers with binding to Amyloid plaques 
(Chiao et al., 2019; Jack et al., 2017).  

Amyloid-beta deposits topography follows an irreversible and 
hierarchical trajectory from the basal brain to the outer cortex, while 
deposits of neurofibrillary tangles spread in the brain in an irreversible 
hierarchical fashion (Braak and Braak, 1991). Deposits of neurofibrillary 
tangles correlate more closely with cognitive decline and neuronal loss 
than Amyloid-beta deposits (Adam et al., 2007). However, synaptic 
damage and loss are earlier events than amyloid plaques and NFTs in AD 
progress and show the largest correlation with cognitive deficits in AD 
patients (Xiaomin et al., 2021). 

1.3.2 Synaptic Density 

Synapses play a vital role in cognitive function, and the loss of 
synapses is a significant and consistent pathology in AD (Scheff et al., 
2014; Selkoe, 2002). The decline in cognitive abilities in AD is strongly 
linked to the reduction of synapses in the association cortex and limbic 
system (Scheff et al., 2014). In the initial clinical stages of AD, patients 
with mild cognitive impairment (MCI) display a decrease in synapses and 
synaptic proteins (Scheff et al., 2014).  

Synaptic vesicle glycoprotein 2 (SV2) is an essential vesicle membrane 
protein; one of its isoforms, SV2-A, is ubiquitously expressed in virtually 
all synapses (Bajjalieh et al., 1994; Chen et al., 2018). Hence, SV2-A 
protein is a highly useful indicator of synaptic density in AD and other 
neuropsychiatric disorders. Several high-affinity SV2-A ligands that 
penetrate the brain rapidly such as UCB-A, UCB-H, and UCB-J (Bretin et 
al., 2013; Estrada et al., 2016; Mercier et al., 2017, 2014; Warnock et al., 
2014) are available that can bind to SV2-A proteins in-vivo in dynamic 
PET acquisitions.  
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Synaptic loss as assessed by total volume distribution of UCB-H 
reveals a significant reduction in the right anterior hippocampus in AD 

patients compared to healthy controls (Bastin et al., 2020). Figure 1-1 
shows the results from correlation analyses of UCB-H quantification 
using Logan Graphic analyses and awareness of memory functioning. 
Moreover, a decrease in the uptake of UCB-J in AD patients is reported 
in the medial temporal regions (M.-K. Chen et al., 2021). 

 

Figure 1-1. Correlation between [F18]UCB-H distribution volumes and 
awareness of memory functioning. The hippocampus shows smaller synaptic 
density that correlates with poorer awareness of memory functioning in AD 
patients at p<0.05 after correction for family wise error rate (Bastin et al., 2020). 

1.3.3 Brain Atrophy 

Another core biomarker for AD is brain atrophy (Bobinski et al., 
1999), which is caused by neuronal loss and synapse degeneration 
(Tzioras et al., 2023). In the case of AD, most of atrophy studies focus on 
hippocampal formation, known to be the first affected region (McKhann 
et al., 2011). Hippocampal atrophy is used to track disease progression 
in clinical trials (McKhann et al., 2011). It has been validated that in 
about 40% of cognitively normal older individuals, neurodegeneration 
(hippocampal atrophy) precedes positive amyloid imaging (Jeremic et 
al., 2021; Villemagne et al., 2011). Atrophy in the hippocampus and 
entorhinal cortex is associated with a decline in memory function, 
progression of memory impairment (Mungas et al., 2005) and an 
increased risk of converting from MCI to AD. Today, increased rates of 
brain atrophy on longitudinal MRI are frequently used as a biomarker of 
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disease progression in AD and other dementias (O’Brien et al., 2020; Pini 
et al., 2016). 

1.3.4 Myelin and Iron Contents 

In the quest for early biomarkers, it has been suggested that changes 
in brain microstructure are among the first manifestations of AD 
(Bartzokis, 2011).  

Metal ions have a significant role in the brain, since they are required 
to regulate the neuronal activity in the synapses and many other 
biological functions (Llanos-González et al., 2020). There is increasing 
evidence suggesting that metal balance impairments, either excess or 
deficiency of metal ions (e.g. zinc, iron, and copper), are involved in a 
series of processes that can result in neurodegeneration and cell death 
(Dhakal and Macreadie, 2020). When metal elements’ homeostasis is 
disrupted, several protein misfolding events may appear inside the cell 
(Cristóvão et al., 2016). Increased metal ions (specifically for zinc, iron, 
and copper) levels are detected in amyloid-beta aggregates (Calabrò et 
al., 2021). Moreover, an increase in free iron is toxic, inducing oxidative 
stress and inflammation, cell dysfunction, and, ultimately, cell death 
(Bartzokis, 2011; Bulk et al., 2018; Calabrò et al., 2021). 
Oligodendrocytes have the highest iron content of all brain cell types 
(Erb et al., 1996) and as much as 70% of brain iron is associated with 
myelin (de los Monteros et al., 2000). 

The myelin sheaths in the central nervous system are produced by 
oligodendrocytes. The effect of age on myelin is complex, because even 
though some myelin sheaths are degenerating, myelination of axons 
from the prefrontal and other association areas (temporal and parietal 
lobes) continues until the end of the fifth decade (Bartzokis, 2004a; 
Corrigan et al., 2021; Peters, 2002). The age-related loss/dysfunction of 
myelin would result in a further increase in the production of damaging 
free radicals. An increase in neuronal free radical production has also 
been postulated to contribute to AD NFT-related neuropathology 
(Gamblin et al., 2000). 
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BOX-3. Quantitative MRI (qMRI) 

Conventional MRI is based on the acquisition of contrast images. These 
images are affected by many different contrast mechanisms, such as the MR 
pulse sequence, the MR scanner settings, B0- and B1-field inhomogeneities, 
as well as the different tissue properties. The MR scanner settings are chosen 
to highlight or saturate tissue properties, resulting in e.g., T1-weighted, or 
T2-weighted images.  

Conversely, quantitative MRI (qMRI) is aimed at the direct measurement 
of physical tissue properties, such as the T1-, T2-, and T2*-relaxation times or 
the proton density (PD), largely eliminating hardware effects (Gracien et al., 
2020). These properties are, in theory, independent of acquisition method 
and system imperfections.  

A comprehensive quantitative multi-parametric mapping (MPM) 
approach was devised to obtain quantitative images (Helms et al., 2010, 
2009; Weiskopf et al., 2011). In this sequence, three series of multi-echo 
images, weighted towards magnetization transfer (MT), T1, and proton 
density (PD) are collected. These images can be used to provide high-
resolution maps of the magnetization transfer saturation (MTsat) that is 
proportional to myelin content in the brain, effective proton density (PD*), 
longitudinal relaxation rate (R1 = 1/T1), and effective transverse relaxation 
rate (R2* = 1/T2*), proportional to the iron level in the brain (Weiskopf et al., 
2015, 2014, 2013). 

It is hypothesized that myelin breakdown and increases in iron levels 
are very early events in the physiopathology of Alzheimer’s disease. In 
support of this "myelin and iron" hypothesis, histological studies showed 
that myelin breakdown in early AD occurs mainly in frontal and 
temporoparietal areas (Bartzokis, 2011; Bulk et al., 2018; Kalpouzos et 
al., 2017; Zecca et al., 2004). Increased iron content was also found in 
frontal and temporal areas of AD patients (Bulk et al., 2018; House et al., 
2008). Moreover ex vivo studies showed that altered iron accumulation 
is positively correlated with the number of amyloid-beta plaques in 
these areas (Bulk et al., 2018; Van Duijn et al., 2017). Elevated iron 
content has also been observed in the hippocampus of AD patients 
(Zeineh et al., 2015). Additionally, higher levels of ferritin (i.e., the 
principal iron storage protein of the body) in the cerebrospinal fluid 
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(CSF) are associated with the poorer cognitive performance of 
cognitively normal, MCI and AD participants, and predicted MCI 
conversion to AD (Ayton et al., 2015; Peng et al., 2021).  

Thanks to the developments in brain neuroimaging techniques, we 
can investigate brain micro- and macro-structure characteristics in vivo 
using quantitative MRI (qMRI) techniques (see BOX-3), that provide 
(semi-)quantitative measures proportional to myelin, iron, and proton 
density in the brain. Example quantitative maps are illustrated in Figure 

1-2. 

 

Figure 1-2. Example quantitative maps from a healthy participant (male, 76 
years old), derived from MPM qMRI protocol. (A) Magnetization transfer 
saturation (MTsat); (B) Proton density (PD); (C) longitudinal relaxation rate (R1); 
and (D) effective transverse rate (R2*). 

1.3.5 Cognitive functioning 

Alterations in macro- and micro-structure of the brain go along with 
cognitive changes. Although cognitive impairment is not a hallmark of 
AD, it is categorized as a typical feature for AD (Sperling et al., 2011a) 
and the clinical classification of AD is mainly based on the severity of 
cognitive decline and histopathological alterations (Perl, 2010).    
Neuropathological alterations in the cerebral cortex and limbic system 
would lead to deficits in memory, language, and visuospatial skills 
(Corey-Bloom, 2002).  

The most significant cognitive changes observed in the process of 
normal aging encompass a decline in performance on cognitive tasks 
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requiring rapid information processing or transformation, crucial for 
decision-making. Such tasks include measures of processing speed, 
working memory, and executive cognitive function (Murman, 2015). 
Age-related cognitive changes are associated with structural and 
functional alterations in the brain, such as modifications in neuronal 
structure without neuronal death, synaptic loss, and dysfunction of 
neuronal networks. In case of pathological aging, emerging evidence 
suggests presence of subtle cognitive decline in the preclinical stages of 
AD (Baker et al., 2017).  

Current clinical trials are targeting preclinical stages of AD, where 
brain microstructural changes start many years prior to the diagnosis of 
AD dementia (Sperling et al., 2014, 2011b).  To investigate the earliest 
cognitive changes associated with underlying AD pathology, cognitive 
composites are defined. For instance, the preclinical Alzheimer’s 
cognitive composite (PACC5) focuses on measures of episodic memory, 
semantic memory, executive function, and global cognition(Papp et al., 
2017). 

The first clinical stage of AD, is labeled as mild cognitive impairment 
(MCI) due to AD (Albert et al., 2011; Perl, 2010), read BOX-1 for more 
details on different stages of AD. In MCI stage, the individuals 
experience slight memory loss, particularly for recent memories, while 
their daily functioning remains relatively unaffected (Albert et al., 2011; 
Soria Lopez et al., 2019). In AD dementia stage, the progression of 
neuropathology accelerates the rate of neuronal dysfunction, neuronal 
loss, and cognitive deterioration in time, often leading individuals to 
experience significant cognitive impairments that hinder their daily 
functional abilities such as language and visuospatial presentation, and 
executive function (McKhann et al., 2011; Murman, 2015).  

1.4 Biomarkers’ Interaction in AD 

So far, we have presented different changes in the brain and 
cognition that might occur during AD. Recent research suggests a 
systematic sequence of pathogenic events on a global biomarker level, 
but little is known about the associations and dependencies of distinct 
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lesion patterns on a regional level (Dyrba et al., 2018). For instance, the 
level of atrophy, as assessed by imaging techniques, correlates with 
neuronal loss (Bobinski et al., 1999), Braak (I to VI) NFT stage (Jack et al., 
2002; Whitwell et al., 2008; Zarow et al., 2005), but does not strongly 
correlate with amyloid-beta load measured by immunohistology 
(Josephs et al., 2008).  

Several studies have investigated the relationship between 
pathologic patterns using multimodal imaging markers (Buckner et al., 
2005; Grothe et al., 2016; Villain et al., 2010). These studies either 
assessed the statistical associations between biomarkers such as brain 
atrophy and metabolism or the correlation between two modalities in a 
univariate manner. For instance, (Whitwell et al., 2018) showed that the 
correlation between tau NFT and metabolism is larger than the 
correlation of tau NFT with gray matter volume all over the brain. 
Another study demonstrated that tau NFT seems to collocate much 
more with synaptic and neuronal loss than amyloid plaques (Musiek and 
Holtzman, 2015). Likewise, once AD cognitive symptoms are detected, 
tau NFT burden follows cognitive decline more closely than amyloid 
plaques (Musiek and Holtzman, 2015).  

Synaptic loss have the strongest correlation with cognitive decline in 
patients with MCI and with AD (DeKosky and Scheff, 1990; Scheff et al., 
2006; Terry et al., 1991). However, amyloid plaques might be required 
for tau NFT to expand from subcortical to cortical areas. Therefore, the 
relationships between AD hallmarks are more complex than first 
apprehended and could arise (partly) from relatively independent 
phenomena converging to AD.  

From another perspective, iron accumulation in the brain is highly 
related to deficits in oligodendrocytes which are core cells for 
production of myelin content. Demyelination results in limited impulse 
propagation and severe neurological dysfunction (Wang et al., 2018) as 
the main role of myelin is to protect the axon, insulation, and to 
accelerate the saltatory conduction of nerve impulses. In the process of 
myelin recovery, the naked axons can be damaged and free toxic iron 
elements can be released which results in neuronal loss. 
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In a large cross-sectional study, (Jack et al., 2014) showed that the 
population frequency of amyloid-beta and NFT negative (normal 
biomarkers) was 100% at age 50 and decreased to 17% by age 89. The 
frequency of amyloid and NFT positive (AD with neurodegeneration) 
increased to 42% by age 89, while the frequency of amyloid negative, 
NFT positive (classified as “suspected non-Alzheimer pathology”, i.e., 
SNAP) increased to 24% by age 89. Consequently, AD pathology with 
neurodegeneration and SNAP with neurodegeneration became 
increasingly more common with age, affecting up to 66% of people by 
age 89, despite normal performance on cognitive testing. The high 
frequency of neurodegeneration without amyloid-beta positivity 
suggests that other biomarkers may play a more prominent role than 
amyloid-beta accumulation (Jack et al., 2014).  

In the past decade, advancements in brain imaging techniques have 
indeed facilitated the investigation of myelination and iron accumulation 
in the brain in vivo. Studies using these new MRI methods reported 
results that align with ex vivo histological studies that have 
demonstrated the degeneration of myelin sheaths during healthy aging 
(Peters, 2002). For example, myelin water fraction as measured by 
multi-parametric maps (MPM) magnetization transfer saturation 
(MTsat) signal was found to decrease with aging in the corpus callosum 
as well as in frontal and parietal white matter (Callaghan et al., 2014). 
Additionally, in line with ex vivo evidence of increased iron content in 
basal ganglia in normal aging (Bulk et al., 2018), a positive correlation 
between iron deposit as measured by MPM R2* signal in the basal 
ganglia and age was found (Callaghan et al., 2014; Draganski et al., 
2011). A more recent study, using the MPM protocol, showed age-
related white matter volume, myelin, and iron loss in sensorimotor and 
subcortical areas paralleled by free water increase (Taubert et al., 2020). 

Accordingly, the identification of the early events in the AD 
pathophysiological cascade with in vivo noninvasive methods is critical 
to increase our understanding of the disease and inform the search for a 
treatment. 
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There are several models about the progression of neuropathological 
markers of AD. According to the amyloid cascade hypothesis, amyloid 
plaques are the initial cause of AD, triggering tau NFT, synaptic and 
neuronal loss (Castello and Soriano, 2014; Jack et al., 2013). Initially, Jack 
et al. proposed a hypothetical model for the major biomarkers of AD, 
describing the temporal evolution of the biomarkers with respect clinical 
severity (Jack et al., 2010). Subsequently, they updated their model 
showing the temporal evolution in time instead of the clinical disease 
stage (Jack et al., 2013). In this model, as illustrated in the lower panel of 

Figure 1-3 amyloid-beta accumulation, tau protein aggregation, 
neurodegeneration, atrophy, and memory deficits are accounted for 
staging the disease (Jack et al., 2013).  

Other hypothetical models have been proposed for AD spread 
pattern. Intraregional evolution models hypothesize the sequential 
pathological process as described in (Jack et al., 2013) within a single 
region and independent of other regions of the brain (Castello and 
Soriano, 2014; Drachman, 2014; Hardy and Allsop, 1991). Alternatively, 
the “neuron-to-neuron” hypothesis assumes a prion-like propagation of 
pathogenic proteins along structural connections in the brain (Hallbeck, 
2013). Another model for progression of AD is based on the metabolic 
demands of the brain regions; for instance, regions that are active in the 
default mode network are particularly vulnerable to amyloid deposition, 
neuronal dysfunction, and, neuronal death (Buckner et al., 2005). 

Dysfunctional oligodendrocytes and elevated iron levels are 
interconnected, and this interaction has a notable impact on myelin 
repair. Furthermore, increased levels of free iron can be toxic, resulting 
in oxidative stress, inflammation, cellular dysfunction, and ultimately, 
cell death (Bartzokis, 2011; Bulk et al., 2018; Calabrò et al., 2020). 
Therefore, it is also hypothesized that myelin breakdown and elevated 
iron levels are early events in the pathophysiology of Alzheimer's 
disease. (Bartzokis, 2004a) proposed a developmental model for 
cognitive decline and Alzheimer's disease (AD) that centers around 
myelin breakdown, which is linked to the unique vulnerability of late-
developing oligodendrocytes. According to this model, myelin 
breakdown is a fundamental aspect of the earliest changes seen in both 
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brain aging and AD. Another perspective for the progression of AD, is 
spatial colocalization of brain iron deposits with amyloid plaques (van 
Bergen et al., 2016). 

 

Figure 1-3. Revised model of dynamic biomarkers of the AD pathological 
cascade. (A and B) Neurodegeneration is measured by FDG PET and structural 
MRI (dark blue). All curves converge at the top right-hand corner of the plot, the 
point of maximum abnormality. Cognitive impairment is highlighted by green as 
a zone with low-risk and high-risk borders. (B) Operational use of the model. The 
vertical black line denotes a given time (T). Projection of the intersection of time 
T with the biomarker curves to the left vertical axis (horizontal dashed arrows) 
gives values of each biomarker at time T, with the lead biomarker (CSF Aβ42) 
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being most abnormal at any given time in the progression of the disease. People 
who are at high risk of cognitive impairment due to Alzheimer’s disease 
pathophysiology are shown with a cognitive impairment curve that is shifted to 
the left. By contrast, the cognitive impairment curve is shifted to the right in 
people with a protective genetic profile, high cognitive reserve, and the absence 
of comorbid pathological changes in the brain, showing that two patients with 
the same biomarker profile (at time T) can have different cognitive outcomes 
(denoted by grey circles at the intersection of time T). Aβ=amyloid-beta. 
FDG=fluorodeoxyglucose. MCI=mild cognitive impairment. (Jack et al., 2013) 

All these findings indicate the possibility of co-localization of 
neuropathology in the brain. Despite numerous studies exploring the 
chronobiological progression of AD, very few studies specifically 
investigated the simultaneous presence of brain tissue characteristics 
within a single framework.  

Correlation maps offer an easily interpretable way to observe how 
one disease process relates to another, both locally and distantly. 
However, univariate analysis methods present some limitations, such as 
the considerable number of multiple comparisons necessary to directly 
assess such correlations and the high computational cost (Avants et al., 
2014). Multivariate methods can be implemented to overcome such 
limitations in high dimensional datasets. (Sintini et al., 2018) studied the 
linear relationship between 6 pairs of AD biomarkers (NFT, atrophy, 
metabolism, and diffusion tensor imaging). Their findings suggest a 
positive correlation between decreased metabolism (glucose 
consumption) and loss of gray matter volume (Sintini et al., 2018). A 
more recent study provided evidence for age-related spatial overlap 
between volume and tissue property (demyelination, and free water 
content as assessed by MPM quantitative maps) differences that affect 
predominantly motor and executive networks atrophy, in a large cohort 
of 966 individuals (Taubert et al., 2020). 

To the extent of our knowledge, no one has studied co-occurrence of 
demyelination, iron accumulation, atrophy, and synaptic density in the 
context of Alzheimer’s disease. This thesis aims to address the gap by 
examining the co-occurrence of image derived biomarkers for AD. Our 
objective is to incorporate these diverse biomarkers into a 
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comprehensive model, allowing us to explore their interaction in both 
gray matter and white matter.  

1.5 Objectives and Thesis Outline 

The objectives of this project revolve around addressing several 
questions related to co-occurrence of macro- and microstructural brain 
characteristics in the gray matter and white matter of the aging brain. 

The primary objective of this thesis is to examine the microstructural 
alteration occurring in the brains of both healthy individuals and those 
diagnosed with AD, highlighting the differences in myelin and iron levels 
between these two groups. Additionally, we will investigate 
simultaneous demyelination, iron accumulation, synaptic degeneration, 
and atrophy through multivariate General Linear Model (GLM) analysis. 
Furthermore, we will look into the association of memory function and 
various brain image-derived biomarkers in healthy older adults. This 
investigation aims to determine whether the coexistence of multiple 
micro- and macro-pathologies within the brain could potentially serve as 
an indicator of forthcoming memory impairments.  

The project was divided into three core studies, each centered 
around brain characteristics, aging, and cognition. To accomplish these 
objectives, we took advantage of three datasets: the UCB-H (Bastin et 
al., 2020) and COFITAGE (Chylinski et al., 2022; Narbutas et al., 2019; 
Van Egroo et al., 2019) datasets from previously defined projects at the 
GIGA CRC-ivi, Liège University, along with the Aging dataset (Callaghan 
et al., 2014) from the Wellcome Centre for Human Neuroimaging 
(WCHN), University College London (UK).  

In the first study, we used the UCB-H dataset, which consists of 43 
healthy and AD participants (37.2 % male, mean age = 72.6) and 
included MPM MRI images and [F18] UCB-H PET data. In this study, first, 
we investigated the differences between (semi)quantitative maps 
indexing myelin and iron between healthy controls and AD patients. We 
also compared GM volume between the groups. Finally, we assessed all 
these characteristics in a multivariate model to test which combination 
of characteristics is triggering the difference between healthy brains and 
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AD brains in GM. This was the first study to assess myelination and iron 
accumulation, using MPM quantitative maps, synaptic density, and 
atrophy in one model.  

In the second study, we explored the impact of age on the 
simultaneous occurrence of microstructural tissue property changes in 
healthy adults in a collaborative study with the WCHN. We compared 
our findings from the multivariate model with previously published 
results from multiple univariate GLM analyses (Callaghan et al., 2014). 
The dataset for this study consisted of MPM MRI data from 138 healthy 
adults (35.5 % male, mean age = 46.6). Our findings provide insights on 
the advantages of multivariate models for studying multiple 
simultaneous tissue properties in comparison to multiple univariate 
models. 

For the third study, data was obtained from the COFITAGE dataset, a 
rich dataset with various modalities and longitudinal cognitive 
assessments from 101 healthy subjects (31.7 % male, mean age = 59.4). 
Having longitudinal cognitive test battery scores provided the 
opportunity to study the decline in cognition in healthy older adults. We 
examined the association between global memory, attention, and 
executive function as assessed by various cognitive scores, along with 
PACC5 and different tissue property maps, indexing myelin, iron, free 
water content, and GM and WM volume, in healthy older adults. Our 
findings provide insights about the primary regions in the brain 
correlating with cognition and its decline in normal aging.  

In the discussion, we will provide a summary of our key findings. 
Specifically, we will discuss the differences observed in the brain micro-
structural properties between healthy adults and AD patients using 
quantitative neuroimaging techniques. Additionally, we will delve into 
our findings regarding a combination of quantitative maps of brain 
properties that could empower us in indicating the initially affected 
brain regions in AD. 

Furthermore, we will extend our discussion to the possibility of 
identifying specific regions within the brain where the co-occurrence of 
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micro-structural alterations is more likely to manifest concerning 
individuals’ age. 

Moreover, we will explore the intricate relationship between 
cognitive performance and its decline concerning micro-structural 
characteristics within the brains of healthy older adults. 

We will conclude our discussion by unveiling the limitations and 
future perspectives to complete this research. 

 

 



 

 
 
 

2   Chapter 2      

Statistical Methodology 
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Statistical modeling serves as a cornerstone in diverse analytical 
frameworks, providing a robust foundation for an array of applications. 
In this chapter, we bring a brief introduction to the importance of 
multivariate General Linear Model (mGLM) when investigating 
phenomena that are interconnected. 

2.1 General Linear Model (GLM) 

General Linear Model (GLM) is used in almost every statistical 
analysis. It is the foundation of the t-test, F-test, Analysis of Variance 
(ANOVA), Analysis of Covariance (ANCOVA), regression analysis, and 
many others e.g., multivariate methods including factor analysis, cluster 
analysis, multidimensional scaling, discriminant function analysis, 
canonical correlation.  

When using a GLM, we hypothesize that the dependent variable can 
be explained by a weighted linear combination of a group of 
independent variables (covariates), in presence of errors that have 

normal distribution (Equation 2-1). In image processing, GLM is often 
used to examine the association between the signal within each voxel 
and specific covariates. In other words, a GLM would use some 
predictors to predict an observed phenomenon (Christensen, 
2020)(Christensen, 2020). GLM can also be used to perform group 
comparisons. This can be done by including a categorical factor variable 
in our model, which allows for testing the difference between groups 
(e.g., patients vs. controls) while controlling for other factors. 

