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ABSTRACT

Context. With the rapid development of asteroseismology thanks to space-based photometry missions such as CoRoT, Kepler, TESS,
and in the future, PLATO, and the use of inversion techniques, quasi-model-independent constraints on the stellar properties can be
extracted from a given stellar oscillation spectrum. In this context, inversions based on frequency separation ratios, which are less
sensitive to surface effects, appear as a promising technique to constrain the properties of stellar convective cores.
Aims. We developed an inversion based on frequency separation ratios, with the goal of damping the surface effects of the oscillation
frequencies. Using this new inversion, we defined a new indicator to constrain the boundary mixing properties of convective cores in
solar-like oscillators.
Methods. We verified our inversion technique by conducting tests in a controlled environment, where the stellar mass and radius were
known exactly, and conducted an extensive hare and hounds exercise.
Results. The inversion is not affected by surface effects. With the construction of an extensive set of models, favoured and forbidden
regions can be highlighted in the parameter space. If the ratios are well fitted, unsurprisingly the inversion does not provide any
additional information.
Conclusions. The indicator, coupled with the inversion based on frequency separation ratios, seems promising at probing the proper-
ties of convective cores, especially for F-type stars exhibiting solar-like oscillations.
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1. Introduction

In the last two decades, the space-based photometry missions
CoRoT (Baglin et al. 2009), Kepler (Borucki et al. 2010), and
TESS (Ricker et al. 2015) were launched, enabling a rapid devel-
opment of asteroseismology. Further progress is also expected
from the future PLATO mission (Rauer et al. 2014). The qual-
ity of the data from these missions made possible the use of
so-called seismic inversion techniques, which had previously
been applied with tremendous success in helioseismology (see
Buldgen et al. 2019a; Christensen-Dalsgaard 2021, for recent
reviews). The situation for asteroseismology is, however, very
different from that of the Sun, as geometric cancellation forbids
the detection of modes with angular degrees higher than three
for solar-like oscillators. This limits the available data sets to
about 50 frequencies at best, whereas thousands of modes are
observed for the Sun. As a consequence, the philosophy of inver-
sions was reoriented. Indeed, the classical inversions for the Sun
are local inversions that can scan through its entire structure,
but they require a large set of frequencies in order to be effi-
cient. This can only be achieved for the best asteroseismic targets
(e.g. 16CygA and 16CygB, Bellinger et al. 2017, 2019, 2021;
Buldgen et al. 2022), and with the limitation that the information
can only be extracted for the deep layers. Therefore, inversions
based on so-called indicators were developed (Reese et al. 2012;
Buldgen et al. 2015a,b, 2018), and applied to various cases (e.g.
Buldgen et al. 2016a,b, 2017a, 2019b,c; Bétrisey et al. 2022).
The idea was to concentrate all the information of the frequency

spectrum to conduct a global inversion that constrains a global
quantity, the indicator (e.g. the mean density).

In this work, we are interested in the entropy profile in the
central adiabatic convective regions to put some constraints on
the properties of the convective core. With the current inver-
sions based on individual frequencies, a large number of them
are required, especially at various harmonic degrees. In addi-
tion, a very accurate characterisation of the mass and radius
is also needed (Buldgen et al. 2017b). Entropy inversions were
conducted for the Sun (Buldgen et al. 2017c), and for the
16Cyg binary system (Buldgen et al. 2022) using the indica-
tors defined in Buldgen et al. (2018). However, even though
the 16Cyg system is one of the best Kepler asteroseismic tar-
gets, Buldgen et al. (2022) found that no additional informa-
tion about the central entropy could be extracted for 16CygB.
In addition, inversions based on individual frequencies are sen-
sitive to the surface regions, which is a limiting factor given
that the near-surface effects are poorly modelled. In the case
of 16CygA, the surface effects and the quality of the refer-
ence models prevented Buldgen et al. (2022) from extracting
new constraints on the central entropy. Therefore, we chose to
develop a new indicator based on frequency separation ratios
instead of individual frequencies, with the aim of carrying out
inversions of solar-like stars presenting convective cores. Indeed,
frequency separation ratios are defined to damp surface effects
(Roxburgh & Vorontsov 2003) and are more efficient at probing
central stellar regions (Otí Floranes et al. 2005). Furthermore,
Deheuvels et al. (2016) and Farnir et al. (2019) have shown that
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frequency separation ratios could be used to constrain the extent
of convective cores in solar-like oscillators.

In Sect. 2, we recall the state-of-the-art of indicator-based
inversions using individual frequencies, and introduce a new
inversion based on frequency separation ratios. In Sect. 3, we
define a new indicator that probes central stellar regions and test
it in a controlled environment. In Sect. 4, we conduct a hare and
hounds exercise to simulate how the indicator would behave with
a real observed target. Finally, in Sect. 5, we draw the conclu-
sions of our study.

2. Theoretical considerations

In the inversion community, the following terminology is gener-
ally applied. The inversion aims to retrieve the properties of an
‘observed’ or ‘target’ model, which can either be a real obser-
vation or a synthetic target. To this end, the inversion takes a
‘reference’ model as an input, which is the result of a modelling
procedure, and gives a small correction that is added to a quantity
of interest computed from the reference model as an output. For
simplicity in this manuscript, an ‘inverted’ quantity is defined
as the quantity of interest that includes the correction from the
inversion.

2.1. State-of-the-art of individual frequencies

The structure inversion equation is based on a perturba-
tive analysis of the stellar oscillations at linear order. This
approach is motivated by the work of Lynden-Bell & Ostriker
(1967) and their predecessors (see e.g. Chandrasekhar 1964;
Chandrasekhar & Lebovitz 1964; Clement 1964), who showed
that the equation of motion fulfils a variational principle.
In the case of individual frequencies, the frequency per-
turbation is directly related to the structural perturbation
(Dziembowski et al. 1990):

δνn,l

νn,l =

∫ R

0
Kn,l

a,b
δa
a

dr +

∫ R

0
Kn,l

b,a
δb
b

dr + O(δ2), (1)

with ν the oscillation frequency, n the radial order, l the harmonic
degree, a and b two structural variables, Kn,l

a,b and Kn,l
b,a the struc-

tural kernels, and using the definition

δx
x

=
xobs − xref

xref
, (2)

where the index ref stands for reference, and obs stands for
observed. Historically, Eq. (1) was derived for the sound speed
and density structural pair (c2, ρ), but the equation can be gener-
alised to any combination of physical quantities appearing in the
adiabatic oscillation equations (Elliott 1996; Kosovichev 2011;
Buldgen et al. 2017b).

