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ABSTRACT

Context. The observation of gravity modes is expected to give us unprecedented insights into the inner dynamics of the Sun. Nev-
ertheless, there is currently no consensus on their detection. Within this framework, predicting their amplitudes is essential to guide
future observational strategies and seismic studies.
Aims. While previous estimates considered convective turbulent eddies as the driving mechanism, our aim is to predict the amplitude
of low-frequency asymptotic gravity modes generated by penetrative convection at the top of the radiative zone.
Methods. A generation model previously developed for progressive gravity waves was adapted to the case of resonant gravity modes.
The stellar oscillation equations were analyzed considering the plume ram pressure at the top of the radiative zone as the forcing term.
The plume velocity field was modeled in an analytical form.
Results. We obtain an analytical expression for the mode energy. It is found to depend critically on the time evolution of the plumes
inside the generation region. Using a solar model, we then compute the apparent surface radial velocity of low-degree gravity modes
as would be measured by the GOLF instrument, in the frequency range 10 µHz≤ ν ≤ 100 µHz. In the case of a Gaussian plume time
evolution, gravity modes turn out to be undetectable because of too small surface amplitudes. This holds true despite a wide range of
values considered for the parameters of the model. In the other limiting case of an exponential time evolution, plumes are expected to
drive gravity modes in a much more efficient way because of a much higher temporal coupling between the plumes and the modes than
in the Gaussian case. Using reasonable values for the plume parameters based on semi-analytical models, the apparent surface veloc-
ities in this case are one order of magnitude lower than the 22-year GOLF detection threshold and lower than the previous estimates
considering turbulent pressure as the driving mechanism, with a maximum value of 0.05 cm s−1 for ` = 1 and ν ≈ 100 µHz. When
accounting for uncertainties on the plume parameters, the apparent surface velocities in the most favorable plausible case become
comparable to those predicted with turbulent pressure, and the GOLF observation time required for a detection at ν ≈ 100 µHz and
` = 1 is reduced to about 50 yr.
Conclusions. Penetrative convection can drive gravity modes in the most favorable plausible case as efficiently as turbulent pressure,
with amplitudes slightly below the current detection threshold. When detected in the future, the measurement of their amplitudes is
expected to provide information on the plume dynamics at the base of the convective zone. In order to make a proper interpretation,
this potential nevertheless requires further theoretical improvements in our description of penetrative plumes.
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1. Introduction

In recent decades the study of global acoustic modes has
revealed precious information on the internal properties of
the Sun (see, e.g., Thompson et al. 2003; Basu & Antia 2008;
Kosovichev 2011; Buldgen 2019; Christensen-Dalsgaard 2021,
for interesting reviews). Among the noteworthy results, the
sound speed and rotation rate could be probed with a high pre-
cision down to 0.08 R� and 0.2 R�, respectively. Nevertheless,
the study of acoustic modes hardly gives access to the proper-
ties of deeper layers, where most of the solar luminosity is pro-
duced. In contrast, gravity modes, which propagate in the cen-
tral radiative zone, have the potential to probe the micro- and
macrophysics inside the solar core and test further stellar mod-
els (e.g., Appourchaux et al. 2010). For instance, the detection
of gravity modes, combined with neutrinos flux measurements,
can be expected to improve our representation of nuclear reac-
tion rates and electron screening (e.g., Mussack & Däppen 2011;
Lopes & Turck-Chièze 2014; Bonventre & Orebi Gann 2018).
The measurement of their rotational splittings can also give us

the possibility to reveal the deep rotation profile and put strin-
gent constraints on the angular momentum history of the Sun
(e.g., Eggenberger et al. 2019a). From a wider perspective, all
the information brought by solar gravity modes can permit, on
the one hand, to calibrate stellar models and help improve our
understanding of the whole stellar evolution. On the other hand,
potential discrepancies between theory and observations in the
earlier or later evolutionary phases can also give evidence of a
change of regimes in the internal processes at work through-
out the star lifetime (e.g., Gehan et al. 2018; Eggenberger et al.
2019b).

The quest for solar gravity modes began more than 40 years
ago. However, gravity modes are evanescent in the convective
envelope and have very small amplitudes at the solar surface;
they are thus very difficult to observe. Detections have been
claimed by several studies (e.g., Brookes et al. 1976; Severnyi
et al. 1976; Delache & Scherrer 1983; Thomson et al. 1995;
Turck-Chièze et al. 2004; García et al. 2007), but none of these
results has been independently confirmed (e.g., Appourchaux
& Pallé 2013). The most recent claim of their detection was
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made by Fossat et al. (2017) and Fossat & Schmider (2018).
Using data of the GOLF instrument (e.g., Gabriel et al. 1995),
the authors indirectly found evidence of the signature of low-
frequency gravity modes in the time variations of the large
frequency separation of high-frequency acoustic modes. Their
analysis led to the identification of hundreds of gravity modes
with angular degrees between ` = 1 and ` = 4, from which
they could infer the asymptotic period-spacing and the mean
core rotation rate. Although this work was subsequently repro-
duced by other studies, the robustness of the analysis was put
into question (Schunker et al. 2018; Appourchaux & Corbard
2019). The result was shown to be very sensitive to the param-
eters of the time series considered in the analysis (e.g., the start
time), and appears to be an artifact of the methodology. Theoret-
ical studies of the coupling between acoustic and gravity modes
reinforced the fragility of this result (Scherrer & Gough 2019;
Böning et al. 2019). At the time of writing no robust detec-
tion of the solar gravity modes has therefore been unequivocally
confirmed.

Within this framework, theoretical estimates of the ampli-
tude of solar gravity modes are needful to help design future
observational missions and guide future seismic studies. The
amplitude of gravity modes results from a balance between
the driving by convective motions and damping processes (e.g.,
Belkacem et al. 2011). Previous theoretical estimates mainly
considered the Reynolds stress of turbulent convective eddies
as the source mechanism, or stochastic excitation (e.g., Gough
1985; Kumar et al. 1996; Belkacem et al. 2009). Guided
by global 3D numerical simulations of the solar convective
zone, and using reasonable values for their model parameters,
Belkacem et al. (2009) determined that the amplitudes of asymp-
totic gravity modes, that is, with high radial orders and oscilla-
tion frequencies between 10 µHz. ν . 100 µHz, are likely to lie
slightly below the current GOLF detection threshold. Because
of the non-detection of gravity modes, these predictions set an
upper constraint on the Sun’s convective velocity in the exci-
tation region (around 0.8 R�). However, all these previous esti-
mates did not account for the contribution from the penetration
of convective plumes at the base of the convective region (or
penetrative convection) to the mode driving.

Convective plumes are strong downdrafts originating from
diving cool granules at the solar surface. They develop by tur-
bulent entrainment of matter as coherent structures when cross-
ing the convective region (e.g., Turner 1986; Rieutord & Zahn
1995). As the plumes reach the bottom of the convective bulk,
they can penetrate into the underlying stably stratified radiative
layers; there the plumes are braked by buoyancy and can trans-
fer a part of their kinetic energy into gravity waves. While this
excitation mechanism is ubiquitous in numerical simulations of
extended convective envelopes overlying radiative zones (e.g.,
Andersen 1996; Dintrans et al. 2005; Kiraga et al. 2005; Rogers
et al. 2006, 2013; Alvan et al. 2014; Edelmann et al. 2019),
the covered values of the dimensionless control parameters are
far from stellar regimes. Quantitative estimates by means of
semi-analytical excitation models are thus required and com-
plementary (e.g., Rempel 2004). Motivated by the issue of the
redistribution of angular momentum in stellar interiors, Pinçon
et al. (2016) modeled this driving process to predict the ampli-
tude of very low-frequency progressive gravity waves propagat-
ing in the radiative zone of the Sun. They demonstrated that
this process generates low-frequency gravity waves more effi-
ciently than turbulent pressure and can have an important impact
on the angular momentum evolution of low-mass stars (Pinçon
et al. 2017). However, no application regarding the amplitude of

the solar gravity modes with much higher frequencies has been
undertaken so far.

In this work we estimate the amplitude of the solar gravity
modes generated by penetrative convection following the model
of Pinçon et al. (2016). We limit the study to asymptotic grav-
ity modes in the frequency range between 10 µHz and 100 µHz
(i.e., with a number of radial nodes much higher than unity). The
damping of such modes is dominated by radiative losses, and is
analytically tractable in the considered frequency range under
the quasi-adiabatic limit (e.g., Dziembowski 1977b; Belkacem
et al. 2009). In contrast, at higher frequencies the computation
of the mode damping requires accounting for the interaction
between oscillations and convection, which is much more com-
plex and beyond the scope of this paper (e.g., Belkacem et al.
2011).

The paper is organized as follows. In Sect. 2, an analytical
expression for the mode energy is derived based on the model of
Pinçon et al. (2016). In Sect. 3 the apparent surface radial veloc-
ity of gravity modes is estimated from this expression for a solar
model and is compared to the GOLF data detection threshold.
The results are discussed in Sect. 4. The conclusions are pre-
sented in Sect. 5.

2. Excitation model by penetrative convection

In this section we derive an analytical expression for the energy
of gravity modes excited by penetrative convection. The asymp-
totic (i.e., short-wavelength) approximation is used and the
quasi-adiabatic limit is considered (i.e., non-adiabatic effects are
globally considered as small perturbations). Both approxima-
tions are justified for the Sun in the considered frequency range
(between 10 µHz and 100 µHz). The detailed derivation steps
and technical issues are described in Appendix A.

2.1. Oscillation equations forced by penetrative plumes

Following Pinçon et al. (2016), the velocity field in the stellar
frame is decomposed into a component associated with the con-
vective plumes and a perturbation associated with the gravity
modes. The source term in the linearized momentum equation
is assumed to be the ram pressure exerted by the ensemble of
convective plumes at the top of the radiative region. The feed-
back from the oscillations on the plume structure and dynamics
is neglected. In other words, we assume that the wave energy
is much lower than the plume kinetic energy at the base of the
convection zone, which is checked a posteriori. The effect of
the Coriolis force on both the oscillations and the plumes is not
considered. This is justified for the gravity modes as the solar
rotation period is much shorter than the modal periods. For the
plumes, the effect of the buoyancy work is predominant so that
the plume Rossby number is expected to be very low in the case
of slow rotators as the Sun.

Within this framework, the forced linear non-adiabatic oscil-
lation equation reads (see Appendix A.1 for details)

∂2
t ξ +Lad (ξ) +Lnad

(
H
δS
cp

)
= −

1
ρ
∇ · (ρVp ⊗Vp), (1)

where ξ(r, t) is the mode displacement field, H is the tempera-
ture scale height, δS is the Lagrangian perturbation of specific
entropy, cp is the specific heat capacity at constant pressure, ρ is
the equilibrium density, Vp(r, t) is the velocity field associated
with the ensemble of plumes, Lad is the adiabatic differential
operator provided in Eq. (A.7), Lnad is a differential operator
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given in Eq. (A.6) and resulting from non-adiabatic effects, ∂t
denotes the partial time derivative, ∇ is the gradient operator,
and (⊗) is the outer product.

Monitoring the evolution of δS requires us to consider the
perturbed heat equation. Accounting only for radiative losses in
the case of asymptotic gravity modes, the perturbed heat equa-
tion can be expressed within the diffusion approximation as (see
Appendix A.2.1)

∂t

(
δS
cp

)
=

1
tR

[
Lnad1

(
ξ

H

)
+Lnad2

(
δS
cp

)]
, (2)

where tR = ρcpT H/FR is the local radiative thermal timescale,
which describes the exchange rate of energy between the modes
and the radiation, with FR and T the equilibrium radiative flux
and temperature, respectively. We note that Lnad1 and Lnad2 in
this equation are dimensionless linear differential operators with
respect to radius and represent the perturbation of the diver-
gence of the radiative flux. We also note that tR is equal to
the local thermal timescale in the radiative zone and in a very
thin near-surface layer where the energy flux is mostly carried
by radiation. This is not the case in deeper convective layers
where the energy flux is mostly carried by the convective flux,
but whose influence on the considered gravity modes can be
neglected according to the numerical computations of Belkacem
et al. (2009).