Y=XB+E Equation 2-1 

In the context of quantitative MRI, GLM serves as a powerful 
analytical framework for investigating variations in tissue properties in 
the brain. However, as we explained in the introduction chapter, brain 
tissue properties are interconnected. Multivariate General Linear Model 
(mGLM) becomes particularly important in this context. mGLM allows 
researchers to investigate concurrent changes in multiple tissue 
property maps, considering their interdependencies. This capability is 
crucial for a comprehensive understanding of how various tissue 
characteristics evolve simultaneously, providing insights that might be 
overlooked in univariate analyses. The interconnected nature of 
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different tissue properties underscores the significance of adopting 
multivariate approaches, enhancing the richness and accuracy of 
interpretations in qMRI studies. 

Throughout this thesis, the univariate GLM analyses were performed 
in SPM12 (www.fil.ion.ucl.ac.uk/spm). 

2.2 Multivariate General Linear Model (mGLM) 

The extension of GLM, known as the Multivariate General Linear 
Model (mGLM), accommodates scenarios where observations span 

multiple modalities. Expressed as Equation 2-1, this model incorporates 
matrices for observations (𝑌𝑛×𝑚), design (𝑋𝑛×𝑘), model parameters 
(𝐵𝑘×𝑚), and errors (𝐸𝑛×𝑚). Where n can be taken as the number of 
subjects, m as the number of dependent variables (here, the number of 
different tissue property maps), and k as the number of predictors.  

2.3 Statistical Testing in mGLM 

The derivation of test statistics involves the computation of sums-of-
squares and cross products (SSCP) matrices for both hypothesis (𝑆𝑆𝐶𝑃𝐻) 
and error (SSCPE). Standard test statistics, including Pillai's trace, Wilk's 
lambda, Hotelling-Lawley trace, and Roy's largest root, offer diverse 
perspectives on the significance of observed effects (Hotelling, 1951; 
Lawley, 1938; Pillai, 1955; Roy, 1945; Wilks, 1932). The selection of an 
appropriate test statistic hinges on characteristics inherent in the data, 
acknowledging considerations such as population eigenvalues and the 
distribution of dependent variables. Approximations to F-statistics and 
corresponding degrees of freedom enable the calculation of p-values, 
contributing to the interpretability of results. 

In our studies, we used the MSPM toolbox (Gyger et al., 2021), a 
newly developed toolkit for performing the multivariate GLM analysis 
and testing.  
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2.4 Canonical Component Analysis (CCA) 

Generally, when using multivariate models, the calculation of a 
sufficiently large multivariate test statistic naturally leads to the 
question of the degree to which any of the dependent variables are 
contributing to the rejection of the null hypothesis. Although it is always 
possible to simply follow up any significant multivariate tests with 
multiple univariate tests, it is not favorable as doing multiple tests would 
increase the chance of false positives (Gyger et al., 2021; McFarquhar et 
al., 2016). Linear discriminant analysis (LDA), also called canonical 
component analysis (CCA) is a more relevant approach for calculation of 
the multivariate test statistics (Huberty and Olejnik, 2006). 

For further details on the modeling and statistical testing in mGLM 
please refer to Appendix-A in Chapter 7. 
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3   Chapter 3      

Multimodal imaging of microstructural 
cerebral alterations and loss of synaptic 
density in Alzheimer’s disease 

 

 

 

 

 

 

 

This chapter is based on our article published in the Neurobiology of 
Aging journal:  

Moallemian, S., Salmon, E., Bahri, M.A., Beliy, N., Delhaye, E., Balteau, E., 
Degueldre, C., Phillips, C., Bastin, C., 2023. Multimodal imaging of 
microstructural cerebral alterations and loss of synaptic density in 
Alzheimer’s disease. Neurobiology of Aging 132, 24–35. 
https://doi.org/10.1016/j.neurobiolaging.2023.08.001 
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Preface 
In this chapter, we address the growing prevalence of 

neurodegenerative diseases, particularly Alzheimer's disease (AD), 
against the backdrop of increasing life expectancy. AD, constituting 60 to 
80 percent of cases, presents a significant global health challenge 
(Calabrò et al., 2020). Despite a declining incidence, the aging population 
is expected to elevate AD prevalence. The pathological processes 
underlying AD, characterized by amyloid-beta plaques, tau 
neurofibrillary tangles, synaptic, and neuronal loss, unfold decades 
before clinical manifestations. Our study explores the early events in AD 
pathophysiology using noninvasive in vivo methods. 

We investigate myelin and iron hypothesis, suggesting that myelin 
breakdown and increased iron levels are among the initial events in AD 
(Bartzokis, 2011). Histological studies indicate myelin breakdown in 
frontal and temporoparietal areas, correlating with altered iron 
accumulation and amyloid-beta plaques (Bulk et al., 2018; Van Duijn et 
al., 2017). Elevated iron levels, particularly in the hippocampus, are 
associated with cognitive decline (Zeineh et al., 2015). Leveraging novel 
neuroimaging tools, specifically Multi-Parameter Mapping (MPM), we 
aim to assess brain microstructure and investigate the link between 
myelin water fraction, iron content, and AD-related pathological 
changes. 

Our primary objective is to employ quantitative MRI to detect in vivo 
microstructural differences in individuals with AD, characterized by 
significant amyloid burden, compared to healthy older individuals. While 
previous studies have explored iron content in AD, our study uniquely 
combines quantitative MPM maps to assess in vivo myelin and iron 
concurrently. We also aim to explore the co-occurrence of 
demyelination, iron accumulation, gray matter atrophy, and synaptic 
loss- as assessed by SV2-A-PET imaging. 

By integrating findings from various imaging modalities, we seek to 
uncover potential relationships between myelin breakdown, iron 
accumulation, and synaptic density reduction in AD. Our cross-sectional 
study sets the stage for understanding the interplay of pathological 
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markers in the brain, laying the groundwork for future investigations 
into the chronobiology of these pathological changes. 
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3.1 Introduction 

Concomitantly with an increase in average life expectancy, a major 
epidemiologic trend of the current century is the rise of 
neurodegenerative diseases worldwide, among which Alzheimer’s 
disease (AD) is the most common type, with 60 to 80 percent of the 
cases (Calabrò et al., 2020). Despite an incipient decrease in incidence, 
AD prevalence is expected to rise because this neurodegenerative 
disease increases exponentially with age (Azam et al., 2021; Tan et al., 
2014). It is recognized that AD pathological processes unfold decades 
before the emergence of clinical signs of cognitive decline (Dean et al., 
2017; Gonneaud and Chételat, 2018; Tan et al., 2014). These 
pathological processes include a progressive accumulation of amyloid-
beta plaques and tau neurofibrillary tangles (NFT), in addition to 
synaptic and neuronal loss (Gulisano et al., 2018; Jack et al., 2013; 
Spillantini and Goedert, 2013; Tan et al., 2014; Yin et al., 2021). 
According to the amyloid cascade hypothesis (Jack et al., 2013), amyloid 
plaques are the initial cause of AD, triggering tau NFT, synaptic and 
neuronal loss. Synaptic loss appears as the best correlate of cognitive 
decline in patients with Mild Cognitive Impairment (MCI) and with AD 
(DeKosky and Scheff, 1990; Scheff et al., 2006; Terry et al., 1991).  
Interestingly, in about 40% of cognitively normal older individuals, 
neurodegeneration (hippocampal atrophy) precedes detection of 
amyloid plaques (Jeremic et al., 2021; Villemagne et al., 2011). 
Accordingly, the identification of the early events in the AD 
pathophysiological cascade with in vivo noninvasive methods is critical 
to increase our understanding of the disease and inform the search for a 
treatment. 

In the quest for early biomarkers, it has been suggested that changes 
in brain microstructure are among the first manifestations of AD 
(Bartzokis, 2011). Increased iron levels are associated with dysfunction 
of oligodendrocytes, notably impacting myelin repair. Moreover, an 
increase in free iron is toxic, inducing oxidative stress and inflammation, 
cell dysfunction, and, ultimately, cell death (Bartzokis, 2011; Bulk et al., 
2018; Calabrò et al., 2021). So, it is hypothesized that myelin breakdown 
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and increases in iron levels are very early events in the physiopathology 
of Alzheimer’s disease. In support of this "myelin and iron" hypothesis, 
histological studies showed that myelin breakdown in early AD occurs 
mainly in frontal and temporoparietal areas (Bartzokis, 2011; Bulk et al., 
2018; Kalpouzos et al., 2017; Zecca et al., 2004). Increased iron content 
was also found in frontal and temporal areas of AD patients (Bulk et al., 
2018; House et al., 2008). Moreover ex vivo studies showed that altered 
iron accumulation is positively correlated with the number of amyloid-
beta plaques in these areas (Bulk et al., 2018; Duijn, 2017). Elevated iron 
content has also been observed in the hippocampus of AD patients 
(Zeineh et al., 2015). Additionally, higher levels of ferritin (i.e., the 
principal iron storage protein of the body) in the cerebrospinal fluid 
(CSF) are associated with the poorer cognitive performance of 
cognitively normal, MCI and AD participants, and predicted MCI 
conversion to AD (Ayton et al., 2015; Peng et al., 2021).  

Novel neuroimaging tools can be used to assess brain microstructure. 
Indeed, specific MRI parameters have differential sensitivity for 
structural aspects of tissue such as fiber coherence, macromolecules, 
myelin, iron, and water content. Recently developed quantitative MRI 
techniques offer, through their sensitivity to microstructural tissue 
properties, a unique opportunity for establishing in vivo the link to 
findings of postmortem histological assessment of brain tissue. Notably, 
Multi-Parameter Mapping (MPM) has been used to create quantitative 
brain maps that lead to a highly specific inference of tissue properties 
such as myelin water fraction (i.e., myelination) and iron content in the 
gray matter (Draganski et al., 2011). Consistently with ex vivo 
histological studies indicating degeneration of myelin sheaths with 
healthy aging (Peters, 2002), myelin water fraction as measured by MPM 
magnetization transfer saturation maps (MTsat) was found to decrease 
with aging in the corpus callosum as well as in frontal and parietal white 
matter (Callaghan et al., 2014). Additionally, in line with ex vivo evidence 
of increased iron content in basal ganglia in normal aging (Bulk et al., 
2018), MPM imaging detected in vivo a positive correlation between 
iron deposit in the basal ganglia and age (Callaghan et al., 2014; 
Draganski et al., 2011). Increased iron content was related to lower 
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blood oxygen level dependent (BOLD) signal in older adults (Kalpouzos 
et al., 2017). A more recent aging study on a large-scale cohort 
confirmed the age-related atrophy and demyelination,  and reported an 
overlap between interregional volume and tissue property differences in 
aging that affected predominantly motor and executive networks 
(Taubert et al., 2020).  

In this context, our main objective was to use quantitative MRI to 
detect in vivo microstructural differences (myelin water fraction and iron 
content) between individuals with AD characterized by significant 
amyloid burden in the brain and healthy older individuals (amyloid-
negative and/or cognitively healthy). In AD, investigation of brain 
microstructure with quantitative MRI using MPM protocol has only 
recently started. One study (Acosta-Cabronero et al., 2016) used 
quantitative susceptibility mapping in MRI to show that AD patients 
have increased iron content in the putamen, caudate nucleus, and 
amygdala. The same authors (Acosta-Cabronero et al., 2013) indicated 
that in healthy older adults, iron accumulation can be found in frontal 
lobes, affecting brain regions related to motor functions. Steiger and 
colleagues observed a decrease in gray matter volume and myelin, and 
an increase of iron in widespread brain regions including the basal 
ganglia in older adults using quantitative MRI technique (Steiger et al., 
2016). Another work directly evaluated, in healthy older participants, 
the concurrent relation between CSF markers of  amyloid-beta and tau 
AD pathology, and MRI relaxometry-based measures of myelin content 
in the brain (Dean et al., 2017). They found that lower CSF amyloid-beta 
and higher tau levels were related to regional decreases in the brain MRI 
myelin measures, particularly in brain regions known to be preferentially 
affected in AD, including white matter in the frontal, temporal, corpus 
callosum, and cingulum regions. 

To our knowledge, no study has used quantitative MPM to assess in 
vivo myelin and iron in AD concomitantly. Moreover, little is known 
about in vivo co-occurrence of cerebral microstructural changes and 
synaptic loss. The latter can be assessed with PET imaging using 
radiotracers binding to synaptic vesicle protein 2A (SV2-A). With SV2-A-
PET imaging, AD-related decreased synaptic density was found in several 
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cortical areas and the thalamus, with the most significant effect size in 
the hippocampus (Bastin et al., 2020; Chen et al., 2018). 

In the current study, co-occurrence of microstructural alterations 
with reduced regional cerebral uptake of [F18]UCB-H indexing synaptic 
density was assessed with a multivariate model applied to the different 
imaging modalities (MPM and SV2-A PET). If myelin decrease and iron 
burden are early events preceding synaptic loss and neuronal death 
(Bartzokis, 2011), one should observe a co-occurrence in microstructural 
abnormalities and decreased synaptic density in the case of AD, likely in 
the hippocampus whose alteration drives symptoms in the patients 
(Bastin et al., 2020). Of note, in the current cross-sectional study, we 
cannot assess the chronobiology of pathological changes across the 
different modalities. Nevertheless, we hypothesize that, if pathological 
processes are triggering one another as suggested by (Bartzokis, 2011), 
one should observe co-localization of pathological markers in the brain. 

3.2 Methods 

3.2.1 Participants 

The data come from a published study that focused on in vivo 
imaging of synaptic loss (Bastin et al., 2020). Two groups of older 
participants were included in the study. The first group consisted of 24 
amyloid-positive patients from the AD continuum (Aβ-positive group), 
which encompasses individuals diagnosed with mild cognitive 
impairment (MCI) as well as those diagnosed with probable AD. These 
patients were recruited from the Memory Clinic at Liege University 
Hospital. They were diagnosed based on current NIA-AA criteria (Albert 
et al., 2011; Jack et al., 2018; McKhann et al., 2011). As part of the initial 
diagnostic process, [F18]FDG-PET was used as a biomarker of 
neurodegeneration in all patients. Also, global cognition was assessed 
with the Mini-mental state examination (MMSE). Aβ positivity was 
determined based on [F18]Flutemetamol-PET by qualitative visual 
inspection and by cortical standardized uptake value ratios (SUVR) above 
a quantitative threshold determined in a database of healthy older 
adults (Bastin et al., 2020). In Aβ-positive group, 5 patients were 
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diagnosed with MCI (MMSE between 26 and 30) and 19 with probable 
AD, with MMSE scores between 14 and 26 (mild stage, MMSE > 20, n = 
15; moderate stage, MMSE< 20, n = 4). The second group comprised 19 
cognitively healthy controls (HC) (with MMSE between 28 and 30). In the 
HC group, amyloid-negativity was confirmed in eight participants. For 
participants who did not undergo an amyloid PET, because they refused 
an additional PET exam, they were considered healthy controls if they 
showed no or only minimal hippocampal atrophy on MRI, as assessed by 
visual inspection by a neurologist (Dubois et al., 2007). Both groups were 

matched for age, sex, and education. Table 3-1 shows a summary of the 
participants. 

Table 3-1. Demographics, clinical characteristics, and neuropsychological scores of 
AD and HC groups. Abbreviations: sd, standard deviation; MMSE, mini mental state 
examination; DMS48, visual recognition memory, Tstat, T-student statistics, df, 
degrees of freedom, F, female, M, male. 

mean ± sd AD(n = 24) HC(n=19) T(df)=Tsatst, p-value 

Age 73.08 ± 8.07 71.95 ± 4.58 T(41)=0.55, p=.59 

Gender (F/M) 0.54 ±0.51 (13/11)  0.53 ±0.51 (11/8) Chi2=0.21, p=0.65 

Education(years) 13.37 ± 3.35 13.1 ± 3.56 T(41)=0.25, p=.80 

MMSE 23.71 ± 3.95 29.16 ± 1.12 T(41)=5.82, p<.001 

Memory (DMS48) 
% Correct 

81.50 ± 15.74 98.53 ± 1.87 T(41)=4.68, P<.001 

3.2.2 Data Acquisition 

Our data consists of dynamic PET and MRI. 

SV2-A PET 
Dynamic PET acquisitions were carried out using a Siemens/ CTI 

(Knoxville, TN) ECAT HR+ PET scanner. An intravenous bolus of [F18]UCB-
H[37] of 157.06 ± 8.96 MBq was administered. For a total of 100 
minutes, the dynamic PET was conducted with time frames of 6*10s, 
8*30s, 5*120s, and 17*300s. All PET images were reconstructed using 
filtered back projection (Hann filter, 4.9 mm FWHM), including 
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corrections for measured attenuation, dead time, random events, and 
scatter using standard software (ECAT 7.1, Siemens/CTI, Knoxville, TN). 
The transaxial resolution in water, under these acquisition and 
reconstruction conditions, is 6.5–7 mm (voxel size 2.57 x 2.57 x 2.43 
mm3). A mean unchanged plasma fraction was calculated for each group 
and used for modeling based on blood samples collected in 7 controls 
and 6 patients. Further information on PET acquisition and processing 
can be found in (Bastin et al., 2020). 

Multi-parametric Mapping MRI 
MRI data has been acquired on a 3T whole-body MRI-scanner 

(Magnetom Prisma, Siemens Medical Solution, Erlangen, Germany) using 
a standard 32-channel head receiving coil. The whole-brain MRI 
acquisitions included a multiparameter mapping protocol (MPM) 
(Weiskopf et al., 2013). This protocol allows the estimation of 
(semi)quantitative maps for various parameters, including magnetization 
transfer saturation (MTsat), proportional to myelin; proton density (PD), 
proportional to water content; transverse relaxation (R2*), proportional 
to iron; and effective longitudinal relaxation (R1). The MPM protocol 
consists of 3 co-localized 3D multi-echo fast low angle shot (FLASH) 
acquisitions with 1 mm isotropic resolution and 2 additional calibration 
sequences to correct for inhomogeneities in the RF transmit field (Lutti 
et al., 2010). The FLASH datasets were acquired with predominantly PD, 
T1 and MT weighting determined by the repetition time (TR = 24.5 ms) 
and flip angle (FA = 6° for PD & MT, 21° for T1), referred to in the 
following as PDw, T1w and MTw echoes. MTw contrast was obtained 
using an additional off-resonance Gaussian-shaped RF pulse with 4 ms 
duration and 220 nominal flip angle, 2 kHz off-resonance before 
nonselective excitation. A high readout bandwidth of 320 Hz/pixel was 
used to minimize off-resonance and chemical shift artifacts (Helms and 
Dechent, 2009). Volumes were acquired in 176 sagittal slices using a 
256x224 voxel matrix. GRAPPA parallel imaging was combined with 
partial Fourier acquisition to speed up acquisition time to approximately 
20 min. Gradient echoes were acquired with alternating readout 
gradient polarity at 6 equidistant echo times [2.34, 4.68, 7.02, 9.36, 11.7, 
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14.04] ms. Two additional echoes were acquired for the PDw and T1w 
acquisitions at 16.38 ms and 18.72 ms. 

B1 field mapping images (transmit B1+ and receive B1- fields) were 
also acquired to reduce spatial heterogeneities related to B1 effect, 
which was essential for proper quantification of T1 (or R1=1/T1) in 
particular. Finally, B0 field mapping images were acquired for image 
distortions correction: two magnitude images acquired at 2 different 
TE’s, and pre-subtracted phase images. 

3.2.3 Image data Processing 

Collected data were anonymized and organized according to the 
Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016) and its 
extensions for PET (Knudsen et al., 2020) and qMRI data (Karakuzu et al., 
2022), the latter using BIDSme 
(https://github.com/CyclotronResearchCentre/bidsme), and the former 
with custom MATLAB scripts. All information needed for subsequent 
analysis was incorporated into the dataset. Data is available from the 
corresponding authors upon reasonable request. 

MRI 
To obtain the quantitative maps, MRI data were processed with 

SPM12 (www.fil.ion.ucl.ac.uk/spm) and the hMRI (https://hmri.info/) 
toolbox, where the latter is an extension to SPM (Tabelow et al., 2019). 
T1w, PDw, and MTw images acquired at multiple TEs were extrapolated 
to TE=0 to increase the signal-to-noise ratio and remove the otherwise 
remaining R2* bias (Tabelow et al., 2019). The TE=0 extrapolated MTw, 
PDw, and T1w images were used to calculate MT saturation, R1 and 
apparent signal amplitude A* maps. A* maps were rescaled to generate 
PD maps. All quantitative maps were corrected for inhomogeneities 
from local RF transmit field (B1+), using B1 and B0 field mapping images 
(Lutti et al., 2010). The receive bias field map (B1-) was used to correct 
PD maps for instrumental biases (Ashburner and Friston, 2005). R2* 
maps were estimated using the ESTATICS method from the three 
different FLASH acquisitions by accounting for the varying contrasts. The 
ordinary least squares (OLS) log-linear fit was also used to detect and 
down weight echoes affected by motion artifacts (Weiskopf et al., 2014). 

https://github.com/CyclotronResearchCentre/bidsme
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R1 maps were corrected for the radio frequency (RF) transmit field 
inhomogeneity B1+ (Preibisch and Deichmann, 2009). Quantitative maps 
were segmented into gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) using the unified segmentation approach as 
implemented in SPM (Ashburner and Friston, 2005). Inter-subject 
registration of the GM and WM tissue maps was performed using 
DARTEL, a nonlinear diffeomorphic algorithm (Ashburner, 2007). This 
algorithm estimates the deformations that best align the tissue 
probability maps by iterative registration of these maps to their average. 
The tissue probability maps were then normalized to the stereotactic 
space specified by the Montreal Neurological Institute (MNI) template 
using the resultant DARTEL template and deformations. Example maps 

are illustrated in Figure 3-1. Then, for voxel-based morphometry (VBM) 
analysis, specific tissue-weighted smoothing, with a 3mm FWHM 
isotropic kernel, was applied to avoid mixing values from different 
tissues classes, as would happen with standard Gaussian smoothing. 

A GM mask was created using the mean segmented MTsat image 
from all participants to be later used as an explicit mask in the statistical 
analysis. 

PET 
PET data were processed as described previously (Bastin et al., 2020). 

In brief, [F18]UCB-H PET dynamic frames were corrected for motion 
without re-slicing. The images were corrected for partial volume effects 
(PVE) using the iterative Yang voxel-wise method implemented in the 
PETPVC toolbox (Thomas et al., 2016), with GM, WM, CSF and “other” as 
ROI masks. Kinetic modeling using PVE-corrected dynamic PET data and 
image-derived input function was done with PMOD (Version 3.7, PMOD 
Technologies, Zurich, Switzerland). Input function was derived from the 
dynamic images (Bahri et al., 2017) and corrected for metabolites using 
the measured group mean unchanged plasma fraction. Logan graphical 
analysis (with t* = 25 min) was used to calculate the distribution volume 
(Vt) map of [F18]UCB-H in the brain. Finally individual Vt maps were 
coregistered with their corresponding MTsat map, then their spatial 
normalization transformations were applied to warp the Vt maps in the 
same reference space. 
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Figure 3-1. Example maps from two participants. First row, AD patient, Second row, 
healthy control. A) Magnetization transfer saturation, MTsat; B) Effective transverse 
relaxation rate, R2*; C) [F18]UCB-H total volume distribution, Vt. 

3.2.4 Statistical Analyses 

All analyses focused on GM only as PET images indexing synaptic 
density are only interpretable for gray matter. Therefore, an explicit 
mask for GM was applied on all the analysis. Since each parametric map 
has a specific unit, e.g., Hertz for R2* images and ml/cc for Vt maps, 
their intensities are not directly comparable. Thus, all maps were Z-
transformed - per modality and across participants - using the grand 
mean and variance over each voxel, to ensure comparability of different 
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modalities for our multivariate analysis. All statistical analyses were 
performed on standardized data. 

For quantitative MRI, we decided not to investigate R1 and PD maps, 
as they are associated with multiple tissue properties at the same time, 
and would lead to underestimation of microstructural differences that 
we are interested in.  

Three quantitative modalities (MTsat, R2*, and Vt) and GM density 
maps were individually analyzed using a univariate 2-sample t-test GLM 
with age and sex of the participants as covariates. We tested the 
difference between the two groups for each modality. The t-student 
contrast defined for MTsat, Vt, and GM volume (GMvol) maps was 
HC>AD, hypothesizing that healthy controls have more myelin, synapses, 
and GM volume than AD patients. For R2* maps, we used contrasted 
AD>HC, hypothesizing that R2* values in AD group are superior to those 
of healthy participants, as increased iron load is considered toxic.  

A MANOVA model was specified using the design matrixes of the 
three univariate models in the MSPM toolbox (Gyger et al., 2021), a 
newly developed toolbox working under SPM as a multivariate extension 
of univariate GLM (Chen et al., 2014; McFarquhar et al., 2016). The 
multivariate GLM (mGLM) models the multivariate observations as 
Y=XB+E, where Y43×4=[Y1,Y2,Y3,Y4]  is the multi-modal data matrix, each 
row of Y represents one participant, and each column of Y represents 
one modality MTsat, R2*, GMvol, and Vt at a single voxel; and X43×4= 
[X1,X2,X3,X4] is the design matrix, representing the AD and HC groups in 
the first two columns, and age and sex of the participants in the last two 
columns.  The matrix B is a 4 × 4 matrix of size of regression coefficients; 
and E is the residual matrix of size 43 × 4. Matrix B is estimated using an 
ordinary least square method. 

