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The advent of space-based photometry missions in the early 21st century enabled the
application to asteroseismic data of advanced inference techniques until then restricted to
the field of helioseismology. The high quality of the observations, the discovery of mixed
modes in evolved solar-like oscillators and the need for an improvement in the
determination of stellar fundamental parameters such as mass, radius and age led to
the development of sophisticated modelling tools, amongst which seismic inversions play
a key role. In this review, we will discuss the existing inversion techniques for the internal
structure of distant stars adapted from helio-to asteroseismology. We will present results
obtained for various Kepler targets, their coupling to other existingmodelling techniques as
well as the limitations of seismic analyses and the perspectives for future developments of
these approaches in the context of the current TESS and the future PLATOmission, as well
as the exploitation of the mixed modes observed in post-main sequence solar-like
oscillators, for which variational formulations might not provide sufficient accuracy.
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1 INTRODUCTION

In the last 2 decades, asteroseismology has established itself as the golden path to study the internal
structure of distant stars. Amongst these, solar-like oscillators have held a special place due to the
number of them detected at various masses, chemical composition and evolutionary stages. This
revolution was made possible by the recent space-based photometry missions CoRoT (Baglin et al.,
2009), Kepler (Borucki et al., 2010) and TESS (Ricker et al., 2015). In the near future, the PLATO
mission (Rauer et al., 2014) will further extend the dataset, and proposals for future missions have
also been laid out, testifying to the scientific success of these missions (e.g., Miglio et al., 2021).

In addition to providing numerous targets to work on, space-based photometry missions also led
to a drastic change in data quality compared to previous ground-based observations. While ground-
based telescope networks (see Grundahl et al., 2006, for the SONG network) are still very important
and can provide high quality data for some close targets (e.g., Bouchy and Carrier, 2001; Bedding
et al., 2004; Martić et al., 2004; Kjeldsen et al., 2005; Grundahl et al., 2006), they are no match for
nanohertz precision on the observed frequencies of some of the best Kepler targets and the large
number of stars that can be observed simultaneously by photometric surveys.

This drastic change motivated the use of advanced seismic analyses techniques that were before
restricted to the field of helioseismology, where the proximity of the Sun allows the detection of
thousands of oscillation modes. Seismic inferences became routinely used and the determination of
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fundamental parameters of stars for the purposes of fields such as
exoplanetology and Galactic archaeology drove the development
of dedicated numerical tools. Large grids of stellar models were
also computed for such purposes and coupled to automated
seismic modelling pipelines (e.g., Mathur et al., 2012;
Gruberbauer et al., 2013; Metcalfe et al., 2015; Bellinger et al.,
2016; Rendle et al., 2019; Bazot, 2020; Aguirre Børsen-Koch et al.,
2022).

Inference problems are widespread in physics, from the
calibration of instrumental responses to the radiative transfer
problem in the Earth’s atmosphere. They correspond to a specific
class of mathematical problems called ill-posed problems, for
which specific dedicated techniques have to be developed (see
Tarantola, 2005; Pijpers, 2006, for example). These methods
require having an appropriate formalism and regularization of
the problem, in line with the known or assumed properties of the
physical problem under study.

The inversion techniques used in asteroseismology are no
exception to this rule. They most often derive from methods
developed for helioseismology and for this reason have mostly
been applied to solar-like oscillators, for which the underlying
hypotheses of the inversion remain valid. It is worth mentioning
that most seismic inversion techniques used in helio- and
asteroseismology have actually been first applied to inferring
the internal rotation of slowly rotating stars, including our Sun
(see Thompson et al., 2003, and references therein). Thanks to
space-based photometry data, inferences of internal rotation
have been made in various cases, from solar-like main-sequence
stars (see e.g., Lund et al., 2014; Benomar et al., 2015; Schunker
et al., 2016a; Schunker et al., 2016b; Benomar et al., 2018; Bazot
et al., 2019), to more massive oscillators (Kurtz et al., 2014; Saio
et al., 2015; Hatta et al., 2019; Hatta et al., 2022) and towards
later evolutionary stages (see e.g., Deheuvels et al., 2014;
Deheuvels et al., 2015; Di Mauro, 2016; Di Mauro et al.,
2018; Deheuvels et al., 2020; Fellay et al., 2021) with great
successes.