Given the frequency differences, the idea is then to solve
Eq. (1) to have access to the structure differences and compute a
global integrated quantity, the so-called indicator t (e.g. the mean
density), which concentrates all the information of the frequency
spectrum. The general form of the indicator is

t =

∫ R

0
f (r)g(a)h(b)dr, (3)

where f is a weight function that depends on the radius, and
g and h are two functions of the structural variables. Except in
rarer cases (see e.g. Buldgen et al. 2015a), h(b) is set to one,

and the indicator is only a function of one of the structural vari-
ables. In practice, the options for g are limited, because the tar-
get function Tt in Eq. (4) must be reproducible with the number
of modes available in asteroseismology. Therefore, simple func-
tions such as g(a) = a, g(a) = 1/a, etc. are good candidates.
A more detailed explanation of the determination of f and g is
provided in Sect. 3, where we define the indicator used in this
work.

This approach has the advantage of being quasi-model inde-
pendent because it does not rely on the physics assumed to gen-
erate the reference model that serves as starting point for the
inversion. In addition, the inversion is also quasi-independent
from the starting point in the sense that, if we start from another
point in the parameter space, the inversion will still correct
towards the exact value.

The inversion can be performed with the subtractive opti-
mally localised averages (SOLA) method (Pijpers & Thompson
1994). This minimisation technique is an adaptation of the OLA
approach of Backus & Gilbert (1968, 1970), and allows the
inversion to be conducted in a numerically more efficient way.
In practice, for a given indicator t, the following cost function is
minimised:

Jt(ci) =

∫ 1

0

(
Kavg − Tt

)2dx + β

∫ 1

0
K2

crossdx + λ

k −∑
i

ci


+ tan θ

∑
i(ciσi)2

〈σ2〉
+ FSurf(ν), (4)

where the averaging and cross-term kernels are related to the
structural kernels,

Kavg =
∑

i

ciKi
a,b, (5)

Kcross =
∑

i

ciKi
b,a. (6)

The normalisation k depends on the properties of the indicator.
The balance between the amplitudes of the different terms during
the fitting is adjusted with trade-off parameters, β and θ. Here,
the idea is to provide a good fit of the target function Tt while
reducing the contribution of the cross-term and of the observa-
tional errors to the individual frequencies. We introduce a short
notation for the identification pair of a frequency, i ≡ (n, l). The
1σ uncertainty of the relative frequency differences is denoted by
σi, and 〈σ2〉 =

∑N
i σ

2
i is defined, with N the number of observed

frequencies. The variable λ is a Lagrange multiplier, and ci are
the inversion coefficients.

The function FSurf(ν) is an empirical term to describe the sur-
face effects. Besides introducing additional free parameters in
the minimisation at the expense of the fit of the target function,
the treatment of the surface effects constitutes a limitation of the
inversion. Indeed, structural kernels based on individual frequen-
cies have a large amplitude in the surface regions, as shown in
the upper panel of Fig. 1, and are therefore sensitive to the treat-
ment of these layers. In practice, this limitation can be translated
into a systematic uncertainty (see e.g. Bétrisey et al. 2022), but it
can become significant enough to prevent the inversion of from
correcting accurately.

2.2. Adaptation for frequency separation ratios

Roxburgh & Vorontsov (2003) introduced frequency separation
ratios to damp surface effects. They are defined as the ratio of
the small frequency separations divided by the large frequency
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separations. Because the modes with a higher harmonic degree
than l = 2 are difficult to observe in asteroseismology, we only
consider the following ratios:

r01(n) =
d01(n)
∆1(n)

, (7)

r10(n) =
d10(n)

∆0(n + 1)
, (8)

r02(n) =
d02(n)
∆1(n)

, (9)

where ∆l(n) are the large separations, and dxy(n) are the small
separations:

∆l(n) = νn,l − νn−1,l, (10)

d01(n) =
1
8

(
νn−1,0 − 4νn−1,1 + 6νn,0 − 4νn,1 + νn+1,0

)
, (11)

d10(n) = −
1
8

(
νn−1,1 − 4νn,0 + 6νn,1 − 4νn+1,0 + νn+1,1

)
, (12)

d02(n) = νn,0 − νn−1,2. (13)

The first version of a kernel of a ratio was presented in
Otí Floranes et al. (2005), with the introduction of the r02 ker-
nels, and modulo a different scaling than in this work. We present
here the derivation of the r01 kernels. The derivations for the r10
and r02 kernels can be found in Appendix A. As for the indi-
vidual frequencies, the relative differences of the ratios can be
related to the structure differences

δr01

r01
(n) =

δd01(n)
d01(n)

−
δ∆1(n)
∆1(n)

, (14)

=

∫ R

0

(
Kr01

a,b(n)
δa
a

+ Kr01
b,a(n)

δb
b

)
dr + O(δ2). (15)

Because a frequency ratio is a linear combination of individ-
ual frequencies, its kernel is a linear combination of the struc-
tural kernels of the frequencies used in the definition of the
ratio. For example, the r01 kernels are the result of the following
combination:

Kr01
a,b (n) =

νn−1,0Kn−1,0
a,b − 4νn−1,1Kn−1,1

a,b + 6νn,0Kn,0
a,b − 4νn,1Kn,1

a,b + νn+1,0Kn+1,0
a,b

νn−1,0 − 4νn,1 + 6νn,0 − 4νn,1 + νn+1,0

−
νn,1Kn,1

a,b − νn−1,1Kn−1,1
a,b

νn,1 − νn−1,1
. (16)