2.2. Mode amplitude in the quasi-adiabatic limit

2.2.1. Decomposition on the adiabatic eigenfunction basis

The eigenfunctions ξn`m of the Lad operator, with radial orders
n, angular degrees `, and azimuthal numbers m, were shown
to form a complete basis of the oscillation displacement field
under the zero-boundary conditions (e.g., Chandrasekhar 1964;
Unno et al. 1989). More precisely, the demonstration relied on
the assumption that the oscillations are adiabatic (i.e., δS = 0).
For our purpose we show in Appendix B that they also form a
complete basis of the oscillation displacement field in the non-
adiabatic case (i.e., δS , 0). It is therefore possible to project
the non-adiabatic mode displacement field onto the basis of the
eigenfunctions of the Lad operator. This gives

ξ(r, t) =

+∞∑
n=−∞

+∞∑
`=0

+∑̀
m=−`

an`m(t) ξn`m(r) , (3)

where we have introduced the instantaneous amplitude an`m. The
eigenfunctions satisfy the eigenvalue relation

L
ad (
ξn`m

)
= ω2

n`mξn`m, (4)

with

ξn`m(r) = ξr
n`m(r) Ym

` (θ, ϕ) er + ξh
n`m(r) r∇Ym

l (θ, ϕ), (5)

where ωn`m is the angular eigenfrequency; (r, θ, ϕ) are the spher-
ical coordinates in the stellar frame; ξr

n`m and ξh
n`m are the (real)

radial and poloidal components of the eigenfunctions, respec-
tively, which are normalized such as ξr

n`m = 1 at the photosphere;
and Ym

` are the orthonormal spherical harmonics. The eigenfunc-
tions are orthogonal with respect to the density-weighted inner
product and their mode mass is defined as

Mn`m ≡

∫
V
ρ ξn`m · ξ

?
n`mdV, (6)

where V is the stellar volume beyond which the stellar density
vanishes and (?) denotes the complex conjugate.

2.2.2. Globally quasi-adiabatic gravity modes

Asymptotic gravity modes are incompressible (e.g., Dintrans &
Rieutord 2001), so that Lnad1 and Lnad2 in Eq. (2) are dom-
inated by second-order derivatives with respect to radius, and
their local norms scale as H2/λ2

n`m when applied on a har-
monic (n, `,m), where λn`m(r) is the local radial wavelength
(see Appendix A.2.2). Consequently, the time evolution of the
amplitude an`m is simultaneously governed by the local damp-
ing timescale given by tdamp ∼ (λ2

n`m/H)2tR in Eq. (2) and the
dynamical timescale tdyn ∼ 1/ωn`m in Eq. (1). Almost every-
where in the star the quasi-adiabatic limit is supposed to be met,
that is,

tdyn � tdamp(r), (7)

and the non-adiabatic effects represented by the quantity δS/cp
can be locally treated as a small perturbation (e.g., Dziembowski
1977b). This is not met in a very thin near-surface layer where
the density vanishes and tR, which is equivalent to the thermal
timescale in this region, becomes much smaller than dynami-
cal timescale (see, e.g., Fig. 2b in Berthomieu & Provost 1990).
However, this region is so thin and the part of the total mode
energy contained inside is so small that its impact on the global
mode damping is expected to be negligible. This expectation is
again supported by the numerical computations of Belkacem
et al. (2009), who demonstrated that the work performed by
the radiative flux variations on the oscillations mainly originates
from the radiative cavity for the considered frequency range.

In order to reason in a global way we therefore define a
global damping timescale, denoted Tdamp, which aims to mea-
sure the impact of the non-adiabatic effects on the global behav-
ior of a harmonic (n, `,m). Owing to the place of tdamp in Eq. (2),
Tdamp is taken equal to the inverse of the harmonic mean of
1/tdamp(r) weighted by the local mode energy. Considering only
the contribution from the radiative zone to the mode damping,
Tdamp reduces to Eq. (A.54) in the asymptotic frequency range,
that is,

T−1
damp ≈

∫ rb

0 t−1
dampdr/λn`m∫ rb

0 dr/λn`m
, (8)

where rb denotes the radius of the base of the convective zone. In
the following, we thus assume that the oscillations are globally
quasi-adiabatic in the considered frequency range:

tdyn � Tdamp. (9)

The definition in Eq. (8) appears to be relevant and eases the
computation of the mode amplitude.

2.2.3. Forced amplitude

Projecting Eq. (1) on ξn`m and expressing δS by means of
Eq. (2), a set of coupled third-order linear differential equa-
tions for the dependent variables an`m(t) can then be obtained,
each of them accounting for the first-order non-adiabatic per-
turbations (see Appendix A.2.3). These equations involve a fast
timescale, which is tdyn, and a slow timescale, which is actually
Tdamp defined in Eq. (8). It thus appears judicious to solve the
differential system using a two-timing method (e.g., Kevorkian
1961). This method can provide us with a uniformly valid solu-
tion up to timescales on the order of Tdamp. A two-timing anal-
ysis is sufficient for the present purpose since most of the mode
energy is dissipated on a timescale on the order of Tdamp, so that
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the error made is expected to be small compared to other uncer-
tainties related, for instance, to the modeling of the generation
process.

Expressing explicitly the partial derivatives with respect
to the fast and slow timescales in the amplitude equations,
and grouping together the terms of the same order, a two-
timing approach ultimately leads to the mode amplitude (see
Appendix A.2.4)

an`m(t) ≈ An`m(t) e+iωn`mt−ηn`mt + A?
n`m(t) e−iωn`mt−ηn`mt, (10)

with

An`m(t) ≈
1
2i

∫ t

−∞

ωn`mF̃n`m(t′)e−iωn`mt′+ηn`mt′dt′, (11)

where F̃n`m is provided by Eq. (A.27). This term results from
the scalar projection of the plume driving term in Eq. (1) on
ξn`m normalized by the mode mass. In addition, the expression of
the damping rate ηn`m is compatible, within the asymptotic limit,
with the usual quasi-adiabatic expression provided, for example,
by Dziembowski et al. (2001) or Godart et al. (2009). Its expres-
sion is provided in Eqs. (A.59) and (A.60) from which we deduce
that ηn`m ∼ 1/Tdamp. This confirms a posteriori our choice for the
definition of the global damping timescale in Eq. (8).

At this point we note that Eq. (10) can be retrieved if we
assume that the solutions of the homogeneous equations for
each amplitude an`m take the form of an exponentially damped
harmonic oscillator, as usually done in quasi-adiabatic analy-
ses (e.g., Dziembowski 1977b; Unno et al. 1989), and then use
this ansatz to find the particular solution of the forced equa-
tions. Nevertheless, the present analysis also clearly highlights
two essential points. First, Eq. (10) is uniformly valid up to a
timescale on the order of Tdamp only. Second, it appears that
Eq. (10) holds true if the coupling induced by the Lnad opera-
tor in Eq. (1) between the different (n, `,m) components remains
negligible. Assuming that modes with adjacent radial orders n
and n + 1 have comparable amplitudes for given values of ` and
m, this is met if we have (see Appendix A.2.4)

∆tcore

Tdamp
≈ n

tdyn

Tdamp
� 1, (12)

where ∆tcore is the time spent by a wave energy ray of frequency
ωn`m to cross the radiative core. In this case the radiative losses
accumulated during a one-travel path of a wave through the
radiative core are negligible; as a result, the resonant modes keep
at leading order the same global structure as the eigenfunctions
of Lad, except for the small exponential decay of their ampli-
tudes with time (see discussion in Appendix A.2.4). We show
in Sect. 3 that this is met for a solar model in the considered
frequency range. The relative error made when writing Eq. (10)
thus turns out to be on the order of ∆tcore/Tdamp at most.

To express further Eq. (10) we need to model the F̃n`m term,
and thus to specify the plume velocity field.

2.3. Modeling the plumes and the penetration zone

While the mean ensemble behavior of convective plumes has
been widely studied in numerical simulations, for example, how
they structure together, how they can merge, or how efficiently
they can transport energy (e.g., von Hardenberg et al. 2008; Pieri
et al. 2016; Pratt et al. 2017), to the authors’ knowledge there is
no quantitative description of their detailed structures. Moreover,
though useful to guide the investigations, the outcomes of the

current numerical simulations of extended convective envelopes
still have to be taken with caution (e.g., Rempel 2004).

In the present work we thus choose to follow an analytical
description based on the model of Pinçon et al. (2016). The pen-
etration of convective plumes is supposed to be a random, sta-
tionary, and ergodic process. We assume that, on average, N
identical plumes (i.e., with the same velocity and shape) are pen-
etrating at each time and can transfer their energy into gravity
modes. The plumes are supposed to be incoherent with each
other and uniformly distributed on the sphere. At the base of
the convective region, the Péclet number, which represents the
ratio of the efficiency of the advection of heat by the plumes to
the efficiency of the radiative diffusion, is expected to be much
larger than unity in the Sun (see Sect. 3.2). As a result, the con-
vective plumes are braked over a very small penetration length
(i.e., relative to the local pressure scale height) below the radius
where the Schwarzschild criterion is met (Zahn 1991; Dintrans
et al. 2005). The plume ram pressure gradient is thus supposed
to be maximum inside the penetration region, and to vanish out-
side. The analytical form of the velocity field inside the penetra-
tion region that is associated with a plume penetrating at t = 0
and whose center has for latitudinal and azimuthal coordinates
(θ0, ϕ0) reads (Pinçon et al. 2016, cf. Eqs. (19) and (20))

Vp,0(r, t) = f
(

t
τp

)
Vr(r) e−S 2

h/2b2
er, (13)

where the f function represents the time evolution of the plume
velocity, with τp the plume lifetime, Vr is the radial profile, b
is the plume radius, and S h(r; θ0, ϕ0) corresponds to the distance
on a concentric sphere from the center of the plume.

Owing to the large Péclet number, an adiabatic temperature
gradient is imposed in the penetration zone; Vr can thus follow
the model of penetrative convection of Zahn (1991). The value of
the plume velocity at the entry of the penetration region, denoted
Vb, and that of the radius b are adapted from the model of turbu-
lent plumes developed by Rieutord & Zahn (1995). Below this
region, the transition from an adiabatic to a radiative temperature
gradient is supposed to be very sharp, so that the Brunt-Väisälä
frequency discontinuously changes from about zero in the adia-
batic region to Nt at the top of the radiative zone. We note that
this hypothesis is supported by the recent seismic inversions of
the Brunt-Väisälä frequency in the Sun performed by Buldgen
et al. (2020). Their observations show that the transition from
an adiabatic to a radiative gradient at the base of the convective
zone occurs over a distance dtrans representing about 0.5% of the
solar radius and that the value of Nt is equal to about 550 µHz. As
a result, we find that dtrans is much smaller than the local wave-
length in the considered ranges of frequencies and degrees. This
justifies the fact that, from the point of view of the gravity modes,
the profile of the Brunt-Väisälä frequency can be supposed to be
discontinuous at the top of the radiative zone.

Finally, the time evolution of the plumes in the penetra-
tion region is badly understood. Pinçon et al. (2016) identified
two probable plume destruction processes: baroclinic instabili-
ties and turbulence. Using orders of magnitude, they estimated
that the plume lifetime is most likely in the range around the con-
vective turnover timescale of turbulent eddies at the base of the
convective region, τconv. Regarding the profile, they assumed that
the penetration of a plume is a short-lived event and follows a
Gaussian law in time, as in the initial work of Townsend (1966).
Nevertheless, given the related uncertainties, it is relevant to
test other prescriptions. Within the framework of the stochas-
tic excitation of gravity modes, the spectral density of turbulent
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kinetic energy of convective eddies was also usually assumed to
be Gaussian until Belkacem et al. (2009), based on 3D numerical
simulations, showed that a Lorentzian form is more appropriate.
Gaussian and Lorentzian laws represent two limiting cases in the
time Fourier domain, since they stand for very rapidly and very
slowly decreasing functions of frequency, respectively. By anal-
ogy, the spectral density of kinetic energy of the plumes will be
also supposed to be Lorentzian, which, in the time domain, is
equivalent to assuming an exponential time profile. Therefore,
the f (t) function in Eq. (13) will be equal in the two limiting
cases to either

fG

(
t
τp

)
≡ e−t2/τ2

p or fE

(
t
τp

)
≡ e−|t|/τp . (14)

2.4. Mean mode energy

Owing to the random properties of the generation process, a
statistical approach has to be considered. As the time-averaged
mode amplitude vanishes, we need to estimate either the mean
mode square amplitude or the mean mode energy. We find it
more appropriate to reason in a first step on the mean mode
energy since it does not depend on the chosen normalization of
the eigenfunction basis, whereas the amplitude does. Because
of the incoherence between the convective plumes, we first note
that the wave velocity fields generated by different plumes can-
cel each other out. Assuming in addition that excitation is a sta-
tionary process and the plumes are all identical and uniformly
distributed over the sphere, we show in Appendix A.3.1 that
the total mean mode energy is merely equal to the oscillation
energy generated by one single plume penetrating at t = 0
and averaged over its angular position (θ0, ϕ0), multiplied by
the instantaneous number of penetrating plumes N . Therefore,
using Eq. (13) in Eq. (10), it is possible to compute the mean
oscillation energy associated with each orthogonal (n, `,m) har-
monic. In the asymptotic limit, the WKB form of the eigen-
functions can be used to formulate the result analytically (see
Appendix A.3.2). In the case of a large Péclet number at the
base of the convective region, that is, for a very small penetration
region, we find that the mean energy of the (n, `,m) harmonic can
be finally expressed as (see Appendix A.3.5)

〈En`m〉 ≈

[
(ωn`m∆Π`/π

2) Lp Fd,` e−`(`+1)b2/2r2
b Cn`m

]
2ηn`m

, (15)

with

Lp = ASp
ρbV3

b

2
, (16)

where ∆Π` is the asymptotic period spacing between two con-
secutive adiabatic gravity modes of degree ` given in Eq. (A.39),
Lp is the mean plume kinetic luminosity through the shell of
radius rb at the base of the convective zone, A = Nb2/4r2

b is
the plume filling factor, Sp = πb2 is the area occupied by a sin-
gle plume, ρb and Vb represent the density and the plume veloc-
ity at rb, and Fd,` = Vbkh,b/Nt is the Froude number at the top
of the radiative zone, with kh,b =

√
`(` + 1)/rb the horizontal

wavenumber of the mode.
We note that the numerator of Eq. (15) represents the amount

of power injected into the mode per unit of time. The term
inside the brackets refers to the mode mass. The Gaussian
term represents the horizontal correlation between the plumes
and the mode, while Cn`m measures the temporal correlation.

