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Abstract A large volume of data related to wind has been recorded over the last decade 
in Mediterranean ports in order to better understand the effects of thunderstorm winds 
on civil engineering structures. Automated classification techniques have thus been de-
veloped to detect these events of interest in such large databases. To ensure the auton-
omy and interpretability of the process, it is convenient to use a machine learning clas-
sifier trained on shapelet transforms. Techniques such as randomized sampling method, 
rotation forest classifier and ensemble voting rule are utilized in this paper to accelerate 
the discovery of shapelets while continuing to increase the accuracy and the stability of 
the procedure. These improvements in terms of both computational and operational ef-
ficiency regarding the identification of thunderstorms are assessed in this paper. Overall, 
the time needed to discover shapelets is divided by 10 to 100 when the same ratio of 
candidates is selected from the entire pool. Doing so does not harm the classification 
process afterwards, even though the best shapelets are slightly less discriminative.  
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1   Introduction 

To gain a better understanding of the devastating effects that thunderstorm winds can 
have on civil engineering structures, more particularly in Mediterranean ports, exten-
sive measurement campaigns have been carried out during the last decade (Solari et 
al. 2012; Burlando et al. 2018). To do so, numerous monitoring systems and stations 
have been installed to record high-dimensional wind field measurements in a contin-
uous way and with a high sampling rate. Given the tremendous amount of data that 
they generated over the years, it has become necessary to develop automated methods 
dedicated to detecting different events of interest, like thunderstorms and downbursts, 
from the analysis of time series.  
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Several techniques existed before (De Gaetano et al. 2014), but they often required the 
intervention of expert judgement through a detailed visual inspection of the time se-
ries, to compensate for the absence of some statistical descriptors. From a big data 
perspective, the use of machine learning has therefore appeared as a potential solution 
to ensure the autonomy of the process. Two main techniques have emerged since then. 
Chen and Lombardo (2020) used a one-dimensional convolutional neural network 
classifier trained on segmented records while Arul and Kareem (2021) used a random 
forest classifier trained on Shapelet Transforms (ST). 
Shapelets are highly discriminative sequences which are detected in the time series 
and somehow represent the respective signature of any wind state. In short, these 
shapelets have first to be identified in a training dataset and can then be compared to 
a testing dataset to classify the recordings into two or more groups. By detecting local 
or global similarities in time series, this method reproduces what humans would natu-
rally do when visualizing the measurements and has the advantage of being easily 
interpretable. In Arul et al. (2022), this procedure also recognized more thunderstorms 
than the above-mentioned statistical approaches. 
In general, though, the discovery of shapelets is extremely consuming in terms of com-
putational power when performed using brute force, as explained in Section 2. To 
solve this problem, a new technique based on the randomized sampling of the shapelet 
candidates is implemented here. It randomly selects a subset of shapelet candidates 
from a larger pool. The smaller the number of candidates, the faster the evaluation of 
their discriminative power, but the poorer the stability of the classification. To counter 
this negative effect, a new type of classifier is also introduced below. These two fea-
tures are presented in Section 3.1 and Section 3.2, respectively. 
An assessment of their performance for the identification of thunderstorms is finally 
conducted in Section 4, along with a parametric study. First, it focuses on the effect 
that the sampling method has on the discovery of shapelets, depending on the propor-
tional number of candidates that are considered with respect to the total number lying 
in the pool. Once that done, two types of forest classifiers are compared. The influence 
of an additional parameter, the number of trees, is thus evaluated as well. To do so, 
the wind speed records collected in the Mediterranean port of Livorno (Italy) by the 
Giovanni Solari WinDyn research group are used.  

2   Shapelet-based Classification of Time Series 

In the first stage, the algorithm starts by determining which subsequences of a few 
labeled signals are discriminative for the events of interest. This process is discussed 
in Section 2.1 and is called the discovery of shapelets. In the second stage, the mini-
mum distance between the best shapelets and each time series is calculated. This op-
eration is presented in Section 2.2, and yields the transforms, which are then gathered 
inside a single matrix. In the third stage, these shapelet transforms are used to train a 
machine learning classifier in recognizing the events of interest. This object is intro-
duced in Section 2.3, and then serves to assign classes to unlabeled time series. 
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2.1 Shapelet Discovery 

Listed below are the steps required to conduct the discovery of shapelets. They are 
described in a concise way, while the underlined concepts are explained in further 
details in the following paragraphs. For even more information, interested readers can 
finally refer to Arul et al.'s explanations (2022). 

