

# The Crystal Structure of Koninckite

Yannick BRUNI<sup>1</sup>, Frédéric HATERT<sup>1</sup>, Stéphane PUCCIO<sup>1</sup> & Michel BLONDIEAU<sup>1</sup>



### Introduction

- Koninckite was discovered in Richelle (Belgium) by G. Cesàro en 1884, and studied by Van Tassel in 1968.
- Forms pale brownish spheroidal aggregates measuring less then 0.5 mm in diameter, and associated with Richellite.
- Crystal structure is difficult to solve from single-crystal Xray diffraction due to the fibrous habit.
- Plášil et al. (2015) solved the structure of Koninckite from Kociha, Slovakia, by using synchrotron powder Xray diffraction data.
- New investigation on Koninckite from the type locality, Richelle, allowed to find good quality isolated crystal, used to obtain single-crystal diffraction data.

## **Morphology**









#### **Crystal structure**



|   | a (Å)  | 11.9800(5)                     | 11.9852(2) |  |  |  |  |  |
|---|--------|--------------------------------|------------|--|--|--|--|--|
|   | b(Å)   | 11.9800(5)                     | 11.9852(2) |  |  |  |  |  |
|   | c (Å)  | 14.6180(1)                     | 14.6239(3) |  |  |  |  |  |
|   | V (Å3) | 2097.90(2)                     | 2100.67(7) |  |  |  |  |  |
|   | S.G.   | P41212                         | P41212     |  |  |  |  |  |
|   | Z      | 8                              | 16         |  |  |  |  |  |
|   |        | Plášil <i>et al.</i><br>(2015) | This study |  |  |  |  |  |
|   |        |                                | 0          |  |  |  |  |  |
|   |        |                                |            |  |  |  |  |  |
| 9 |        | 0 0                            |            |  |  |  |  |  |
|   |        |                                | 0          |  |  |  |  |  |

| • |     | • |
|---|-----|---|
|   |     |   |
|   | 0.0 |   |
|   |     |   |

| Fe1-02  | 2.064(3) | Fe2-010 | 1.99         | 95 |
|---------|----------|---------|--------------|----|
| Fe1-04  | 2.019(3) | Fe2-011 | <b>2</b> .11 | 13 |
| Fe1-05  | 1.988(3) | P3-01   | <b>1</b> .51 | 14 |
| Fe1-0   | 1.981(3) | P3-0    | <b>1</b> .55 | 52 |
| Fe1-09  | 1.927(3) | P3-09   | 1.52         | 25 |
| Fe1-012 | 2.087(4) | P3-010  | <b>1</b> .54 | 18 |
| Fe2-01  | 1.891(3) | P4-04   | <b>1</b> .53 | 33 |
| Fe2-03  | 2.075(3) | P4-05   | <b>1</b> .54 | 10 |
| Fe2-07  | 1.996(3) | P4-07   | 1.54         | ł1 |
| Fe2-08  | 1.946(3) | P4-08   | <b>1</b> .54 | 13 |
|         |          |         |              |    |

#### **Structure of Koninckite**

- Asymmetric unit contains 2 Fe, 2 P, 14 O and 12H atoms.
- Fe are coordinated by 4 O atoms and 2 water molecules, forming fairly regular octahedral sites connected to tetrahedral PO<sub>4</sub> sites by corner-sharing.
- Heteropolyhedral framework of alternating Fe(O,H<sub>2</sub>O)<sub>6</sub> octahedra and PO<sub>4</sub> tetrahedra.
- Channels parallel to the c axis, which contain water molecules.

#### Address:

Laboratory of Mineralogy, University of Liège, B-4000 Liège, Belgium.

# **Conclusions**

- The results are similar to Plášil et al. (2015).
- Accurate localization of hydrogen atoms.
- Due to the lower multiplicity of one H<sub>2</sub>O molecule, the chemical formula of the mineral is Fe(PO<sub>4</sub>).2.75H<sub>2</sub>O (Z = 16).