The regression model can be used to partition the total variation in 
the outcome into explained variance and unexplained variance. In this 
sense, the total sums of square and cross products (SSCP) terms are 
calculated as: SSCPTotal=SSCPModel+SSCPResidual. The SSCP matrix is used 
to estimate the variance-covariance matrix of the predictor variables in 
linear regression analysis and can be presented as 
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SSCPTotal=(Ŷ
TŶ-Ny̅y̅T)+ETE, where in our case N=4, the total number 

of observations. To test the null hypothesis that all the coefficients in B 
are equal to zero, we can compute the eigenvalues of 

SSCPModelSSCPResidual
-1 . Then the Wilk’s lambda summary statistics 𝛬 is 

calculated based on the eigenvalues solving the equation of eigen-
decomposition for the determinant matrix.  

Here, we determine the canonical vectors for our test statistic. In this 
context, canonical vectors refer to the linear combinations of the 
original variables that maximize the separation between groups or 
conditions in the multivariate space (Tabachnick and Fidell, 2007). These 
vectors are determined by performing a multivariate analysis of variance 
(MANOVA) and extracting the canonical variates. The F-test is then 
applied to test the significance of the overall multivariate effect. 
Canonical vectors provide insights into the relationships between 
variables and facilitate the identification of the most influential factors 
driving group differences. For illustrative purposes only, we extracted 
the original values, after Z-transformation, from the MTsat, R2*, GMvol, 
and Vt maps used at the voxels within significant clusters, which 
corresponds to the difference in real tissue property values. 

To test the hypothesis of the association between all dependent 
variables and contrasts among predictors, we applied this linear 
hypothesis: H0: CBL = 0, where L4×4 is a full rank matrix to test the 
hypothesis, here an identity matrix to test the hypothesis for the joint 
effect of all modalities (columns of B). The contrast matrix 
C=[1 -1 0 0 0] would perform a standard F-test to assess the difference 
between the 2 groups, AD and HC. See (Tabachnick and Fidell, 2007) for 
mathematical details.  

Additional group comparison was performed on MTsat, R2*, GMvol, 
and Vt maps after adjustment for age and gender covariates and 
masking for the significant ROIs resulted from the mGLM model.  

Correlation analyses between memory, age, and sex with different 
modalities, was performed on the AD and HC group. 
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3.3 Results 

Statistical inference was performed using a p-value < .05 “family-wise 
error rate” (FWER) corrected, at the voxel or cluster extent levels. For 
the latter, the cluster forming threshold used was a voxel level p<.001 
uncorrected. 

3.3.1 Univariate Analyses 

Coordinates and anatomical labels of the peaks are presented in 

Table 3-2, showing the voxel-wise comparisons of two groups of AD and 
HC for different univariate analysis performed on MTsat, R2*, GMvol, 
and Vt maps. 

3.3.2 Magnetization Transfer Saturation (MTsat) 

MTsat maps revealed a significant difference at cluster-level between 
AD patients and healthy controls after correcting for FWER (P < .05) 
which covers the right hippocampus and amygdala indicating lower 

values in AD than in controls. Figure 3-2-A shows the statistical 
parametric map of univariate analysis of MTsat maps at p <.001 
uncorrected.  

3.3.3 Effective Transverse Relaxation Rate (R2*) 

No significant difference in R2* maps, representative of iron level 
content in the brain, was detected between the groups. However, at a 
more lenient statistical threshold (p < .001 uncorrected), the results for 
R2* analysis show differences in the superior part of orbitofrontal cortex 
bilaterally as well as in the left hippocampus and right mid-temporal 

gyrus (see Figure 3-2-B). 

3.3.4 Voxel-based Morphometry 

We could identify significant reduction in GM volume in AD group (p 
<.05, corrected for FWER) bilaterally in hippocampus and fusiform 
cortex, and in left amygdala, olfactory bulb, and anterior cingulate 

cortex (Figure 3-2-C).  
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3.3.5 Total [F18]UCB-H Volume Distribution 

Vt data shows higher intensities in healthy controls compared to AD 
patients in the left and right hippocampus and amygdala at voxel-level 

(PFWE <.05) as well as, right and left thalamus (Figure 3-2-D). 

3.3.6 Correlation Analyses 

The results from Pearson’s correlation analyses in the AD group are 
presented in Table 3-3. There were significant correlations between 
MTsat and GMvol maps (r = .462, p<.05) in right para hippocampal 
cortex. A strong correlation was also observed in the left fusiform 
between MTsat and Vt maps (r = .724, p<.001).  R2* and GMvol maps 
were negatively correlated in right para hippocampal cortex (r = -.574, 
p<.01) and left fusiform (r = -.628, p<.01). GMvol and Vt maps were 
found positively correlated in left hippocampus (r = .472, p< .05) and 
fusiform (r = .447, p<.05).  

In the AD group, there were no significant correlations between 
memory (indexed by DSM48 score) and the different imaging modalities. 
Moreover, MTsat showed a negative correlation with age and gender in 
left and right hippocampus of AD participants (r =-.431, r = -.445, p< .05), 
as well as in left fusiform and temporal clusters.  

The results of Fisher's z-transformation test support the homogeneity 
of regression slopes between the groups. Detailed correlation results for 
age and gender are presented in the Chapter 6, Appendix-B (Table 7-1, 
Table 7-2, Table 7-3, Table 7-4). 

3.4 Multivariate Analysis 

  The multivariate GLM (mGLM) model, controlling for the effect of age 
and sex, shows significant difference at voxel-level (PFWE <.05) between 
the two groups in both left and right hippocampus and amygdala, left 
fusiform and superior temporal gyrus, and right para hippocampal 

(Figure 3-3). Coordinates and anatomical labels of the peaks are 

presented in Table 3-4. We also investigated the multicollinearity 
between different maps in the significant clusters of the mGLM model. 



 

64 
 
 

The variance inflation factor (VFI) in all cases is in the [0.98, 1.3] range, 
suggesting no multicollinearity. 

 

Figure 3-2. Statistical parametric maps of the univariate analysis for the 
difference between AD and HC groups. The SPMs were super imposed on the 
mean MTsat map for both groups on MNI space. For illustration purposes 
displayed at p<.001 uncorrected for FWER. Abbreviations: MTsat, magnetization 
transfer saturation; R2*, effective transverse relaxation rate; gray matter 
volume; Vt, total volume distribution; FWER, family-wise error rate. 
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Table 3-2. Significant differences between AD participants and healthy controls for 
MTsat and Vt maps. Brain regions were labeled with the AAL3 atlas toolbox in SPM. 
This table shows up to 3 peaks (at least 8mm apart) within each cluster. Clusters were 
thresholded to contain >20 voxels. Coordinates are MNI coordinates. FWER 
correction was applied for P<0.05 at cluster level. Clusters highlighted with *, were 
significant at voxel level (P<.05).  

peak [x y z] 
Coordinates 

Cluster    
P-value 

Cluster Size 
#voxels 

Brain Region 

MTsat (df=39) 

[31 –7 –27] 0.001 2508 Right Para hippocampal g 
[37 -21 -12]   Right Hippocampus 
[20 -11 -20]   Right Amygdala 

GM volume (df=39) 

[30 1 -34] 0.000 5855 Right Hippocampus 
[21 -1 -16]   Right Amygdala 

[31 -24 -15]   Right Para hippocampal g 
[-21 -1 -16] 0.000 4848 Left Amygdala 

[-27 -11 -16]   Left Hippocampus 
[-25 -4 -38]   Left Fusiform 

[-24 -23 -23] 0.000 966 Left Hippocampus 
[-40 -51 -15] 0.020* 30 Left fusiform 

[6 5 -12] 0.009* 27 Right Olfactory blub 
[-38 -12 12] 0.012* 57 Left Insula 

[5 34 31] 0.019* 34 Right Mid. Cingulate 
[-7 38 14] 0.016* 41 Left Pre. ACC 

[52 -46 -16] 0.015* 47 Right Inf. Temporal 
[36 -33 -23] 0.01* 69 Right Fusiform 

Vt (df=39) 

[25 –11 -15] 0.000* 1462 Right Hippocampus 
[30 -9 –21]   Right Amygdala 
[17 -7 -15]   Right Para hippocampal g 
[40 49 22] 0.008* 137 Right Mid. Frontal 

[-27 –12 –16] 0.000* 1506 Left Hippocampus 
[-22 -36 4]   Left Thalamus 

[3 -6 8] 0.000 200 Right Thalamus 

Key: FWER, family-wise error rate; MTsat, magnetization transfer saturation; Vt, 
total volume distribution; GM, gray matter; df, degree of freedom; g, gyrus. 
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Table 3-3. Pearson’s correlations between different maps in AD group. 
Significant correlations are highlighted by * p < .05, ** p < .01, *** p < .001. 

 Pearson's r p-value Lower 95% CI Upper 95% CI Fisher's z VIF 

Left hippocampus 

MTsat – R2* 0.158 0.460 -0.262 0.528 0.160 1.026 
MTsat -GMvol 0.281 0.184 -0.138 0.614 0.288 1.086 
MTsat - Vt 0.122 0.569 -0.296 0.501 0.123 1.015 
R2* - GMvol 0.053 0.805 -0.358 0.447 0.053 1.003 
R2*- Vt -0.066 0.758 -0.457 0.346 -0.066 0.996 
GMvol - Vt 0.472* 0.020 0.085 0.736 0.513 1.287 

Right hippocampus 

MTsat – R2* 0.234 0.271 -0.187 0.583 0.239 1.058 
MTsat -GMvol 0.382 0.065 -0.025 0.681 0.403 1.171 
MTsat - Vt 0.289 0.171 -0.130 0.620 0.297 1.091 
R2* - GMvol 0.146 0.497 -0.274 0.519 0.147 1.022 
R2*- Vt -0.109 0.611 -0.491 0.308 -0.110 0.988 
GMvol - Vt 0.187 0.383 -0.234 0.549 0.189 1.036 

Right para hippocampal cortex 

MTsat – R2* 0.043 0.844 -0.367 0.438 0.043 1.002 
MTsat -GMvol 0.462* 0.023 0.072 0.730 0.500 1.271 
MTsat - Vt -0.159 0.458 -0.528 0.261 -0.160 0.975 
R2* - GMvol -0.574** 0.003 -0.794 -0.223 -0.654 0.752 
R2*- Vt -0.012 0.954 -0.414 0.393 -0.012 1 
GMvol - Vt 0.218 0.305 -0.203 0.571 0.222 1.050 

Left fusiform 

MTsat – R2* -0.070 0.745 -0.460 0.343 -0.070 0.995 
MTsat -GMvol 0.302 0.151 -0.115 0.629 0.312 1.100 
MTsat - Vt 0.724*** < .001 0.453 0.873 0.916 2.102 
R2* - GMvol -0.628** 0.001 -0.823 -0.301 -0.738 0.717 
R2*- Vt -0.061 0.778 -0.453 0.351 -0.061 0.996 
GMvol - Vt 0.447* 0.029 0.053 0.720 0.480 1.250 

Left temporal 

MTsat – R2* 0.180 0.400 -0.241 0.544 0.182 0.968 
MTsat -GMvol 0.212 0.320 -0.209 0.567 0.215 0.955 
MTsat - Vt 0.193 0.367 -0.229 0.553 0.195 0.963 
R2* - GMvol 0.330 0.115 -0.085 0.647 0.343 0.891 
R2*- Vt -0.100 0.641 -0.484 0.316 -0.101 0.990 
GMvol - Vt -0.013 0.951 -0.414 0.392 -0.013 1 

Key: CI, confidence interval; MTsat, magnetization transfer saturation; Vt, total volume 
distribution; R2*, effective transverse relaxation rate, GMvol, gray matter volume; VIF, variance 
inflation factor. 
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Figure 3-3. Statistical parametric map of the multivariate analysis for the 
difference between AD and HC groups. The mGLM results were super imposed 
on the mean MTsat map for both groups in MNI space. For illustration purposes 
displayed at p<.001 uncorrected for FWER. Canonical vectors for the peak voxel 
of each cluster in Table4 are depicted in colored bars (blue=MTsat, orange=R2*, 
gray, GM vol., yellow=Vt) with arbitrary units. Abbreviations: MTsat, 
magnetization transfer saturation; R2s, effective transverse relaxation rate; 
GMvol, gray matter volume; Vt, total volume distribution; FWER, family-wise 
error rate. 

3.4.1 Canonical vectors 

Canonical vectors are evaluated for the mGLM model for each 
modality. The canonical vectors at the peak voxel of significant clusters 

presented in Table 3-4 are illustrated in Figure 3-3 with colored bars. 
They suggest that MTsat maps were the most contributing factor to the 
observed difference between AD and HC groups. 

The violin plots in Figure 3-4 represent the distribution of mean voxel 
values across participants within different modalities and the significant 
clusters from the mGLM model in the original maps (after Z-
transformation and correcting for age and gender). Group comparison 
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for each ROI was computed with Student t test (p <0.05) as presented in 

Table 3-5. A significant difference was detected in the left fusiform and 
temporal for MTsat maps. In R2* maps, we could indicate a statistically 
significant difference in the left hippocampus. GM volume was 
significantly different in all the selected ROIs between the groups. 
Significant differences were observed in the right para hippocampal and 
left temporal cortices.  

Table 3-4. Significant differences between AD and HC groups in the mGLM 
model. Brain regions were labeled with the aal3 atlas toolbox in SPM. This table 
shows up to 3 peaks (at least 8mm apart) within each cluster. Clusters were 
thresholded to contain >20 voxels. FWER correction was applied for P<.05 at 
cluster level. Clusters highlighted with *, were significant at voxel level (P<0.05). 

mGLM (df=36) 

peak [x y z] 
Coordinates 

Cluster P-value 
Cluster Size 

#voxels 
Brain Region 

[-27 -12 -15] 0.000* 569 Left Hippocampus 
[-22 0 -16]   Left Amygdala 

[28 -10 -16] 0.000* 707 Right Hippocampus 
[19 -2 -16]   Right Pallidum 
[22 -8 -21]   Right Amygdala 
[30 2 -34] 0.000* 111 Right Para hippocampal g 

[-26 -2 -38] 0.002* 54 Left Fusiform 
[-48 -13 -5] 0.006* 30 Left Sup. Temporal 

The multivariate approach results for the difference in the right 
hippocampus go along with those of the univariate analyses of MTsat, 
GMvol, and Vt maps; narrowing the regions in which different micro- 
and macrostructural alterations coincide.  
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Table 3-5. ROI based voxel-level group comparison in MTsat, R2*, GM volume, 
Vt maps. The ROIs were selected from the statistical parametric map of the 
mGLM model. All maps were masked for these ROIs, then T-tests were 
performed for confidence interval of .95% on the adjusted values for age and 
gender.  

Modality T(df)=t-stat P_value Mean_diff ± sd Cohen’s d 

Left hippocampus, #voxels per cluster = 569 

MTsat T(41)= - 1.6 P = .12 -.44 ± 0.90 0.49 

R2* T(41)= 2.53 P = .01 .59 ± 0.74 0.79 

GMvol T(41)= -6.93 P < .001 -1.38 ± 0.65 2.14 

Vt T(41)= -2.68 P = .01 -.58 ± 0.71 0.81 

Right hippocampus, #voxels per cluster = 707 

MTsat T(41)= -2.71 P <.001 -.70 ± 0.82 0.83 

R2* T(41)= 1.87 P = 0.07 .44 ± 0.75 0.59 

GMvol T(41)= -7.50 P < .001 -1.47 ± 0.62 2.34 

Vt T(41)= -3.19 P < .001 -.69 ± 0.71 0.96 

Right para hippocampal cortex, #voxels per cluster = 111 

MTsat T(41)= .50 P = .62 .14 ± 0.91 0.16 

R2* T(41)= 2.15 P = 0.38 .59 ± 0.87 0.68 

GMvol T(41)= -7.16 P < .001 -1.47 ± 0.67 2.20 

Vt T(41)= -2.09 P = .04 -.51 ± 0.81 0.63 

Left fusiform, #voxels per cluster = 54 

MTsat T(41)= -2.17 P = .04 -.62 ± 0.90 0.68 

R2* T(41)= -.44 P = .66 -.13 ± 0.99 0.13 

GMvol T(41)= -5.97 P < .001 -1.35 ± .72 1.86 

Vt T(41)= -1.80 P = .07 -.49 ± 0.87 0.57 

Left Sup. Temporal, #voxels per cluster = 30 

MTsat T(41)= -1.72 P = .09 -.51 ± .95 0.54 

R2* T(41)= 2.78 P = .09 .79 ± .93 0.85 

GMvol T(41)= -3.46 P < .001 -.95 ± .91 1.04 

Vt T(41)= -2.27 P = .03 -.59 ± .85 0.69 

Key: MTsat, magnetization transfer saturation; R2*, effective transverse 
relaxation rate; Vt, total volume distribution; GMvol, gray matter volume; 
mGLM, multivariate GLM; df, degrees of freedom; diff, difference; sd, 
standard deviation. 
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3.5 Discussion 

In this study, we investigated the association of myelination, iron 
accumulation, gray matter volume, and synaptic density, in patients with 
Alzheimer’s disease (i.e., presence of cerebral amyloid burden) 
compared to healthy individuals (with no/minimal hippocampal atrophy) 
in a univariate and multivariate manner to discuss the co-occurrence of 
these AD-related neuropathological events at the voxel level.  

The three different microstructure markers are assumed to play a 
role during AD, with a hypothesized cascade of pathological processes 
whereby increased iron and decreased myelin would lead to neuronal 
death and a reduction of synapses (Bartzokis, 2011).  

Only a longitudinal study could capture this hypothetical 
chronobiology. Nevertheless, we hypothesized that, when reaching the 
clinical stage where amyloid-positive individuals demonstrate symptoms 
of cognitive decline, co-occurrence of alterations in the myelination, iron 
level, and synaptic density should be seen if they were linked in previous 
stages.  

On the other perspective, macrostructural tissue loss has proven to 
be a sensitive marker for neurodegeneration despite its poor pathologic 
specificity (Mc Donald et al., 2010). Macrostructural atrophy was 
observed where microstructural abnormalities occurred, but 
correlations differed in different brain regions. Patterns of GM volume 
loss and Aβ aggregation in mild cognitive impairment and AD patients in 
frontal regions (Wirth et al., 2018). 

3.5.1 Myelination 

Taubert et al. showed an age-related myelin loss in the 
somatosensory and motor cortices as well as in thalamus nuclei (Taubert 
et al., 2020). Here, we reported a significant difference in the right 
hippocampus, indicating less myelin content in AD patients than healthy 
controls. At a more lenient statistical threshold (p <.001 uncorrected), 
there was a bilateral difference between groups indicating less myelin 
content in bilateral hippocampi in AD. This asymmetry of myelin deficits 
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at the strictest statistical threshold can be related to our small sample 
size (only 24 participants within the AD continuum). These results agree 
with the previous findings on myelin deficits that lead to motor 
dysfunction, impaired cognitive functions, psychiatric disorders, and 
neurodegenerative disease (Chen, 2021; Wang et al., 2018). To assess 
the asymmetry of GM myelin alterations in AD, future studies with 
larger sample sizes and specifically designed analyses could provide 
more insights. 

We also could show positive correlations between myelination, as 
indexed by MTsat map, and GM volume in AD, suggesting concurrence 
of GM loss and demyelination in the right para hippocampal area. 
Myelination was also highly correlated with synaptic density in the left 
fusiform. Our findings supports previous works that show myelin deficits 
are shown to relate to neurological setbacks such as motor dysfunction 
and neural degeneration (Wang et al., 2018). More generally, little is 
known about the GM myelination in the brain (Timmler and Simons, 
2019), the specific relationship for myelination in gray matter is less 
well-studied. This is the first study to investigate myelination in GM 
using quantitative MRI method in Alzheimer’s disease.  

3.5.2 Iron level 

Studies on brain aging using the MPM approach demonstrated 
consistent findings on widespread negative correlation between age and 
MT saturation indicative for myelin loss paralleled by positive 
correlations between age and R2* in basal ganglia interpreted as iron 
content increases (Callaghan et al., 2014; Draganski et al., 2011; Taubert 
et al., 2020). We could not confirm the correlation between myelin and 
iron in our AD group. Previous in vivo studies (Duijn, 2017; Zeineh et al., 
2015) showed that although iron content in the brain cortex and 
hippocampus is not affected by normal aging, in case of AD, 
accumulation of iron is observed in plaques, activated iron-containing 
microglia, and, in the most severe cases of AD, in the mid-cortical layers 
along myelinated fibers. Duijn et al also showed a difference in iron and 
myelin distribution in frontal cortex between the healthy controls and 
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AD patients that are visible after development of AD pathological 
hallmarks (Duijn, 2017). 

We didn’t observe any significant group difference (at voxel level) at 
the corrected statistical threshold for R2* maps indicative of iron 
content. However, at a more lenient statistical threshold (p <.001 
uncorrected), we observed an increase in the iron content bilaterally in 
temporal lobe, and olfactory bulb, left hippocampus, and right supra 
marginal gyrus. 

Su et al. reported that the iron content in the brain increased in one 
year compared to the baseline in AD participants and that iron 
accumulation was correlated with the neuropsychiatric behavior of 
participants (Su et al., 2016). Here, we showed a negative correlation 
between iron and GM volume in the right para hippocampal gyrus and 
left fusiform. The voxel-level comparison in the left hippocampus shows 
a significant mean difference between the groups. 

3.5.3 GM volume 

Voxel-based morphometry analysis showed bilateral difference 
between our groups, indicating loss in GM volume in AD patients 
consistently with the ROI comparisons, which are in accordance with 
aging studies that illustrate bilateral GM loss with respect to aging 
covering amygdala and hippocampus (Callaghan et al., 2014; Taubert et 
al., 2020). AD patients also showed reduced GM volume in left insula, 
right olfactory bulb, and cingulate gyrus. 

Although a correlation between memory and GM volume in 
hippocampus was expected (Dubois et al., 2007), here, we could not 
detect a significant correlation in our AD group perhaps due to the small 
size of the group.  

3.5.4 Synaptic density 

Our findings on the synaptic density, which is indexed by the Vt 
maps, show that synaptic loss occurred bilaterally in the hippocampus, 
where we could detect differences in the myelination and GM volume. 
Other regions that faced decreased synaptic density are the right and 
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left thalamus. These results agree with previously published findings in 
(Bastin et al., 2020). 

 

Figure 3-4. Raw voxel distribution of Z-transformed maps within each mGLM 
significant cluster. Each violin plot represents the distribution of the mean values 
across participants within each AD (in blue) and HC (in red) cohort in the original 
map, after adjusting for age and gender. White circles represent the median value 
within each group per cluster. The range of y axes is based on the variations within 
each modality. The first and third quartiles are shown with darker shadows within 
each violin. The mean value within each group per modality and cluster is shown 
with the horizontal line. Abbreviations: MTsat, magnetization transfer saturation; 
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R2s, effective transverse relaxation rate; GMvol, gray matter volume; Vt, total 
volume distribution; mGLM, multivariate GLM. 

3.5.5 Simultaneous brain alterations 

The most important findings are provided by the multivariate results 
indicating that there is a significant co-occurrence of demyelination, iron 
accumulation, and GM and synaptic loss, in the hippocampal area 
bilaterally, left fusiform and temporal regions of AD brains compared to 
healthy brains. A recent study on aging indicates a complex pattern of 
atrophy, demyelination, and iron content change in the somatosensory 
cortex and motor area (Taubert et al., 2020).  

Assuming that the probability maps are independent, the canonical 
vector information that measures the contribution rate of each modality 
within the multivariate model shows that in the clusters derived from 
statistical parametric map from mGLM, MTsat maps contribute the most 
to the observed difference, while R2* maps contribute the least in all 

clusters (see Figure 3-3). Currently, it is not possible to summarize and 
evaluate whether the profile of canonical vectors within a particular 
cluster is uniform or diverse. Furthermore, the interpretation of the 
findings is limited due to the lack of directionality of effects based on F-
tests.  

Comparisons of the original mean voxel values from the Z-
transformed maps within the regions that the mGLM model could detect 
as significantly different between the groups suggest that most of these 
maps are independent. As a result, the canonical vectors are reliable 
measures for demonstrating the contribution rate of different image-
derived biomarkers in the brain. 