The general analytical expression of Cn`m is provided by either
Eq. (A.56) in the case of a Gaussian plume time evolution (i.e.,
f = fG) or Eq. (A.55) in the case of an exponential plume time
evolution (i.e., f = fE). In the considered frequency range we
usually have ηn`m � νp � ωn`m, where νp = 1/τp. As a result,
Cn`m is merely equal to (see Appendix A.3.3)

Cn`m ≈ 4
√
π
ηn`m

νp

ν3
p

ω3
n`m

if f = fG, (17)

and

Cn`m ≈ 16
ν3

p

ω3
n`m

if f = fE. (18)

In the considered frequency range, the temporal correlation is
thus expected to be much smaller in the Gaussian case than in
the exponential case; as a result, the mean mode energy is also
expected to be smaller. This will be discussed in greater detail in
Sect. 3.

Moreover, within the quasi-adiabatic and asymptotic limits
ηn`m ∝ `(` + 1)/ω2

n`m, as shown by Eq. (A.60) and illustrated
in Fig. 1 (e.g., Godart et al. 2009). In the considered frequency
range Eqs. (15)–(18) thus demonstrate that 〈En`m〉 is indepen-
dent of the frequency when f = fE, whereas 〈En`m〉 is inversely
proportional to the squared frequency when f = fG. In both
cases the mean mode energy decreases as ` increases. As in
the case of low-frequency progressive internal gravity waves,
we see according to Eq. (15) that the excitation efficiency is
mainly measured by the Froude number at the top of the radia-
tive region, which is expected to be much smaller than unity in
stars (see Sect. 3.1). As the correlation and mode mass terms are
also smaller than unity, the mean mode energy turns out to be
much smaller than the mean plume kinetic energy at the base of
the convective zone, and we check a posteriori that the feedback
from the modes to the plume dynamics inside the penetration
region is negligible.

2.5. Apparent mode radial velocity

Owing to a high signal-to-noise ratio, the search for the solar
gravity modes is usually performed through radial velocity mea-
surements integrated over the full solar disk (e.g., Appourchaux
et al. 2010). In order to be compared to the observed measure-
ments, the theoretical mean mode energy has to be converted
into mean mode radial velocity accounting for the line-of-sight
projection and the limb-darkening effects (Dziembowski 1977a;
Berthomieu & Provost 1990). Among other observational effects
that need to be corrected, they are expected to be the predomi-
nant ones. Following the computation of Belkacem et al. (2009),
we show in Appendix C that the mean apparent radial mode
velocity for a (n, `,m) harmonic is equal, in the slow rotator limit,
to

v
app
n`m =

√
〈En`m〉

Mn`m
Ṽn`m, (19)

where Ṽn`m is identified as

Ṽn`m =
∣∣∣αm
` ξ

r
n`m(rabs) + βm

` ξ
h
n`m(rabs)

∣∣∣ , (20)

with rabs the radius in the atmosphere where the absorption line
considered to measure the radial velocity is formed. The vis-
ibility coefficients αm

` and βm
` are provided in Eqs. (C.6) and
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Fig. 1. Radiative damping rate as a function of the oscillation frequency
νn`m and the angular degree `. Each circle corresponds to a given eigen-
mode.

(C.7). They depend on the limb-darkening law and on the angle
between the stellar rotation axis and the line of sight.

We note that, contrary to the mode energy, it is not possi-
ble to express Eq. (20) using the WKB form of the eigenfunc-
tions as it becomes questionable in the convective region and the
atmosphere of stars. The estimate of Eq. (20) therefore requires
the numerical computation of the mode eigenfunctions and their
mode masses.

3. Applications to gravity modes in the Sun

In this section the excitation model is used to predict the apparent
surface radial velocity of gravity modes generated by penetrative
convection for a solar model. As in Belkacem et al. (2009), we
choose to compare our results to the detection threshold of the
GOLF instrument on board the SoHO spacecraft (e.g., Gabriel
et al. 1995).

3.1. Solar model

We consider a calibrated solar model computed with the stel-
lar evolution code CESTAM (Marques et al. 2013). The chemi-
cal composition follows the solar mixture, as given in Asplund
et al. (2009), with initial helium and metal abundances Y0 = 0.25
and Z0 = 0.013. The OPAL 2005 equation of states and opacity
tables as well as the NACRE nuclear reaction rates were used
to build the model. The atmosphere was constructed following
an Eddington gray approximation, and convection was modeled
using the mixing-length theory with a parameter αMLT = 1.62.
Microscopic diffusion, overshooting, and rotation were not taken
into account. We note that the obtained solar structure, although
imprecise from the point of view of seismic inversions, is suffi-
cient for our purpose as the uncertainties related to the assump-
tions considered in the excitation model are dominant. For exam-
ple, it is known that microscopic diffusion can slightly mod-
ify the stratification at the base of the convective zone (e.g.,
Christensen-Dalsgaard et al. 1993) and hence can affect the
properties of the penetrating plumes. Nevertheless, this effect is
expected to be much smaller than the uncertainties related, for
instance, to the plume formation mechanism across the convec-
tion zone.

The adiabatic eigenfrequencies νn`m = ωn`m/2π, eigen-
functions, and mode masses needed to compute Eq. (19)
were obtained via the oscillation code ADIPLS (Christensen-
Dalsgaard 2008). The eigenfunctions were normalized such that
ξr

n`m = 1 at the photosphere. Owing to the large drop in the
density and pressure at the stellar surface, the reflective zero-
boundary conditions are considered. We check that the period
spacing between consecutive ` = 1 eigenmodes is very close
to the asymptotic value, that is, ∆Π`=1 ≈ 26 min. Moreover,
the mode mass is nearly proportional to `3 and ν−6

n`m (see, e.g.,
Fig. 6 in Belkacem et al. 2009). To be complete, the radiative
damping rate occurring in Eq. (15) and computed according to
the quasi-adiabatic expression provided in Eq. (A.60) is plot-
ted in Fig. 1. In this figure, we first see that the damping rate
is very similar to that computed numerically by Belkacem et al.
(2009, see Fig. 9) who also accounted for the influence of the
upper layers. This confirms our assumption that the work per-
formed in the inner radiative cavity is the main contributor to
the damping of the asymptotic gravity modes. Second, we also
see in this figure that the damping timescale Tdamp ∼ 1/ηn`m is
more than six orders of magnitude higher than the oscillation
timescale tdyn ∼ 1/ωn`m. This justifies a posteriori the use of the
global quasi-adiabatic approximation in this frequency range.
Moreover, since n . 103 in the considered frequency range, it is
obvious that ∆tcore ≈ ntdyn � Tdamp, so that the hypothesis made
in Eq. (12) appears a posteriori to be valid as well (i.e., the cou-
pling induced by non-adiabatic effects between adjacent radial
orders is negligible up to a timescale on the order of Tdamp).

3.2. GOLF apparent radial velocity with standard parameters

The internal structure of the solar model provides us with all the
equilibrium quantities to compute the parameters of the exci-
tation model and the mode apparent velocity in Eq. (19). The
radius at the base of the convective zone and the local density
are equal to rb ≈ 5.2 105 km and ρb ≈ 125 kg m−3. Based
on the model of plumes of Rieutord & Zahn (1995), we find
b ≈ 104 km and Vb ≈ 190 m s−1. The Péclet number at the
base of the convective region is estimated to be about equal to
VbH(rb)/Krad(rb) ∼ 107, where H and Krad are the tempera-
ture scale height and the radiative diffusivity, respectively. The
large Péclet number assumption used in Sect. 2.3 is thus jus-
tified for the Sun. Following Buldgen et al. (2020), the Brunt-
Väisälä frequency just below rb is taken equal to Nt = 550 µHz.
The Froude number at the top of the radiative zone is thus
equal to Fd,1 ≈ 10−3. Moreover, we use a reasonable value
N ≈ 1000, as previously estimated by Rieutord & Zahn (1995),
which corresponds to A ≈ 0.08, in qualitative agreement with
previous numerical simulations (e.g., Stein & Nordlund 1998;
Brummell et al. 2002). The convective turnover timescale at the
base of the convective region is equal to about τconv ≈ 10 days
according to the convection mixing length theory, which leads
to νp ≈ 1/τconv ≈ 1 µHz. At this point, the considered values of
the plume parameters are referred to as the standard values. We
consider that the sodium NaD1 and NaD2 absorption lines used
by the GOLF instrument to measure radial velocities at height
h ≈ 300km above the photosphere (Bruls & Rutten 1992). We
also use the limb-darkening law as formulated by Ulrich et al.
(2000), and take for the angle between the stellar rotation axis
and the line of sight Θ0 ≈ 83◦. Moreover, we systematically
focus on the azimuthal numbers |m| = ` in what follows as we
find they are less attenuated by the visibility effects and we want
to study the more optimistic case.
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Using all these physical ingredients, we can compute the
apparent radial velocity of the asymptotic gravity modes, vapp

n`` ,
between 10 µHz and 100 µHz. The result is plotted in Fig. 2 as a
function of the mode eigenfrequencies and for typical degrees
` = 1−5. Both limiting cases of a Gaussian and exponential
plume time evolution are considered and compared.

First, Fig. 2 shows in both cases that the apparent surface
velocity of the gravity modes generated by penetrative convec-
tion is maximum for ` = 1 and sharply drops as a function of `.
At a given frequency, the difference of apparent velocity between
the ` = 1 and ` = 5 modes is larger than about two orders of
magnitude. In addition, vapp

n`` appears to depend linearly on the
frequency in the exponential case, while it is almost indepen-
dent of frequency in the Gaussian case. In order to disentangle
the reasons for such trends from the different terms occurring in
Eq. (19), we propose to rewrite Eq. (20) in a more simple way.
Owing to the reflective boundary conditions, the Lagrangian per-
turbation of pressure vanishes at the solar surface, which leads
to (e.g., Unno et al. 1989)

ξh
n`m(R�) =

GM�
R3
�ω

2
n`m

ξr
n`m(R�) ≈

(
100 µHz
νn`m

)2

, (21)

where G is the gravitation constant, M� and R� are the solar
mass and radius, and where we considered the normalization
ξr

n`m(R�) = 1. Therefore, over the considered frequency range,
we have ξh

n`m(R�) ≥ ξr
n`m(R�). Moreover, we can assume that

ξh
n`m does not significantly vary in the solar atmosphere, that is,
ξh

n`m(rabs) ≈ ξh
n`m(R�). We checked the validity of this approxi-

mation using the numerical eigenfunctions. Since |α`
`
| is approx-

imately equal to or smaller than |β`
`
| (see Table 1), Eq. (19) can

thus be expressed at first approximation as

v
app
n`` ≈

√
〈En``〉

Mn``

∣∣∣β``∣∣∣ ( 100 µHz
νn`` (µHz)

)2

. (22)

For ` = 1−5, the Gaussian term in Eq. (15) remains close to
unity since ` � rb/b ∼ 50. As a consequence, since ηn`m ∝

`(` + 1)/ν2
n`m, we find according to Sect. 2.4 that 〈En`m〉 ∝ ν

−2
n`m

in the Gaussian case and 〈En`m〉 ∝ `
−2 in the exponential case. In

addition, as the mode mass depends approximately on νn`m and
` asMn`m ∝ `

3ν−6
n`m, Eq. (22) leads in the Gaussian case to

v
app
n`` ∝

∣∣∣β``∣∣∣ `−3/2, (23)

and in the exponential case to

v
app
n`` ∝

∣∣∣β``∣∣∣ `−5/2νn``. (24)

As shown in Table 1, the value of |β`
`
| smoothly varies with `,

and the trends predicted in Eqs. (23) and (24) are in qualita-
tive agreement with Fig. 2. It thus appears that the simultaneous
influence of the mode mass and the damping rate counterbal-
ances the decrease in the mode driving with frequency (via the
temporal correlation term). This explains the trends observed in
Fig. 2.