In this short review, we will focus on seismic inversions of the
internal structure of stars. We will start by discussing the goals of
seismic inversions in Section 2. In Section 3, we will discuss
inversion techniques relying on the calibration of evolutionary
models and mention examples of static approaches applied to
specific cases in stellar evolution. In Section 4, we introduce the
variational formalism applied in linear inversions, that will be
discussed in Section 5 for both localized and indicator inversions.
Finally, we will discuss non-linear inversions from the use of
inner phaseshifts of the oscillations in Section 6 and conclude in
Section 7.

2 GOALS OF SEISMIC INVERSION
TECHNIQUES AND UNDERLYING
HYPOTHESES
The goal of seismic inversion techniques is to provide a model of
the internal structure that takes into account all the available
observational constraints. This procedure can take various forms
that we will discuss in the following sections.

From a mathematical point of view, the inversion procedure
consists in solving the system of differential equations describing
the stellar structure while taking all the available observational
constraints into account. In practice, this already implies
assuming a few hypotheses regarding the equilibrium state of
the star and the physical processes considered in the description
of its internal structure.

The cases on which we focus will be slowly rotating solar-like
stars without strong magnetic fields or being subject to tidal
interactions capable of breaking the spherical symmetry. While
these hypotheses might appear strong, they are in good
agreement with observations and can be used for a wide range
of targets. Hydrostatic and thermal equilibrium are also
considered and the equilibrium equations of stellar structure
are written in eulerian form as follows.

zm

zr
� 4πr2ρ, (1)

zP

zr
� −Gmρ

r2
, (2)

zl

zr
� 4πr2ϵ, (3)

zT

zr
� −GmTρ

r2P
∇, (4)

with r the radial position in the spherically symmetric model, m
the mass of the sphere of radius r, ρ the local density, T the local
temperature, l the local luminosity, P the local pressure,∇ � d lnT

d lnP
the temperature gradient, and ϵ the local rate of energy
generation. In addition to this system, the equation of state of
the stellar material must be defined, namely the relation

P � P ρ, T, Xj( ), (5)
with Xj the chemical mixture of the stellar plasma. Alongside the
determination of the internal structure, the inversion may also
provide precise values of the fundamental stellar parameters such
as mass, radius and age (when computing evolutionary models).
In some specific cases, the full structure equations are solved in a
static way, for example when the evolutionary path is unclear or
difficult to compute with evolutionary models as for B-type
subdwarf stars or white dwarfs for example.

In other cases, the seismic inversion does not aim at
determining the full structure. Its goal is rather to determine
both the global parameters of the star such as mass and radius, the
density profile inside the star, ρ(r) and the first adiabatic exponent
profile Γ1(r) � z ln ρ

z lnP|S.
In practice however, Γ1 deviates only very little from 5/3 in the

stellar interior, apart from the ionization regions in the upper
convective envelope. It is thus assumed constant or fixed at the
value of a given reference structure used for the inversion. This
situation is very different from helioseismology, where the quality
of the data allows us to distinguish between various equations of
state for the solar material based on the inversion of the Γ1 profile
in the convective envelope (See e.g., Elliott, 1996; Elliott and
Kosovichev, 1998; Vorontsov et al., 2013, and references therein).

Due to the lower quality of asteroseismic data and the absence
of high-degree modes allowing to determine localized corrections
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in the upper layers, the equation of state of the stellar material will
not be considered an issue1. This point will be further discussed in
the following sections when presenting the variational formalism
used in linear inversion techniques.

In this context, the application of seismic inversions serve as a
complement to evolutionary modelling. The inverted quantities
can then be compared with those of evolutionary models and
potentially constrain missing physical processes. Consequently,
seismic inversions constitute an essential approach to improve
the accuracy of stellar models and the determination of
fundamental stellar parameters such as mass, radius and age.