The kernels Kr01
b,a(n) are computed by switching a and b in the

previous expression.
Figure 1 shows a comparison of the kernels for the individ-

ual frequencies and for the frequency separation ratios, for a
1.3 M� star (model 1.3MoAGSS from Sect. 3.2). The frequency
kernels have a large amplitude at the surface of the star, and are
therefore well suited to probe this region, but sensitive to sur-
face effects. On the contrary, ratio kernels have an amplitude
that is damped at the surface, suppressing the surface effects.
In addition, they have a larger amplitude in the central stellar
regions, allowing these regions to be probed more efficiently. We
chose to display the kernels of the structural pair (c2, ρ) because
it nicely illustrates this behaviour, but in practice, another struc-
tural pair should be used. Indeed, the form of these kernels is
not adapted with our indicator, and the contribution of the cross-
term is important for this structural pair. For inversions based on
frequency separation ratios, structural pairs such as (S 5/3,Y) or
(S 5/3,Γ1) are better suited. The variable S 5/3 = P/ρ5/3 is a proxy
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Fig. 1. Frequency kernels versus ratio kernels of the model 1.3MoAGSS
from Sect. 3.1. For both panels, we show the kernel amplitude as a func-
tion of the position, and for the structural variable pair (c2, ρ). Upper
panel: low-order (l = 0, n = 11) and high-order (l = 0, n = 26) kernels
for the individual frequencies, respectively in orange and blue. Lower
panel: low-order (n = 11) and high-order (n = 26) kernels for the fre-
quency separation ratios, respectively in orange and blue.

of the entropy, P is the pressure, ρ is the density, Y is the helium
mass fraction, and Γ1 =

(
∂ ln P
∂ ln ρ

)
ad

is the first adiabatic exponent.
There are two main differences for the SOLA cost function.

We cannot assume that the ratio uncertainties are uncorrelated
because a ratio is, by definition, a combination of frequencies,
and the surface effects can be neglected by construction (as we
show later in Sect. 3.1).

Jt(ci) =

∫ 1

0

(
Kavg − Tt

)2dx + β

∫ 1

0
K2

crossdx

+ tan θ
Nr∑

p=1

Nr∑
q=1

cpcqΣpq

〈Σ2〉
. (17)

As for the individual frequencies, β and θ are trade-off param-
eters to balance the amplitudes of the different terms during
the fitting. Again, the idea is to provide a good fit of the tar-
get function Tt while reducing the contribution of the cross-
term and the observational errors. The variable λ is a Lagrange
multiplier, and cp are the inversion coefficients. The normalisa-
tion 〈Σ2〉 = 1

N2
r
||Σ||2F, where ||Σ||2F is the square of the Frobenius

norm of the covariance matrix of the ratios, and Nr is the num-
ber of observed ratios. The entries of the covariance matrix of
the ratios are given by Eq. (B.14) from Appendix B: Σpq =

Cov
(
( δrr )p, ( δrr )q

)
.

3. A new indicator probing stellar cores

In this section, we aim to define an indicator that is sensi-
tive to the properties of convective cores. For the first variable,
the entropy proxy S 5/3 appears to be a natural choice. Indeed,
this proxy is motivated by the Sackur-Tetrode equation for the
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entropy in the case of an ideal gas,

S =
3kB

2

[
µmu ln

(
P
ρ5/3

)
+ g(µ)

]
, (18)

where kB is the Boltzmann constant, µ is the mean molecular
weight, mu is the atomic mass unit, and g(µ) is a function that
depends only on the mean molecular weight. They both form a
plateau in adiabatic convective regions, and the height and exten-
sion of this plateau are related to the boundary mixing properties,
such as the temperature and mean molecular weight gradients.
Because these boundary regions are generally poorly modelled,
an indicator sensitive to their properties can provide new con-
straints on the physical processes acting in these regions.

For the second structural variable, we chose the helium mass
fraction. In comparison to Γ1, the amplitude of the cross-term
is significantly smaller, which naturally reduces the cross-term
contribution in the SOLA cost function. Even if the structural
pair including Γ1 is less well suited, an inversion based on these
variables is feasible, although with a lessened stability. Indeed,
we can define error measures to quantify the sources of error
in an inversion (Buldgen et al. 2015b). The first sources of error
are the errors on the averaging and cross-term kernels, which
quantify how well the associated target functions are reproduced.
The last source of error is the residual error that quantifies the
unknown remaining error after taking into account the two previ-
ous error measures. In an ideal case, the averaging kernel would
perfectly reproduce the target function, the cross-term would be
zero, and the inversion could therefore retrieve the exact value.
In practice, the cross-term error is negligible, and compensations
occur when the averaging and residuals errors are of the same
magnitude but with opposite sign. In such cases, the inversion
is unstable because a significant unknown source of error affects
the inversion result.

In the following section, we define a new indicator that
probes central stellar regions, and test it in a controlled envi-
ronment where the stellar mass and radius between the reference
and target models are identical. In these conditions, the mean
density is well controlled, which strengthens the stability of the
inversion.

3.1. Definition and calibration

We define our indicator as follows:

S r01
core =

∫ R

0

− f (r)
S 5/3(r)

dr, (19)

where f (r) is a weight function. The minus sign is purely cos-
metic to ensure that the indicator is positive. Because only a
small number of modes are available in asteroseismology, the
target function must be constructed so that it can be fitted by the
structural kernels. Therefore, the weight function is chosen such
that the resulting target function is close to the natural form of
the kernels.

We compute the eulerian linear perturbation of the indicator:

δS r01
core

S r01
core

=

∫ R

0

f (r)
S r01

core · S 5/3(r)
δS 5/3(r)
S 5/3(r)

dr, (20)

=

∫ R

0
TS r01

core
(r)
δS 5/3(r)
S 5/3(r)

dr. (21)

Hence, the target function is:

TS r01
core

(r) =
f (r)

S r01
core · S 5/3(r)

. (22)
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Fig. 2. Target function and entropy profiles for the calibration model.
The observed and modelled entropy profiles are in blue and orange,
respectively. The target function is in green.