Moreover, we clearly show in Fig. 2 that the value of vapp
n`` pre-

dicted assuming a Gaussian plume time evolution at a given ` is
at least three orders of magnitude smaller than that assuming an
exponential plume time evolution. This huge difference results
from the much smaller temporal correlation between the plumes
and the considered eigenmodes in case of a Gaussian time evo-
lution, which is represented by the Cn`m term. In this case the

Table 1. Absolute values of the visibility factors of the GOLF instru-
ment as a function of the angular degree `.

` 1 2 3 4 5

|α`
`
| 0.19 0.12 0.05 0.009 0.004

|β`
`
| 0.15 0.30 0.25 0.07 0.04

spectral density of the plume kinetic energy is mostly carried
by the frequencies lower than νp. As νn`m � νp, the coupling
between the plumes and the eigenmodes is very small, and the
excitation is very inefficient. In contrast, in the case of an expo-
nential time evolution, the spectral density of the plume kinetic
energy is distributed over higher frequencies, and the coupling
between the plumes and the eigenmodes is maximum for fre-
quencies around νn`m (see the computation in Appendix A.3.3).
As a result, the energy transfer from the plumes to the modes is
much more efficient. Considering Eqs. (17) and (18) in Eqs. (15)
and (19), the ratio of the mode apparent velocity in the Gaus-
sian case to that in the exponential case scales as

√
ηn`m/νp � 1.

Since ηn`m ∝ 1/ν2
n`m in the quasi-adiabatic limit, this ratio is

expected to decrease as 1/νn`m, in agreement with Fig. 2. Our
estimate therefore demonstrates that the amplitude of the asymp-
totic solar gravity modes generated by penetrative convection
critically depends on the plume time evolution at the base of the
convective zone. Our lack of knowledge on the plume dynam-
ics in this region thus prevents us from quantitatively predicting
the efficiency of this excitation process. In turn, if detected, solar
gravity modes can be expected to put important constraints on
penetrative convection at the top of the radiative zone (see dis-
cussion in Sect. 4.4).

Finally, we point out that over the considered frequency
range the GOLF apparent radial velocity of the gravity modes
computed with the present model and standard plume parame-
ters is about one order of magnitude smaller than that predicted
considering turbulent pressure as the driving mechanism. For
the ` = 1 modes in the exponential case, for which the exci-
tation is the most efficient, our predictions lie between v

app
n`` ≈

0.01−0.05 cm s−1 from νn`m = 10 µHz to νn`m = 100 µHz, while
those of Belkacem et al. (2009) lie between vapp

n`` ≈ 0.1−0.5 m s−1

(see Sect. 4.2 for a more detailed comparison). These results
therefore suggest that penetrative convection is less efficient than
turbulent convection to generate asymptotic gravity modes in
the Sun. Nevertheless, owing to a significant sensitivity of the
predictions to the plume parameters (i.e., velocity, radius, life-
time), whose values are currently affected by uncertainties, we
note that reasonable variations in these parameters are likely
to reduce the gap between the two excitation mechanisms (see
blue dash-dotted line in Fig. 2). This point is discussed further in
Sect. 4.3.

3.3. Comparison with the GOLF detection threshold

Using a statistical approach, Appourchaux et al. (2010) could
analytically express the threshold signal-to-noise ratio above
which a peak in the power spectral density (PSD) of an observed
time series can be considered as a relevant oscillating signal over
a frequency interval ∆ f , with a false alarm probability pth that
the measurement is due to pure noise. As shown in Appendix D,
this threshold can be converted into a detection threshold for the
root mean square oscillation velocity, denoted with vth, above
which a signal would be detected with a certain confidence level.
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Fig. 2. Apparent surface radial velocity of solar
gravity modes as a function of the oscillation
frequency νn`m and the angular degree `, for
azimuthal numbers m = ` and for standard
plume parameters. The results obtained with a
Gaussian and an exponential plume time evolu-
tion (see Sect. 2.3) are represented by the dia-
monds and the plus signs, respectively, for each
considered eigenmode. The thick dashed gray
line corresponds to the 22-year GOLF detection
threshold (see Sect. 3.3). The blue dash-dotted
line represents the upper limit for the ampli-
tude of the dipolar modes when accounting for
the largest plausible variations in the plume
parameters (i.e., with a factor of two increase
in the inverse plume lifetime and radius; see
Sect. 4.3).

It reads

vth ≈

√
ln

(
T∆ f
pth

)
s̃
T
, (25)

where T is the observation time and s̃ is the mean noise level in
the PSD over the range ∆ f .

We consider a GOLF observation time equal to T = 22 yr.
The mean noise level s̃ is estimated from García et al. (2007, see
Appendix D). We choose ∆ f = 10 µHz and pth = 0.01. Instead
of a common rejection level of 10%, we adopt a rejection level of
1% since it allows the posterior probability that a peak is due to
noise to reach lower values close to 10%, as already mentioned
in Appourchaux et al. (2010). The resulting 22-year GOLF
detection threshold is represented by a thick gray dashed line
in Fig. 2. We see that the threshold velocity smoothly decreases
from about 1 cm s−1 at νn`m = 10 µHz to about 0.5 cm s−1 at
νn`m = 100 µHz. This trend results from the decrease in the
solar granulation noise with frequency in the GOLF data. Its
value is about five orders of magnitude higher than the appar-
ent mode velocity throughout the considered frequency range
when assuming a Gaussian plume time evolution. According to
Eq. (25) the amplitude of gravity modes will be lower even if the
observation time is equal to ten billion years. In the case of an
exponential plume time evolution, the amplitude predicted with
standard plume parameters is also at least one order of magni-
tude lower than the 22-year GOLF detection threshold over the
considered frequency range. Based on our simple estimate of the
GOLF mean noise level (see Eq. (D.2)), Eq. (25) requires an
unreachable GOLF observation time T ∼ 2000 yr to detect the
dipolar n = 6 gravity mode at νn`m ≈ 90 µHz. In conclusion,
using standard values for the plume parameters, our model indi-
cates that the solar asymptotic gravity modes generated by pene-
trative convection remains far from being detected in an accept-
able observation time by radial velocity measurements such as
performed by the GOLF instrument. It is worth mentioning that

the uncertainties on the predicted amplitude, which are inher-
ent to uncertainties on the plume parameters, may nevertheless
considerably reduce the observation time required for a reliable
detection. This potential is also evaluated in Sect. 4.3.

4. Discussion

4.1. Comparison with the estimate of Andersen (1996)

Andersen (1996) first investigated the generation of solar grav-
ity modes by penetrative convection using both numerical sim-
ulations and simple energy considerations. Including an ad hoc
forcing term at the top of the radiative region that mimics the
influence of penetrative plumes in a solar model, he numerically
solved the wave equations and computed the transmission of the
generated wave energy throughout the convective envelope, the
structure of which was taken from the turbulent numerical simu-
lations of Andersen (1994). He found that the wave transmis-
sion up to the surface is on the order of 0.05%. Using these
results, he could estimate that the horizontal velocity of grav-
ity modes near the solar surface ranges between 0.01−1 mm s−1

for ` = 6 and νn`m = 50−100 µHz. When accounting for an
appropriate GOLF visibility factor, that is |β6

6| ≈ 0.03, this upper
value turns out to be much larger than our predictions in the case
of a Gaussian plume time evolution, but on the same order of
magnitude in the exponential case. However, we note that this
qualitative agreement is more likely to be fortuitous. In order
to estimate the amplitude of gravity modes, Andersen (1996)
assumed that the total mode energy is equal to the part of the
convective kinetic energy transferred on average to progressive
gravity waves in the numerical simulation of Andersen (1994),
the upper and lower boundary conditions of which are open. As a
consequence, this estimate actually did not properly account for
the quasi-stationarity of the modes or for the damping processes.
Therefore, although qualitatively comparable for the ` = 6
gravity modes, the physical origins of our predictions radically
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differ from those of Andersen (1996), and drawing conclusions
from their comparison ultimately appears irrelevant.

4.2. Comparison with turbulence-induced gravity modes

Belkacem et al. (2009) modeled the generation of asymptotic
gravity modes by considering the turbulent Reynolds stress as
the driving mechanism. As mentioned at the end of Sect. 3.2,
the surface mode velocity they predicted is one order of mag-
nitude higher than our estimate in the exponential case when
considering standard values for the plume parameters based on
semi-analytical models and orders of magnitude. Nevertheless,
for both excitation mechanisms, the dependence of the appar-
ent radial velocities on ` and νn`m turns out to be comparable
(e.g., Belkacem et al. 2009, see Fig. 11). This similar depen-
dence results on the one hand from the mode mass and the damp-
ing rate, which play the same role in both excitation processes,
and on the other hand from a comparable temporal correlation
between the driving source and the modes. Belkacem et al. (2009)
assumed that the time coherence of the convective eddies is expo-
nential; as a result, the temporal correlation between the modes
and the eddies has a similar form to that between the modes and
the plumes when assuming an exponential plume time profile
(e.g., a dependence on about ν−3

n`m; see Eqs. (1)–(2) and Fig. 3 in
Belkacem et al. 2009). Regarding the magnitude, as the velocity
of the turbulent eddies that drive gravity modes is about equal to
vMLT ≈ 60 m s−1 (according to the mixing length theory), which is
about three times lower than the plume velocity at the base of the
convective zone, penetrative convection could have been at first
sight expected to generate gravity modes with higher amplitudes.
However, while the excitation by penetrative convection occurs
in a very thin shell at the base of the convective zone, convective
eddies can drive gravity modes in a larger volume of the enve-
lope. Moreover, as the eddy turnover frequencies are higher than
νp in the upper layers of the convective region, the time corre-
lation is larger for the excitation by turbulent convection than by
penetrative plumes. The lower velocities of the convective eddies
are thus compensated by a more extended excitation region and
a better temporal correlation with the modes, leading to higher
amplitudes in the exponential case.

In contrast, when assuming that the eddy-time coherence
is Gaussian, as in Kumar et al. (1996), Belkacem et al. (2009)
found the apparent radial velocities of gravity modes generated
by turbulent eddies is on the order of 10−3 cm s−1. Although
their predictions also depend on νn`m and ` in a similar way to
our predictions in the Gaussian case, their magnitude is much
larger than ours. While the same arguments as in the previous
paragraph hold true to explain the similarities in the dependence
on νn`m and `, the temporal correlation with the modes in the
Gaussian case is very sensitive to the timescales associated with
the driving source. As the values of the turnover frequencies of
the turbulent eddies driving the modes are larger than νp, the
temporal correlation is expected to be much larger than for the
excitation by plumes. This certainly explains the huge difference
between the excitation by turbulent convection and penetrative
convection in the Gaussian case.

4.3. Sensitivity of the mode amplitude to the plume
parameters

As shown by Pinçon et al. (2016), the efficiency of the wave exci-
tation by penetrative convection depends in a significant way on
the plume parameters b, νp, and Vb, whose values are subject
to uncertainties. For example, the plume model of Rieutord &

Zahn (1995) is expected to provide an upper limit on Vb since
it does not take into account the upward counterflow that can
exchange momentum with the downward plumes and hence slow
them down (e.g., Rempel 2004). In contrast, the plume radius
b is likely to be underestimated since the model of Rieutord
& Zahn (1995) does not account for the possible clustering of
plumes, as observed for instance in numerical simulations (von
Hardenberg et al. 2008). In addition, as already discussed in
Pinçon et al. (2016), turbulence inside the penetration region
could lead to values of νp that are substantially larger than the
convective eddy turnover frequency predicted by the MLT.

To investigate the influence of these uncertainties on the
mode amplitudes, we arbitrarily consider in this section the
effect of a decrease in Vb of 30%, and an increase in νp and
b by a factor of two, while keeping the filling factor A con-
stant (i.e., N ≈ 250 when the value of b is two times larger).
Neglecting the variations of the horizontal correlation term in
Eq. (15) for ` = 1−5, Eqs. (15)–(19) show that, at given fre-
quency and degree, vapp

n`` ∝ bV2
bν

3/2
p in the exponential case and

v
app
n`` ∝ bV2

bνp in the Gaussian case. We see that a decrease in
Vb of 30% leads to a decrease by a factor of two in vapp

n`` , while
an increase of b or νp by a factor of two results in an increase
by a factor of between two or three. As the mode amplitudes
are insignificantly low in the Gaussian case, such variations in
the parameters, and even much larger variations, do not modify
the large gap with the exponential case and the GOLF detection
threshold; gravity modes thus remain undetectable in this case.
In the exponential case, such variations in the parameters b and
νp can in contrast affect the predictions about the detectability of
the modes. Assuming an increase in νp by a factor of two, which
results in an increase by a factor of about three in the ampli-
tudes, the GOLF observation time required to detect a plume-
induced dipolar gravity modes at νn`m = 100 µHz is decreased
by about one order of magnitude (i.e., to T ∼ 200 yr). Consider-
ing the largest plausible variations with a simultaneous increase
in b by a factor of two, the observation time required to detect
such a mode is reduced to T ∼ 50 yr. In this most favorable case
considered here, the predicted amplitudes of the dipolar plume-
induced gravity modes are plotted in Fig. 2 (blue dash-dotted
line). This upper limit turns out to be close to the amplitudes
of the turbulent-induced gravity modes predicted by Belkacem
et al. (2009).