3 STATIC AND EVOLUTIONARY
MODELLING

The inference of the internal structure of a star can take various
forms. It may for example result from the adjustment of an
evolutionary sequence to an observed target. For stellar systems
such as binaries or clusters, simultaneous fitting of all members
can even be done so that the modelling is more constraining,
sometimes assuming the same chemical composition and age for
all members. We hereby provide for the interested reader a few
additional references on seismic modelling and asteroseismology
of solar-like oscillators Roxburgh (2002); Christensen-Dalsgaard
and Houdek (2010); Guzik (2011); Goupil et al. (2011); Chaplin
and Miglio (2013); Di Mauro (2016) as well as seismic studies of
stellar clusters (Handberg et al., 2017; McKeever et al., 2019) and
binaries (see e.g., Bazot et al., 2016; Bazot, 2020; Salmon et al.,
2021). In other cases, an inversion can refer to the determination
of the internal structure of a given star in a static way, departing
from hypotheses regarding its evolutionary history. Such static
approaches will sometimes even aim at determining only a key
few internal quantities from dedicated formalisms while avoiding
simplifying assumptions regarding the internal structure of
the star.

Such static approaches constitute powerful tools to further
refine stellar evolutionary models and are often referred as
“seismic inversion”, while the use of evolutionary models is
referred to as “forward modelling”. This division is only
present in the field of asteroseismology and can be misleading
when studying inversion techniques used in other fields (See
Tarantola, 2005; Pijpers, 2006, for example).

In what follows, we will briefly describe evolutionary and static
inferences as applied to asteroseismic data.

3.1 Inferences From Evolutionary Models
The most common approach to determine the internal structure
of a star is by coupling an optimization procedure to a stellar
evolution code. While this is commonly referred as “forward
modelling” in the seismic modelling community, it actually

consists in a type of inversion in the mathematical sense of
the word.

In this type of inference, the structure of the star is coupled to
an assumed evolutionary history. Namely, the evolution of the
chemical abundances of the star is simulated by considering the
effects of nuclear reactions and transport processes such as
microscopic diffusion, macroscopic transport by rotation,
convection, accretion and mass-loss.

The main advantage of using evolutionary models resides in
the possibility to test the evolutionary scenarios used to model
stars and check the validity of the theory of stellar evolution.
Moreover, in view of the recent needs of neighbouring fields such
as exoplanetology and Galactic archaeology for fundamental
stellar parameters such as masses, radii and ages, the use of
optimization techniques on large grids of stellar models has now
become routine, especially for main-sequence solar-like
oscillators. Such modelling approaches have been applied to a
wide range of targets from missions such as CoRoT, Kepler, and
TESS, as well as closer objects such as Alpha Centauri A&B.

In this context, numerous optimization techniques have been
adapted to determine optimal stellar parameters. For example,
local minimization techniques such as Levenberg-Marquardt
algorithms have been applied in the past (e.g., Frandsen et al.,
2002; Teixeira et al., 2003; Miglio and Montalbán, 2005).
However, due to the problem of local minima, especially with
high-quality Kepler data, and the treatment of the uncertainties in
such methods, global minimization techniques have been
favoured such as Genetic algorithms, Markov Chain Monte
Carlo approaches, or even Machine Learning software. Such
methods have been applied to either precomputed grids of
stellar evolutionary models or by computing the models on
the fly to avoid relying on interpolation that could lead to a
loss of accuracy. A few examples of such techniques and their
associated results can be found in Mathur et al. (2012);
Gruberbauer et al. (2013); Metcalfe et al. (2015); Bellinger
et al. (2016); Rendle et al. (2019); Bazot (2020); Aguirre
Børsen-Koch et al. (2022).

A major drawback of the grid-based approach stems from the
limitation to the physical ingredients of the precomputed models.
Therefore, any change of abundance scale, opacity table, equation
of state, or prescription for the mixing of chemical elements
requires the whole grid to be recomputed, which can be time
consuming. However, computing the models on the fly is not a
viable option for sampling algorithms such as MCMC techniques
that require large numbers of walkers to provide a proper
distribution of the optimal parameters.