The determination of the weight function is the most diffi-
cult part when developing a new indicator. Indeed, there is no
straightforward procedure to determine it, except trial and error,
and one has to find a good balance between the fine-tuning of
the weight function and the trade-off parameters. In practice,
to find the weight function, we start with a guess for f (r) and
iterate until we find a target function that is reproducible with
the available kernels. There is no recipe for the initial guess, but
we started with an r2 term (because the kernels follow approxi-
mately this behaviour in the very central regions), an exponential
decay (to suppress the signal at the surface), and two Gaussian
functions. After a few iterations, we found that including a third
Gaussian function to match the number of ‘lobes’ of the target
function (illustrated in Fig. 2), as well as the hyperbolic tan-
gent (to more efficiently suppress the signal beyond the central
region), produces better results. Because we use Y as structural
variable, the cross-term is naturally damped and the value of β
has very little impact on the inversion. To find an adequate bal-
ance, we calibrated the weight function and the trade-off param-
eters for one model, the model 1.3MoAGSS of Sect. 3.2. Then,
we verified the indicator in a controlled environment (Sect. 3.2)
and with an hare and hounds exercise (Sect. 4). We found that
adopting β = 10−4, θ = 10−4, and

f (r) = r2e−13r
(

f1(r) + f2(r) + f3(r)
)

tanh
(
3(1 − r)7

)
, (23)

where

f1(r) = − exp
(
−150(r − 0.02)2

)
, (24)

f2(r) = 3 exp
(
−150(r − 0.15)2

)
, (25)

f3(r) = −6 exp
(
−50(r − 0.29)2

)
, (26)

is a good compromise in most of the cases.
In Fig. 2, we show the target function and the entropy pro-

files for the calibration model to illustrate where the information
is localised and to which stellar regions the target function is
the most sensitive. The structural differences are mainly located
in the central region, up to one-tenth of the stellar radius. There-
fore, most of the contribution in the inversion will originate from
this region. The first inner peak and the inner part of the second
peak of the target function are the most important because they
can ‘see’ where the structural differences are localised. Also, it
is not necessary to efficiently reproduce the last peak of the tar-
get function because it is sensitive to a region where the struc-
tural differences are almost non-existent. In addition, we recall
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Fig. 3. Impact of the surface effects on the frequencies. The frequencies
before (orange) and after (purple) the addition of the surface effects are
shown for different harmonic degrees l.

that the kernels are basis vectors that are combined to reproduce
the target function. From a linear algebra point of view, some
of them will generate the global shape of the target function,
while some others will reproduce the details. In our inversion,
the global shape is generated by the low-order kernels and they
have the highest coefficients. The high-order kernels retrieve
some of the details and have smaller coefficients. In this sense,
low-order kernels are thus an asset for the inversion. We note that
extreme orders (n < 5 or n > 30) showed a numerically unstable
behaviour. This might be a numerical effect that could be fixed or
the sign of an intrinsic non-linear behaviour. From a theoretical
point of view, further investigations beyond the scope of this arti-
cle are required. However, it is currently unrealistic to measure
modes with n < 5, and high-order modes (n > 30), as well as
being very difficult to observe, will be very sensitive to surface
effects.

For the calibration model, we tested that the inversion is
indeed not affected by surface effects. To this end, we added
surface effects on the frequencies of the synthetic observed
model using the Sonoi et al. (2015) prescription, which gener-
ates strong surface corrections, especially at high order, as shown
in Fig. 3. Even though the frequencies are significantly affected,
the impact on the ratios is very small and the relative ratio dif-
ferences are modified on average by about 0.08%, and much less
for low-order modes that carry the inversion. Because this effect
is much smaller than any optimistic observational uncertainty,
especially at low order, the impact of the surface effects on the
inversion is completely negligible.

3.2. Behaviour in a controlled environment

For the preliminary tests in a controlled environment, we gen-
erated synthetic ‘observed’ targets in the main sequence with
masses of 1.1 M�, 1.2 M�, 1.3 M�, 1.4 M�, and 1.5 M�, and mod-
ified one physical ingredient at a time. For the observed targets,
we used the OPAL opacities (Iglesias & Rogers 1996), supple-
mented by the Ferguson et al. (2005) opacities at low temper-
ature and the electron conductivity by Potekhin et al. (1999).
We used the GN93 abundances (Grevesse & Noels 1993), the
FreeEOS equation of state (Irwin 2012), and microscopic diffu-
sion was described using the formalism of Thoul et al. (1994),

Table 1. Mode sets for the inversions in a controlled environment.

Radial order n

set 1 11–26
set 2 13–26
set 3 15–26
set 4 18–26
set 5 11–23

Notes. For the models with a mass of 1.4 M� and 1.5 M�, the maximal
radial order is nmax = 27 (instead of 26).

but with the screening coefficients of Paquette et al. (1986), and
taking partial ionisation into account. The nuclear reaction rates
were from Adelberger et al. (2011). We fixed the mixing-length
parameter αMLT at a solar calibrated value of 2.05, and following
the implementation of Cox & Giuli (1968). For the atmosphere
modelling, we used the T (τ) relation from Eddington (1959).
For all the models in this work, we used the Liège Evolution
Code (CLES, Scuflaire et al. 2008a), and the frequencies were
computed with the adiabatic Liège Oscillation Code (LOSC,
Scuflaire et al. 2008b).

For the reference models, we changed the abundances for
the AGSS09 abundances (Asplund et al. 2009), the opacities for
the OPLIB opacities (Colgan et al. 2016), and the atmosphere by
using the T (τ) relation described by Model-C in Vernazza et al.
(1981) (hereafter VAL-C). We also introduced overshooting and
undershooting, respectively with αov = 0.1 and αunder = 0.3, and
assuming an adiabatic stratification in both cases. We selected
the reference models in the evolutionary sequence by match-
ing the radius with the observation. Concerning the uncertainty
of the relative ratios differences, we adopted an error of 20%
(hereafter equal-weighted uncertainties) that corresponds to the
expectation for high-quality data.

For the inversions, we considered several sets of modes, sum-
marised in Table 1. As shown in Fig. 4, with the addition of low-
order modes, the averaging kernel better reproduces the target
function, especially in the central regions. Moreover, the contri-
bution of high-order modes is small. Indeed, the target function
of sets 1 and 5 is almost identical. For sets 3 and 4, the target
function is poorly reproduced by the averaging kernel and it is
meaningless to carry out an inversion in such unstable condi-
tions. In practice, we would recommend using mode sets similar
to sets 1, 2, or 5, and stress that such mode sets can be observed
(and were, for example, for some Kepler targets).