1. Create a learning set with signals of both classes.  
2. Separate the time series into shapelet candidates. 
3. Run each sub-sequence through each time series. 
4. Loop on the complete pool of shapelet candidates. 

a. Loop on the time series of the learning dataset. 
i. Compute the Euclidean distance at every place. 

ii. Get the minimum distance for each time series. 
b. Sort the series by increasing minimal distance. 
c. Get the IG scores for all of the splitting points. 
d. Keep the maximum IG score of each candidate. 

5. Use non self-similar shapelets with the highest IG. 

Generation of shapelet candidates – The pool of prospective shapelets is formed by 
the sub-sequences of the time series that are found in the learning set. Overall, 
(𝑚 − 𝑛) + 1 candidates of length 𝑛 are generated per signal of length 𝑚, with 𝑛 rang-
ing from 3 to 𝑚. This yields a total number of (2 − 3𝑚 +𝑚!)/2	candidates per time 
series. They are then normalized independently of one another to ensure that the dis-
covery process becomes invariant to changes of scale or offset.  

Calculation of Euclidean distances – In the present context, the Euclidean distance 
is computed for all starting indices 𝑠, ranging from 1 to (𝑚 − 𝑛), as the square root of 
the sum of the squared differences between the data points 𝑥" of the shapelet candidate 
and the data points 𝑦#$" of the time series. This metric evaluates the similarity between 
any of these pairs of sub-sequences of equal length. If a time series exhibits a pattern 
similar to the shapelet candidate, the minimal distance is thus low, and vice-versa. 

Evaluation of the information gain – Once the minimal distances are sorted in as-
cending order for a given shapelet candidate, the list is splitted into two parts. This 
separation results in a reduction of the entropy which can be measured by the infor-
mation gain (IG). The highest information gains are therefore obtained when each part 
of the list contains values that are similar to one another, but distinct from the values 
that are left in the other part. This is indicative of a strong discriminative power. 

Rejection of self-similar shapelets – In the end of the process, it is important to dis-
card any shapelet having data points in common with another one whose information 
gain is higher. Failure to do so can otherwise create a lack of diversity in the shapelets 
to be used after and therefore compromise the reliability of the subsequent classifica-
tion. For similar reasons, if the information gain associated to a specific shapelet does 
not exceed the limit value of 0.05, this candidate is abandoned as well. 
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2.2 Shapelet Transform 

After their discovery, the shapelets are used to convert the time series, also called the 
instances, into a new matrix of features, a.k.a. the transforms. In this local-shape space, 
these attributes correspond to the minimal distances between the signals and the shape-
lets. Along with the class labels, previously attached to each instance, this matrix can 
finally be treated as a generic input to train any machine learning classifier. It is also 
depicted in Fig. 1, with a lightning and a sunshine for storm and clear weather events. 

 
Fig. 1 Shapelet Transform 

2.3 Shapelet Classifier 

As is typical in machine learning contexts, a random forest classifier is currently im-
plemented in the algorithm. It is composed of 500 trees and the default probability 
threshold is set to 0.5, meaning that classes are predicted based on a majority vote in 
a binary setting, as shown in Fig. 2. These predictions vary indeed because each tree 
receives a different selection of features at start. Their nodes are then allowed to ex-
pand until all leaves are pure, without restriction on depth.  

 
Fig. 2 Random Forest Classifier 
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3   Improvements of the Existing Algorithm 

3.1 Randomized Sampling 

Instead of considering all sub-sequences of all time series in the pool of shapelet can-
didates, a random number of them can be skipped at each iteration (Renard et al. 2015).  
As schematically represented in Fig. 4, these candidates of similar length and position 
would have otherwise had the same capacity of discrimination. The probability distri-
bution of the sampling parameter is therefore chosen to create a diverse but smaller 
subset of candidates, in a given proportion of the whole population. The computational 
time needed to discover the shapelets is then expected to decrease by the same amount. 
The question to be answered, though, is to what extent this reduction does not harm 
the classification process afterwards.  

 
Fig. 3 Randomized Sampling 
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4.2 Rotation Forest  

The rotation forest resembles the random forest but addresses one of its most important 
flaws, being that it partitions the feature space orthogonally only. In here, indeed, the 
feature matrix is multiplied by a rotation matrix, which comes from a principal com-
ponent analysis. As it changes for each tree, diversity is created in the forest, and the 
robustness of the classification increases.  

4.3 Ensemble Rule 

Due to the random nature of the sampling, different transforms can now be created 
based on the same dataset. If several of them are used to train various classifiers, it is 
necessary to perform an additional task which consists in reunifying their results, as 
shown in Fig. 4. Through this combination, the resulting algorithm should be more 
stable and provide a more precise decision. 