In conclusions, the time evolution of the plumes at the base
of the convective zone represents the major source of uncer-
tainties in our model. The error related to the uncertainties on
the plumes parameters is insignificant compared to the effect of
the assumption on the plume time evolution. In addition, while
the plume-induced gravity modes remain undetectable in the
Gaussian assumption whatever the values of the plume param-
eters, the uncertainties on these parameters can significantly
modify the predictions of the detectability of few modes in the
exponential assumption. In the most favorable plausible case, the
GOLF observation time required to detect the plume-induced
` = 1 gravity modes around νn`m ≈ 100 µHz is reduced to
T ∼ 50 yr, with amplitudes close to those predicted considering
turbulent pressure as the driving mechanism.

4.4. Can the amplitudes of gravity modes bring constraints
on penetrative convection?

We see in Sect. 4.3 that our lack of knowledge on penetrative
convection affects our predictions. In turn, we can wonder to
what extent the measurement of the amplitudes of gravity modes
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in the Sun can provide us with constraints on penetrative con-
vection and the properties at the base of the convective zone.

Our model shows either that the contribution from pene-
trative convection to the mode amplitude is undetectable for a
Gaussian-like plume time evolution or that it behaves as a func-
tion of the frequency and the degree in a similar way to the
contribution from turbulent convection for an exponential plume
time profile. As both excitation mechanisms are subject to uncer-
tainties (Belkacem et al. 2009), it can thus appears difficult at
first sight to disentangle the two contributions and interpret the
observed amplitudes in terms of structure without any indepen-
dent information. Assuming that the plume time evolution is
exponential, the measurement of the mode amplitude can nev-
ertheless easily put upper limits on each excitation process, by
ensuring that the predictions in each case remain lower than the
observations. As the solar gravity modes have not been detected
yet, we can similarly proceed by ensuring that the predictions
remain lower than the current detection threshold. Imposing that
vth & v

app
n`` for νn`m = 100 µHz and ` = 1 in the exponential case,

we find, using Eqs. (15), (18), (19) and (25), that for 22-year
GOLF observations

Fd,1

 Lp

L�

 (
νp

1 µHz

)3

. 10−6, (26)

where L� is the solar luminosity.
Although the potential of the gravity mode amplitudes to

probe penetrative convection is highlighted here, the present
work suggests that the current theoretical uncertainties on the
modeling of penetrative convection, and in particular on the
plume time evolution, would limit their physical interpreta-
tion. The issue of disentangling the contributions of differ-
ent sources to the excitation is especially brought to the fore.
Theoretical efforts, by means of numerical simulations and
semi-analytical models, and possible complementary observa-
tional constraints will be needed in the future to improve our
modeling of this phenomenon and to elaborate relevant and
robust seismic diagnoses to interpret the amplitude of gravity
modes.

5. Conclusions

In this work our aim was to estimate the amplitude of the
asymptotic solar gravity modes generated by penetrative con-
vection in the frequency range between 10 µHz and 100 µHz.
Following Pinçon et al. (2016), we considered the ram pres-
sure of an ensemble of incoherent, uniformly distributed convec-
tive plumes penetrating into the top layers of the radiative zone
as the driving mechanism. The forced oscillation equation was
solved in the global quasi-adiabatic approximation using a two-
timing method. As a result, we obtain an analytical expression of
the mean mode energy, which is converted into apparent radial
mode velocity through appropriate visibility factors. The stan-
dard plume modeling (i.e., plume radius, velocity, and lifetime)
follows semi-analytical models, and their time evolution in the
penetration region is assumed to be either Gaussian or exponen-
tial, by analogy with stochastic excitation by turbulent eddies.
The apparent mode radial velocity is computed for a solar model
in both cases and the result is compared to the 22-year GOLF
detection threshold.

We find that the mean mode energy drastically depends on
the assumption about the time evolution of the plumes inside
the penetration region. On the one hand, in the limiting case

of a Gaussian time evolution, asymptotic gravity modes turn
out to be undetectable by means of radial velocity measure-
ments such as those performed by the GOLF instrument. This
is the consequence of a plume lifetime that is too long com-
pared to the oscillation period. This result holds true despite a
wide range of values considered for the parameters of the model.
In the other limiting case of an exponential time evolution we
find that penetrative convection can generate gravity modes in
a much more efficient way than in the Gaussian case. In this
case, the lower the angular degree or the higher the frequency,
the larger the apparent mode radial velocity. Using standard val-
ues for the plume parameters, the apparent radial mode velocity
appears to reach about 0.05 cm s−1 for ` = 1 and νn`m ≈ 100 µHz.
These predictions are one order of magnitude smaller than those
predicted considering turbulent pressure as the driving mecha-
nism, and remain well below the current 22-year GOLF detec-
tion threshold. Nevertheless, accounting for uncertainties in the
plume parameters, we find in the most favorable plausible case
that the predicted apparent mode radial velocity can be increased
by a factor of six, that is, around 0.3 cm s−1 for ` = 1 and
νn`m ≈ 100 µHz. The observation time required to detect such
a mode is reduced to about 50 yr with the GOLF instrument.
These variations mainly result from an important sensitivity of
the mode amplitude to the plume parameters, and, in contrast,
from a limited sensitivity of the detection threshold to the obser-
vation time. Our findings thus indicate that, in the most favorable
plausible case, penetrative convection can drive asymptotic grav-
ity modes as efficiently as turbulent convection and with ampli-
tudes close to the detection limit. We highlight that, if detected,
the measurement of the gravity mode amplitudes is expected
to bring constraints on penetrative convection, but that the cur-
rent uncertainties on the modeling of penetrative convection, and
in particular their temporal evolution, will certainly limit their
physical interpretation.

The results of this work call for further studies, either obser-
vational or theoretical. First, our estimate of the excitation by
penetrative plumes and the previous estimates of the excitation
by turbulent pressure clearly suggest that we are likely to be
very close to the detection in the asymptotic frequency range,
and encourage us to carry on our efforts in observations and data
analyses. While we mainly focused on the 22-year GOLF data,
we note that a myriad of other data is available, for instance
the observations by the GONG and BiSON ground-based tele-
scope networks, and are an important source of information to
be analyzed. Second, it will be interesting in the future to extend
the theoretical predictions to a higher frequency range. A simple
extrapolation of the available predictions toward slightly higher
frequencies suggests that the amplitudes of the gravity modes
in this domain are also likely to be close to the current detec-
tion limit. As already pointed out by Belkacem et al. (2011),
predicting the amplitude of such low radial order gravity modes
will require us to account consistently for the interplay between
oscillations and convection, which is challenging since it will
call for combining a proper non-local time-dependent treatment
of convection with a fully non-adiabatic treatment of pulsations.
Furthermore, new developments, based both on numerical sim-
ulations and semi-analytical models, are needed to improve our
understanding of the behavior of downward convective plumes at
the interface with the radiative region. Although it is still a chal-
lenge to accurately simulate stellar regimes, our hope is that the
promising combination of such theoretical advancements with
future measurements of the gravity mode amplitudes will bring
constraints on the dynamics and the mixing at work at the base
of the convective zone.
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Appendix A: Energy spectrum of plume-induced
gravity modes

In the following we derive the energy spectrum of asymptotic
gravity modes generated by penetrative convection. The mathe-
matical derivation largely uses and sometimes extends the anal-
ysis of stellar oscillations presented in Unno et al. (1989), and
also uses the model of Pinçon et al. (2016).

A.1. Forced oscillation equations

Following the model of Pinçon et al. (2016), the linearized
momentum, continuity, Poisson’s equations, and the equation of
state1 read

ρ ∂2
t ξ + ∇p′ − ρ′g + ρ∇ψ′ = −∇ · (ρVp ⊗Vp), (A.1)

δρ + ρ∇ · ξ = 0, (A.2)

∇2ψ′ = 4πGρ′, (A.3)
δρ

ρ
=

1
Γ1

δp
p
− vT

δS
cp
, (A.4)

where p and g are respectively the equilibrium pressure and
gravitational acceleration, ψ′ is the perturbation of the gravita-
tional potential, Γ1 is the first adiabatic index, G is the gravita-
tion constant, vT = −(∂ ln ρ/∂ ln T )p, and all the other quanti-
ties are introduced in Sect. 2.1. In these four equations, X′ and
δX denotes the Eulerian and Lagrangian perturbations of the
quantity X, respectively. Using the usual solution of Poisson’s
equation

ψ′(r, t) = −

∫
V

G
ρ′(x, t)
|r − x|

dV, (A.5)

where V is the stellar volume beyond which the stellar density
vanishes, as well as Eqs. (A.2) and (A.4), it is possible to rewrite
Eq. (A.1) in the form of Eq. (1) in which

L
nad

(
H
δS
cp

)
=

1
ρ
∇

(
Γ1vT p

δS
cp

)
, (A.6)

with H = −(dr/d ln T ) the temperature scale height and T the
equilibrium temperature, and whereLad is the adiabatic differen-
tial linear operator defined as (e.g., Chandrasekhar 1964; Unno
et al. 1989, see Chap. 14.3 for details)

L
ad (ξ) =

∇p
ρ2 ∇ · (ρξ) −

1
ρ
∇ (ξ · ∇p) −

1
ρ
∇

(
ρc2
∇ · ξ

)
+ ∇

(∫
V

G
∇x ·

[
ρ(x)ξ(x)

]
|r − x|

dx3
)
, (A.7)

with c2 = Γ1 p/ρ the squared sound speed. We note that H has
been introduced in Eq. (A.6) forLnad to represent the same phys-
ical quantity as Lad (i.e., a squared frequency). Equation (1) has
to be completed by the energy equation that specifies the evolu-
tion of δS. Neglecting the contribution of the convective flux for
asymptotic gravity modes (Belkacem et al. 2009) and the nuclear
energy production rate in the considered layers, it reads

T∂tδS = − δ

(
1
ρ
∇ · FR

)
, (A.8)

where FR is the radiative flux.
1 The Lagrangian variation of the mean molecular weight is usually
neglected because the microscopic diffusion and nuclear timescales are
supposed to be much longer than the oscillation timescale.

A.2. Mode amplitude

A.2.1. Energy equation in the diffusion approximation

At this stage the oscillation equations are represented by Eqs. (1)
and (A.8). Furthermore, we thus need to express the Lagrangian
perturbation of the radiative flux. In the diffusion approximation
the radiative flux is equal to

FR = −ρcpKrad∇T = −
16σSBT 3

3ρκ
∇T, (A.9)

where Krad is the radiative diffusivity, σSB is the Stefan-
Boltzmann constant, and κ is the Rosseland mean opacity. Per-
turbing this equation and replacing δρ/ρ by −∇ ·ξ, Eq. (A.8) can
be rewritten

∂t

(
δS
cp

)
= −

1
ρcpT

∇ ·

[
−FRH∇

(
δT
T

)
+

(
4
δT
T

+ ∇ · ξ −
δκ

κ

)
FR

]
+

1
ρcpT

∇ ·
[
∇ (FR · ξ) − ξ (∇ · FR)

]
, (A.10)

where FR = FRer is the radial equilibrium radiative flux. We
note that the right-hand side of Eq. (A.10) is equivalent to the
right-hand side of Eq. (21.14) of Unno et al. (1989) with δεN =
0. Considering the equation of state T (S , ρ) and the opacity table
κ(T, ρ) while using the continuity equation, it becomes
δT
T

= γ
δS
cp
− Γ1∇ad∇ · ξ (A.11)

δκ

κ
= γκT

δS
cp
−

(
κT Γ1∇ad + κρ

)
∇ · ξ, (A.12)

where γ = cp/cV , with cp and cV the specific heat capacities
at constant pressure and volume, respectively; ∇ad is the adi-
abatic temperature gradient; κT = (∂ ln κ/∂ ln T )ρ; and κρ =
(∂ ln κ/∂ ln ρ)T . Using Eqs. (A.11) and (A.12) in Eq. (A.10), the
evolution of the Lagrangian perturbation of entropy is ruled by

∂t

(
δS
cp

)
=

1
tR

[
Lnad1

(
ξ

H

)
+Lnad2

(
δS
cp

)]
, (A.13)

where we have introduced the local radiative thermal timescale

tR =
ρcpT H

FR
, (A.14)

and where Lnad1 and Lnad2 are two linear operators that involve
derivatives with respect to the normalized variable r/H and
whose expressions can be readily deduced from Eqs. (A.10)–
(A.12).