The inversion results are shown in Fig. 5 for lower mass stars
(1.1 M� to 1.2 M�) and higher mass stars (1.3 M� to 1.5 M�).
The atmosphere model and undershooting affect surface regions,
and have no impact on the central entropy profile. The indicator
is therefore insensitive to these quantities. It shows promising
results for the abundances, and especially for the opacities and
the overshoot. The latter indeed induce more significant struc-
tural changes, especially for the higher masses, which can be
captured by the inversion. For the models with the AGSS09
abundances and masses of 1.2 M�, 1.4 M�, and 1.5 M�, the inver-
sion was less successful or unsuccessful because the relative
ratio differences were too small. An inversion has a resolution
limit linked with the averaging error and how well the target
function is fitted. If the reference model is too close to the
observed model, the error on the averaging kernel dominates
the inversion and prevents a meaningful correction. Hence, if
the ratios are well fitted, it is not appropriate to carry out an
inversion.

A92, page 5 of 12



A&A 663, A92 (2022)

0.0 0.2 0.4 0.6 0.8 1.0

−10

−5

0

5

10

A
ve
ra
gi
ng

ke
rn
el
K a

v
g

Target function

ratios set 5

ratios set 4

ratios set 3

ratios set 2

ratios set 1

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Position r/R

−10

−5

0

5

10

A
ve
ra
gi
ng

ke
rn
el
K a

v
g

Fig. 4. Averaging kernel considering several sets of modes. Upper
panel: averaging kernels over the full radius domain. Lower panel:
xoom on the region that contributes to the inversion.

4. Hare and hounds

4.1. Presentation of the hares

In this hare and hounds exercise, we aimed at computing mod-
els with different physical ingredients, unknown to the hounds,
to reproduce as realistically as possible the presence of addi-
tional physical processes in observed targets unaccounted for
in the seismic modelling procedure. To avoid biases, the hares
were generated independently and only the frequencies, as well
as the spectroscopic constraints (effective temperature, surface
metallicity, and luminosity), were provided to the modeller of
the hounds. After all the inversions were carried out, the mod-
eller was given access to the stellar properties and internal pro-
files of the hares to draw the conclusions of this hare and hounds
exercise.

The properties of the hares are presented in Table 2. We var-
ied the opacity tables using either the OPAL or the OPLIB opac-
ities, the reference solar abundances using either the AGSS09 or
the GN93 abundances, and the formalism for convection using
either the classical mixing-length theory or the full spectrum
of turbulence theory (Canuto et al. 1996). The effects of micro-
scopic and turbulent diffusion were considered, and the effects of
radiative accelerations on metals were simulated for one hare by
solely taking the diffusion of helium and hydrogen into account.
Other ingredients were kept unchanged, such as the equation of
state (for which we used the FreeEOS equation of state), and the
atmosphere model (for which we used a VAL-C atmosphere).
To generate realistic frequency uncertainties, we searched in the
LEGACY sample for stars with similar frequency ranges and
adopted their observed uncertainties, namely KIC8394589 (Tar-
get 1 and 6), KIC12258514 (Target 2), KIC8228742 (Target 3),
KIC6508366 (Target 4), and KIC8938364 (Target 5).

4.2. Results of the hounds

To generate the hounds as realistically as possible, we used an
advanced modelling strategy that involved first conducting a

Markov chain Monte-Carlo (MCMC) in a grid, fitting the classi-
cal constraints (effective temperature, metallicity, and luminos-
ity) and the individual frequencies. We used the AIMS software
(Rendle et al. 2019) to perform the MCMC and two grids that
differed in their overshooting value. The global properties of
the grids are summarised in Table 3 and the physical ingredi-
ents of the grid models are the same as for the observed targets
in Sect. 3.2, but with one difference that has no influence; par-
tial ionisation was not taken into account. With our indicator,
we study central stellar regions of main-sequence stars, where
accounting for partial ionisation (or not) only has a very small
impact (Turcotte et al. 1998a,b). If radiative accelerations are
included or if the target is close to the end of the main sequence,
partial ionisation is then not negligible (Schlattl 2002; Deal et al.
2018). However, inversions are quasi-model independent, espe-
cially they do not rely on the choice of the transport processes.
It is, therefore, not problematic if the reference model does
not include the most detailed physics possible for the hare and
hounds exercise. Next, we carried out a mean density inversion
on the optimal MCMC model to add the inverted mean density
to the set of constraints, with a conservative precision of 0.6%,
and we conducted new MCMC fitting the classical constraints,
the inverted mean density, and frequency separation ratios (r01,
r02, or both). Finally, we performed local minimisations with a
Levenberg-Marquardt algorithm (see e.g. Roweis 1996) by leav-
ing the overshooting parameter free. We summarised the con-
straints in Table 4 and included the r01 in the constraints of some
of the hounds to verify that the correction predicted by the inver-
sion was significantly smaller or negligible, as we expected. This
also allows us to estimate the impact of the resolution limit.
This advanced modelling strategy provided the optimal model
of Kepler-93 (which was confirmed by a more elaborated mod-
elling procedure, Bétrisey et al. 2022). For stars with physical
ingredients that are too different from the physics of the grids, a
series of local minimisations are necessary. This was the case for
target 5, for which the MCMC was not successful, and for which
we conducted local minimisations by starting with guesses of
different masses (models LM, M126, M133, M135, and M140),
and with different physical ingredients (models Ov020/GN93 and
OPLIB/GN93). In general, if we fit frequency separation ratios,
only the r02 ratios can be fitted most of the time. Indeed, the fit
of both r01 and r02 ratios tends to be unstable. These ratios are
sensitive to different stellar properties and a minimisation includ-
ing both of them has to deal with too many constraints, prevent-
ing a successful convergence into an optimal solution. An inver-
sion based on the r01 ratios is therefore relevant at this stage,
because it can provide quasi-model-independent constraints that
can highlight favoured and forbidden regions in the parameter
space, and provide new insight for the modelling and under-
standing of the star.