3.5.6 Limitations and conclusion 

One limitation of the current study is the fact that only eight HC 
participants had a [F18]Flutemetamol PET scan to confirm Aβ-negativity. 
Although participants who did not undergo an amyloid PET were 
considered controls if they showed no or only minimal hippocampal 
atrophy on MRI, as assessed by visual inspection by a neurologist 
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(Dubois et al., 2007), this does not preclude the possibility of the Aβ-
positivity of some of the healthy controls. Despite this potential 
uncertainty, it is noteworthy that the AD group still showed a decrease 
in synaptic density in the hippocampus at voxel-level analysis. Another 
limitation is the lack of verification of the microstructural changes of the 
brain in different stages within the AD group, which consisted of 
participants at various stages. There is still the need to conduct a 
longitudinal study from a large dataset that contains participants in 
different stages of AD. This would provide valuable insights into the 
chronobiology of microstructural changes and enable early detection of 
neurodegenerative diseases. Additionally, voxel-based quantification 
(VBQ) technique could be employed to preserve the quantitative value 
of the original qMRI maps (Draganski et al., 2011). Furthermore, future 
research should explore the use of quantitative susceptibility mapping 
(QSM) to overcome the limitations of R2*, as it is independent of water 
content, echo time, and field strength (Li et al., 2021). 

Although MTsat maps are suggested to be proportional to the myelin 
content in the brain, they might also carry information on other 
macromolecular compounds in the brain that might reduce the 
specificity of MTsat to myelin alone. Inhomogeneous magnetization 
transfer (ihMT) is an alternative variant for MT that can address this 
issue (Munsch et al., 2021; Varma et al., 2020) 

In conclusion, in this study, we compared individuals with Alzheimer's 
pathology (amyloid positive) and healthy controls (HC) with multiple 
univariate and multivariate general linear models (GLMs) for three semi-
quantitative maps (MTsat, R2*, and Vt) as well as gray matter (GM) 
volume. The complex interaction between various AD risk factors, such 
as myelination, iron accumulation, and neural degeneration, 
necessitates the use of a multivariate analytic approach. This approach is 
preferred over conducting multiple univariate comparisons for each 
modality studied, as it reduces the risk of false positives associated with 
multiple testing and increases sensitivity. 

Although our study had a small sample size, the findings suggest that 
combining different image-derived AD risk factors in a multivariate 



 

76 
 
 

analysis allows for the identification of specific brain regions where 
multiple neuropathological processes associated with the early stages of 
AD coincide. In addition to considering iron content and myelin using 
quantitative MRI, the novelty of our study lies in the comprehensive 
assessment of combined AD image-derived biomarkers across the entire 
brain. In summary, our study underscores the importance of 
investigating AD from various pathological perspectives, as it is believed 
to involve a cascade of processes. By characterizing AD using non-
invasive imaging techniques, we enhance the opportunity to detect and 
study the disease in its early stages, when interventions are most likely 
to be effective. 

  



 

77 
 
 

Chapter summary 

Multiple neuropathological changes are involved in Alzheimer’s disease (AD). 
AD hallmark biomarkers are amyloid-beta, tau pathology, and neuronal and 
synaptic loss. Other possible brain tissue-related biomarkers, such as iron and 
myelin content in the brain, are less frequently studied. Thanks to quantitative 
MRI (qMRI), tissue parameters such as magnetization transfer (MT), effective 
transverse relaxation (R2*), and proton density (PD) can be determined 
quantitatively, enabling the detection of microstructural tissue-related 
alterations in aging and neurodegenerative diseases. The current study 
investigated the co-occurrence of neurodegeneration (as measured with 
synaptic density), increased iron content, and decreased myelin content in 
Alzheimer’s disease. The study involved 24 amyloid-positive patients (AD, 11 
males) and 19 healthy controls (HC, 9 males). All participants underwent a 
multi-parameter mapping MRI protocol, from which quantitative maps for 
MTsat and R2* were estimated. Synaptic density was indexed by the total 
volume distribution map (Vt) derived from [F18]UCB-H PET imaging. First, groups 
were compared with univariate statistical analyses applied to R2*, MTsat and Vt 
maps. Then multivariate General Linear Model (mGLM) was used to detect the 
co-occurrence of changes in R2*, MTsat, and Vt at the voxel level. Univariate 
GLM analysis of R2* showed no significant difference between the two groups. 
In contrast, the same analysis for MTsat resulted in a significant between-group 
difference in the right hippocampus at the cluster level with a corrected 
threshold (p-value < .05). We also could detect a reduction in GM volume in AD 
patients bilaterally in the hippocampus, amygdala, and fusiform, right olfactory 
bulb, and anterior cingulate gyrus compared to the HC group under a corrected 
threshold for family wise error (p-value <.05). The mGLM analysis revealed a 
significant difference in both right and left hippocampus between the AD and 
HC groups, as well as in the left precuneus, right middle frontal, and left 
superior orbitofrontal gyrus when all three modalities were present, suggesting 
these regions as the most affected despite the diverse changes of myelin, iron, 
and synapse degeneration in AD. Here, the mGLM is introduced as an 
alternative for multiple comparisons between different modalities, as it reduces 
the risk of false positives due to the multiplicity of the tests while informing 
about the co-occurrence of neuropathological processes in dementia. 
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4   Chapter 4  

Multivariate Age-related variations in 
quantitative MRI maps: Widespread age-
related differences revisited. 

 

 

 

 

 

 
This chapter is based on our article submitted as a preprint in MedRxiv:  

Moallemian, S., Bastin, C., Callaghan, M. F., Phillips, C., “Multivariate 
Age-related analysis of variance in quantitative MRI maps: Widespread 
age-related differences revisited”. medRxiv 2023.10.19.23297253. 
https://doi.org/10.1101/2023.10.19.23297253 
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Preface 
Aging emerges as a primary risk factor for neurodegenerative 

diseases like Alzheimer’s (AD), Parkinson’s (PD), and frontotemporal 
lobar dementia (FTD) (Azam et al., 2021; Jeremic et al., 2021).  

In this chapter, we explore concurrent alterations in brain tissue 
properties with respect to age. We will focus on (semi-)quantitative 
metrics, including R2*, R1, PD, and MTsat, as well as gray and white 
matter volume maps. 

Studies have shown an age-related decline in the brain myelin 
content (Callaghan et al., 2014; Peters and Sethares, 2002; Tian et al., 
2022). On the other hand, iron accumulation with respect to age was 
confirmed in some aging studies within the putamen and supplementary 
motor area (Callaghan et al., 2014). Callaghan and colleagues (2014) also 
reported negative correlations between R1, and age bilaterally along the 
optic radiation and in the genu of the corpus callosum. They identified 
negative correlations between effective proton density and age in the 
putamen, pallidum, caudate nucleus, and the red nucleus (Callaghan et 
al., 2014). 

By reanalyzing data from Callaghan et al. (2014) using a multivariate 
modeling approach, in gray and white matter separately, in the MSPM 
toolbox, we aim to assess the advantages of this methodology over 
conventional multiple univariate analysis. This technical paper offers 
insights into the sensitivity and specificity of our approach, shedding 
light on the nuances of aging-related changes in the brain's 
microstructure and providing a foundation for future investigations into 
neurodegenerative diseases. Finally, we will indicate regions in the brain 
that undergo simultaneous microstructural and macrostructural changes 
during healthy aging, thanks to the multivariate analysis approach. 
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4.1 Introduction 

Aging is an inevitable part of our lifecycle that is associated with 
physical deterioration of different organs. Various hallmarks of aging 
have been identified over the past years that associate with 
neurodegenerative pathological changes in the brain, making age a 
primary risk factor for most neurodegenerative diseases including 
Alzheimer’s disease (AD), Parkinson’s disease (PD), and frontotemporal 
lobar dementia (FTD) (Azam et al., 2021; Jeremic et al., 2021). 

Quantitative MR imaging (qMRI) enables us to extract sensitive and 
specific information about the microstructural properties of the brain 
tissue in vivo, such as axon, myelin, iron and water concentration 
(Weiskopf et al., 2021). The estimation of (semi-)quantitative metrics 
normally includes effective transverse relaxation rates (R2*), which is 
primarily sensitive to iron, longitudinal relaxation rate (R1), which is 
sensitive to iron, myelin and water content, proton density (PD), 
indicative of free water content, and magnetization transfer saturation 
(MTsat), associated with macromolecular content, predominantly myelin 
(Tabelow et al., 2019; Taubert et al., 2020) 

Many studies of aging focus on alterations in the nervous system, 
such as (de-)myelination or iron accumulation (Peters, 2002; Tian et al., 
2022). Callaghan et al., (2014) investigated age-related differences of 
biologically relevant in vivo measures over the course of normal aging 
using quantitative multiparameter mapping (MPM) and showed 
significant demyelination in white matter (WM), concurrent with an 
increase in iron levels in the basal ganglia, red nucleus, and extensive 
cortical regions, but decreases along the superior occipitofrontal fascicle 
and optic radiation. Steiger et al. investigated the difference in iron and 
myelin levels between two groups of young and older participants using 
qMRI, and showed that age-related higher levels of iron are 
accompanied by a negative correlation of iron and myelin in the ventral 
striatum (Steiger et al., 2016). Although demyelination primarily affects 
the WM of the brain, recent research shows that it can also occur in gray 
matter (GM), which is made up of cell bodies of neurons. Studies have 
shown that gray matter myelination can occur during development, 
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particularly in the prefrontal cortex, and may continue throughout late 
adulthood in response to learning and experience (Fields, 2008; Timmler 
and Simons, 2019). Khattar and colleagues assessed the association of 
myelination and iron accumulation in the aging brain of a cohort of 21-
94 year-old healthy controls and found a negative correlation between 
whole brain myelin water fraction and iron content in most brain 
regions; they also highlight that the myelination continues until middle 
age overall in the brain (Khattar et al., 2021). Taubert et al., (2020) 
reported robust evidence for spatial overlap between volume, 
myelination, and iron decomposition changes in aging that affect 
predominantly motor and executive networks under a modified normal 
probability curve approach from the Permutation Analysis of Linear 
Models (PALM)  (Winkler et al., 2016, 2014) toolbox. 

In this technical note, we re-analyze the data from (Callaghan et al., 
2014) with a multivariate modeling approach as implemented in MSPM 
toolbox (Gyger et al., 2021) to assess the advantages of such an 
approach, in term of sensitivity and specificity, over the conventional 
multiple univariate analysis. 

4.2 Method 

4.2.1 Participants and data preprocessing 

We took advantage of the processed data from (Callaghan et al., 
2014), which include 138 healthy participants aged 19-75 years (35.5% 
male, mean = 46.64, s.d = 21). Quantitative multiparameter maps (R1, 
R2*, PD, and MTsat) were reconstructed with the VBQ toolbox, a 
preliminary version of the hMRI toolbox (Draganski et al., 2011; Tabelow 
et al., 2019). Processing steps included segmentation and diffeomorphic 
morphing to MNI space using DARTEL (Ashburner, 2007). Tissue-
weighted smoothing (for GM and WM separately) with a 3mm FHWM 
isotropic kernel applied to account for residual misalignment while 
preserving the quantitative nature of the data. Finally, group level GM 
and WM masks were created to be further used as exclusive masks in 
the statistical analysis. For full details see (Callaghan et al., 2014). 

 



 

84 
 
 

4.2.2 Univariate GLM analyses 

In this re-analysis, the 4 resulting sets of qMRI maps were z-
transformed per modality and across subjects to ensure comparability 
between maps utilizing the mean and variance over each voxel. This 
procedure ensured comparability of different modalities for our 
multivariate analysis. The univariate general linear models were 
performed on each map (after z-transformation) using age, gender, total 
intracranial volume (TIV), and scanner (TRIO) as regressors. To assess the 
correlation between the individual tissue property maps and age, an F-
test was performed on each map at voxel-level over GM and WM 
separately. All univariate statistical analyses were performed under the 
general linear model framework in SPM12, considering two p-values, .05 
and .0125, family wise error rate corrected (FWER) thresholds. The latter 
threshold accounts for the fact that for both tissue classes, 4 similar 
inferences are performed (one per map) thus applying a Bonferroni 
correction the applied threshold is divided by 4, i.e. .0125= .05/4. 

4.2.3 Multivariate GLM (mGLM) 

The multivariate GLM (mGLM) is specified using the design matrices 
of the 4 univariate models in the MSPM toolbox (Gyger et al., 2021). The 
mGLM models the multivariate observations as Y=XB+E, where 
Y138×4=[Y1,Y2,Y3,Y4]  is the multi-modal data matrix, each row of Y 
represents one participant, and each column represents one map; and 
X138×5=[X1,X2,X3,X4,X5] is the design matrix, the first column 
represents the mean over subjects, the rest of the columns represent 
mean-centered regressors (age, TIV, gender, scanner) respectively. Thus, 
B is a 5×4 matrix of regression coefficients; and E is the residual matrix 
of size 138×4. B is estimated using an ordinary least-square method, as 

B̂=(XTX)
-1
XTX.  The residual matrix  Ê is estimated on a per-voxel basis 

that allows for a straightforward determination of a unique covariance 
structure for each voxel. This feature is a significant advantage of mass 
multivariate approaches when dealing with dependent neuroimaging 
data. However, it's important to note that in this framework, the 
assumption of normality for the residuals implies that the covariance 
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structure is assumed to be the same across different groups or 
conditions. There is an assumed degree of correlation between the 
columns of Y, this correlation is expressed by estimation of the variance-

covariance matrix Σ̂=
1

n-k
 ÊTÊ, where n is the number of subjects and k is 

number of covariates.  

Hypothesis testing 

Hypothesis testing in mGLM relies on the contrast CBL=0. This 
extension of the univariate scheme combines standard hypotheses on 
the rows of matrix B, represented by matrix C, with hypotheses on the 
columns of B, represented by matrix L. In the context of multivariate 
ANOVA (MANOVA) models, contrasts of main effects and interactions 
are formulated by setting L= It, the t×t identity matrix, as the 
dependent variables in multimodal neuroimaging applications are not 
assumed to be directly proportional. This method is the most suitable 
for conducting hypothesis testing on multimodal neuroimaging 
applications. 

Test statistics in mGLM 

In hypothesis testing using the multivariate GLM, there are four 
standard test statistics available, which can be constructed based on the 
calculation of two sums-of-squares and cross-products (SSCP) matrices: 
Pillai’s trace (Pillai, 1955), Wilks’ lambda (Wilks, 1932), Hotelling-Lawley 
trace(Hotelling, 1951), and Roy’s largest root (Roy, 1945). For any 
particular contrast, there is an SSCP matrix associated with the 
hypothesis.   

SSCPhypo=(CB̂L
T)
T
(C(XTX)

-1
CT) (CB̂LT) (1) 

And an SSCP matrix associated with the residuals. 

SSCPresidual=L(Ê
TE)LT (2) 

These matrices are generalizations of the numerator and 
denominator sums-of-squares from the univariate GLM hypothesis-
testing approach. When L is an identity matrix, the main diagonal of 
SSCPhyppo contains the sums of squares for the hypothesis in C as 
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applied to the estimated parameters for each dependent variable 
separately. And SSCPresidual matrix is an unscaled form of the estimated 

covariance matrix Σ̂. 

Construction of the test statistics rely on some linear combination of 

𝑚 eigenvalues (𝜆1, … , 𝜆𝑞) of SSCPresidual
-1 SSCPhyppo. Here, we will only 

focus on Wilks’ lambda test statistics. It quantifies the proportion of 
variance not accounted for by the hypothesis compared to the total 
variance in the data. 

The Wilks Lambda statistic can be calculated based on the calculated 

m eigenvalues as Λ=∏
1

1+λi

m
i=1 .  This has an approximate F distribution 

with degrees of freedoms a and b: 

F(a,b)=
1-Λ

1
t

Λ
1
t

.
b

a
 (3) 

Where a=lq and b=rt-2u. 
l=rank(𝐿) (4) 

q=rank(C) (5) 

u=
a-2

4
 (6) 

r=N-q-
a+1

2
 , N = sample size (7) 

t= 

{
 

 
√
l2q2-4

l2+q2-5
            ,l2+q2-5 >0

1                             ,l2+q2-5 ≤0 

 (8) 

If the minimum value between l=4 and q=1 is ≤2, the distribution is 
exactly F.  

Age related microstructural changes- mGLM 

The hypothesis H0:CBL=0 can be tested to assess the different 
potential co-occurrence of change between the modalities. To test the 
joint effect on the 4 quantitative maps in a specific tissue type, L4×4 is 
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defined as an identity matrix corresponding to the number of dependent 
variables (quantitative maps). As explained before, each column of L will 
perform a univariate analysis on each column of B. Here, C was defined 
as [0 1 0 0 0] to only see the correlation between age and maps. In this 
case, Λ has an exact F distribution with a = 4 and b = 130 degrees of 
freedom. 

 

Figure 4-1. Statistical parametric maps of uGLMs in GM; showing all the voxels 
with significant correlation with age, as detected by uGLMs for PD, MTsat, R1, 
and R2* maps. The F-tests were thresholded at p<0.0125 FWER corrected at 
voxel-level. The critical F-value cutoff for these analyses was 6.412. The SPMs 
were overlayed on the mean MTsat map for the cohort in the MNI space. 
Abbreviation: GLM, general linear model; uGLM, univariate GLM; GM, gray 
matter; FWER, family-wise error rate; SPM, statistical parametric map. 



 

88 
 
 

 

Figure 4-2. Statistical parametric maps of uGLMs in WM; showing all the voxels 
with significant correlation with age, as detected by uGLMs for PD, MTsat, R1, 
and R2* maps. The F-tests were thresholded at p<0.0125 FWER corrected at 
voxel-level. The critical F-value cutoff for these analyses was 6.412. The SPMs 
were overlayed on the mean MTsat map for the cohort in the MNI space. 
Abbreviation: GLM, general linear model, uGLM, univariate GLM, mGLM, 
multivariate GLM, WM, white matter, FWER, family-wise error rate, SPM, 
statistical parametric map. 
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Figure 4-3. Statistical parametric maps of mGLMs in GM and WM; showing all 
the voxels with significant correlation with age, as detected by the multivariate 
model. The F-tests were thresholded at p<0.05 FWER corrected at voxel-level. 
The critical F-value cutoff for these analyses was 2.730. The SPMs were 
overlayed on the mean MTsat map for the cohort in the MNI space. 
Abbreviation: GLM, general linear model; mGLM, multivariate GLM; WM, white 
matter, FWER, family-wise error rate, SPM, statistical parametric map. 

Canonical Correlation Analysis 

Canonical vectors are calculated under the assumption that matrix L 
involves multiple dependent variables (l>1), to extract the contribution 
of each dependent variable to the test statistics Λ. This contribution 
corresponds to the eigen vectors of the eigen decomposition of 

SSCPresiduals
-1 SSCPhyppo (Tabachnick and Fidell, 2007).  

ROI analyses 

The age-related parameter differences in selected ROIs will be 
further described. ROIs were defined according to the “automated 
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anatomical labeling” (AAL3) atlas (Rolls et al., 2020)  and selected based 
on identified significant areas in our mGLM results and in (Callaghan et 
al., 2014). For each participant and quantitative map, the measure from 
each voxel in an ROI was extracted. The regressors of no interest 
(gender, TIV and scanner) were regressed out. Another regression was 
applied on the adjusted median values and age (our regressor of 
interest). For each selected ROI, the relation between age and median 
value across subjects will be examined. 

 

Figure 4-4. The union of all uGLM statistical parametric masks in GM. On the 
left side, the F-tests for the uGLMs were thresholded at p<0.05 FWER corrected 
at voxel-level. On the right side, the F-tests for the uGLMs were thresholded at 
P<0.0125 after correction for FWER at voxel-level. The masks were overlayed on 
the mean MTsat map for the cohort in the MNI space. Abbreviation: GLM, 
general linear model; uGLM, univariate GLM; GM, gray matter; FWER, family-
wise error rate. 

4.3 Results 

The analyses were conducted on both gray matter (GM) and white 
matter (WM). Consequently, explicit masks for GM and WM were 
applied to each analysis. Since each parametric map has its specific unit, 
such as Hertz for R2* images and p.u. for MTsat maps, their values 
cannot be directly compared. All statistical analyses were performed on 
standardized z-transformed data. The multivariate statistical analyses 
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were conducted at a corrected threshold of p<.05 FWER. The univariate 
analyses were thresholded twice: once at p<.05 to replicate the results 
from a previously published paper (Callaghan et al., 2014), and once at 
p<.0125 to account for the effect of multiple comparisons.  

 

Figure 4-5. mGLM vs multiple uGLMs in GM. The right upper panel represents 
the union of all uGLM statistical parametric masks (in green). The left upper 
panel shows the mGLM results (in red), and the intersection between both 
univariate and multivariate (in blue) is presented in the lower panel. The F-tests 
for the uGLMs were thresholded at P<0.0125 after correction for FWER at voxel-
level. The F-test for the mGLM was thresholded at P<0.05 FWER corrected at 
voxel-level. The masks were overlayed on MNI152 template image in BrainNet. 
Abbreviation: GLM, general linear model; uGLM, univariate GLM; mGLM, 
multivariate GLM; GM, gray matter; FWER, family-wise error rate. 

4.3.1 uGLM vs mGLM: Voxel level analyses 

The individual GM and WM analyses on R2*, PD, MTsat, and R1 maps 
at a corrected threshold of p<.05 FWER, concur with those in (Callaghan 
et al., 2014). The statistical parametric maps for age-related changes in 
the microstructure of the brain in GM and WM (at a corrected threshold 
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of p<.05 FWER) are depicted in Figure 7-1 and Figure 7-2 of the 
Appendix-C. The statistical parametric maps for the same analyses at a 

corrected threshold of p<.0125 FWER) are presented in Figure 4-1 and 

Figure 4-2 for GM and WM.  

Table 4-1. Summary statistics for significant voxels in uGLMs and mGLM.  
“United” rows show the union of significant voxels in SPMs for all modalities. 
Univariate GLMs were thresholded at p<0.05 FWER corrected per tissue class 
(GM or WM). Abbreviation: GLM, general linear model; uGLM, univariate GLM; 
mGLM, multivariate GLM; GM, gray matter; WM, white matter. 

  Map 
name 

#clusters Cluster size #voxels 

G
M

 

u
G

LM
s 

MTsat 284 1-42251 62334 

PD 271 1-7001 28563 

R1 181 1-1336 9078 

R2* 329 1-6416 44262 

United 666 1-82030 115957 

mGLM  564 1-130197 154098 

W
M

 

u
G

LM
s 

MTsat 58 1-67245 70285 

PD 78 1-7292 43051 

R1 36 1-11290 18301 

R2* 115 1-3789 18031 

United 191 1-84201 105068 

mGLM  188 1-82807 102390 

Voxel-wise mGLM results presented in Figure 4-3, indicate 
bidirectional correlation between all modalities and age at p<.05 FWER 
corrected. The correlation is observed bilaterally in caudate nucleus, 
putamen, insula, cerebellum, lingual gyri, hippocampus, and olfactory 
bulb. 

Table 4-1 provides a statistical summary of the F-tests results 
(thresholded at voxel-level p<.05 FWER) from both the univariate 
general linear models (uGLMs) and mGLM for all maps within the two 
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tissue classes. Additionally, Table 4-2 presents the statistical summary of 
the uGLM F-tests results with Bonferroni-adjusted threshold. Comparing 
the spatial extent of significant results between uGLMs and mGLM in 
Tables 1 and 2 reveals that the multivariate model identifies a larger 
number of significant voxels compared to the union of all uGLMs with 
both family-wise error (FWE) and Bonferroni corrections.  

Table 4-2. Summary statistics for significant voxels in uGLMs and mGLM.  
“United” rows show the union of significant voxels in SPMs for all modalities. 
Univariate GLMs were thresholded at p<0.0125=.05/4 FWER corrected, to 
account for the multiplicity of maps tested (4) per tissue class (GM or WM). The 
mGLM was thresholded at p<0.05 FWER corrected. 

  Map name #clusters 
Cluster 

size 
#voxels 

G
M

 

u
G

LM
s 

MTsat 265 1-16445 50041 

PD 212 1-6671 22168 

R1 142 1-670 6276 

R2* 256 1-5919 31993 

United 570 1-54926 90323 

mGLM  564 1-130197 154098 

W
M

 

u
G

LM
s 

MTsat 45 1-52838 35281 

PD 73 6378 54894 

R1 27 1-8640 14344 

R2* 101 1-3223 13518 

United 163 1-56506 83187 

mGLM  188 1-82807 102390 

 

To illustrate the voxels affected by age at a threshold of p<.0125 and 
p<.05 in at least one of the (semi-)quantitative maps, the union of all 
statistical parametric maps derived from uGLMs in GM was binarized 

and depicted in Figure 4-4. 
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Figure 4-6. Canonical vectors for different modalities from the mGLM model, 
representing the contribution of each modality in each voxel. The color bar 
shows arbitrary values. The vectors correspond to the peak voxels at the selected 
ROIs. Detailed vector sizes are reported in Table 7-5 of Appendix-C.  
Abbreviation: mGLM, multivariate general linear model; ROI, region of interest. 

In Figure 4-5, the differentiates of the binarized union of all statistical 
parametric maps derived from the uGLMs with p<.0125 FWER in GM 
and the binarized statistical parametric map for mGLM (with p<.05 
FWER) to visualize the voxels that can be uniquely detected either by the 
multivariate model (shown in red) or by at least one of the univariate 
models (shown in green). 