A.2.2. Local scaling of the oscillation equations

Before going further, it is instructive to express locally the oscil-
lation equations in a dimensionless form. In the following we
focus on a mode with a characteristic angular frequency and
a local wavelength denoted σ and λ(r, σ), respectively. The
dynamical timescale is thus defined as tdyn ≡ σ

−1. First, accord-
ing to Eq. (4), the local norm of the Lad operator2 is equal to
2 In this paper the local norm of a linear operator L acting on a vector
X(r) in the vicinity of a point r0 is defined as

NX(r0) = max
r∈C0

(
|L[X(r)]|
|X(r)|

)
, (A.15)

where (| · |) is the modulus and C0 represents the volume of the sphere of
center r0 with a radius equal to the local characteristic wavelength λ(r0)
of the vector X, excluding the nodes where X(r) = 0.
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σ2 for such a mode. Owing to the place of Lnad in Eq. (1), it
seems reasonable to assume that its norm also scales as σ2. This
hypothesis is checked a posteriori in Sect. A.3.4. Equation (1)
can thus be rewritten as

∂2
τξ + L̃

ad
(ξ) + L̃

nad
(
H
δS
cp

)
= −

1
ρσ2∇ · (ρVp ⊗Vp), (A.16)

where we have defined τ = t/tdyn and the differential opera-

tors L̃
ad

= σ−2Lad and L̃
nad

= σ−2Lnad such that their norms
remain on the order of unity. Second, regarding the energy equa-
tion, we first note that, owing to the incompressible character
of the asymptotic low-frequency gravity modes (e.g., Dintrans
& Rieutord 2001),

∇ · ξ = O
(
|ξ|/H

)
, (A.17)

where the big-O Bachmann-Landau notation is introduced. As
Lnad1 and Lnad2 in Eq. (A.13) involve third-order and second-
order derivatives at most with respect to r/H of ∇ · ξ and δS/cp,
respectively, their norms thus at most scale as (H2/λ2) since
λ . H and Eq. (A.17) are met within the asymptotic limit. Equa-
tion (A.13) can hence be locally expressed as

∂τ

(
δS
cp

)
= εσ

[
L̃nad1

(
ξ

H

)
+ L̃nad2

(
δS
cp

)]
. (A.18)

In this equation, we have defined

εσ(r) ≡
tdyn

tdamp(r, σ)
and L̃nadk ≡

λ2(r, σ)
H2(r)

Lnadk (A.19)

in such a way that the norms of L̃nadk for k = 1, 2 also remain on
the order of unity, and where we can identify the local damping
timescale as

tdamp(r, σ) ≡
λ2(r, σ)
H2(r)

tR(r). (A.20)

A.2.3. Globally quasi-adiabatic oscillations

At this point, we focus on a component (n, `,m) with the ampli-
tude an`m(t) and the frequency ωn`m, and fix σ = ωn`m and
εσ ≡ εn`m. According to Eq. (A.18), δS locally scales as

δS
cp

= O

(
εn`m
|ξn`m|

H

)
. (A.21)

In a given frequency range around ωn`m the damping timescale
is expected to be much longer than the oscillation period almost
everywhere in the star. As a result, εn`m � 1 and δS/cp �

|ξn`m|/H. In the limit of εn`m → 0, δS → 0 and the problem
locally tends toward the adiabatic case. Nevertheless, there obvi-
ously exists a very thin near-surface layer where εn`m � 1 and
the quasi-adiabatic approximation locally fails, so that the order-
ing in Eq. (A.21) is not met. Therefore, in order to reason from a
global point of view, we define the global damping timescale as
the inverse of the harmonic mean of the local damping timescale
throughout the star weighted by the local mode energy, that is,

T−1
damp ≡

1
Mn`m

∫
V

t−1
damp ρξn`m · ξ

?
n`mdV, (A.22)

where Tdamp has to be related to the local wavelength of ξn`m
through Eqs. (A.20) and (A.22), and where Mn`m is the mode

mass defined in Eq. (6). In the following we thus assume that the
oscillations are globally quasi-adiabatic, that is,

δn`m ≡ tdyn/Tdamp � 1. (A.23)

For convenience, we also define the quantity

χn`m =Mn`mδn`m. (A.24)

The global quasi-adiabatic approximation expressed by
Eq. (A.23) will greatly ease the derivation of the mode
amplitude, as we show here.

Taking the derivative of Eq. (A.16) with respect to τ, inject-
ing Eqs. (3) and (A.18) into the obtained expression, and com-
puting the inner product with ξ?n`m, we obtain a differential equa-
tion ruling the mode amplitude an`m(τ). We point out that, owing
to the spherical symmetry of the star, the inner product with ξ?n`m
selects the angular degree ` and the azimuthal number m in the
expansion of the perturbations onto the orthonormal basis of the
spherical harmonics (see, e.g., the definitions of the differential
operators). Therefore, the subscript `m is often dropped to sim-
plify the notation in what follows. The amplitude equation finally
reads, at first order in δn,

∂3
τan + ∂τan − 2δn

η̃nnan +
∑
n′,n

η̃nn′an′

 = ∂τF̃n + O(δ2
n), (A.25)

where

η̃nn′ = −
1

2χn`m

∫
V
ρξ?n`m · L̃

nad
[
Hεn′`mL̃

nad1
(
ξn′`m

H

)]
dV, (A.26)

F̃n = −
1

ω2
n`mMn`m

∫
V
∇ · (ρVp ⊗Vp) · ξ?n`mdV. (A.27)

The second-order term in Eq. (A.25) is related to the Lagrangian
perturbation of entropy and results from the scaling in Eq. (A.21)
and the global quasi-adiabatic hypothesis in Eq. (A.23). In addi-
tion, the product δnη̃nn stands for the damping rate (in terms of
the τ variable). In contrast, the sum in the brackets on the left-
hand side of Eq. (A.25) encapsulates coupling terms between the
components n and n′ , n. Such coupling terms result, by con-
struction, from the expansion onto the eigenfunctions of the Lad

operator as they are not natural solutions of the non-adiabatic
problem. When writing Eq. (A.25), we have implicitly assumed
η̃nn′ = O(1). As shown in Eq. (A.26), the integral in the numera-
tor is at most on the order of χn`m since the norms of the opera-
tors are on the order of unity. Moreover, this integral corresponds
to the inner product between an oscillating radial function, with
n radial nodes and a characteristic wavelength λn, and another
oscillating radial function, with about n′ radial nodes and a char-
acteristic wavelength λn′ . For n′ ∼ n we therefore have |η̃nn′ | ∼ 1,
whereas for n′ � n or n′ � n both oscillating functions are
incoherent with each other and the inner product vanishes, that
is, |η̃nn′ | � 1. This justifies η̃nn′ = O(1).

A.2.4. Two-timing analysis

As shown by Eq. (A.25), the evolution of the mode amplitude
is ruled by a fast dynamical timescale, T0 = τ = t/tdyn, and
a slow damping timescale, T1 = δnτ = t/Tdamp. Using a two-
timing perturbation method therefore seems judicious to solve
analytically this equation (e.g., Kevorkian 1961). This method
can provide us with a uniformly valid solution up to a timescale
on the order of O(1/δn) in terms of the independent variable τ,
or equivalently O(Tdamp) in terms of the dependent variable t.
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Homogeneous equation. Taking advantage of the linearity
of the problem, we search in a first step for a general solution
of the homogeneous amplitude equation. For all n, we start from
the two-timing perturbation ansatz, that is,

an(τ) = a0
n(T0,T1) + δna1

n(T0,T1) + O(δ2
n), (A.28)

keeping in mind that τ, T0, and T1 also depend on n through the
scaling by 1/ωn`m. Injecting Eq. (A.28) into Eq. (A.25) and using
∂τ = ∂T0 + δn∂T1 via the chain rule, the homogeneous equation
reads at leading order in δn

∂3
T0

a0
n + ∂T0 a0

n = 0, (A.29)

and at first order in δn

∂3
T0

a1
n + ∂T0 a1

n +
(
3∂2

T0
∂T1 a0

n + ∂T1 a0
n − 2η̃nna0

n

)︸                                ︷︷                                ︸
Secular terms

= 2
∑
n′,n

η̃nn′a0
n′ . (A.30)

The general solution of Eq. (A.29) then reads

a0
n(T1,T0) = αn(T1)eiT0 + βn(T1)e−iT0 , (A.31)

where αn(T1) and βn(T1) are two functions to be determined
with the first-order equation. Using Eq. (A.31) in Eq. (A.30),
it is straightforward to show (e.g., via the method of variation of
parameters) that, if non-null, the terms in brackets will induce
terms proportional to τe±iτ in the expression of a1

n, up to a fac-
tor on the order of αn and βn. This will make a1

n on the order of
O(a0

n/δn) up to a timescale on the order ofO(1/δn) and, therefore,
would break the perturbation ansatz in Eq. (A.28). Therefore, to
obtain a uniformly valid expression up to such timescales, the
terms in brackets have to vanish. This condition leads to

αn(T1) = Ane−η̃nnT1 and βn(T1) = Bne−η̃nnT1 , (A.32)

with An and Bn two arbitrary constants. As a consequence, the
amplitude a1

n is ruled only by the coupling term on the right-hand
side of Eq. (A.30), which depends on the leading-order ampli-
tudes a0

n′ with n′ , n. For n′ , n, it is obvious that the ampli-
tudes follow the same zeroth-order and first-order equations as
in Eqs. (A.29) and (A.30); however, because of the considered
scaling, Tk for k = 0 or 1 in these equations are replaced by
T ′k = ωn′ t = $Tk with $ = (ωn′/ωn). As a result, we get

a0
n′ (T1,T0) = An′e−η̃n′n′$T1 ei$T0 + Bn′e−η̃n′n′$T1 e−i$T0 , (A.33)

where An′ and Bn′ are two arbitrary constants. According to
Eqs. (A.30)–(A.32) we thus find that a1

n is ruled at leading order
by

∂3
T0

a1
n + ∂T0 a1

n = 2
∑
n′,n

η̃nn′a0
n′ . (A.34)

Using again the method of variation of parameters, we can show
that the amplitude a1

n is equal to a series of terms as a function
of n′ that are O(η̃nn′a0

n′/|$ − 1|). At this point, we assume that
the magnitude of a0

n′ slowly varies with n′, so that it is O(a0
n)

for n′ ∼ n; this will be checked a posteriori (see the resulting
velocity amplitudes in Fig. 2). Provided η̃nn′ = O(1) for n ∼ n′
and η̃nn′ � 1 otherwise, as justified in Appendix A.2.3, the main
contribution to a1

n results from the terms of the series associated
with n′ ∼ n; as a result, a1

n = O(a0
nωn/∆ωn) with ∆ωn = |ωn −

ωn−1|. Within the asymptotic limit, ωn/∆ωn ∼ n � 1 and thus

a1
n � a0

n in order of magnitude. This highlights afterward that,
instead of δn, it is more appropriate to scale the non-adiabatic
perturbation of the mode amplitude by

δ̃n ≡ (ωn/∆ωn) δn, (A.35)

in such a way that the perturbation ansatz becomes

an(τ) = a0
n(T0,T1) + δ̃nã1

n(T0,T1) + O(δ̃2
n), (A.36)

and the new first-order perturbation ã1
n = O(a0

n). As a result, the
relative error when considering an ≈ a0

n up to a timescale on the
order of Tdamp is on the order of δ̃n. We check a posteriori at
the end of Sect. 3.1 that δ̃n � 1 in the considered asymptotic
frequency range. Therefore, all the previous perturbation devel-
opments, fortunately, hold true and the coupling terms do not
stand for secular terms. These terms thus have no effect on the
two-timing solution provided by a0

n, and are just responsible for
the relative error on the order of δ̃n.