Two main conditions are required for the inversion to pro-
vide a meaningful correction (here, we already assume that the
linear regime assumption is fulfilled, as it is typically the case
with the usual modelling strategies of solar-like stars). First, the
indicator must be sensitive to some structural differences; in our
case, the differences in the entropy profile in the central stel-
lar regions. Due to our modelling strategy, some of the hounds
presented a quasi-identical entropy profile and were thus identi-
cal for our indicator. We therefore discarded the redundant mod-
els to avoid biase. In the left panels of Fig. 6, we illustrate the
non-redundant structural differences of the hounds of targets 2
and 5. The hare profiles are in orange. The entropy profiles of
the hounds differ significantly from each other, the height of the
entropy plateau is different, the extent of the convective core is

A92, page 6 of 12



J. Bétrisey and G. Buldgen: Probing stellar cores from inversions of frequency separation ratios

0.94 0.96 0.98 1.00

103 · Sr01
core

1.1MoAGSS09

1.1MoOPLIB

1.1MoOv

1.1MoUnder

1.1MoValC

1.2MoAGSS09

1.2MoOPLIB

1.2MoOv

1.2MoUnder

1.2MoValC

1.050 1.075 1.100 1.125 1.150 1.175 1.200

103 · Sr01
core

1.3MoAGSS09
1.3MoOPLIB

1.3MoOv
1.3MoUnder
1.3MoValC

1.4MoAGSS09
1.4MoOPLIB

1.4MoOv
1.4MoUnder
1.4MoValC

1.5MoAGSS09
1.5MoOPLIB

1.5MoOv
1.5MoUnder
1.5MoValC exact

reference

ratios set 1

ratios set 2

ratios set 3

ratios set 4

ratios set 5

Fig. 5. Behaviour of the indicator in a controlled environment. Left panel: results for the lower masses (1.1 M� to 1.2 M�). Right panel: results for
the higher masses (1.3 M� to 1.5 M�).

Table 2. Characteristics of the hares.

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6

Mass (M�) 1.10 1.26 1.42 1.48 1.35 1.23
Age (Gyr) 3.70 3.55 1.67 2.09 2.09 3.16
Radius (R�) 1.165 1.515 1.734 2.274 1.816 1.444
Teff (K) 5978 5951 6604 6374 6629 6212
Z0 0.020 0.028 0.023 0.015 0.0135 0.020
X0 0.71 0.68 0.69 0.70 0.685 0.71
Abundances GN93 AGSS09 GN93 AAG21 AGSS09 GN93
Opacities OPAL OPAL OPLIB OPAL OPAL OPAL
EOS FreeEOS FreeEOS FreeEOS FreeEOS FreeEOS FreeEOS
αConv 1.90 1.75 2.15 2.05 0.85 1.90
αOv 0.05 0.15 0.10 0.15 0.13 0.10
αUnder 0.10 0.15 0.10 0.10 0.10 0.10
Convection MLT MLT MLT MLT FST MLT
Microscopic diffusion YES YES YES YES – only X, Y YES YES
Turbulent diffusion YES NO YES NO YES YES
DT 7500 0 2500 0 50 7500
β 3 0 2 0 2 3
Atmosphere VAL-C VAL-C VAL-C VAL-C VAL-C VAL-C
Radial order n 13–25 13–25 11–23 11–25 12–23 10–22

Table 3. Global properties of the grids for the MCMC.

Minimum Maximum Step

Mass (M�) 1.20 1.50 0.02
X0 0.68 0.72 0.01
Z0 0.010 0.025 0.001
Overshooting 1 αov,1 = 0.0
Overshooting 2 αov,2 = 0.1

different, and the mixing boundary properties are also different.
The corresponding indicator values are displayed in the right
panels of Fig. 6 (red squares). We observe that the indicator is
indeed sensitive to the structural differences. For example, if the
overshooting parameter is changed (e.g. models NuOv000 and
NuOv010), the indicator is significantly affected by the result-
ing structural differences. Second, if the ratios are well fitted,

Table 4. Constraints for the targets 1, 2, 3, 4, and 6.

Label Constraints Overshooting

LM [Fe/H], Teff , L, ρ̄Inv, r02 Free
LM1 [Fe/H], Teff , L, ρ̄Inv, r01 Free
NuOv000 [Fe/H], Teff , L, νn,l αov = 0.0
NuOv010 [Fe/H], Teff , L, νn,l αov = 0.1
R01Ov000 [Fe/H], Teff , L, ρ̄Inv, r01 αov = 0.0
R01Ov010 [Fe/H], Teff , L, ρ̄Inv, r01 αov = 0.1
R02Ov000 [Fe/H], Teff , L, ρ̄Inv, r02 αov = 0.0
R02Ov010 [Fe/H], Teff , L, ρ̄Inv, r02 αov = 0.1
RatiosOv000 [Fe/H], Teff , L, ρ̄Inv, r01, r02 αov = 0.0
RatiosOv010 [Fe/H], Teff , L, ρ̄Inv, r01, r02 αov = 0.1

the relative ratios differences are too small. The inversion com-
bines these relative differences to compute the correction and
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Fig. 6. Entropy profiles and hare and hounds results of targets 2 and 5. The entropy proxy S 5/3 is in cgs units
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)
. (a) Entropy profiles of

target 2. (b) Hares and hounds results of target 2. (c) Entropy profiles of target 5. (d) Hares and hounds results of target 5.

if they are too small, the correction is therefore damped. In
an ideal case, this behaviour means that the seismic informa-
tion is well modelled and that additional information cannot be
extracted with an inversion. In other words, if the inversion pre-
dicts a tiny correction, it confirms that the seismic information is
well described by the reference model. However, inversions are
numerical methods, and we must ensure that the correction is
not driven by numerical noise. In particular, if the ratios are well
fitted, the target function may not be well reproduced because
of the limited number of modes available. In that case, a non-
negligible correction is driven by the bad fit of the target func-
tion and should not be mistaken as a sign that the physics of
the reference model is lacking. In Fig. 7, we show examples
of relative ratio differences that can and cannot be used for an
inversion. We recall that we are conducting linear inversions,
and we therefore discarded relative ratios differences that were
larger that 0.5 in absolute values, as these were not compatible
with the linear formalism. Such large relative differences occur
for high-order modes and are purely a numerical artefact. For
these modes, the frequency separation ratios are close to zero and
automatically produce a large relative difference. This numeri-
cal issue is not limiting because the contribution of high-order
modes to the correction predicted by inversion is very small.
These modes can therefore be discarded without losing any
information.

The hares fall into two categories of results. For targets 1,
3, 4, and 6, all the ratios (r01 and r02) were well fitted, resulting

in relative ratio differences that were too small for the inversion.
In this situation, the reference value stays within the 1σ interval
of the inverted value, and no new knowledge can be extracted.
The most interesting results were obtained for targets 2
and 5, for which it was not possible to simultaneously fit the
r01 and r02 ratios. In this case, the inversion achieved significant
improvements.