 
Fig. 4 Ensemble Rule 
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4   Application to the Detection of Thunderstorms 

The techniques presented hereabove are applied to the wind speed signals recorded by 
ultrasonic anemometers in the Mediterranean port of Livorno, in Italy, during the 
“Wind and Ports” project (see the characteristics of this complete database in Table 1). 
The results obtained with different sampling parameters and classifiers will be com-
pared in the sequel, to evaluate the improvements due to the addition of these new 
features in using less computational power and detecting more true positives.  

Table 1 Description of the sensing system at the port of Livorno 

Port Sensor Height (m) Period Type Rate 

Livorno 1-4 20 2010-2014 3-axial 10 Hz 5 75 

As explained earlier, this parametric study starts with the creation of a training and a 
testing dataset. Overall, these two datasets respectively contain 77 and 33 of the 110 
catalogued thunderstorms described in Burlando et al. (2018), plus the same number 
of non-thunderstorm events selected from the rest of the database. The training dataset 
is then analyzed to find representative shapelets for both the thunderstorm and non-
thunderstorm events. To do so, a random sample of candidates is drawn, in varying 
proportions of the entire population.  
Given the non-deterministic nature of the process, the discovery of shapelets is re-
peated nine times for each proportion (0.1, 0.2, 0.3, 1, 2, 3,10, 20 and 30 percent). In 
Fig. 5, the mean durations for each of these nine runs are represented by a solid blue 
line. Meanwhile, their individual durations are illustrated by dashed grey lines. As it 
was expected, the relationship between the number of candidates, and the duration of 
is linear. Hence, the fewer the faster. 
As regards to the quality of the shapelets, then, IG scores are displayed in Fig. 6. The 
mean values of the five best results obtained for all runs are shown in red, with plus 
and minus the standard deviations indicated in orange. Globally, it demonstrates that 
the scores increase and vary less when more candidates are evaluated. This is really 
significant between the first and the second trios of proportions, but not that much 
anymore with respect to the last one. 
The 30 shapelets identified at each run are subsequently used to transform both the 
training and the testing dataset. Each (i,j)-th element of the resulting matrices corre-
spond to the minimal distances between the i-th signal and the j-th shapelet, with i = 1 
to 154 for training or 66 for testing, and j = 1 to 30. Two types of classifiers, the 
random and the rotation forests, with different numbers of trees are then trained and 
tested based on these shapelet transforms.  
A baseline is first established by using a proportion of 30% for the shapelet candidates 
and a number of 500 for the decision trees. The expected and the predicted classes 
attributed to the signals of the testing dataset are displayed in Fig. 7, by means of 
confusion tables. The ensemble classification rule applied to build them consists in 
keeping the most frequent results. 
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A few misclassified signals are then shown in Fig. 8 and Fig. 9, together with the 
number of times it happened. Looking at these false positives and false negatives helps 
to understand what went wrong. On the right-hand side of Fig. 8, for instance, the time 
series exhibits peaks that are usually associated with a thunderstorm. On the left-hand 
side of Fig. 9, a ramp-up phase, typical of thunderstorms, is observed. Yet, no shapelet 
covered this specific feature.  

   
                Fig. 5 Computational Times                                 Fig. 6 Information Gains 

Last, but not least, the accuracy of the classification process is computed as the sum 
of all true positives and all true negatives divided by the total number of instances. 
The mean values and the standard deviations obtained for this performance metric on 
nine runs are depicted in Fig. 10 and Fig. 11, respectively, depending on the proportion 
of candidates and the number of trees. These figures globally show that the rotation 
forest classifier performs better as it generally gives more precise and more stable 
results with respect to the baseline. 

 
Fig. 7 Confusion Tables 
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Fig. 8 Examples of False Positives 

 

 
Fig. 9 Examples of False Negatives 

 

 
Fig. 10 Accuracy – Mean Values 

 

 
Fig. 11 Accuracy – Standard Deviations 
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5   Conclusion 

Innovative techniques have been introduced in this paper to improve the ability to 
identify thunderstorms. Their efficiency in reducing the computation burden while in-
creasing the detection accuracy is demonstrated on the wind speed signals that have 
been recorded by five ultrasonic anemometers in the Mediterranean port of Livorno, 
throughout the completion of the "Wind and Ports" project. In the meantime, a para-
metric study has also been conducted to evaluate the influence that the proportion of 
shapelet candidates, the type of forest classifier, and the number of decision trees have 
on the classification process. Overall, it revealed the superior performance of the ro-
tation forest classifier in terms of precision and stability.  
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