Among the models used, only the mGLM detected an age effect in 
certain regions, including portions of the superior medial frontal lobe, 
supplementary motor area, paracentral lobule, middle and anterior 
cingulum, parts of the precuneus, cuneus, calcarine, lingual gyrus, 
cerebellum, hippocampus, and para hippocampus bilaterally, as well as 
the left fusiform gyrus. Schematic representations of these regions can 

be found in Figure 4-5, highlighted in red. 
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4.3.2 ROI analyses 

Canonical vectors 
To further investigate the impact of aging on myelination, iron 

content, and water concentration in various brain regions, quantitative 
MR parameters were selected from bilateral regions including the 
putamen, thalamus, hippocampus, middle frontal gyrus, precentral 
gyrus, Heschl gyrus, supplementary motor area, caudate, and pallidum 
(Callaghan et al., 2014; Darnai et al., 2017; Tian et al., 2022; Wang et al., 
2020). 

 

Figure 4-7. Median voxel values in Putamen. The median values within the right 
putamen are illustrated with blue circles and the median values within the left 
putamen are illustrated with red diamonds. The blue and red lines depict the 
linear model fit to the right and left values respectively. These data are shown for 
illustration purposes only and were not used for any additional analyses.  
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For each region of interest (ROI), the canonical vectors corresponding 
to each quantitative map within the gray matter (GM) were estimated, 
as shown in the upper panel of Figure 4-6. It is important to note that 
the canonical vectors displayed in the lower part of Figure 4-6 represent 
the contribution of each map in the peak voxel of the respective ROI and 
do not represent the contribution factor for the entire ROI. Additionally, 
the direction of these vectors cannot be interpreted as they are derived 
from F-tests, therefore we have displayed the absolute weights. For 
example, in the right and left hippocampus, PD signals exhibit the 
highest contribution while in the right putamen, MTsat signal 
contributes the most as indicated by the canonical vectors. 

Median values 
The median values of normalized, smoothed, and z-transformed R2*, 

MTsat, PD, and R1 maps within the Putamen and Hippocampus ROIs 

with respect to age are illustrated in Figure 4-7 and Figure 4-8. Region-
based regression analysis for the adjusted medians and age, within each 
cluster are along with the respective linear age dependence observed 
from the uGLM analyses in the selected regions. We observe a bilateral 
decrease in the normalized MTsat and PD values in GM with respect to 
aging. While the PD and MTsat median values decrease with age in all 
regions of the brain, median R2* values show an increase in most 
regions of the brain except for the thalamus where there is a significant 
negative age-related variation. These results are consistent with 
previously published results for the mean values in thalamus for R2* 
(Taubert et al., 2020). R1 median signals show a weak positive 
correlation with age. The alteration in median values as a function of age 
concurs with the magnitude of the associated canonical vector. The 
bivariate correlation analysis indicates strongest correlations for PD in 

most selected regions, see Table 4-3. 

4.4 Discussion 

The multivariate approach used in this study to investigate age-
related changes in the microstructural tissue properties of the brain, 
incorporating image-derived quantitative maps for myelin, iron, and free 
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water content, enables the identification of regions that are influenced 
by the simultaneous occurrence of various parameter differences. 

 

Figure 4-8. Median voxel values in Hippocampus. The median values within the right 
putamen are illustrated with blue circles and the median values within the left putamen 
are illustrated with red diamonds. The blue and red lines depict the linear model fit to 
the right and left values respectively. These data are shown for illustration purposes only 
and were not used for any additional analyses.  

By considering multiple quantitative maps simultaneously, the 
multivariate approach provides a comprehensive understanding of how 
these different tissue properties interact and contribute to age-related 
differences. This method enables the identification of specific brain 
regions that exhibit coordinated alterations in myelin, iron, and water 
content, offering insights into the underlying mechanisms of aging. 
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Table 4-3. Pearson Partial Correlations with age on the median voxel values 
bilaterally within different regions of interest.  

 Pearson's r p-value 
Effect size 
(Fisher's z) 

  
Pearson's r p-value 

Effect size 
(Fisher's z) 

Caudate  Pallidum 

MTsat -0.44*** < .001 -0.47  MTsat -0.10 0.253 -0.10 

PD -0.63*** < .001 -0.75  PD -0.70*** < .001 -0.86 

R1 0.09 0.289 0.09  R1 0.44*** < .001 0.47 

R2s 0.48*** < .001 0.52  R2s 0.66*** < .001 0.80 

Cerebellum  Precentral Gyrus 

MTsat -0.55*** < .001 -0.62  MTsat -0.34*** < .001 -0.358 

PD -0.26** 0.002 -0.27  PD -0.44*** < .001 -0.472 

R1 -0.11 0.198 -0.11  R1 -0.02 0.852 -0.016 

R2s 0.38*** < .001 0.41  R2s 0.50*** < .001 0.545 

Heschl Gyrus  Putamen 

MTsat -0.51*** < .001 -0.56  MTsat -0.23** 0.007 -0.237 

PD -0.18* 0.037 -0.18  PD -0.61*** < .001 -0.709 

R1 -0.21* 0.014 -0.21  R1 0.30*** < .001 0.307 

R2s 0.21* 0.012 0.22  R2s 0.62*** < .001 0.719 

Middle Frontal Gyrus  Superior motor cortex 

MTsat -0.13 0.129 -0.13  MTsat -0.13 0.139 -0.129 

PD -0.45*** < .001 -0.48  PD -0.45*** < .001 -0.480 

R1 0.07 0.423 0.070  R1 0.05 0.560 0.051 

R2s 0.437*** < .001 0.47  R2s 0.59*** < .001 0.68 

Hippocampus  Thalamus 

MTsat -0.131 0.130 -0.13  MTsat -0.56*** < .001 -0.64 

PD -0.282*** < .001 -0.29  PD -0.24** 0.006 -0.24 

R1 0.200* 0.020 0.20  R1 -0.35*** < .001 -0.37 

R2s 0.316*** < .001 0.33  R2s -0.20* 0.022 -0.20 

Note.  Conditioned on variables: Gender, TIV, TRIO (scanner). * p < .05, ** p < .01, *** p 
< .001 

The observed differences in the quantitative MR parameters align 
with findings from ex vivo histologic studies and demonstrate a high 
specificity for tissue properties, including myelin content, iron content, 
and free water content. 
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Using voxel-wise analysis with the multivariate GLM (mGLM), a 
bidirectional correlation between age and all the examined modalities 
was observed bilaterally in various brain regions. These regions 
encompassed the caudate nucleus, putamen, insula, cerebellum, lingual 
gyri, hippocampus, and olfactory bulb. Importantly, the multivariate 
approach demonstrated advantages over univariate analyses that focus 
on individual tissue parameters separately. 

While examining individual tissue properties in isolation may provide 
insights into specific aspects of brain aging, the multivariate model 
revealed large clusters in the brain that could not be detected by 
analyzing each property individually. This indicates that the combined 
examination of multiple tissue properties enables the detection of 
additional regions associated with aging despite the presence of 

contrary changes in different properties. As observed in Table 4-2, 
mGLM outperformed the individual univariate GLMs (uGLMs) by 
detecting a larger number of significant voxels within clusters that cover 
the supplementary motor area, frontal cortex, hippocampus, amygdala, 
occipital cortex, and cerebellum bilaterally. This finding suggests that 
mGLM is a more effective/sensitive technique for detecting age-related 
differences in the brain. 

In this study, the application of a multivariate model such as 
MANOVA proves advantageous due to the well-established correlations 
among brain tissue characteristics and the interrelated nature of 
quantitative map values. By accounting for this inherent correlation, 
MANOVA effectively reduces potential biases in the results that could 
arise from using multiple ANOVAs. MANOVA's ability to consider the 
complex relationships between multiple variables allows it to detect 
effects that might be smaller than those detectable by ANOVA, providing 
a more comprehensive understanding of the data.  

Additionally, independent covariates can affect the relationship 
between the brain microstructure characteristics rather than influencing 
only a single variable; such patterns cannot be detected by the 
univariate models. Moreover, MANOVA offers a convenient means to 
manage the family-wise error rate when simultaneously analyzing 
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multiple dependent variables, effectively reducing type-1 errors. In this 
study, where four different variables were examined concurrently, 
better results were achieved under the same p-value threshold 
compared to multiple univariate analyses on the same GM and WM 
maps. This underscores the robustness and appropriateness of a 
multivariate approach for understanding the intricate relationships 
within the dataset. Here, we utilized Bonferroni threshold for combining 
the p-values to build up the same power for univariate and multivariate 
techniques. However, there are other methods for combining p-values 
for detection of partial association such ad Fisher and weighted Fisher 
methods, which are more relevant in case of many comparison (Yoon et 
al., 2021). 

The nonlinear relationship between MTsat values and age, as visible 

in Figure 4-7 and Figure 4-8, could be explained by the fact that 
myelination is not limited to early development, but can also occur 
throughout adulthood, with the pattern of myelination depending on 
the hierarchy of connections between different brain regions (Peters, 
2002; Snaidero and Simons, 2014; Timmler and Simons, 2019). Potential 
nonlinear age dependency is also seen in the R2* profile in some regions 

such as amygdala and putamen (Figure 4-7) which could be due to 
slower accumulation of iron in these regions. (Hagiwara et al., 2021) 
showed the nonlinear behavior of different brain tissue properties. 
However, within the scope of this study, our examination was limited to 
linear age-related variations, as the original analysis of these data only 
looked at the linear effects. 

The canonical vectors shown in Figure 4-6, indicate the contribution 
of each modality in the multivariate model. Of note that the canonical 
vectors can only highlight the contribution by their size and cannot 
inform us about the direction.  

The ROI-based partial Pierson’s correlations, presented in Table 4-3, 
are evidence of stronger correlations between the GM PD maps and age, 
which concur with the canonical weights regarding the contribution of 
PD maps within the GM. 
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4.4.1 Limitations and conclusion 

It is important to note that MANOVA differs from multiple ANOVA 
analyses, as it does not focus on the signal-to-noise ratio of independent 
variable effects on each dependent variable individually. Instead, it tests 
for effects of interest on a combination of outcome variables. For an 
assessment of the former, a return to univariate analyses is necessary. 

Aging involves not only microstructural changes in the brain but also 
macrostructural and functional alterations, such as changes in GM and 
WM volume and cognitive behavior changes. Therefore, there remains a 
need to investigate aging by considering different combinations of 
changes together. Furthermore, longitudinal studies are required to 
elucidate how normal aging deviates from pathological aging within a 
multivariate system. 

In summary, the findings of this study underscore the importance of 
employing advanced statistical models like the mGLM to detect subtle 
microstructural changes associated with aging. The results highlight the 
significance of ROI analyses in identifying specific brain regions affected 
by aging and their relationships with different modalities. This study 
provides valuable insights into the neural mechanisms underlying age-
related differences in brain structure, which may have implications for 
developing effective interventions to slow down or prevent cognitive 
decline in older adults. 
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Chapter summary 

This study utilized multivariate ANOVA analysis to investigate age-related 
microstructural changes in the brain tissues driven primarily by myelin, iron, 
and water content. Voxel-wise analyses were performed on gray matter (GM) 
and white matter (WM), in addition to region of interest (ROI) analyses. The 
multivariate approach identified brain regions showing coordinated alterations 
in multiple tissue properties and demonstrated bidirectional correlations 
between age and all examined modalities in various brain regions, including the 
caudate nucleus, putamen, insula, cerebellum, lingual gyri, hippocampus, and 
olfactory bulb. The multivariate model was more sensitive than univariate 
analyses as evidenced by detecting a larger number of significant voxels within 
clusters in the supplementary motor area, frontal cortex, hippocampus, 
amygdala, occipital cortex, and cerebellum bilaterally. The examination of 
normalized, smoothed, and z-transformed maps within the ROIs revealed age-
dependent differences in myelin, iron, and water content. These findings 
contribute to our understanding of age-related brain differences and provide 
insights into the underlying mechanisms of aging. The study highlights the need 
for multivariate analysis to identify subtle microstructural changes linked to 
aging, potentially guiding interventions to alleviate cognitive decline in older 
adults. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 

5   Chapter 5  

Relationships between Cognition and Brain 
Tissue Properties: A Longitudinal Study on 
Healthy Older Adults 
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Preface 
The healthcare landscape has witnessed remarkable advancements, 

ushering in an era where life expectancy has exceeded 60 years in 
developed countries (Beard et al., 2016). Age-related cognitive decline, a 
complex phenomenon impacting various domains such as sensory 
perception, memory, attention, executive function, language, reasoning, 
and spatial navigation (Yang et al., 2023), demands careful unraveling for 
its paramount significance in disease prevention and the enhancement 
of life quality. 

Aging casts a pervasive influence on sensory and perception 
functions, with olfactory impairment emerging as a prevalent sensory 
challenge, correlated with accelerated decline across various cognitive 
domains (Attems et al., 2015; Yang et al., 2023). Episodic memory, 
significantly impacted by aging and Alzheimer's disease, manifests 
through altered efficiency in information binding and encoding 
(Bäckman et al., 2001), with structural and functional changes observed 
in critical brain regions such as hippocampus and medial temporal area, 
and cerebellum (Fliessbach et al., 2007; Hayes et al., 2004; Jacobs et al., 
2018; Rugg and Vilberg, 2013). 

Studies have illuminated associations between cognition and brain 
atrophy in normal aging (Good et al., 2001; Pini et al., 2016). While 
conventional studies lean heavily on functional and structural MRI, the 
emergence of qMRI techniques opens a gateway to (semi)quantitative 
measures, enabling a microscopic lens on brain microstructure (Helms et 
al., 2010, 2009; Weiskopf et al., 2011).  

In this chapter, we attempt to find associations between cognition 
and brain micro- and macro-structure in healthy older adults, leveraging 
the power of qMRI and multivariate modeling. Our hypotheses are 
grounded in a wealth of prior research linking aging and the brain's 
structural intricacies (Callaghan et al., 2014; Draganski et al., 2011; 
Moallemian et al., 2023a, 2023b; Taubert et al., 2020). The focus of our 
inquiry lies in unraveling the connections between myelin content, iron 
levels, and cognitive performance. 
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5.1 Introduction 

Thanks to the development in the healthcare system, today, the life 
expectancy has risen to more than 60 years in developed countries 
(Beard et al., 2016). Throughout the course of human life, advancing age 
typically brings about cognitive alterations, sometimes leading to a 
decrease in functional capacity (Yang et al., 2023). Age-related cognitive 
decline is heterogeneous in the different cognitive domains including 
sensory perception, memory, attention, executive function, language, 
reasoning, and the capacity of navigation in space, with the most 
frequent changes affecting memory and executive functioning (Yang et 
al., 2023). Understanding the mechanism of cognitive aging is of great 
value for disease prevention, improving the quality of life, and ultimately 
achieving healthy aging.  

In terms of brain anatomy, normal aging is associated with structural 
changes, on account of extensive gray matter (GM) and white matter 
(WM) atrophy (Callaghan et al., 2014; Good et al., 2001; Pini et al., 2016; 
Taubert et al., 2020).  The GM atrophy is reported throughout the cortex 
with greater involvement of the frontal regions and the putamen 
(Callaghan et al., 2014). In more recent studies, GM loss was also 
observed in frontal, parietal, temporal, insular, and occipital lobes, and 
cerebellum along with hippocampus, amygdala, basal ganglia, and 
thalamus (Ramanoël et al., 2018; Taubert et al., 2020). Age-related WM 
volume loss was observed in bilateral frontal, temporal, and parietal 
regions, additional to the splenium and cerebellum (Taubert et al., 
2020). 

Furthermore, numerous neuroimaging studies have investigated the 
association between cognition in aging and brain changes via functional 
MRI (fMRI) techniques, or GM and WM atrophy (Attems et al., 2015; 
Dintica et al., 2019; Yang et al., 2023). 

Aging exerts a global effect on sensory and perception functions in 
elderly individuals. Olfactory impairment, a common sensory 
impairment (Attems et al., 2015), is correlated to faster decline in almost 
all cognitive domains including visuospatial ability, perceptual speed, 
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semantic memory, and especially the episodic memory domain (Yang et 
al., 2023). It is associated with lower volumes of fusiform and middle 
temporal cortices, which include the entorhinal cortex and hippocampus 
as measured with structural MRI studies (Dintica et al., 2019).  

Episodic memory is one of the most severely affected cognitive 
domain in aging and Alzheimer’s disease (Bäckman et al., 2001). This is 
due to a decreased efficiency of binding different pieces of information 
together at encoding, as well as to a difficulty in initiating strategies to 
efficiently encode and retrieve new information (Fandakova et al., 2014; 
Naveh-Benjamin et al., 2004). Episodic memory difficulties in aging have 
been related to changes in the structure and function of a network of 
brain regions including medial temporal lobe, prefrontal, and posterior 
midline regions. In particular, age-related memory decline is associated 
with changes to the hippocampus and the prefrontal cortex. The other 
cognitive domain which is most affected by healthy aging is executive 
functioning such as switching, inhibition and strategic search abilities, as 
well as working memory processes (Bryan and Luszcz, 2000; Ramanoël 
et al., 2018; Troyer et al., 1997). GM atrophy was found related to a 
decline in executive function within the frontal lobe (Good et al., 2001; 
Ramanoël et al., 2018). 

While a majority of studies has used functional and structural MRI in 
their investigation of cognition and aging, the development in 
quantitative magnetic resonance imaging (qMRI) techniques has 
provided the opportunity to calculate (semi)quantitative measures such 
as magnetization transfer saturation (MTsat) map, proportional to 
myelin, effective transverse rate (R2*) proportional to iron level, and 
proton density (PD) map (Helms et al., 2010, 2009; Weiskopf et al., 
2011). These measures allow to approach microstructural changes in the 
brain. (Acosta-Cabronero et al., 2016) identified age-related changes in 
several deep-brain nuclei and across motor, premotor, posterior insular, 
superior prefrontal, and cerebellar cortices, using quantitative 
susceptibility maps (QSM) - a quantitative MR technique that assesses 
the magnetic properties of cerebral iron in vivo. (L. Chen et al., 2021) 
identified a negative correlation between iron content in the 
hippocampus and a global cognitive composite score. Furthermore, the 
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iron level in the hippocampus and putamen is negatively associated with 
executive function (L. Chen et al., 2021; Kalpouzos et al., 2021).  

QMRI maps derived from the multiparametric maps (MPM) protocol 
(Weiskopf et al., 2013) have been used in some studies (Callaghan et al., 
2014; Draganski et al., 2011; Kalpouzos et al., 2017; Taubert et al., 2020).  
All their findings point to the association between demyelination and 
age within the GM with higher age-related demyelination in the 
somatosensory and motor cortices, and thalamus (Callaghan et al., 2014; 
Draganski et al., 2011; Taubert et al., 2020). Within the WM, there is a 
decrease in MTsat signal as a function of age in frontal and parietal 
regions (Callaghan et al., 2014; Draganski et al., 2011). Proton density 
was found to decrease with aging in the frontal, parietal, temporal, 
insular, occipital, and cerebellar lobes (Taubert et al., 2020). Iron content 
within the GM increased in pallidum, putamen, and caudate bilaterally 
(Callaghan et al., 2014; Taubert et al., 2020). Also, a decrease in iron 
level was detected bilaterally in the somatosensory and motor cortices 
(Taubert et al., 2020). Finally, a recent study investigated associations 
between white and gray matter microstructural changes, using neurite 
orientation dispersion and density imaging (NODDI), a diffusion MR 
imaging technique used in clinics to quantify the packing density of 
axons or dendrites. In mild cognitive impairment (MCI) and Alzheimer’s 
disease (AD), this study showed that the cognitive performance of 
patients was significantly associated with the neurite density index (NDI) 
(Zhong et al., 2023).  

In this study, we aim to investigate the association between cognition 
and brain micro- and macro-structure, measured from the MPM 
quantitative maps, in healthy older adults. We assessed whether 
cognitive performance at one time point and the decline in cognition 
over a 2-year follow-up are associated with brain characteristics such as 
gray and white matter volume, iron level, and myelin content. We build 
our hypotheses on previous findings linking aging and micro- and macro-
structure of the brain (Callaghan et al., 2014; Draganski et al., 2011; 
Moallemian et al., 2023b; Taubert et al., 2020). Therefore, we 
hypothesize that lower myelin content is associated with worse 
cognitive performance, while more iron content has a negative 
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association with cognition. We will also investigate if we can 
characterize the association between PD and R1 maps and cognition. 
Furthermore, brain characteristics are related to each other, so that 
myelin and iron can co-occur and lead to neuronal loss, captured by gray 
matter volume loss (Bartzokis, 2011). Therefore, we hypothesized that 
investigating the association between cognition and all brain properties 
in a multivariate manner would lead to specific brain regions in which 
several changes are related to cognition. This would represent the most 
sensitive regions to cognitive decline due to aging. 

5.2 Methods 

5.2.1 Participants 

The study included 101 healthy middle-aged to old participants (age 
range [50 69] y.o., 32 males). All participants underwent a multimodal 
cross-sectional study on the relationships between Alzheimer’s disease 
biomarkers, sleep-related processes, lifestyle factors and cognitive aging 
(Chylinski et al., 2022; Narbutas et al., 2019; Van Egroo et al., 2019). The 
exclusion criteria consisted of 1. taking medications that affect the 
central nervous system, 2. psychiatric or/and neurological disorders, 3. 
sleep apnea/hypopnea index ≥15/h, assessed during an in-lab night of 
sleep under polysomnography, 4. body mass index <18 and >30 kg/m², 
5. smoking, illicit drug consumption, excessive consumption of caffeine 
(>4 cups/day) or alcohol (>14 units/week), 6. Diabetes, 7. shift-work. All 
participants showed normal performance on the Mattis Dementia Rating 
Scale [i.e. score >130]. The study described in this research received 
ethical approval from the Ethics Committee of the Faculty of Medicine at 
the University of Liège, Belgium. Prior to their participation, all subjects 
provided their informed consent and were given financial compensation.  

The participants were asked to return to the lab for a follow-up 
cognitive assessment after two years. Only 67 participants agreed to 
perform a second set of cognitive assessment (age range [52 71] y.o., 22 
males). A summary of the participants’ characteristics at the baseline 

and after two years is presented in Table 5-1.  
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Table 5-1. Demographics of the participants. The values are calculated from 101 
participants at the baseline. We report the z-scores for attention, executive 
(function), memory, and PACC5 at the baseline. The scores reported at the follow 
up for attention, executive (function), memory, and PACC5 are the rate of 
change.  

  Mean sd Min Max Mean sd Min Max 

 Baseline (n=101) Follow up (n=67)b 

Age (years) 59.44 5.29 50 69 61.86 5.36 52 71 

bmia 24.62 2.89 18 30 24.61 2.68 19 30 

Edu(years) 15.22 3.01 9 25 14.91 3.24 9 25 

attention 0.00 0.99 -2.37 2.06 -0.05 1.58 -4.37 3.70 

executive 0.00 0.99 -2.14 2.76 0.00 2.29 -8.33 4.46 

memory 0.00 0.99 -3.88 1.66 0.06 1.73 -6.78 3.08 

PACC5 0.00 2.91 -7.94 8.35 0.05 2.30 -5.04 7.98 

Note. abmi, body mass index; b the reported values correspond to the rate of change in 
scores for attention, executive, memory and PACC5 

5.2.2 Imaging Data 

Collected data were anonymized and organized according to the 
Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016) and its 
extensions for PET and quantitative MRI (qMRI) data (Karakuzu et al., 
2022), the latter using BIDSme, an in-lab developed toolbox,  
(https://github.com/CyclotronResearchCentre/bidsme), and the former 
with custom MATLAB scripts. All information needed for subsequent 
analysis was incorporated into the dataset. Data is available from the 
corresponding authors upon reasonable request. 

5.2.3 Quantitative MRI 

MRI data was acquired on a 3T whole-body MRI-scanner 
(MAGNETOM Prisma, Siemens Medical Solution, Erlangen, Germany) 
using a standard 64-channel head receiving coil. The whole-brain MRI 
acquisitions included a multiparameter mapping protocol (MPM) 
(Weiskopf et al., 2013), enabling the estimation of (semi)quantitative 
maps for various parameters: magnetization transfer saturation (MTsat) 
associated with myelin, proton density (PD) linked to water content, 



 

111 
 
 

transverse relaxation (R2*) related to iron, and effective longitudinal 
relaxation (R1) linked to iron, myelin contents (Stüber et al., 2014). 

The MPM protocol consisted of 3 co-localized 3D multi-echo “fast low 
angle shot” (FLASH) acquisitions with 1 mm isotropic resolution and 2 
additional calibration sequences to correct for inhomogeneities in the RF 
transmit field (Lutti et al., 2010). The FLASH datasets were acquired with 
predominantly PD, T1 and MT weighting determined by the repetition 
time (TR = 24.5 ms) and flip angle (FA = 6° for PD & MT, 21° for T1), 
referred to in the following as PDw, T1w and MTw echoes. MTw contrast 
was obtained using an additional off-resonance Gaussian-shaped RF 
pulse with 4 ms duration and 220 nominal flip angle, 2 kHz off-resonance 
before nonselective excitation. A high readout bandwidth of 320 
Hz/pixel was used to minimize off-resonance and chemical shift artifacts 
(Helms and Dechent, 2009). Volumes were acquired in 176 sagittal slices 
using a 256x224 voxel matrix. GRAPPA parallel imaging was combined 
with partial Fourier acquisition to speed up acquisition time to 
approximately 20 min. Gradient echoes were acquired with alternating 
readout gradient polarity at 6 equidistant echo times [2.34, 4.68, 7.02, 
9.36, 11.7, 14.04] ms. Two additional echoes were acquired for the PDw 
and T1w acquisitions at 16.38 ms and 18.72 ms. 