The entropy profiles and results for the first category of tar-
gets are shown in Fig. 8. Target 3 shows the reason for which we
stressed that an inversion should not be carried out on well fitted
ratios. Theoretically, we would expect a negligible correction in
such conditions, as seen for targets 1 and 4. However, some of
the hounds of target 3 exhibit non-negligible corrections, which
are a combination of physical structural differences and the res-
olution limit of the inversion. We observe that the inversion cor-
rects in the right direction, but its magnitude is difficult to trust
because it is probably largely dominated by the quality of the fit
of the target function. The behaviour of the inversions for target
6 is similar to the results for targets 1 and 4, with one excep-
tion; the ratios were not well fitted by the LM model and the
entropy profiles were significantly different (Fig. 8g). The con-
ditions for a meaningful inversion were therefore met and the
inversion behaves accordingly with our expectations, as illus-
trated in Fig. 8h.

The results for targets 2 and 5 are displayed in Figs. 6b
and 6d, respectively. Because the relative ratio differences were
significant enough to carry out an inversion, we conducted more
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Fig. 7. Comparison of the relative r01 differences for models that can (right) and cannot (left) be used for a meaningful inversion. The relative
differences above 0.5 are discarded because they are not appropriate for the linear formalism of the inversion. (a) Model LM1 of target 2, well
fitted r01 ratios that are not suited for an inversion. (b) Model LM of target 2, relative r01 differences suited for an inversion.

Table 5. Results for targets 2 and 5.

S r01
core Accuracy Precision

Target 2
Reference 1.057 × 10−3 5.3% 2.1%
Inverted 1.026 × 10−3 2.2% 2.2%
Exact 1.004 × 10−3

Target 5
Reference 1.207 × 10−3 8.6% 5.3%
Inverted 1.171 × 10−3 5.4% 3.6%
Exact 1.112 × 10−3

intensive tests. For target 2, we tested the impact of the trade-off
parameter θ, and our choice of θ = 10−4 appears to be a good
compromise. Indeed, the inversion result is slightly affected
only if a much higher value is considered. In such cases, the
target function is less well reproduced because it is equivalent
to assuming high observational uncertainties. We also tested two
uncertainty sets, where we considered the standard observational
uncertainties and checked that equal-weighted uncertainties pro-
duce similar results. In this fashion, we could discard the possi-
bility of the presence of highly non-linear modes. For target 5,
we tested two mode sets by removing the lowest order mode.
For both sets, the inversion significantly improved the reference
values, which shows that it is not necessary to use excessively
low order modes that could be difficult to observe. Moreover,
model Ov020/GN93 strengthens the consistency of the inversion,
because it lies at the opposite side of the exact value with respect
to the other models, and therefore corrects in the opposite direc-
tion. We point out that, even if we do not have the same convec-
tion theory in the hounds of target 5, which strongly impacts the
stellar structure, the inversion is still able to correct significantly
and in the right direction.

In Table 5, we tried to estimate the improvement achieved
by the inversion. We computed the average value1 of the indica-
tor and defined an accuracy measure as the relative difference of

1 For target 2, we excluded the model LM1 because it was a fit of the
r01 ratios, which made the inversion meaningless. We still kept the other
models including the r01 in the constraints because they produced rela-
tive ratio differences large enough to carry out an inversion.

the reference or inverted value with respect to the exact value.
For target 2, the accuracy is improved from 5.3% to 2.2%, and
for target 5, from 8.6% to 5.4%. This result should be put in
perspective with the precision achieved by the inversion. From
a pure statistical point of view, the precision is on the order
of ∼0.1% to 0.2%, which is negligible in comparison with the
systematic uncertainty due to the choice of the physical ingre-
dients, and the resolution limit of the inversion. In practice, a
modelling strategy similar to that of Bétrisey et al. (2022) should
be considered. An extensive set of models with various phys-
ical ingredients should be constructed and the precision mea-
sured with the standard deviation of the inversion results. With
this approach, the precision is significantly lower than the sta-
tistical precision, but it is generally smaller or equal to the pre-
cision of the reference models. Hence, the inversion can shift
and in some cases shrink the reference range towards the exact
value.

5. Conclusions

In this work, we adapted the SOLA method for frequency sep-
aration ratios in Sect. 2 and introduced a new indicator probing
the properties of stellar convective cores in Sect. 3.1. Thanks to
this approach, the inversion is not affected by surface effects. In
Sect. 3.2, we verified our technique in a controlled environment,
where the stellar mass and radius were identical in both the ref-
erence and observed models. Then, we conducted an intensive
hare and hounds exercise in Sect. 4.

Our inversion technique showed promising results for prob-
ing the convective core of main-sequence stars, and is especially
suited for F-type stars. Indeed, they have an adequate mass span
for the indicator, and the inversion is not sensitive to the sur-
face effects that are difficult to treat for this type of star. Because
the entropy differences are localised in the very central stellar
regions that are difficult to probe, even with the ratios, we found
that a modelling strategy similar to that of Bétrisey et al. (2022)
should be considered in a practical application of the method.
An extensive set of models should be constructed, and the prop-
erties of the core can be inferred from the global behaviour of the
inversion on the models of the set. The ratios are influenced by
the overshooting, the radiative opacities, and the chemical com-
position. It is, therefore, not possible to directly constrain one
of these quantities, but favoured and forbidden regions can be
highlighted in the parameter space. We stress that if the ratios
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Fig. 8. Entropy profiles and hare and hounds results of targets 1, 3, 4, and 6. The entropy proxy S 5/3 is in cgs units
(
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)
. (a) Entropy profiles

of target 1. (b) Hare and hounds results for target 1. (c) Entropy profiles of target 3. (d) Hare and hounds results for target 3. (e) Entropy profiles
of target 4. ( f ) Hare and hounds results for target 4. (g) Entropy profiles of target 6. (h) Hare and hounds results for target 6.
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are well reproduced, an inversion is meaningless due to the res-
olution limit of the method.