In summary, provided that the mode amplitude slowly varies
with the radial order, the solution of the homogeneous equation
as a function of the variable t, which is uniformly valid up to a
timescale on the order of O(Tdamp), takes the form, according to
Eqs. (A.31) and (A.32), of the adiabatic solution modulated by
an exponential damping term, that is,

an(t) ≈ Ane+iωnt−ηnt + Bne−iωnt−ηnt, (A.37)

where the relative error is on the order of δ̃n and the damping
rate is equal to

ηn = ωnδnη̃nn , (A.38)

with δn and η̃nn defined in Appendix A.2.3.
Physically speaking, we note that the parameter δ̃n measures

the coupling induced by the non-adiabatic effects between adja-
cent harmonics in the decomposition onto the eigenfunctions
of the Lad operator. To show this, it is possible to express this
parameter in more sensible ways. On the one hand, the eigen-
frequencies of the adiabatic asymptotic gravity modes follow at
leading order (e.g., Shibahashi 1979; Tassoul 1980)

ωn ≈
2π

n∆Π`
, with ∆Π` =

2π2

√
`(` + 1)

(∫ rb

0
N

dr
r

)−1

, (A.39)

where ∆Π` is the so-called period-spacing, rb is the radius of
the base of the convective zone, and N is the Brunt-Väisälä fre-
quency defined as

N2 = g

(
1
Γ1

d ln p
dr
−

d ln ρ
dr

)
. (A.40)

Therefore, for n � 1 in the asymptotic regime, we have

∆ωn≈π

(∫ rb

0

kr

ωn
dr

)−1

with kr≈

√
`(` + 1)

r

(
N
ωn
− 1

)1/2

, (A.41)

where kr is the local radial wavenumber. As the radial group
velocity of gravity waves is about equal to ωn/kr (e.g., Unno
et al. 1989), Eq. (A.41) shows that ∆ωn ∼ 1/∆tcore, where ∆tcore
is the time spent by a wave energy ray of frequency ωn to cross
the radiative core. We thus obtain δ̃n ∼ ∆tcore/Tdamp. On the
other hand, using ηn ∼ 1/Tdamp according to our scaling, we
have δ̃n ∼ ηn/∆ωn. The hypothesis Eq. (12) is thus equivalent to
assuming that the width of each oscillation peak around an adia-
batic eigenfrequency is much smaller than the frequency spacing
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between two consecutive radial orders n and n + 1 in the power
oscillation spectrum.

Forced amplitude. In a second step, we search for the solu-
tion of the forced amplitude equation that is uniformly valid
up to timescales on the order of Tdamp and satisfies the initial
value condition an`m(−∞) = 0. Using the method of variation of
parameters, it is straightforward to show that this solution is

an(t) ≈ An(t)e+iωnt−ηnt + Bn(t)e−iωnt−ηnt, (A.42)

where An(t) is a function of time provided by Eq. (11) and
Bn(t) = An(t)?. As a check, Eq. (A.42) leads to

∂3
τan = ∂τF̃n − 2δnη̃nnanF̃n + O(δ2

n), (A.43)
∂τan = −2δnη̃nnan. (A.44)

Injecting Eqs. (A.43) and (A.44) in Eq. (A.25), we see that the
secular term represented by 2ηnnan cancel out and that the rela-
tive residual is on the order of δ̃n at most, as shown in the previ-
ous paragraph.

A.3. Mean mode energy within the asymptotic limit

Within the asymptotic limit, it is possible to use, to good approx-
imation, the leading-order WKB analytical expressions of the
eigenfunctions in order to express the mean mode energy in a
simple but sensible way.

A.3.1. General expression for the mean mode energy

Owing to the equipartition of the specific kinetic and potential
energies in the case of gravity waves (e.g., Lighthill 1978), we
define the mean total oscillation energy as

〈E〉 = lim
T→+∞

1
T

∫ +T/2

−T/2

(∫
V
ρ(r) |∂tξ(r, t)|2 dV

)
dt, (A.45)

where (〈·〉) is the (ensemble or time) mean operator and V repre-
sents the stellar volume.

To express Eq. (A.45) in a simple way, the same reasoning as
done in Sects. 2.2.1 and 2.2.2 of Pinçon et al. (2016) can be used.
While Pinçon et al. (2016) considered progressive wave pack-
ets propagating toward the center of the star and never returning
back upward, it is in contrast necessary in the present case to
consider the modal structure of the oscillations. The only differ-
ence is that, instead of considering that the lifetime of the wave
packet at a certain point of the radiative zone is on the order of
τp, as in Pinçon et al. (2016), we have to consider in the present
case that the lifetime of the mode oscillation is on the order of
Tdamp.

The reasoning is as follows. Owing to the linearity of the
wave equations, the displacement field at any time can be repre-
sented as the superposition of all the waves induced by each indi-
vidual plume. Each of these waves has a finite lifetime, which is
on the order of the damping timescale Tdamp. Over the time inter-
val [−T/2,T/2], it thus appears obvious that the set of waves
constituting ξ is generated by a finite number of plumes, denoted
NT . In the limit of T ≫ Tdamp, as the plume emerging rate
is constant and equal to N/τp, with τp the characteristic plume
lifetime, the number of penetrating plumes that contributes to
ξ in the time interval [−T/2,T/2] is equal at leading order to
NT ∼ NνpT , with νp = 1/τp. Because of the incoherence of
the convective plumes between each other, the wave velocity
fields generated by different plumes negatively interfere. Assum-
ing in addition that the excitation is a stationary process and

that the plumes are all identical and uniformly distributed over
the sphere, the time and volume integrals in Eq. (A.45) can be
written as the mode energy associated with the displacement
field ξ0(r, t; θ0, ϕ0) that is generated by one single plume pen-
etrating at t0 = 0 in the solid angle dΩ0 = sin θ0dθ0dϕ0 and
with the velocity Vp,0, multiplied by the number of penetrat-
ing plumes over [−T/2,T/2] (i.e., NT ∼ NνpT ), and finally
averaged over the plume angular position (θ0, ϕ0). Using the
Parseval-Plancherel theorem in the time Fourier space, the mean
mode energy can thus be expressed as

〈E〉 = N
νp

8π2

∫
V

∫
Ω0

(∫ +∞

−∞

ρ(r)
∣∣∣∣∂̂tξ0(r, ω; θ0, ϕ0)

∣∣∣∣2 dω
)

dΩ0 dV,

(A.46)

where the symbol (.̂) and ω respectively denotes the time Fourier
transform and the temporal angular frequency3. Equation (A.46)
can actually be retrieved through Eqs. (5) and (12) of Pinçon
et al. (2016), but integrated over the volume of the star in the
present case.

Furthermore, the mode displacement field ξ0 is expanded
onto the eigenfunctions of the Lad operator, similarly to Eq. (3),
except that the instantaneous amplitude is induced only by the
plume of velocity Vp,0, and thus depends on (θ0, ϕ0); it is
denoted an`m(t; θ0, ϕ0). Injecting such an expansion in Eq. (A.46)
and using the orthogonality property of the adiabatic eigenfunc-
tions, the mean total mode energy can be decomposed as

〈E〉 =

+∞∑
n=−∞

+∞∑
`=0

+∑̀
m=−`

〈En`m〉 , (A.47)

where 〈En`m〉 is the mean oscillation energy of the harmonic
(n, `,m),

〈En`m〉 =Mn`m V
2
n`m, (A.48)

withVn`m the root mean square mode amplitude that reads

V2
n`m = N

νp

8π2

∫
Ω0

∫ +∞

−∞

∣∣∣∂̂tan`m(ω; θ0, ϕ0)
∣∣∣2 dωdΩ0. (A.49)

To analytically express Eq. (A.49), it is thus sufficient to compute
the amplitude from Eqs. (10) and (11) considering the model of
plume velocity in Sect. 2.3.

A.3.2. Asymptotic form with our plume model

According to Sect. 2.3, we assume that the mode driving takes
place in the nearly adiabatically stratified penetration region of
length Lp where the plumes are braked by buoyancy. Based on
the asymptotic analysis of gravity modes by Shibahashi (1979),
the WKB expressions of the radial eigenfunctions of frequency
ωn`m, angular degree `, and azimuthal number m in the pen-
etration region are provided by Eq. (B.24) of Pinçon et al.
(2016), which corresponds to an evanescent wave up to a con-
stant Ac. In contrast, in the radiative zone, it is provided by the
sum of Eqs. (B.25) and (B.26), which corresponds to the sum
of a progressive and a regressive wave up to a complex con-
stant Ar. The constants Ar and Ac have to be chosen in such a
way to ensure the continuity of the radial and horizontal dis-
placements at rb. This is met if |Ar/Ac| ≈ (Nt/ωn`m)1/2 and
| arg(Ar)| ≈ ωn`/Nt � 1, in agreement with the more general

3 The time Fourier transform of a function X(r, t) is defined as
TF[X] = X̂(r, ω) =

∫ +∞

−∞
X(r, t) e−iωtdt.
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computations of Lecoanet & Quataert (2013) or Pinçon et al.
(2016).

First, using the WKB expressions of the eigenfunctions
described above, Eqs. (10), (11), (A.27) and (13), the mean
square mode velocity in Eq. (A.49) can be rewritten, after some
algebraic manipulations and the computation of the Fourier
transform of the mode amplitude, as

V2
n`m ≈

N

4ηn`mM
2
n`m

A2
c

ωn`m

√
`(` + 1)H2

` B` Cn`m, (A.50)

whereH` and B` represent the radial and horizontal correlations
between the plumes and the modes, whose expressions are pro-
vided by Eqs. (32)–(34) of Pinçon et al. (2016). The term Cn`m
represents the temporal correlation that reads

Cn`m =
ηn`mνp

π

∫ +∞

−∞

ω
∣∣∣∣ f̂ 2(ω)

∣∣∣∣2
(ω − ωn`m)2 + η2

n`m

dω, (A.51)

where we recall that f (t) is the plume time evolution profile.
We note that the constant Ac at the numerator of Eq. (A.50)
results from the inner product between the plume ram pressure
and the eigenmode in the penetration region where the driving is
assumed to be maximum (i.e., the volume integral in Eq. (A.27)
is reduced to this region). Second, using again the asymptotic
expression of the adiabatic eigenfunctions, and considering only
the contribution from the radiative core where most of the mode
energy is contained, the mode mass is equal at leading order to

Mn`m ≈ |Ar|
2
∫ rb

0
kr cos2

(∫ rb

r
krdr

)
dr ≈ |Ar|

2 nπ
2
, (A.52)

where we have used the quantization condition
∫ rb

0 krdr ≈
nπ (see, e.g., Godart et al. 2009, for a similar computation).
Finally, using Eqs. (A.50) and (A.52), the mean mode energy
in Eq. (A.48) becomes

〈En`m〉 ≈
N

2ηn`m

√
`(` + 1)
nπNt

H2
`B`Cn`m, (A.53)

where we have used the continuity condition |Ac/Ar|
2 = ωn`m/Nt.

Before going further, it is also instructive to express in a sim-
ple way the global damping timescale in Eq. (A.22) using
the asymptotic form of the eigenfunctions. As explained in
Sect. 2.2.2, we assume that the contribution from the upper
layers to the integral in Eq. (A.22) is negligible compared to
the contribution from the radiative cavity, as suggested by the
numerical computations of Belkacem et al. (2009). Similarly to
Eq. (A.52), in the asymptotic regime, ρ

∣∣∣ξn`m

∣∣∣2 locally scales as
|Ar|

2/λn`m, so that the global damping timescale can be reduced
to the expression

T−1
damp ≈

∫ rb

0 t−1
dampdr/λn`m∫ rb

0 dr/λn`m
. (A.54)

A.3.3. Temporal correlation Cn`m

The temporal correlation between the oscillation modes and the
plumes in Eq. (A.51) depends on the time evolution of the plume
in the driving zone. Using both the convolution and Cauchy’s
residue theorems, we find in the exponential limiting case for
f = fE

CE
n`m =

8ν2
p ωn`m (2νp + ηn`m)[

(2νp + ηn`m)2 + ω2
n`m

]2 , (A.55)

and in the Gaussian limiting case for f = fG

CG
n`m = πIm

{
ζe+ζ2 [

erf(ζ) − 1
] }
, (A.56)

where ζ = (ηn`m − iωn`m)/2νp, Im() denotes the imaginary part,
and erf() is the error function. When ηn`m � νp � ωn`m, we have
to a good approximation

CE
n`m ≈ 16

ν3
p

ω3
n`m

, (A.57)

which results from the contribution from the resonant frequen-
cies such as ω ∼ ωn`m to the integral in Eq. (A.51), and

CG
n`m ≈ π

ωn`m

2νp
e−ω

2
n`m/4ν

2
p +
√
π

8ν3
p

ω3
n`m

ηn`m

2νp
, (A.58)

where the first term results from the contribution from the high
frequencies such as ω ∼ ωn`m to the integral in Eq. (A.51), while
the second term results from the contribution from the low fre-
quencies such as ω . νp.