B1 field mapping images (transmit B1+ and receive B1- fields) were 
also acquired to reduce spatial heterogeneities related to B1 effect, 
which was essential for proper quantification of T1 (or R1=1/T1) in 
particular. Finally, B0 field mapping images were acquired for image 
distortions correction: two magnitude images acquired at 2 different 
TE’s, and pre-subtracted phase images. 

To obtain quantitative maps from the MRI data, the following 
processing steps were performed using the SPM12 software 
(www.fil.ion.ucl.ac.uk/spm) and the hMRI (https://hmri.info/) toolbox, 
which is an extension to SPM (Tabelow et al., 2019). T1-weighted (T1w), 
proton density-weighted (PDw), and magnetization transfer-weighted 
(MTw) images acquired at multiple TEs were extrapolated to TE=0 to 
increase the signal-to-noise ratio and remove the otherwise remaining 
R2* bias (Tabelow et al., 2019). The TE=0 extrapolated MTw, PDw, and 
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T1w images were then used to calculate MT saturation (MTsat), R1 and 
apparent signal amplitude (A*) maps. A* maps were rescaled using the 
receive fields to generate PD maps. All quantitative maps were 
corrected for inhomogeneities caused by local RF transmit field (B1+), 
using B1 and B0 field mapping images (Lutti et al., 2010). The receive 
bias field map (B1-) was used to correct PD maps for instrumental biases 
(Ashburner and Friston, 2005). R2* maps were estimated using the 
ESTATICS method from the three different at low angle shot (FLASH) 
acquisitions by accounting for the varying contrasts. Additionally, the 
ordinary least squares (OLS) log-linear fit was applied to identify, and 
down-weight echoes affected by motion artifacts (Weiskopf et al., 
2014). R1 maps were corrected for the radio frequency (RF) transmit 
field inhomogeneity B1+ (Preibisch and Deichmann, 2009). Quantitative 
maps were segmented into gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF) using MTw maps by the unified segmentation 
approach implemented in SPM (Ashburner and Friston, 2005). Inter-
subject registration of the GM and WM tissue maps was performed 
using DARTEL, a nonlinear diffeomorphic algorithm (Ashburner, 2007). 
The tissue probability maps were subsequently normalized to the 
stereotactic space specified by the Montreal Neurological Institute (MNI) 
template using the resultant DARTEL template and deformations. Then, 
for voxel-based quantification (VBQ) analysis, specific tissue-weighted 
smoothing, with a 3mm FWHM isotropic kernel, was applied to avoid 
mixing values from different tissues classes, as would happen with 
standard Gaussian smoothing. 

5.2.4 Cognitive Assessments 

Our assessments focus on memory, attention, and executive 
functions. Global cognitive functioning was tested by the Mattis 
Dementia Rating Scale (MDRS) (Mattis, 1988). 

Episodic memory efficiency was evaluated using the verbal  Free and 
Cued Selective Reminding Test (FCSRT) that includes immediate and 
delayed free and cued recall tasks (Grober et al., 2009) and the Logical 
Memory subtest from the MEM-III. Additionally, visual episodic memory 
was assessed by means of the mnemonic similarity task (MST) which 
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assesses fine-grained discrimination between similar objects in 
recognition memory (Stark et al., 2019).  Direct and reverse digit span 
tasks were used to assess working memory (St Clair-Thompson, 2010). 

Several aspects of executive functioning were assessed including 
organized retrieval of semantic information in memory through the 
verbal fluency test, including Letter Fluency task and Category Fluency 
Task (Patterson, 2011), inhibitory abilities were tested using the Stroop 
test   (Stroop, 1935), flexibility was tested by the Trail-making test 
(Correia et al., 2015). Updating of information in working memory was 
assessed by the n-back task, with 1-back, 2-back and 3-back conditions 
(Zimmermann and Fimm, 1994).  

Attentional functioning and processing speed were assessed by a 
Choice Reaction Time (CRT) task (Salthouse et al., 1991), the Digit 
Symbol Substitution Test (DSST)  (Wechsler, 1997), and a divided 
attention task from Paced Auditory Serial Addition Test (PASAT) 
(Gronwall and Sampson, 1974).  

The preclinical Alzheimer’s cognitive composite (PACC5) score 
(Donohue et al., 2014; Papp et al., 2017), was obtained by the sum of z-
scores of the following cognitive measures: Free and Total Recall in the 
Free and Cued Selective Reminding Test (FCSRT), Delayed Recall in the 
Logical Memory Test, Total score in the Digit Symbol Substitution Test, 
scores in the Category Verbal Fluency Tests, and Mattis Dementia Rating 
Scale.  

In addition, we computed composite scores for attention, executive 
function, and memory. The composite attention score was calculated as 
the sum of DSST, 1back (dprime: performance accuracy calculated by 
contrasting correct and incorrect answers), and TMT-A (RT, where RT 
stands for reaction time). The executive function composite score is a 
combination of reverse digit span, TMT-B (RT), Verbal fluency sum (2 
min. score for category and letter), and 3-back (dprime). The composite 
memory score is derived from FCSRT (sum of all free recalls), MST 
(recognition memory (RM) scores representing hits minus false alarms), 
and logical memory (delayed recall).  
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To assess the rate of decline in cognitive function, decline scores 
were computed as the baseline performance minus the follow-up 
performance, divided by the baseline performance, so that a higher 
score indicates a greater decline over the 2 years. Decline scores were 
obtained for the three composite scores as well as for the PACC5 score. 
Composite scores and PACC5 scores at the baseline and decline scores in 

cognitive assessments for the 67 subjects are presented in Table 5-1.  

5.2.5 Statistical Analysis 

In this study, we only employed composite cognitive scores and the 
PACC5 score for the statistical analysis. Gray matter (GM) and white 
matter (WM) are processed separately, using explicit non-overlapping 
GM and WM masks. Quantitative maps contain different units, 
addressing distinct tissue properties; for instance, Hertz for R2* and R1, 
and p.u. for MTsat and PD maps, therefore they are not directly 
comparable. To ensure comparability across different maps within the 
multivariate model, all maps underwent Z-transformation, per modality 
and across subjects, using the grand mean and variance calculated over 
each voxel. All statistical analyses were performed on standardized data.  

To perform statistical analysis, first, we used separate linear 
regression models embedded in the general linear model (GLM) 
framework of SPM12 for 5 parameter maps (GM: MTsat, R1, R2*, PD, 
GM volume; WM: MTsat, R1, R2*, PD, WM volume). Age, gender, and 
education were added as covariates of no-interest, while in each model, 
one of the composite scores (memory, executive function, attention, 
and PACC5) was used as the regressor of interest. Therefore, a total of 4 
regressors (age, gender, education, and one composite score) were used 
in each regression model to assess myelin, iron, as well as volume and 
free water content with respect to each cognitive composite score.   

Next, in order to assess association of different characteristics of the 
brain, we tested for the association between cognition and combined 
micro- and macro-structural characteristics of the brain by jointly 
processing all the standardized maps in a multivariate GLM model, with 
the same regressors using MSPM toolbox (Gyger et al., 2021) in SPM12.  
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To further investigate the results obtained with the multivariate 
approach, we returned to univariate correlation analysis in the gray 
matter for each map, within the regions of interest (ROI) segmented 
using Neuromorphometrics, Inc. label template (Bakker et al., 2015). The 
ROIs were selected based on the significant clusters from the 
multivariate model F-tests. Segmented masks are applied on z-
transformed raw maps. We then calculated the correlation between the 
mean voxel values within each masked map and the cognitive composite 
score after controlling for age, gender, and education as covariates of no 
interest. 

For all regression analyses, we report the results at p < 0.05 after 
family-wise error (FWE) correction at cluster-level for multiple 
comparisons across the GM or WM compartment. The results are 
overlayed on the population mean GM or WM maps. The regions are 
reported based on the AAL3 atlas. For the multivariate analyses, 
contribution of each map is reported from the absolute values of their 
corresponding canonical vectors in each cluster (Gyger et al., 2021). 

5.3 Results 

5.3.1 Baseline scores 

Univariate analyses 
The coordinates for the peak voxel within the significant clusters 

from all univariate regression analyses at the baseline are presented in  

Table 5-2. We did not find any significant relationship between R1 
maps and any of the cognitive aspects. 

Attention. Univariate analyses at the baseline revealed no significant 
correlations between attention and MTsat, R1, R2* and PD maps, and 
GM or WM volume.  
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Table 5-2. Univariate regression results at the baseline, showing the correlation 
between different maps and cognition. Brain regions were labeled with the AAL3 
atlas toolbox in SPM. Coordinates are reported in MNI space. This table shows 3 
local maxima more than 8.0 mm apart within the clusters. The cluster peak 
values are reported after FWER correction for p < 0.05 at either voxel or cluster 
level. 

peak [x y z] 
Coordinates 

Tissue Modality 

Cluster 
P-value 
FWERcorr 
(voxel-level) 

Cluster 
Size 

#voxels 
Brain Region 

Executive function (df=96) 

[35 -53 -45] GM GMvol 0.000(0.000) 575 Right Cerebellum VIII 
[39 -27 -17] WM PD 0.006(0.003) 64 Right Fusiform 

Global memory (df=96) 

[-11 -46 -45] GM MTsat 0.009(0.026) 1991 Left Cerebellum IX 
[-11 -46 -51]     Left Cerebellum IX 
[-29 -18 -14] GM MTsat 0.002(0.004) 1105 Left Hippocampus 

[-26 -20 -23]     
Left Para 

hippocampal G 

[9 -48 -23] GM MTsat 0.011(0.631) 1908 
Right Cerebellum 

IV_V 
[-2 -56 -22]     Vermis IV_V 
[7 -37 -16]     Cerebellum III 

[-24 -64 29] WM MTsat 0.000(0.009) 16565 Left Mid. Occipital G 
[-52 -46 40]     Left Inf. Parietal G 
[-19 -45 48]     Left Precuneus 
[-9 -48 -27] WM MTsat 0.003(0.009) 7305 Left Cerebellum IV_V 
[6 -47 -25]     Vermis III 

[-14 -43 -44]     Left Cerebellum IX 

[9 -33 57] WM MTsat 0.000(0.054) 23922 
Right Paracentral 

lobule 
[6 -24 32]     Right MCG 
[32 1 30]     Right MFG 

[-17 5 -18] GM PD 0.040(0.372) 1359 Left Olfactory bulb 
[-26 16 -13]     Left Insula 
[-28 18 -5]     Left Insula 
[36 -26 35] WM PD 0.046(0.021) 798 Right Postcentral G 
[29 37 19] WM PD 0.004(0.037) 1375 Right Mid. Frontal G 
[40 24 31]     Right Mid. Frontal G 
[28 29 28]     Right Sup. Frontal G 

[-52 -45 40] WM PD 0.731 (0.045) 194 Left Inf. Parietal G 
[-31 -32 48] WM PD 0.017(0.030) 1218 Left Postcentral G 
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[-32 -32 39]     Left Inf. Parietal G 
[-40 -30 54]     Left Precentral G 

[46 13 0] GM R2* 0.005(0.214) 2276 Right Insula 
[37 4 -10]     Right Insula 

PACC5 (df=96) 

[-60 -28 -12] WM MTsat 0.467(0.036) 652 Left MTG 
[0 36 -9] GM R2* 0.138(0.032) 979 Left ACG 

Key: GM: gray matter; WM: white matter; G: gyrus Cerebellum IV_V: lobule IV, V of 
cerebellar hemisphere; Vermis IV_V: lobule IV, V of vermis; MCC: middle cingulate 
gyrus; MTG: middle temporal gyrus; ACG: anterior cingulate gyrus. 

 

Figure 5-1. Statistical parametric maps (SPM) for the regression analysis, using 
executive function as the covariate of interest. (A) gray matter volume positive 
association with executive functioning. (B) negative association between PD 
maps in white matter with executive functioning. The SPMs are shown at p<0.05 
corrected for FWER at cluster-level, and they are overlayed on the mean 
population gray matter and white matter maps in MNI space. 
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Executive function. Following correction for FWE rates at the voxel 
level (p<0.05), a positive correlation was found between executive 
function and GM volume in a large cluster within the right cerebellum. 
Furthermore, a negative association was observed between PD maps in 
WM and executive function in the right fusiform and hippocampal area. 

Figure 5-1 illustrates the statistical parametric maps for the univariate 
analysis with executive function as the covariate of interest at the 
baseline. 

 

Figure 5-2. Statistical parametric maps for univariate analysis, using memory as the 
covariate of interest. (A) positive association between gray matter MTsat signal and 
memory, (B) positive correlation between white matter MTsat signal and memory, (C) 
positive correlation within the PD gray matter map with memory, (D) negative 
association between white matter PD signal and memory, (E) negative correlation 
between R2* gray matter signal and memory. The SPMs are shown at p<0.001 
uncorrected for illustration purposes, and they are overlayed on the mean population 
gray matter and white matter maps in MNI space. 

Memory. In GM, positive correlations were detected between MTsat 
map and memory bilaterally in the cerebellum. In WM, positive 
correlations between memory and MTsat map were found bilaterally in 
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large clusters covering left and right cerebellum, left middle and superior 
occipital lobe, right paracentral lobule and superior motor area, and 
middle cingulate gyrus on the right side of the brain. A positive 
association between PD GM signal and memory was detected in the left 
olfactory bulb, while a negative association was detected within the PD 
WM map and memory bilaterally in postcentral regions, right middle 
frontal gyrus, left inferior parietal and supramarginal gyri, and left 
medial frontal gyrus. Moreover, R2* GM signal had a negative 
association with memory in the right insula. WM volume exhibited no 
positive correlation with memory. The statistical parametric maps for T-
test analysis for the association of memory with different maps are 

illustrated in Figure 5-2. 

PACC5. Regarding PACC5, a significant positive correlation was only 
observed within the WM for MTsat maps in the left middle temporal 
region at the voxel level. A negative correlation between R2* GM signal 

and PACC5 was found in the medial orbitofrontal cortex.  See Figure 5-3 
for the statistical parametric maps. 

Multivariate regression analyses 
No significant association was observed between attention and all 

maps. In contrast, as illustrated in panel (A) of Figure 5-4, a significant 
correlation in the right cerebellum was detected between executive 
function and GM signal from all maps. 

In gray matter, memory showed a correlation with all the combined 
modalities in the right anterior cingulate gyrus (ACG) and insula (Figure 

5-4, panel B). Moreover, in white matter, memory was associated with 
the combined signals from all modalities in the left supramarginal and 

right middle frontal regions at the voxel level (Figure 5-4, panel C). There 
was a correlation in the right ACG between PACC5 and all the combined 

modalities (Figure 5-4, Panel D). The peak voxel coordinates for the 
significant clusters surviving the p<0.05 FWER correction at cluster level 

are presented in Table 5-3. 
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Figure 5-3. Statistical parametric maps for the univariate regression analyses, 
using PACC5 as the covariate of interest. (A) negative association of R2* gray 
matter signal with PACC5. (B) positive association between MTsat maps in white 
matter with PACC5. The SPMs are shown at p<.001 uncorrected for illustration 
purposes, and they are overlayed on the mean population gray matter and white 
matter maps in MNI space. 

The canonical vectors showing the contribution of each dependent 
variable to the test statistics were calculated. The canonical vectors for 
the peak voxel of the reported significant clusters in the multivariate 

model (see Table 5-3) are presented in Figure 5-5 (within the GM) and 

Figure 5-6 (within the WM). Note that in our case, only the weights of 
the canonical vectors are meaningful. Gray matter volume explains the 
major proportion of cognition-related (executive function, memory, and 
PACC5) variance across gray matter. Consistently, within the WM, 
among different modalities, white matter volume was the dominant 
factor explaining the memory-related variance. 
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Figure 5-4. Statistical parametric maps (SPM) for the multivariate regression analyses 
within gray and white matter. The multivariate SPMs (mSPMs) show correlations 
between all modalities within either white matter or gray matter with respect to 
different cognitive composite scores (A) executive function within the gray matter, (B) 
memory within the gray matter, and (C) memory within the white matter, (D) PACC5, 
within the gray matter. The mSPMs are shown at p<.001 uncorrected for illustration 
purposes, and they are overlayed on the mean population gray matter and white 
matter maps in MNI space. 

5.3.2 Cognitive decline at 2-year follow-up 

At follow-up, 67 participants took part in the same cognitive 
assessment as at baseline and decline scores were computed. Of note, 
for some participants, all cognitive scores allowing us to compute the 
composite scores were not available. Therefore, the composite score 
and the related decline score were not calculated in these cases. The 
number of participants for which the decline scores could be related to 
brain measures is as follows (# valid scores for attention, executive 
function, memory, and PACC5 are 64, 66, 62, 62 respectively).   

A Shapiro-Wilk normality test was performed on the residuals of the 
decline scores of composite scores for attention, executive function, 
memory and PACC5. This ensures us of the normality of the rate of 
decline within each cognitive aspect, allowing us to perform the same 
statistical tests as we did at the baseline.  
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Table 5-3. Multivariate regression results at the baseline, showing the correlation 
between different maps together (in GM or WM) and cognition. Brain regions were 
labeled with the AAL3 atlas toolbox in SPM. Coordinates are reported in MNI space. 
FWER correction was applied for p < 0.05 at voxel or cluster level. 

peak [x y z] 
Coordinates 

Tissue 
Cluster P-
value (voxel-
level) 

Cluster Size 
#voxels 

Brain Region 

Executive function 

[41 -53 -45] GM 0.026(0.089) 1370 Right Cerebellum 

Global memory 

[3 34 -12] GM 0.015(0.057) 1557 Right ACG 
[47 10 4] GM 0.005(0.435) 1974 Right Insula 
[-50 -47 31] WM 0.001(0.005) 3402 Left Supramarginal G 
[30 37 19] WM 0.074(0.016) 1253 Right Mid. Frontal G 
[-21 -62 29] WM 0.003(0.036) 3011 Left Sup. Occipital G 
[33 3 36] WM 0.210(0.045) 794 Right Mid. Frontal G 
[-49 -49 33] WM 0.000(0.000) 1577 Left Supramarginal G 
[32 4 37] WM 0.002(0.000) 801 Right Mid. Frontal G 

PACC5 

[-2 36 -9] GM 0.026(0.254) 1379 Left ACG 

Key: GM: gray matter; WM: white matter; ACG: anterior cingulate gyrus; G: gyrus. 

 

Univariate analyses 
No significant correlation was observed between the rate of decline 

in attention or executive function and GM and WM volume, MTsat, PD, 
and R2* gray matter and white matter maps. A significant negative 
correlation (p <0.05 FWER-corrected at voxel level) was detected 
between gray matter R1 signal within the left fusiform and decline in 
attention (i.e., greater decline indexed by a higher decline score was 
related to smaller R1 signal). Decline in memory shows to be negatively 
correlated (p<0.002 FWER-corrected at cluster level) with gray matter 
R1 signal in the left fusiform region.  

Multivariate analyses 
No significant correlation was detected using the multivariate 

regression for different maps and cognitive scores. 
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Figure 5-5. Canonical values for the peak voxels within the significant clusters 
in the GM.  A) The peak voxel canonical value for correlation between executive 
function and all modalities within the right cerebellum, B) and C) The peak voxel 
canonical value for correlation between memory and all modalities within the 
right anterior cingulate gyrus and right insula respectively, D) The peak voxel 
canonical value for correlation between PACC5 and all modalities within the left 
anterior cingulate gyrus. The pie charts illustrate the percentage of contribution 
of each modality to our multivariate model. 

5.4 Discussion 

The findings of this study provide insights into the relationship 
between cognitive function and various micro- and macro-structural 
brain properties in healthy older adults. The results point to associations 
between cognition and all types of brain changes that were investigated: 
gray and white matter volume, iron levels, myelin content, and water 
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content. As already demonstrated by previous studies (Callaghan et al., 
2014; Draganski et al., 2011), aging affects the brain at various levels, 
including the microstructural level indicative of neurobiological factors 
such as oligodendrocyte integrity, ferritin levels, and myelin production. 
In this study, we additionally show that such changes are related to 
cognitive performance in domains that are particularly vulnerable to 
aging such as episodic memory and executive functions. 

 

Figure 5-6. Peak voxel canonical vector within the WM for memory. The vectors 
are reported at the peak voxels within the A) left supramarginal, B) and D) right 
middle frontal, and C) left superior occipital areas. The percentages in the pie 
charts show the contribution of each modality to the multivariate model.  

Executive function 
Executive functioning was related to cerebral changes in the 

cerebellum and fusiform/hippocampal area. The cerebellum, 
traditionally linked to motor coordination, has increasingly been 
recognized for its role in cognitive processes, including executive 
functions (Beuriat et al., 2022, 2020; Jacobs et al., 2018). There is a clear 
segregation between “sensorimotor” and “cognitive” cerebellum, with 
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the former in the anterior lobe (Jacobs et al., 2018) and the latter in the 
posterior lobe (lobules VIIa, Crus I, and II), connecting to the prefrontal 
and posterior-parietal cortices related to cognitive and emotional 
functions (Cheng et al., 2023). In this study, the significant associations 
between the executive function and gray matter volume in the right 
cerebellum were specifically in lobules VIII, VIIb, and Crus II. The 
observation that the combination of micro- and macrostructural 
measures in the cerebellum correlated with executive function 
additionally points to the particular vulnerability of this region in aging 
and its role in supporting executive functioning. 

WM volume loss within the cerebellum has been previously observed 
in aging (Taubert et al., 2020). Furthermore, WM volume tends to 
decline more rapidly than gray matter (GM) volume in the cerebellum 
and extends into the anterior lobe in AD patients (Jernigan et al., 2001). 
However, we could not detect any cognitive-related variation in WM 
volume maps in our study. 

We also identified a negative correlation between executive function 
and white matter PD maps in the right fusiform and hippocampal 
regions. These findings align with previously published age-related 
changes in the free water contents within WM (Callaghan et al., 2014; 
Taubert et al., 2020), and may suggest that alterations in white matter 
microstructure in these regions contribute not only to aging but also to 
executive function decline. 

Memory 
Memory performance was related to the integrity of many brain 

regions across various imaging modalities, also when considering their 
co-occurrence. As for executive functions, the cerebellum appears to 
contribute to age-related memory decline. The entire cerebellum 
receives modulatory input from the inferior olivary nuclei and the locus 
coeruleus, which contribute to sensorimotor and memory functions 
(Jacobs et al., 2018). Cerebellum's involvement in memory processes is 
consistent with emerging research (Almeida et al., 2023; Beuriat et al., 
2020). Task-related fMRI studies in individuals with mild cognitive 
impairment (MCI) have shown a reduced activation within the posterior 
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lobe (lobules V, VI and crus I). This activation reduction also included the 
anterior cerebellar regions in AD patients (Braskie et al., 2013, 2012).   

In aging, alterations in myelin sheaths are frequently observed within 
the primary visual cortex (Peters et al., 2000) and middle frontal cortex 
(Peters and Sethares, 2002). Myelin alteration in the left hippocampus 
and cerebellum was found significantly correlated with the decline in 
memory that occurs with increasing age (Steiger et al., 2016). This 
correlation could be explained by the reduction in the speed of 
conduction along nerve fibers associated with demyelination, which 
disrupts the memory network. In this study, we also found that poorer 
memory performance is associated with lower myelin content within the 
GM in the left temporal lobe, covering hippocampus and fusiform 
cortex, and the left cerebellum covering lobules VIII, IX.  

Within the WM, we found that less myelination in the left middle 
occipital and cerebellar regions (lobules VIIb, VIII, IX) is associated with 
worse memory performance. This is in line with age-related alterations 
in MT maps (Draganski et al., 2011; Steiger et al., 2016) and cognitive-
related changes in myelin sheaths  (Peters et al., 2000).  Here, we did 
not detect any significant correlation between the GM/WM volume and 
memory.  

Taubert et al. (2020) reported a decrease in PD maps with respect to 
aging in the frontal, parietal, temporal, insular, occipital, and cerebellar 
lobes as well as in the basal ganglia and thalamus. They also 
demonstrated an increase within the PD maps bilaterally in the 
somatosensory and motor cortices and parietal areas. In a recent review 
on microstructural gray matter changes in AD and MCI, using NODDI 
images, (Zhong et al., 2023) showed that no significant association was 
observed between the orientation dispersion index (ODI) and cognition, 
but the neurite density index (NDI) was significantly correlated to MMSE 
and Montreal cognitive assessment (MoCA) scores. Our results, 
however, reveal a positive correlation between memory performance 
and PD values in the olfactory bulb and negative associations within the 
white matter bilaterally in frontal, parietal, and supramarginal regions. 
Olfaction is a sensory perception, and its dysfunction may manifest early 
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in neurodegenerative diseases and other diseases, olfactory functioning 
may be a valid indicator of the integrity of the aging brain (Attems et al., 
2015).  