In a broader modelling context, the inversion provides quasi-
model-independent constraints on core properties that can help
to point out the limitations of the reference models and, for
example, be the sign of an incorrect or missing physical pro-
cess. The inversion can also help to exclude some of the ref-
erence models, thus improving the accuracy and precision of
stellar fundamental parameters such as mass, radius, and age,
a crucial objective for the PLATO mission.
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Appendix A: The r10 and r02 kernels

For the r02 ratios, we have:

δr02

r02
(n) =

δd02(n)
d02(n)

−
δ∆1(n)
∆1(n)

, (A.1)

=

∫ R

0

(
Kr02

a,b(n)
δa
a

+ Kr02
b,a(n)

δb
b

)
dr + O(δ2), (A.2)

where:

Kr02
a,b(n) =

νn,0Kn,0
a,b − νn−1,2Kn−1,2

a,b

νn,0 − νn−1,2
−
νn,1Kn,1

a,b − νn−1,1Kn−1,1
a,b

νn,1 − νn−1,1
.

(A.3)

The kernel Kr02
b,a(n) is found by switching a and b in the pre-

vious expression.
For the r10 ratios, we have:

δr10

r10
(n) =

δd10(n)
d10(n)

−
δ∆0(n + 1)
∆0(n + 1)

, (A.4)

=

∫ R

0

(
Kr10

a,b(n)
δa
a

+ Kr10
b,a(n)

δb
b

)
dr + O(δ2), (A.5)

where:

Kr10
a,b (n) =

νn−1,1Kn−1,1
a,b − 4νn,0Kn,0

a,b + 6νn,1Kn,1
a,b − 4νn+1,0Kn+1,0

a,b + νn+1,1Kn+1,1
a,b

νn−1,1 − 4νn,0 + 6νn,1 − 4νn+1,0 + νn+1,1

−
νn+1,0Kn+1,0

a,b − νn,0Kn,0
a,b

νn+1,0 − νn,0
. (A.6)

Again, the kernel Kr10
b,a is found by switching a and b in the

previous expression.

Appendix B: Correlation matrix for the ratios

Let Xi be N random variables, and X0
i be their respective mean.

We consider the random variable Z which is the general form of
a frequency ratio:

Z =

∑N
i=1 aiXi∑N
i=1 biXi

. (B.1)

In order to derive the error propagation, we use the first order
Taylor expansion around the mean,

Z(X1, ..., Xn) ' Z(X0
1 , ..., X

0
n) +

N∑
i=1

∂Z
∂Xi

(X0
1 , ..., X

0
n)(Xi − X0

i ), (B.2)

= Z(X0
1 , ..., X

0
n) +

N∑
i=1

(
ai − Z(X0

1 , ..., X
0
n)bi

) (
Xi − X0

i

)
∑

k bkX0
k

.

(B.3)

In the following, we introduce the short notation Z0 ≡

Z(X0
1 , ..., X

0
n). At the first order, the correlation matrix Cov(Z, Ẑ)

is equal to

Cov

Z0 +

N∑
i=1

(ai − Z0bi)(Xi − X0
i )∑

k bkX0
k

, Ẑ0 +

N∑
j=1

(â j − Ẑ0b̂ j)(X j − X0
j )∑

k b̂kX0
k

 , (B.4)

= Cov

 N∑
i=1

ai − Z0bi∑
k bkX0

k

Xi,

N∑
j=1

â j − Ẑ0b̂ j∑
k b̂kX0

k

X j

 , (B.5)

= Z0Ẑ0
N∑

i=1

N∑
j=1

 ai∑
k akX0

k

−
bi∑

k bkX0
k

  â j∑
k âkX0

k

−
b̂ j∑

k b̂kX0
k

 Cov(Xi, X j),

(B.6)

where we used the linearity properties of the covariance matrix,
and that the covariance of a random variable with a constant is
null.

For a set of N f frequencies νi, whose uncertainties are
described by the covariance matrix Ei j, and i being a short nota-
tion for the identification pair (n, l), a frequency ratio can be
expressed as:

r =

∑N f

i=1 aiνi∑N f

i=1 biνi

. (B.7)

For example, for the r02(n) ratio, the coefficients are:

a = [0(nmin,0), ..., 0(n−1,0), 1(n,0), 0(n+1,0), ...,

0(n−2,2),−1(n−1,2), 0(n,2), ..., 0(nmax,lmax)] (B.8)
b = [0(nmin,0), ..., 0(n−2,1),−1(n−1,1), 1(n,1), 0(n+1,1), ..., 0(nmax,lmax)],

(B.9)

where the index indicates the identification pair of the corre-
sponding frequency.

The covariance between two ratios is given by

Cov(r, r̂) = rr̂
N f∑
i=1

N f∑
j=1

(
ai∑

k akνk
−

bi∑
k bkνk

)  â j∑
k âkνk

−
b̂ j∑

k b̂kνk

 Ei j.

(B.10)

If the frequencies are uncorrelated, which is the typical
assumption, one has Ei j = σ2

i δi j, where σi is the uncer-
tainty of the frequency νi. In this case, the covariance simplifies
to

Cov(r, r̂) = rr̂
N f∑
i=1

(
ai∑

k akνk
−

bi∑
k bkνk

) (
âi∑

k âkνk
−

b̂i∑
k b̂kνk

)
σ2

i ,

(B.11)

and the 1σ error bar on r is

σ2
r = r2

N f∑
i=1

(
ai∑

k akνk
−

bi∑
k bkνk

)2

σ2
i . (B.12)

In the SOLA method, we use relative differences of
ratios,

δr
r

=
robs − rmod

rmod
, (B.13)

where obs stands for observed and mod for modelled. Eq. (B.11)
therefore becomes

Cov
(
δr
r
,
δ̂r
r

)
=

robs

rmod

r̂obs

r̂mod

N f∑
i=1

(
ai∑

k akνk
−

bi∑
k bkνk

) (
âi∑

k âkνk
−

b̂i∑
k b̂kνk

)
σ2

i .

(B.14)

The error term in the SOLA cost function is then

tan θ
Nr∑

p=1

Nr∑
q=1

cpcqΣpq

< Σ2 >
, (B.15)

where Σpq = Cov
(
( δrr )p, ( δrr )q

)
, < Σ2 >= 1

N2
r
||Σ||2F, ||Σ||2F is the

square of the Frobenius norm of the covariance matrix of the
ratios, and Nr is the number of observed ratios.
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