A.3.4. Damping rate

The expression of the damping rate ηn`m is provided by
Eq. (A.38). This expression is actually equivalent to the expres-
sion of the damping rate found by Godart et al. (2009) within
the quasi-adiabatic and asymptotic limits. Using our notation,
Eqs. (14) and (15) of Godart et al. (2009) can be rewritten in the
form (see also Sect. 5.4.2 of Pinçon 2017)

ηn`m ≈
[`(` + 1)]3/2

2ω3
n`m

1
nπ

∫ rb

0

H2

tR
N2

T N
dr
r3 , (A.59)

where H is the temperature scale height and NT is the part of
the Brunt-Väisälä frequency related to the temperature gradient
alone. According to Eqs. (A.39) and (A.41), Eq. (A.59) can be
formulated as

ηn`m ≈
1
2

∫ rb

0

H2

tR

`(` + 1)N2
T

ω2
n`mr2

N
dr
r∫ rb

0
N

dr
r

.
1
2

∫ rb

0

H2

tR
k2

r N
dr
r∫ rb

0
N

dr
r

, (A.60)

where we used N2
T ≤ N2 to write the inequality. Equa-

tion (A.60) shows that ηn`m ∝ `(` + 1)/ω2
n`m. Moreover, the

local damping timescale was defined as tdamp ∼ (λ/H)2 tR ∼
(krH)−2tR. Therefore, according to Eq. (A.54), ηn`m turns out to
be O(1/Tdamp). In addition, the comparison with the expression
given by Eqs. (A.22), (A.26) and (A.38) confirms a posteriori the
scaling of the norm of the Lnad operator as ω2

n`m and that of the
Lnad1 operators as H2/λ2, as assumed in Appendix A.2.2.

A.3.5. Simplified analytical expression

For small angular degrees, that is ` . rb/b ∼ 50 for the Sun,
which is sufficient for the present study, a very good analyti-
cal expression of B` is provided by Eq. (37) of Pinçon et al.
(2016). Moreover, within the large Péclet number regime, the
length of the penetration zone is expected to be much smaller
than the characteristic decay length of the mode toward the sur-
face. We recall that the mode is evanescent in this region and
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that its decay length is equal to rb/
√
`(` + 1) (e.g., Shibahashi

1979). As a consequence, the eigenfunctions slowly vary in the
penetration region and the radial gradient of the plume ram pres-
sure contained in H` can be seen as a Dirac function, so that
we have in a good approximation H2

l ≈ rbρbV4
b . Pinçon et al.

(2016) numerically demonstrated the validity of this simplifica-
tion. Using both simplifications for B` and H`, Eq. (A.53) can
be analytically expressed by Eq. (15).

Appendix B: Non-adiabatic mode displacement
basis

According to Chandrasekhar (1964) or Unno et al. (1989), the
eigenfunctions of the Lad operator in Eq. (1) form, at each time,
a complete basis of the displacement field over the stellar volume
V (i.e., beyond which the stellar density vanishes, the so-called
zero-boundary conditions) when the oscillations are adiabatic.
In this section we show that this holds true in the non-adiabatic
case.

To show this, limiting ourselves to non-rotating stars, it is
actually sufficient to demonstrate the hermicity of the Lad oper-
ator. To do so, we adapt the demonstration done in the adiabatic
case by Unno et al. (1989, see Chaps. 14.2 and 14.3) to the non-
adiabatic case. We consider two trial displacement fields, ξ and
ξ̃, that are solutions of the non-adiabatic oscillation equations
and that are expanded onto the spherical harmonics basis. First,
computing the dot product of Eq. (1) with ρξ̃?, where the super-
script star (?) denotes the complex conjugate, using the continu-
ity equation in Eq. (A.2), and integrating over the stellar volume,
we obtain

I =

∫
V
ρξ̃

?
· ∂2

t ξdV =

∫
V

(
−ρξ̃

?
·L

ad (ξ) + ρξ̃
?
· F

)
dV

−

∫
V
∇ ·

(
Γ1vT p

δS
cp
ξ̃
?
)

dV −
∫

V
Γ1vT p

δS
cp

δ̃ρ
?

ρ
dV, (B.1)

where F represents a given forcing term. Second, computing the
dot product of Eq. (A.1) with ρξ̃

?, and then proceeding as in
Eq. (14.18) of Unno et al. (1989), i.e., expressing the left-hand
side of the obtained expression in a flux-conservative form, using
Eqs. (A.2) and (A.3), the hydrostatic equilibrium equation, as
well as the equation of state in Eq. (A.4) rewritten as

ρ′

ρ
=

p′

ρc2 + ξr
N2

g
− vT

δS
cp
, (B.2)

with N2 the square Brunt-Väisälä frequency provided in
Eq. (A.40) and ξr the radial displacement, we obtain after some
algebraic manipulations

I = −

∫
V

(
p̃′?p′

ρc2 + N2ρξ̃?r ξr −
∇ψ̃′? · ∇ψ′

4πG
− ρξ̃

?
· F

)
dV

−

∫
V
∇ ·

(
p′ξ̃? + ρψ′ξ̃

?
)

dV −
∫

V
∇ ·

(
ψ′∇ψ̃′?

4πG

)
dV

+

∫
V

p′vT
δ̃S

?

cp
− ξ̃?r

dp
dr
vT
δS
cp

 dV. (B.3)

Owing to the zero-boundary conditions, the second integrals in
Eqs. (B.1) and (B.3) vanish in virtue of the Green-Ostrogradsky
theorem. Therefore, equating Eq. (B.1) with Eq. (B.3) and

replacing δ̃ρ by Eq. (A.4), we find∫
V
ρξ̃

?
·L

ad (ξ) dV =

∫
V

(
p̃′?p′

ρc2 + N2ρξ̃?r ξr −
∇ψ̃′? · ∇ψ′

4πG

)
dV

−
∑
`,m

(` + 1)
4πG

[
rψ′`m(r)ψ̃′?`m(r)

]
r=RV

+

∫
V

Γ1v
2
T p
δ̃S

?
δS

c2
p
− vT

p′
δ̃S

?

cp
+
δS
cp

p̃′?
 dV, (B.4)

where ψ`m are the radial functions of the perturbation of the grav-
itational potential according to the expansion on the orthonor-
mal spherical harmonics, and RV is the radius of the sphere
of volume V . The first integral and the sum on the right-hand
side of Eq. (B.4) correspond to the expression found by Unno
et al. (1989) within the adiabatic hypothesis, the last term of
which results from the zero-boundary conditions at r = RV , i.e.,
(dψ`m/dr) = −(`+ 1)ψ`m/r according to Poisson’s equation with
a null density. In contrast, the last integral on the right-hand side
of Eq. (B.4) results from the non-adiabatic effects. Despite this
difference, Eq. (B.4) remains symmetric with respect to ξ̃? and
ξ:∫

V
ρξ̃

?
·L

ad (ξ) dV =

∫
V
ρLad

(
ξ̃
?
)
· ξdV. (B.5)

Therefore, Lad is Hermitian in the non-adiabatic case as well.
According to the spectral theorem, the set of the eigenfunctions
of Lad also forms a basis of the displacement field over V in the
non-adiabatic case. From Eq. (B.5) and the eigenvalue relation
in Eq. (4), it is straightforward to demonstrate that these eigen-
functions are orthogonal.

Appendix C: Mean mode radial velocity

In this section we briefly summarize the computation of
the mean apparent surface velocity following Appendix C in
Belkacem et al. (2009).

First, we recall that in the slow rotation limit, which is valid
for the considered frequency range in the Sun, the eigenfrequen-
cies are slightly shifted as a function of ` and m around the
value predicted in the non-rotating case (e.g., Ledoux 1951). The
oscillation power spectrum of the solar gravity modes is thus
composed of a forest of peaks, each of them associated with a
tuple (n, `,m). It is thus necessary to compute the mean apparent
radial velocity for all these components. However, for the sake
of simplicity, the computation is made to a first approximation
by neglecting the effect of rotation on the spatial shape of the
mode. Therefore, we assume the total mode displacement field
ξ can still be expanded onto the eigenfunctions computed in the
non-rotating case, that is,

ξ(r, t) =

+∞∑
n=−∞

+∞∑
`=0

+∑̀
m=−`

ãn`m(t) ξn`m(r, θ, ϕ) , (C.1)

where ãn`m(t) is an instantaneous amplitude, ξn`m is normalized
by the value of the radial displacement at the photosphere, and
(r, θ, ϕ) is the spherical coordinate system in the observer’s frame
such that the polar axis (i.e., θ = 0) corresponds to the direction
of the stellar rotation axis and the origin (i.e., r = 0) corresponds
to the stellar center. Under this approximation, the velocity
component associated with the tuple (n, `,m) is thus merely
equal to

un`m(r, t) = ∂tãn`m(t) ξn`m(r). (C.2)

A47, page 17 of 18



A&A 650, A47 (2021)

Second, we define a spherical coordinate system (r,Θ,Φ) in
the observer’s frame whose origin (i.e., r = 0) corresponds to the
star center and the polar axis (i.e., Θ = 0) is directed toward the
observer. Given the large distance from the observer, the direc-
tion of the line of sight can be considered equal to the unit vec-
tor n parallel to the polar axis. Moreover, owing to the small
amplitudes of the oscillations near the stellar surface, the shell in
which the considered absorption line forms remains undeformed
at first order. Within this framework, each infinitesimal surface
element d2S abs of the absorption shell emits a number propor-
tional to d2Nλ = h(µ) µ d2S abs of photons at wavelength λ and
per unit of time toward the observer, where µ = cos Θ, h(µ) is
the limb-darkening function, d2S abs = r2

abs dµ dΦ, and rabs is
the radius of the considered shell. The mean radial velocity is
therefore defined as the average of the radial velocity over the
disk weighted by the number of photons received by the observer
from each point of its surface (e.g. Dziembowski 1977a):

vrad
n`m =

∫ 1
0

∫ 2π
0 [un`m(rabs,Θ,Φ, t) · n] h(µ)µr2

absdµdΦ∫ 1
0

∫ 2π
0 h(µ)µr2

absdµdΦ
. (C.3)

To go a step further, the mean apparent velocity is defined as
the statistical or, equivalently for an ergodic process, time aver-
age quantity:

v
app
n`m =

√
〈vrad

n`m
2
〉. (C.4)

Using Eqs. (C.2) and (C.3) and following all the derivation steps
in Appendix C of Belkacem et al. (2009), it is straightforward to
show that Eq. (C.4) is equal to

v
app
n`m =

√〈
(∂tãn`m)2

〉 ∣∣∣αm
` ξ

r
n`m(rabs) + βm

` ξ
h
n`m(rabs)

∣∣∣ , (C.5)

with

αm
` = Nm

`

∣∣∣Pm
` (cos Θ0)

∣∣∣ u`, (C.6)

βm
` = Nm

`

∣∣∣Pm
` (cos Θ0))

∣∣∣ v`, (C.7)

where Θ0 is the angle between the rotation axis and the line of
sight, Pm

` (µ) is the associated Legendre polynomial, and Nm
` , u`,

and v` are defined by

Nm
` =

√
2` + 1

4π

√
(` − m)!
(` + m)!

, (C.8)

u` =

∫ 1

0
µ2h̃(µ)P`(µ)dµ, (C.9)

v` = `

∫ 1

0
µh̃(µ)

[
P`−1(µ) − µP`(µ)

]
dµ, (C.10)

in which the h̃(µ) function must be replaced by the properly nor-
malized limb darkening function, that is,

h̃(µ) =
h(µ)∫ 1

0 h(µ)µdµ
. (C.11)

Finally, according to Eq. (C.1) and the orthogonality of the
eigenfunctions, it is straightforward to show that the mean square
amplitude is provided by〈
(∂tãn`m)2

〉
=
〈En`m〉

Mn`m
, (C.12)

where 〈En`m〉 is the mean mode energy for the tuple (n, `,m)
given in Eq. (A.48) andMn`m is the mode mass in Eq. (6). There-
fore, the apparent velocity in Eq. (C.5) can be rewritten as in
Eqs. (19) and (20).

Appendix D: GOLF detection threshold

According to Appourchaux et al. (2000), the threshold signal-to-
noise ratio above which a peak over a frequency interval ∆ f in
the power spectral density (PSD) can be considered a statistically
relevant signal is equal to

sth

s̃
≈ ln

(
T∆ f
pth

)
, (D.1)

where s̃ is the mean noise level over ∆ f and pth is the false
alarm probability that the measurement is due to pure noise. We
note that the frequency interval ∆ f in Eq. (D.1) must be small
enough for the PSD to remain about constant over this range, but
large enough for the number of frequency bins inside to be high
enough. The mean noise level between 10 µHz and 100 µHz can
be estimated in a simple way, for example, through the analysis
of the 10-year GOLF data of García et al. (2007, see Fig. S1.):

s̃ ∼ 3 103
(

ν

25 µHz

)−3/4

m2 s−2 Hz−1. (D.2)

The value of the PSD at the level of detection (i.e., sth) can
then be converted into a threshold value vth for the root mean
square velocity by integrating the PSD over one frequency bin
of width 1/T and computing the square root of the result, lead-
ing to Eq. (25). We note that the expression of the mean noise
level provided in Eq. (D.2) is sufficient for our purpose since
the threshold velocity depends on s̃ only to the power 1/2,
and thus is little impacted by the error made with our simple
estimate of the magnitude and the frequency exponent in this
expression.
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