Increased levels of iron with respect to aging is confirmed in the basal 
ganglia, caudate, ventral striatum, putamen, thalamus, and pallidum 
(Acosta-Cabronero et al., 2016; Bartzokis et al., 2000; Ficiarà et al., 2022; 
Steiger et al., 2016). Iron level in the sensory-motor cortex and insular 
areas were also found to be associated with age (Acosta-Cabronero et 
al., 2016). In this study, we showed that increased iron level (greater R2* 
signal) is associated with poorer memory performance in the right 
insula. The involvement of the insula in memory is dependent on the 
saliency of the cues or events, which is marked through dopaminergic 
and cholinergic signaling (Gogolla, 2017). Moreover, the insula mediates 
dynamic switching between the central executive network and the 
default mode network, facilitating access to cognitive resources, such as 
attention and working memory, when a salient event is detected 
(Namkung et al., 2017). 

PACC5 
We observed a positive correlation between PACC5 and WM MTsat 

maps within the left middle temporal lobe. This region is primarily 
associated with functions related to language and auditory processing. 
PACC5 scores were also related to iron content, as well as a combination 
of all imaging modalities, in a region encompassing the anterior 
cingulate and posterior orbitofrontal cortex. This region has been shown 
to be particularly vulnerable to aging (Resnick et al., 2007) and 
contributes to the control over other brain regions during demanding 
tasks and to the decoding of sensory inputs (Rolls, 2004). Although iron 
level in the medial temporal lobe was shown to change in case of AD 
(Zeineh et al., 2015), we could not detect any significant associations 
between the PACC5 score and medial temporal areas such as 
hippocampus. This lack of correlation could be attributed to the high 
cognitive performance and overall health of our participants. Our results 
suggest that iron deficits in the middle temporal lobe are more 
prominent when no cognitive impairment is evident. 
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Cognitive decline 
When examining the rate of cognitive decline, we observed a 

significant negative correlation between gray matter R1 signal and 
memory and executive function decline, particularly in the left fusiform 
region. This result suggests that changes in R1 signal in this region may 
serve as an early indicator of cognitive decline in aging individuals. 
However, it is challenging to determine if this association is driven by 
iron content or myelin, as the R1 map is proportional to both brain 
tissue characteristics (Stüber et al., 2014). However, there are studies 
that emphasize on the R1 signal strong relationship between R1 and 
tissue myelin content (Sigalovsky et al., 2006).   

Multivariate analyses 
In this study, we demonstrated that various tissue properties are 

associated with cognition and aging. Therefore, it is essential to 
recognize that cognitive aging cannot be solely explained by GM and 
WM atrophy. Instead, brain tissue properties that exhibit complex 
interactions (Hardy and Higgins, 1992; Villain et al., 2010; Falahati et al., 
2017; Nasrabady et al., 2018; Biel et al., 2021) also play roles. Due to the 
interaction between different brain tissue properties, employing a 
multivariate model that simultaneously measures property variations in 
relation to cognition and its decline could yield more specific results. 

Previous research has already assessed age-related variations within 
different tissue properties, revealing associations across diverse brain 
regions (Callaghan et al., 2014; Draganski et al., 2011; Taubert et al., 
2020). Our findings include correlations between executive function and 
GM signal from all maps within the right cerebellum, covering parts of 
lobules VIIb, VIII, and crus II. These results underscore the significance of 
this region in executive functioning (Beuriat et al., 2022; Cheng et al., 
2023; Jacobs et al., 2018), emphasizing the cerebellum's role in cognition 
and aging. 

Within GM, memory displayed correlations within the right anterior 
cingulate gyrus (ACG) and insula. This aligns with cognitive aging studies 
in macaque monkeys that stress the importance of the prefrontal cortex 
in cognition and memory (Upright and Baxter, 2021). In white matter, 
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we detected correlations between memory and tissue micro- and 
macro- structural properties in frontal and occipital areas which agrees 
with age-related associations shown in (Taubert et al., 2020). 

Concerning the association between PACC5 and all maps, we 
detected correlations within the right ACG. The ACC shows to decline in 
metabolism with aging (Pardo et al., 2007), and it is involved in diverse 
cognitive tasks (Apps et al., 2016). Moreover, memory displayed 
significant correlations within the white matter with all maps together in 
the left supramarginal and bilaterally in right middle frontal gyri regions 
at the voxel level. (Rajah et al., 2011) showed that the volume of middle 
frontal gyrus is associated with the activity in episodic memory network. 
However, the multivariate approach couldn't pinpoint a specific region 
correlating with the two-year decline rate. 

Overall, these findings advance our understanding of cognitive aging 
and its potential links to brain micro- and macro- structural properties. 
The study highlights the multifaceted nature of cognitive decline, 
underscoring the importance of considering both micro- and macro-
structural brain changes in the context of aging. We emphasize the 
importance of cerebellum in cognitive aging, particularly in executive 
functioning. These implications could be further used for early 
detection, prevention, and intervention strategies for age-related 
cognitive decline and neurodegenerative diseases, such as Alzheimer's 
disease. Further research is needed to elucidate the underlying 
mechanisms and to develop targeted interventions to mitigate cognitive 
decline in aging populations. 
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Chapter summary 

The aging process is often accompanied by cognitive alterations, collectively 
known as cognitive aging, which can lead to a decline in functional capacity. 
Normal aging is also accompanied by macro- and micro- structural changes in 
the brain, such as gray matter (GM) and white matter (WM) atrophy, iron 
accumulation, and demyelination. 

This study investigates the association between cognition and various brain 
micro- and macro-structural properties over a 2-year period in healthy older 
adults (baseline: n=101, 31.68% male, follow-up: n=67, 32.84% male). 
Participants underwent cognitive assessments at baseline and after 2 years, 
resulting in composite scores for attention, executive function, and memory. 
The preclinical Alzheimer's cognitive composite (PACC5) was calculated for all 
participants. Quantitative MRI data were obtained at baseline using a 
multiparametric mapping protocol. The association between cognitive 
composite scores and tissue properties, both at baseline and for cognitive 
decline over 2 years, was tested using univariate and multivariate general linear 
models. 

The univariate analyses conducted at baseline revealed several significant 
associations between cognition and brain structural properties. Executive 
function showed a positive correlation with GM volume in the cerebellum, 
while memory exhibited positive associations with myelin content in the 
cerebellum and hippocampus. GM iron levels were linked to lower composite 
memory scores in the right insula. A significant positive correlation emerged 
between WM myelin content and PACC5 in the left middle temporal region. 
Conversely, higher iron levels in the medial orbitofrontal cortex were associated 
with smaller PACC5 values. Multivariate regression analyses at baseline 
revealed significant associations between executive function and the 
combination of macro- and microstructural changes in the cerebellum, as well 
as between memory and combined changes in the cingulate gyrus and insula. 
Finally, multivariate regression did not reveal any significant correlations 
between the different maps and cognitive decline. 

In summary, these findings highlight the intricate relationships between 
cognition and brain micro- and macro-structural properties in aging, with a 
particular emphasis on the role of the cerebellum in cognitive aging. 
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6.1 General Discussion 

Aging is the first and an inevitable risk factor for neurodegenerative 
diseases, with Alzheimer’s disease standing as the most common form 
of dementia. The prevalence of AD is increasing all over the world, 
mirroring the rise in life expectancy. While the accumulation of amyloid-
beta and the pathological aggregation of neurofibrillary tangles are 
recognized as hallmark features of AD, research has unveiled additional 
biomarkers such as demyelination, iron accumulation, free water 
content, and synaptic density alterations that contribute to cognitive 
impairment and AD development.  

It is hypothesized that there is a cascade of pathological processes in 
which increased iron levels and decreased myelin content contribute to 
the death of neurons and a reduction in synapses (Bartzokis, 2011). To 
prove this hypothetical sequence, a longitudinal study would be 
necessary. However, we hypothesized that when amyloid-positive 
individuals with cognitive decline symptoms reach the clinical stage, 
there should be concurrent changes in myelination, iron levels, and 
synaptic density if they are indeed interconnected in earlier stages. 

Moreover, gray matter volume loss has proven to be a sensitive 
marker for neurodegeneration (Mc Donald et al., 2010). In mild cognitive 
impairments (MCI) and AD, patterns of GM volume reduction and 
amyloid-beta aggregation have notably been previously observed in 
frontal regions of the brain (Wirth et al., 2018). 

The exact order in which these risk factors exert their effects is still 
under investigation, but emerging evidence suggests that these 
biomarkers do not act independently; instead, they appear to interact 
and influence each other (Bartzokis, 2011; Calabrò et al., 2020).  

The main goals of this thesis center on investigating the simultaneous 
presence of macroscopic and microscopic brain tissue properties within 
both the gray and white matter of aging brains. To accomplish this 
objective, we had to address some critical research questions:  

1. Are we able to detect differences in the brain micro-structural 
properties in healthy adults vs. AD patients using quantitative 
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neuroimaging techniques? Additionally, would a combination of brain 
property quantitative maps together empower us in indication of 
brain regions initially affected by AD? 

2. Is it possible to identify specific regions within the brain where the 
co-occurrence of micro-structural alterations is more likely to 
manifest with respect to individuals’ age? 

3. How cognitive performance and its decline relate to micro-structural 
characteristics within the brain in healthy older adults? 

In this thesis, various quantitative MRI maps were employed to 
assess brain myelin, iron, and free water contents including 
magnetization transfer saturation, effective transverse relaxation rate, 
and proton density. Synaptic density was assessed using the total 
volume distribution map generated from [F18]UCB-H PET images, while 
gray matter and white matter volume maps were derived from 
structural MR images via Voxel-Based Morphometry (VBM) analysis. 

Of note, all image data utilized in this thesis underwent a rigorous 
anonymization process and were standardized into the Brain Imaging 
Data Structure (BIDS) format (Gorgolewski et al., 2016; Karakuzu et al., 
2022). Cognitive scores were assessed through a battery of different 
tests assessing short-term and long-term memory, executive 
functioning, and attention. 

The investigation of (semi)quantitative maps in the context of 
Alzheimer's disease (AD) and cognitive aging represents a novel aspect 
of this research, offering valuable future avenues for the application of 
qMRI techniques in AD and cognitive studies. 

Moreover, the multivariate statistical analysis on multiple image 
modalities highlights the complex association of different risk factors for 
AD. The canonical analysis showed the specific contributions of each 
modality to the multivariate tests, helping us better understand their 
respective impacts.  

Hereunder, we will discuss the main findings presented within each 
chapter of this thesis. 
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Brain characteristics in AD vs healthy controls 

In our first study, myelination, iron accumulation, gray matter 
volume, and synaptic density were assessed in patients with AD and 
healthy individuals in a univariate and multivariate manner to assess the 
co-occurrence of these AD-related neuropathological events at the voxel 
level. 

We found a decrease in MTsat maps (indexing myelin) in AD 
participants in the hippocampal area and amygdala; which is in line with 
previously published results on human myelination in temporal lobe, 
and specifically the hippocampal regions (Bartzokis, 2004a; Benes et al., 
1994; Braak and Braak, 1999). R2* analysis shows an increase in case of 
AD in the superior part of orbitofrontal cortex bilaterally as well as in the 
left hippocampus and right mid-temporal gyrus. These regions are 
reported to have low concentrations of iron in postmortem studies on 
healthy adults (Hallgren and Sourander, 1958). Our univariate analysis 
on GM volume also confirms atrophy in AD patients in hippocampus and 
amygdala, which is consistent with the known early neurodegeneration 
of the medial temporal lobe which is considered as a hallmark of AD 
(Dubois et al., 2007). Our findings on the synaptic density also agree 
with previous findings in (Chen et al., 2018); showing a bilateral 
synapses loss within the hippocampus, where we also detected 
demyelination and GM atrophy in AD patients. 

The most critical finding of this study is provided by the multivariate 
analysis results, indicating a significant co-occurrence of demyelination, 
iron accumulation, atrophy, and synaptic loss bilaterally within the 
hippocampal region, left fusiform, and temporal regions in AD patients.  

Under the assumption of independency of the quantitative maps, the 
canonical vector information reveals that within the multivariate model, 
where all the quantitative maps indexing myelin, iron, synaptic density, 
and GM volume are present, alterations in myelin content contribute 
the most, and iron accumulation contributed the least.  

Overall, one key finding of this study is identification of myelin 
alterations as the leading factor in differentiating AD patients from 
healthy individuals. Myelin breakdown is at the core of the earliest 
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changes involved in AD progression and aging (Bartzokis, 2004a, 2004b). 
Demyelination, along with the subsequent neuronal loss, results in 
functional disconnections of associated cortical regions and progression 
to permanent deficits (Bartzokis, 2004a). Our results support previous 
findings, and suggest demyelination as the primary biomarker for 
developing AD. 

The aging effect 

In our second study, a multivariate approach was used to investigate 
how various microstructural tissue properties of the brain change with 
age. By examining quantitative maps for myelin, iron, and free water 
content simultaneously, this approach identified brain regions 
influenced by differences in these parameters. The multivariate analysis 
confirmed (Taubert et al., 2020) findings on correlations with age in 
regions such as caudate nucleus, putamen, insula, cerebellum, lingual 
gyri, hippocampus, and olfactory bulb. Importantly, it outperformed 
univariate analyses, by detecting more significant changes across various 
brain regions. Examining these properties individually could not reveal 

the findings as the multivariate model did (see Figure 4-5), which 
highlights the advantages of the multivariate approach. 

Of note, MANOVA accounts for correlations, detects subtle effects, 
and manages family-wise error rates when analyzing multiple variables 
simultaneously. This approach yielded better results compared to 
multiple univariate ANOVAs. Finally, canonical vectors highlighted the 
contribution of each modality in the multivariate model within selected 
regions, known to be related to aging and dementia. Over the selected 
regions, in general and at voxel-level, PD maps made the most 
contribution to the results compared to other maps. However, within 
the right superior motor area, iron content is the most influencing factor 
in detecting age-related changes in brain microstructural tissue 
properties. Our results supports the findings of (Taubert et al., 2020) 
concerning co-occurrence of changes of R2*, MTsat, and PD signal in the 
motor cortex. Our results provide evidence for the age-related 
differences impacted by the physical values derived from the 
quantitative maps. 
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Brain micro-structure and cognitive aging 

Our last study aimed to uncover the mechanisms behind cognitive 
aging, particularly focusing on associations between cognition and gray 
and white matter volume, iron levels, myelin content, and water 
content. 

Cerebellum gray matter volume was found positively associated to 
executive function. Executive function was also found to be associated 
to all tissue property maps at the baseline within the right cerebellum. 
These findings highlight the critical role of the cerebellum in cognition 
(Almeida et al., 2023; Beuriat et al., 2022, 2020; Jacobs et al., 2018). 
Moreover, higher levels of gray matter myelin content were associated 
with better memory performance in cerebellum and hippocampus. 
Hippocampus is known to be a critical structure for learning and 
memory (Anand and Dhikav, 2012). Furthermore, cerebellum was found 
associated with episodic memory (Almeida et al., 2023). 

Our findings on the negative association between executive function 
and white matter proton density (PD) in the right fusiform and 
hippocampal regions suggest that age-related changes found in free 
water content in these regions  (Callaghan et al., 2014; Taubert et al., 
2020) contribute to executive function decline. Within the WM, the 
negative associations between PD maps and memory spread over 
different brain regions covering postcentral, middle, and superior frontal 
gyri, as well as precuneus. These results suggest that lower water 
content can be used as a biomarker for detecting age-related changes 
within the motor cortex (Taubert et al., 2020). Also, it may reflect the 
fact that white matter integrity decreases with aging, affecting 
connectivity, and that such compromised connectivity is particularly 
problematic for executive functions because such functions require 
large-scale networks. 

PACC5, indexing preclinical composite score for AD, showed positive 
correlation with all maps in the multivariate approach within the 
anterior cingulate cortex, which is vulnerable to aging (Resnick et al., 
2007). Moreover, the posterior ACC shows high functional connectivity 
with the para hippocampal regions (Rolls, 2019), which are involved in 
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memory, along with connections with precuneus, which is involved in 
spatio-topographical and related memory functions (Cavanna and 
Trimble, 2006). WM myelin content showed a positive association with 
PACC5 in the mid temporal gyrus, which confirms our previous findings 
for the lower myelin content within this region in AD patients 
(Moallemian et al., 2023b). Conversely, we report negative associations 
between gray matter iron levels (R2*) and PACC5 in the medial 
orbitofrontal cortex, covering pre-ACC. However, most of the previous 
works assessing iron with respect to aging and cognition have 
emphasized basal ganglia, and more specifically putamen as the brain 
region to be affected by changes in iron level (Biel et al., 2021; Tian et 
al., 2022). Our results also confirm the oposite relationship between 
demyelination and iron accumulation, as explained in the Introduction 
chapter of this thesis.  

Within this longitudinal study, we investigated the rate of decline in 
cognition after 2 years. We looked for correlations between all tissue 
properties as assessed at the baseline and the decline in cognition. R1 
maps, that are proportional to myelin and iron content in the brain, 
showed a correlation within the left fusiform for attention and memory 
decline. Although we cannot relate the result to the alterations of one of 
these brain properties alone, our findings are valuable in the sense that 
they show co-localization of alterations in myelin and iron contents in 
the brain.  

The multivariate approach with respect to all tissue properties could 
not detect any significant correlations with the composite cognitive 
scores.  

6.2 Limitations and future perspectives 

Like any other study, we were confronted with limitations in our 
work. One major limitation of our work is the small sample size of the 
AD group, that limits the generalizability. The small sample size was also 
a limiting factor for using machine learning methods for clustering 
participants into different groups based on their brain tissue properties.  
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Moreover, the study included patients with AD at different stages. 
This heterogeneity within the AD group could increase variability in the 
findings, making it challenging to identify stage-specific effects. Future 
studies are needed to include larger and more homogeneous AD cases, 
allowing for more robust differentiation of the brain tissue properties 
between healthy control and mild cognitive impairment stage. 

From a more physical point of view, we employed (semi)quantitative 
maps as assessed from MPM protocol to quantify myelin and iron within 
the brain tissues. However, these techniques may have limitations, 
including potential confounding factors and reduced specificity. For 
instance, MTsat maps might carry information on other macromolecular 
compounds in the brain that might reduce the specificity of MTsat to 
myelin alone. Inhomogeneous magnetization transfer (ihMT) is an 
alternative variant for MT that can address this issue (Munsch et al., 
2021; Varma et al., 2020). Furthermore, future research should explore 
the use of quantitative susceptibility mapping (QSM) to overcome the 
limitations of R2*, as it is independent of water content, echo time, and 
field strength (Li et al., 2021). More precise methods that can index 
brain tissue properties would lead to better understanding of the brain 
micro-structural behavior within the context of aging and cognition. 

In our longitudinal study, the participants did not experience any 
significant decline in their cognition at the group level, even though 
there was individual variability with some participants showing decline 
and others showing either stability or improved scores. To better 
capture the neural correlates of cognitive decline, a longer period of 
follow-up or a selection of participants with subjective cognitive decline 
would be needed. A future study might also investigate cognitive aging 
and the changes in micro-structure of the brain of healthy participants 
using quantitative maps, which would allow a predictive approach that 
can help prognosis of AD before exhibiting high levels of amyloid-beta 
aggregation and noticeable cognitive impairment. 

Throughout the thesis, we emphasized that multivariate models are 
preferable to multiple univariate models, as they reduce the chance of 
false positives. But it is noteworthy that MANOVA tests for effects of 
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interest on a combination of dependent variables. In other words, it 
investigates the relationships and covariation among the dependent 
variables. Therefore, to assess a specific dependent variable regarding 
some effects of interest, one needs to return to ANOVA.  

In terms of statistical analysis, we suggest going beyond the 
standardized regression coefficients and employ regression 
commonality analysis (Nimon and Oswald, 2013); allowing partitioning 
the regression effect info commonality coefficients representing unique 
and shared variance between different model dependent factors. 
Therefore, commonality coefficients represent variance unique to one 
predictor and all possible subsets of predictors. 

6.3 Conclusion 

In conclusion, this research investigated complex relationships 
between various brain tissue properties, aging, AD, and cognition.  

Firstly, in our investigation of brain characteristics in AD compared to 
healthy controls, we discovered a significant co-occurrence of myelin 
breakdown, iron accumulation, gray matter atrophy, and synaptic loss 
within specific brain regions, particularly in the hippocampus. This 
highlights the pivotal role of myelin alterations as a primary 
distinguishing factor in AD, suggesting that myelin breakdown is at the 
core of the earliest changes in AD progression and aging. 

Secondly, our work on the aging effect on brain microstructural 
properties demonstrated the interplay of myelin, iron, and water 
content in various brain regions, shedding light on the specific areas 
influenced by these parameters. Our multivariate approach surpassed 
univariate analyses, emphasizing the advantages of considering these 
properties together to detect age-related changes more 
comprehensively. 

Lastly, our study on brain microstructure and cognition uncovered 
several associations between different cognitive functions and brain 
tissue properties. Notably, the cerebellum emerged as a critical role 
player in cognition, and myelin content, iron levels, and water content 
were shown to impact various aspects of cognitive function. 
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In summary, this research provides a deeper understanding of the 
intricate relationships between brain tissue characteristics, aging, AD, 
and cognition.  

These findings establish a solid foundation for future investigations 
and have the potential to inform the development of diagnostic and 
prognostic strategies for AD and age-related cognitive decline. Despite 
the constraints of our study, such as the small sample size and the need 
for more precise quantification methods, our work represents a pivotal 
step forward in unraveling the complexities of brain aging and AD. 
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7.1 Appendix-A: Statistical modeling 

General Linear Model (GLM) 

General Linear Model (GLM) is used in almost every statistical 
analysis. It is the foundation of the t-test, F-test, Analysis of Variance 
(ANOVA), Analysis of Covariance (ANCOVA), regression analysis, and 
many others e.g., multivariate methods including factor analysis, cluster 
analysis, multidimensional scaling, discriminant function analysis, 
canonical correlation.  

When using a GLM, we hypothesize that the dependent variable can 
be explained by a weighted linear combination of a group of 
independent variables (covariates), in presence of errors that have 

normal distribution (Equation 7-1). In image processing, GLM is often 
used to examine the association between the signal within each voxel 
and specific covariates. In other words, a GLM would use some 
predictors to predict an observed phenomenon (Christensen, 2020). 
GLM can also be used to perform group comparisons. This can be done 
by including a categorical factor variable in our model, which allows for 
testing the difference between groups (e.g., patients vs. controls) while 
controlling for other factors. 

𝑌 = 𝑋𝐵 + 𝐸 Equation 7-1 

Multivariate General Linear Model (mGLM) 

The multivariate form of the GLM is also expressed as Equation 7-1, 
where 𝑌 is an 𝑛 ×𝑚 matrix of observations (dependent variables), 𝑋 is 
the 𝑛 × 𝑘 design matrix (independent variables), 𝐵 is the 𝑘 ×𝑚 matrix 
of model parameters (weights), and 𝐸 is 𝑛 ×𝑚 matrix of normally 
distributed errors (𝐸~𝑁(0, Σ)). This can be written as: 
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(
𝑌11 ⋯ 𝑌1𝑚
⋮ ⋱ ⋮
𝑌𝑛1 ⋯ 𝑌𝑛𝑚

) = (

𝑥11 ⋯ 𝑥1𝑘
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑘

)(
𝑏11 ⋯ 𝑏1𝑘
⋮ ⋱ ⋮
𝑏𝑘1 ⋯ 𝑏𝑘𝑚

)

+ (

𝑒11 ⋯ 𝑒1𝑚
⋮ ⋱ ⋮
𝑒𝑛1 ⋯ 𝑒𝑛𝑚

) 

Equation 7-2 

 

Where 𝑛 can be taken as the number of subjects, 𝑚 as the number 
of dependent modalities (here, the number of different modalities), and 
𝑘 as the number of predictors. Estimation of 𝐵 is usually performed 

using ordinary least squares,  �̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑌, which is identical to 
performing 𝑚 univariate estimates using the columns of 𝑌.  

In this context, the primary distinction from univariate methods 
becomes apparent, as we shift from a set of estimated parameters in 
vector form to a matrix format. This matrix consists of columns 
representing the 𝑚 dependent variables and rows corresponding to the 
𝑘 predictors in 𝑋. To compute the multivariate residuals, we employ the 

equation �̂� = 𝑌 − 𝑋�̂�. This allows us to obtain an unbiased estimate of 

the covariance matrix Σ̂ =
1

𝑛−𝑘
�̂�𝑇�̂� (Fox and Fox, 2016).  

Here we use mGLM for modelling multimodal group-level images. 
Therefore, each row of 𝑌 represents measurements from one subject 
(for a particular voxel), and each column on 𝑌 represents a specific 
observation (image modality).  

Hypothesis testing in the mGLM is based on contrast. 

𝐶𝐵𝐿 = 0 Equation 7-3 

Here, the univariate scheme is extended by combining standard 
hypotheses 𝐶 on the rows of 𝐵, and the hypotheses 𝐿 on the columns of 
B. For multivariate ANOVA (MANOVA) models contrasts of main effects 
and interactions involve setting 𝐿 = 𝐼𝑚 , the 𝑚 ×𝑚 identity matrix, as 
the dependent variables are not assumed to be equivalent. This is the 
scheme most suitable for multimodal neuroimaging applications. 
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There is a choice of four standard test statistics that can be 
constructed based on the calculation of two sums-of-squares and cross 
products (SSCP) matrices. For any given contrast, there is an SSCP matrix 
associated with the hypothesis. 

𝑆𝑆𝐶𝑃𝐻 = (𝐶�̂�𝐿𝑇)
𝑇
[𝐶(𝑋𝑇𝑋)−1𝐶𝑇]−1(𝐶�̂�𝐿𝑇) Equation 7-4 

And the SSCP associated with the error 

𝑆𝑆𝐶𝑃𝐸 = 𝐿(�̂�𝑇�̂�)𝐿𝑇  Equation 7-5 

When 𝐿𝑚×𝑚 is an identity matrix, the main diagonal of 
𝑆𝑆𝐶𝑃𝐻 contains the sums of squares for the hypothesis in 𝐶 as applied 
to the estimated parameters for each dependent variable separately, 
and the 𝑆𝑆𝐶𝑃𝐸 matrix is simply an unscaled form of the estimated 

covariance matrix Σ̂. 

Construction of a test statistic from this hypothesis-testing scheme 
can be done in a few ways. Generally speaking, the different methods all 

rely on some linear combination of the q eigenvalues (𝜆1, . . . , 𝜆𝑞) of 

𝑆𝑆𝐶𝑃𝐸
−1𝑆𝑆𝐶𝑃𝐻. The four standard tests statistics (Hotelling, 1951; 

Lawley, 1938; Pillai, 1955; Roy, 1945; Wilks, 1932) are: 

Pillai’s trace =  𝑡𝑟𝑎𝑐𝑒 [(𝑆𝑆𝐶𝑃𝐻 + 𝑆𝑆𝐶𝑃𝐸)
−1𝑆𝑆𝐶𝑃𝐻] =  ∑

𝜆𝑖

1+𝜆𝑖

𝑞
𝑖=1  

Wilk’s lambda =
|𝑆𝑆𝐶𝑃𝐸|

|𝑆𝑆𝐶𝑃𝐻+𝑆𝑆𝐶𝑃𝐸|
= ∏

𝜆𝑖

1+𝜆𝑖

𝑞
𝑖=1   

Hotelling-Lawley trace =  𝑡𝑟𝑎𝑐𝑒(𝑆𝑆𝐶𝑃𝐸
−1 𝑆𝑆𝐶𝑃𝐻) =  ∑ 𝜆𝑖

𝑞
𝑖=1  

Roy’s largest root = 
𝜆∗

1+𝜆∗
 

Where 𝜆∗ is the largest eigenvalue of 𝑆𝑆𝐶𝑃𝐸
−1𝑆𝑆𝐶𝑃𝐻.  

A natural question that arises is which test statistics should be used, 
but the answer to this question depends on the data itself. For example, 
a Pillai’s trace is the most powerful test when the population 
eigenvalues are somewhat equal, whereas the Hotelling-Lawley trace is 
the most powerful test when they are unequal (Davis, 2002). These 
values are population parameters and are not controllable.  (Davis, 
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2002) recommends Wilk’s lambda on the basis that its power remains 
relatively consistent across simulation studies. It is worth mentioning 
that in most case scenarios, the F approximation to the test statistic is 
exact and will therefore be identical irrespective of the test chosen. 

Approximations to an F-statistic and the corresponding degrees of 
freedom can be calculated for all these statistics, allowing the 
designation of an approximate p-value. Here we only bring the details 
for Wilk’s lambda statistic (coded as Λ). 

The Wilk’s lambda test statistics can be calculated as a function of the 
𝑞 largest eigenvalues: 

𝐹(𝑑𝑓1, 𝑑𝑓2) = (
1 − Λ1/𝑠

Λ1/𝑠
)(
𝑑𝑓2
𝑑𝑓1

) 
Equation 7-6 

With 𝑑𝑓1 = 𝑙𝑞 and 𝑑𝑓2 = 𝑟𝑡 − 2𝑢, where: 

𝑙 = 𝑟𝑎𝑛𝑘(𝐿) 

𝑞 = 𝑟𝑎𝑛𝑘(𝐶) 

𝑢 =
𝑑𝑓1 − 2

4
 

𝑟 = 𝑁 − 𝑞 −
𝑑𝑓1+1

2
 , N = sample size 

𝑡 =  

{
 

 
√

𝑙2𝑞2 − 4

𝑙2 + 𝑞2 − 5
     , 𝑙2 + 𝑞2 − 5 > 0

1                             , 𝑙2 + 𝑞2 − 5 ≤ 0 

 

If 𝑚𝑖𝑛(𝑙, 𝑞) ≤ 2, the F approximation is exact (Tabachnick and Fidell, 
2007). A further point for neuroimaging is that all hypothesis tests in the 
multivariate GLM framework are based on F-statistics, meaning that it is 
not possible to test directional (one-tailed) hypotheses. 

Canonical Component Analysis (CCA) 
Generally, when using MANOVA models, the calculation of a 

sufficiently large multivariate test statistic naturally leads to the 
question of the degree to which any of the dependent variables are 
contributing to the rejection of the null hypothesis. Although it is always 
possible to simply follow up any significant multivariate tests with 
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multiple univariate tests, it is not favorable as doing multiple tests would 
increase the chance of false positives (Gyger et al., 2021; McFarquhar et 
al., 2016). Linear discriminant analysis (LDA), also called canonical 
component analysis (CCA) is a more relevant approach for calculation of 
the MANOVA test statistics (Huberty and Olejnik, 2006).  

In our case, when the hypothesis matrix 𝐿 involves multiple 
dependent variables, it is of interest to extract the contribution of each 
dependent variable, also called canonical vector, to the test statistic Λ. 
This contribution corresponds to the eigenvectors of the eigen 
decomposition of 𝑆𝑆𝐶𝑃𝐸

−1𝑆𝑆𝐶𝑃𝐻. The absolute value of these 
eigenvectors (canonical vectors) is a measure of contribution for each 
dependent variate. 

 

  



 

150 
 
 

7.2 Appendix-B: Supplementary results - Chapter 2 

Table 7-1. Pearson’s correlations between different maps in AD group with age 
and gender.  

 Pearson's r p-value Lower 95% CI Upper 95% CI Fisher's z 

Left hippocampus 

MTsat – Age -0.431 0.035 -0.711 -0.034 -0.461 
MTsat - Gender -0.258 0.224 -0.599 0.163 -0.264 
R2* - Age -0.207 0.332 -0.563 0.215 -0.210 
R2*- Gender -0.085 0.693 -0.472 0.330 -0.085 
GMvol - Age -0.173 0.418 -0.539 0.247 -0.175 
GMvol - Gender -0.591 0.002 -0.803 -0.246 -0.679 
Vt -Age -0.253 0.233 -0.596 0.167 -0.259 
Vt - Gender -0.253 0.232 -0.596 0.167 -0.259 

Right hippocampus 

MTsat – Age -0.399 0.053 -0.691 0.005 -0.422 
MTsat - Gender -0.445 0.029 -0.719 -0.051 -0.479 
R2* - Age -0.166 0.439 -0.534 0.255 -0.167 
R2*- Gender -0.127 0.553 -0.505 0.291 -0.128 
GMvol - Age -0.132 0.540 -0.508 0.287 -0.132 
GMvol - Gender -0.385 0.064 -0.682 0.022 -0.405 
Vt -Age -0.298 0.157 -0.626 0.120 -0.307 
Vt - Gender -0.136 0.526 -0.511 0.283 -0.137 

Right para hippocampal cortex 

MTsat – Age -0.283 0.180 -0.616 0.136 -0.291 
MTsat - Gender -0.394 0.057 -0.688 0.012 -0.416 
R2* - Age 0.139 0.517 -0.280 0.514 0.140 
R2*- Gender 0.376 0.070 -0.032 0.677 0.396 
GMvol - Age -0.416 0.043 -0.702 -0.015 -0.443 
GMvol - Gender -0.537 0.007 -0.773 -0.171 -0.600 
Vt -Age -0.139 0.517 -0.514 0.280 -0.140 
Vt - Gender -0.122 0.570 -0.501 0.296 -0.123 

Left fusiform 

MTsat – Age -0.352 0.091 -0.662 0.060 -0.368 
MTsat - Gender -0.503 0.012 -0.753 -0.125 -0.553 
R2* - Age 0.032 0.883 -0.377 0.430 0.032 
R2*- Gender 0.406 0.049 0.004 0.696 0.431 
GMvol - Age -0.207 0.333 -0.563 0.215 -0.210 
GMvol - Gender -0.559 0.004 -0.786 -0.202 -0.632 
Vt -Age -0.139 0.516 -0.514 0.280 -0.140 
Vt - Gender -0.428 0.037 -0.709 -0.029 -0.457 

Left temporal 
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MTsat – Age -0.631 < .001 -0.824 -0.305 -0.742 
MTsat - Gender -0.395 0.056 -0.689 0.010 -0.418 
R2* - Age -0.070 0.744 -0.461 0.343 -0.070 
R2*- Gender 0.189 0.376 -0.232 0.551 0.192 
GMvol - Age -0.343 0.101 -0.656 0.070 -0.357 
GMvol - Gender -0.239 0.261 -0.586 0.182 -0.244 
Vt -Age -0.448 0.028 -0.721 -0.055 -0.482 
Vt - Gender -0.125 0.562 -0.503 0.294 -0.125 

Key:  CI, confidence interval; MTsat, magnetization transfer saturation; Vt, total volume 
distribution; R2*, effective transverse relaxation rate; GMvol, gray matter volume 
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Table 7-2. Pearson’s correlations between different maps in the HC group with age 
and gender.  

 Pearson's r p-value Lower 95% CI Upper 95% CI Fisher's z 

Left hippocampus 

MTsat – Age -0.663 0.002 -0.859 -0.299 -0.798 
MTsat - Gender 0.014 0.954 -0.443 0.466 0.014 
R2* - Age -0.266 0.271 -0.643 0.214 -0.273 
R2*- Gender -0.224 0.356 -0.616 0.256 -0.228 
GMvol - Age -0.378 0.111 -0.710 0.092 -0.397 
GMvol - Gender -0.646 0.003 -0.851 -0.272 -0.769 
Vt -Age -0.114 0.642 -0.540 0.359 -0.115 
Vt - Gender 0.101 0.680 -0.370 0.531 0.102 

Right hippocampus 

MTsat – Age -0.574 0.010 -0.816 -0.162 -0.654 
MTsat - Gender 0.019 0.938 -0.439 0.469 0.019 
R2* - Age -0.243 0.317 -0.628 0.238 -0.248 
R2*- Gender -0.547 0.015 -0.802 -0.124 -0.614 
GMvol - Age -0.709 < .001 -0.880 -0.376 -0.885 
GMvol - Gender -0.401 0.088 -0.724 0.065 -0.425 
Vt -Age -0.163 0.504 -0.575 0.314 -0.165 
Vt - Gender 0.055 0.822 -0.409 0.497 0.055 

Right para hippocampal cortex 

MTsat – Age -0.176 0.470 -0.584 0.302 -0.178 
MTsat - Gender -0.168 0.493 -0.578 0.310 -0.169 
R2* - Age -0.207 0.396 -0.604 0.273 -0.210 
R2*- Gender -0.572 0.011 -0.814 -0.159 -0.650 
GMvol - Age -0.530 0.020 -0.793 -0.100 -0.590 
GMvol - Gender -0.501 0.029 -0.778 -0.061 -0.551 
Vt -Age 0.013 0.959 -0.444 0.464 0.013 
Vt - Gender 0.075 0.760 -0.393 0.512 0.075 

Left fusiform 

MTsat – Age 0.094 0.702 -0.376 0.526 0.094 
MTsat - Gender -0.318 0.184 -0.675 0.159 -0.330 
R2* - Age 0.117 0.633 -0.356 0.542 0.118 
R2*- Gender -0.540 0.017 -0.798 -0.114 -0.604 
GMvol - Age -0.668 0.002 -0.861 -0.306 -0.806 
GMvol - Gender -0.377 0.112 -0.710 0.094 -0.396 
Vt -Age -0.267 0.269 -0.643 0.213 -0.274 
Vt - Gender 0.021 0.933 -0.438 0.470 0.021 

Left temporal 

MTsat – Age -0.352 0.091 -0.662 0.060 -0.368 
MTsat - Gender -0.503 0.012 -0.753 -0.125 -0.553 
R2* - Age 0.032 0.883 -0.377 0.430 0.032 
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R2*- Gender 0.406 0.049 0.004 0.696 0.431 
GMvol - Age -0.207 0.333 -0.563 0.215 -0.210 
GMvol - Gender -0.559 0.004 -0.786 -0.202 -0.632 
Vt -Age -0.139 0.516 -0.514 0.280 -0.140 
Vt - Gender -0.428 0.037 -0.709 -0.029 -0.457 

Key: CI, confidence interval; MTsat, magnetization transfer saturation; Vt, total volume 
distribution; R2*, effective transverse relaxation rate; GMvol, gray matter volume 

 

  



 

154 
 
 

Table 7-3. Pearson’s correlations between different maps in HC group.  

 Pearson's r p-value Lower 95% CI Upper 95% CI Fisher's z VIF 

Left hippocampus 

MTsat – R2* -0.031 0.899 -0.479 0.429 -0.031 0.999 
MTsat - GMvol -0.082 0.738 -0.517 0.386 -0.082 0.993 
MTsat - Vt 0.183 0.453 -0.296 0.588 0.185 1.035 
R2* - GMvol 0.538 0.018 0.110 0.797 0.601 1.407 
R2*- Vt 0.253 0.297 -0.228 0.634 0.258 1.068 
GMvol - Vt -0.135 0.582 -0.555 0.340 -0.136 0.982 

Right hippocampus 

MTsat – R2* 0.144 0.556 -0.332 0.562 0.145 0.979 
MTsat - GMvol 0.284 0.238 -0.195 0.654 0.292 0.919 
MTsat - Vt 0.300 0.213 -0.179 0.664 0.309 0.910 
R2* - GMvol 0.193 0.427 -0.286 0.595 0.196 0.963 
R2*- Vt 0.250 0.302 -0.231 0.632 0.255 0.937 
GMvol - Vt -0.022 0.929 -0.472 0.437 -0.022 0.999 

Right para hippocampal cortex 

MTsat – R2* 0.324 0.175 -0.152 0.679 0.337 0.895 
MTsat - GMvol 0.070 0.775 -0.397 0.508 0.070 0.995 
MTsat - Vt 0.170 0.486 -0.308 0.580 0.172 0.971 
R2* - GMvol 0.383 0.106 -0.086 0.713 0.404 0.853 
R2*- Vt 0.029 0.907 -0.431 0.477 0.029 0.999 
GMvol - Vt 0.128 0.601 -0.346 0.550 0.129 0.984 

Left fusiform 

MTsat – R2* 0.471 0.042 0.022 0.762 0.512 0.778 
MTsat - GMvol -0.180 0.462 -0.586 0.299 -0.182 0.968 
MTsat - Vt -0.243 0.317 -0.628 0.238 -0.247 0.941 
R2* - GMvol -0.190 0.436 -0.593 0.289 -0.192 0.964 
R2*- Vt -0.215 0.376 -0.610 0.265 -0.219 0.954 
GMvol - Vt 0.429 0.067 -0.031 0.739 0.459 0.816 

Left temporal 

MTsat – R2* 0.361 0.129 -0.111 0.700 0.378 0.870 
MTsat - GMvol 0.144 0.557 -0.332 0.561 0.145 0.979 
MTsat - Vt -0.032 0.895 -0.480 0.428 -0.032 0.999 
R2* - GMvol 0.752*** < .001 0.453 0.899 0.978 0.434 
R2*- Vt 0.307 0.201 -0.171 0.668 0.317 0.906 
GMvol - Vt 0.151 0.536 -0.325 0.567 0.152 0.977 

Key: CI, confidence interval; MTsat, magnetization transfer saturation; Vt, total volume distribution; 
R2*, effective transverse relaxation rate, GMvol, gray matter volume. 
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Table 7-4. Fisher z-transformation test for correlation coefficients between the HC 
and AD groups. There is no significant correlation between the coefficients of the 
groups, and therefore the homogeneity assumption holds for the multivariate model. 

 Group AD Group HC Fisher’s 
z diff. 

p-value 
of diff.  Pearson's r Fisher's z Pearson's r Fisher's z 

Left hippocampus 

MTsat – Age -0.431 -0.461 -0.663 -0.798 0.337 0.736 
MTsat - 
Gender 

-0.258 -0.264 0.014 0.014 
-0.278 0.781 

R2* - Age -0.207 -0.210 -0.266 -0.273 0.063 0.95 
R2*- Gender -0.085 -0.085 -0.224 -0.228 0.143 0.886 
GMvol - Age -0.173 -0.175 -0.378 -0.397 0.222 0.824 
GMvol - 
Gender 

-0.591 -0.679 -0.646 -0.769 
0.09 0.929 

Vt -Age -0.253 -0.259 -0.114 -0.115 -0.144 0.885 
Vt - Gender -0.253 -0.259 0.101 0.102 -0.36 0.719 

Right hippocampus 

MTsat – Age -0.399 -0.422 -0.574 -0.654 0.231 0.817 
MTsat - 
Gender 

-0.445 -0.479 0.019 0.019 
-0.498 0.618 

R2* - Age -0.166 -0.167 -0.243 -0.248 0.08 0.936 
R2*- Gender -0.127 -0.128 -0.547 -0.614 0.486 0.627 
GMvol - Age -0.132 -0.132 -0.709 -0.885 0.752 0.452 
GMvol - 
Gender 

-0.385 -0.405 -0.401 -0.425 
0.02 0.984 

Vt -Age -0.298 -0.307 -0.163 -0.165 -0.143 0.886 
Vt - Gender -0.136 -0.137 0.055 0.055 -0.192 0.847 

Right para hippocampal cortex 

MTsat – Age -0.283 -0.291 -0.176 -0.178 -0.113 0.91 
MTsat - 
Gender 

-0.394 -0.416 -0.168 -0.169 
-0.247 0.805 

R2* - Age 0.139 0.140 -0.207 -0.210 0.349 0.727 
R2*- Gender 0.376 0.396 -0.572 -0.650 1.046 0.296 
GMvol - Age -0.416 -0.443 -0.530 -0.590 0.147 0.883 
GMvol - 
Gender 

-0.537 -0.600 -0.501 -0.551 
-0.049 0.961 

Vt -Age -0.139 -0.140 0.013 0.013 -0.153 0.879 
Vt - Gender -0.122 -0.123 0.075 0.075 -0.198 0.843 

Left fusiform 

MTsat – Age -0.352 -0.368 0.094 0.094 -0.462 0.644 
MTsat - 
Gender 

-0.503 -0.553 -0.318 -0.330 -0.223 
0.823 

R2* - Age 0.032 0.032 0.117 0.118 -0.086 0.931 
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R2*- Gender 0.406 0.431 -0.540 -0.604 1.036 0.300 
GMvol - Age -0.207 -0.210 -0.668 -0.806 0.597 0.551 
GMvol - 
Gender 

-0.559 -0.632 -0.377 -0.396 -0.236 
0.814 

Vt -Age -0.139 -0.140 -0.267 -0.274 0.133 0.894 
Vt - Gender -0.428 -0.457 0.021 0.021 -0.478 0.633 

Left temporal 

MTsat – Age -0.631 -0.742 -0.352 -0.368 -0.142 0.887 
MTsat - 
Gender 

-0.395 -0.418 -0.503 -0.553 
-0.198 0.843 

R2* - Age -0.070 -0.070 0.032 0.032 0.255 0.799 
R2*- Gender 0.189 0.192 0.406 0.431 0.366 0.714 
GMvol - Age -0.343 -0.357 -0.207 -0.210 0.121 0.904 
GMvol - 
Gender 

-0.239 -0.244 -0.559 -0.632 
-0.003 0.998 

Vt -Age -0.448 -0.482 -0.139 -0.140 -0.338 0.735 
Vt - Gender -0.125 -0.125 -0.428 -0.457 -0.35 0.726 

Key: MTsat, magnetization transfer saturation; Vt, total volume distribution; R2*, effective 
transverse relaxation rate; GMvol, gray matter volume; diff, the difference between the 
Fisher’s z of group HC and AD. 
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7.3 Appendix-C: Supplementary results - Chapter 3 

 

Figure 7-1. Statistical parametric maps for the uGLMs at a corrected threshold of 
p<.05 FWER in the GM; showing all the voxels with significant correlation with age, 
as detected by uGLMs for PD, MTsat, R1, and R2* maps. The F-tests were 
thresholded at p<0.05 FWER corrected at voxel-level. The SPMs were overlayed on 
the mean MTsat map for the cohort in the MNI space. Abbreviation: GLM, general 
linear model; uGLM, univariate GLM; GM, gray matter; FWER, family-wise error rate; 
SPM, statistical parametric map. These results are previously published in (Callaghan 
et al., 2014). 
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Figure 7-2. Statistical parametric maps for the uGLMs at a corrected threshold of 
p<.05 FWER in the WM; showing all the voxels with significant correlation with 
age, as detected by uGLMs for PD, MTsat, R1, and R2* maps. The F-tests were 
thresholded at p<0.05 FWER corrected at voxel-level. The SPMs were overlayed on 
the mean MTsat map for the cohort in the MNI space. Abbreviation: GLM, general 
linear model, uGLM, univariate GLM, mGLM, multivariate GLM, WM, white matter, 
FWER, family-wise error, SPM, statistical parametric map. These results are 
previously published in (Callaghan et al., 2014). 
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Table 7-5. Canonical vector sizes for different modalities from the mGLM model, 
representing the contribution of each modality in each voxel. The coordinates 
correspond to the peak voxels at the selected ROIs.  

Left 

ROI name Peak Coordinate  
(mm) 

PD MTsat R1 R2* 

Putamen (-24 5 5) 0.75 -0.39 -0.042 0.5352 
Thalamus (-11 -23 14) 0.981 -0.18 0.067 -0.021 
Hippocampus (-23 -10 -10) 0.985 -0.004 0.048 0.165 
Mid-Frontal g (-6 45 -10) 0.949 0.201 0.236 -0.055 
Precentral (-31 -24 60) 0.834 -0.525 -0.07 0.128 
Heschl g (-35 -26 16) 0.975 0.222 -0.015 -0.005 
Supp-motor (-5 -2 63) 0.668 -0.147 -0.328 0.651 
Caudate (-15 12 8) 0.932 0.202 -0.064 -0.294 
Pallidum (-13 7 -5) 0.953 -0.263 0.148 -0.017 

Right 

Putamen (27 8 2) 0.272 0.515 0.034 -0.814 
Thalamus (09 -19 15) 0.996 0.081 -0.024 0.004 
Hippocampus (31 -35 0) 0.998 0.062 -0.005 -0.006 
Mid-Frontal g (33 1 59) 0.69 -0.196 -0.38 0.583 
Precentral (26 -22 67) 0.734 -0.61 -0.192 0.229 
Heschl g (39 -22 12) 0.983 0.164 -0.078 0.002 
Supp-motor (7 -2 64) 0.584 -0.021 -0.502 0.637 
Caudate (13 09 12) 0.976 -0.019 -0.164 -0.137 
Pallidum (19 5 -5) 0.945 -0.214 -0.044 -0.243 

Key: MTsat, magnetization transfer saturation; PD, proton density; R2*, 
effective transverse relaxation rate; R1, longitudinal relaxation rate. 
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7.4 Appendix-D: UCB-H PET Automated Pipeline 

Validation 

Apart from the studies presented in this thesis, we have also worked 
on automatization and validation of a pipeline for processing the SV2-A 
PET images with [F18]UCB-H radiotracer. A preprint of our work will be 
available soon. Here you can find the abstract of our presentation at 
INCF 2023 assembly. 

Abstract 

Arterial sampling input function (AIF) is the gold standard for 
quantitative analysis of PET data of the brain. However, the invasive 
character of arterial sampling limits its widespread use in clinical 
applications. In the absence of ideal reference region, image-derived 
input function (IDIF) from carotid arteries appears to be a best non-
invasive alternative to the AIF. Earlier, IDIF was demonstrated suitable 
for [F18]UCB-H kinetic analysis with limited sample size. Therefore, the 
aims of this study were (1) to validate a fully automated pipeline for the 
IDIF; (2) to compare the accuracy of measures obtained with AIF to 
those obtained with IDIF; and (3) to evaluate the use of IDIF for 
[18F]UCB-H quantification on a larger data set.  

Ten healthy subjects underwent a dynamic [F18]UCB-H PET and MRI 
scans and both (invasive) AIF and (non-invasive) IDIF were obtained.  

Successful automatic detection of carotid arteries was performed in 
100% of our subjects. The IDIF data showed a significantly larger aera 
under the curve (10%) compared to AIF. Additionally, the total 
distribution volume maps estimated with IDIF and AIF show no 
significant difference. Thus, our findings showed that automation of 
image processing is efficient with increased reproducibility and 
reliability. 
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