More recently, a hybrid approach was presented (Buldgen
et al., 2019a; Bétrisey et al., 2022), where a combination of local
and global minimization techniques are used. In the era of high-
quality Kepler data, the uncertainties derived from solely
propagating the observational error bars are small enough to
sometimes be comparable, or smaller, than the changes in the
optimal solution observed when varying the physical ingredients
of the models. In this context, local minimization techniques offer
the flexibility to estimate the change in the solution from a change
of the physics, using the optimal solution obtained from an
MCMC sampling of the parameter space. A combination of

1Constraints on the convective envelope can still be inferred from so-called
“acoustic glitches”, that can provide estimates of the helium abundance or the
position of a sharp transition in temperature gradients at the bottom of the
convective zone.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 9423733

Buldgen et al. Inversions of Stellar Structure

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


both is probably a good approach to test the impact of known
physical processes on stellar fundamental parameters, while
departing from an evolutionary history using static inferences
might be optimal to study the presence of unknown physical
processes. A schematic illustration of the interplay between the
different modelling strategies is provided in Figure 1.

Besides the algorithm used to determine the optimal model, the
way seismic constraints are combined is also extremely important.
One major issue of solar-like oscillations is their sensitivity to
surface effects. To mitigate this issue, a first approach is to develop
so-called empirical “surface corrections”, that are based on solar
frequencies (See e.g., Rabello-Soares et al., 1999; Kjeldsen et al.,
2008; Ball and Gizon, 2014) and/or on 3D averaged atmospheric
models for which adiabatic oscillations are computed (e.g., Sonoi

et al., 2015; Ball et al., 2016). More recently, such analyses have
been generalized to dipolar mixed modes by Ong and Basu (2020);
Ong et al. (2021).

Given the amplitude of the surface effect, a direct fitting of the
individual frequencies will be extremely sensitive to the empirical
corrections. This is illustrated in the left panel of Figure 2,
showing the individual frequencies of Kepler 93 and those of
the associated optimal stellar model fitting them using the Ball
and Gizon (2014) empirical surface correction. The actual
amplitude of the surface correction is much larger than the
uncertainties on the frequencies themselves, which may lead to
strong biases, especially at high frequencies and can result in
significant biases in the inferred stellar mass (Jørgensen et al.,
2020; Bétrisey et al., 2022).

FIGURE 1 | Schematic representation of combinations of evolutionary and static inferences used in stellar modelling. Each box includes the strenghts (green) and
weaknesses (red) of the various methods and the arrows represent their relations.

FIGURE 2 | Left: Illustration of the effects of surface corrections for the Echelle diagram of Kepler 93, showing the significant effect of the parametric corrections on
high frequencies. Right: Frequency separation ratios for the data of the left panel, showing their low sensitivity to the empirical surface corrections as the blue and reen
symbols are essentially the same.
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Another way to circumvent surface effects is to use
combinations of frequencies, such as the so-called frequency
separation ratios of the large and small frequency separations
defined in Roxburgh I. W. and Vorontsov S. V. (2003).

r01 n( ) � δ01 n( )
Δ]1 n( ), (6)

r10 n( ) � δ10 n( )
Δ]0 n + 1( ), (7)

r02 n( ) � δ02 n( )
Δ]1 n( ), (8)

with Δ]l(n) the large separations, δij(n) the small separations, and
n the radial order of the mode:

Δ]l n( ) � ]n,l − ]n−1,l, (9)
δ01 n( ) � 1

8
]n−1,0 − 4]n−1,1 + 6]n,0 − 4]n,1 + ]n+1,0( ), (10)

δ10 n( ) � −1
8

]n−1,1 − 4]n,0 + 6]n,1 − 4]n+1,0 + ]n+1,1( ), (11)
δ02 n( ) � ]n,0 − ]n−1,2. (12)

As shown in the right panel of Figure 2, these ratios are largely
independent of the surface layers and thus much more efficient at
constraining the internal structure of an observed target. Other
techniques of surface-independent model fitting have been
developed and presented in Roxburgh (2015). More recently,
Farnir et al. (2019) also developed a comprehensive approach to
decompose the spectrum of solar-like oscillations in seismic
indicators uncorrelated to each other, taking into account both
the smooth and the glitch component of the oscillation spectrum.

In general, non-seismic constraints will also be considered
when carrying out evolutionary modelling, such as the stellar
luminosity, the effective temperature, the surface metallicity or
the photospheric radius determined from interferometry
(whenever available), or the mass if studying a spectroscopic
binary system. While not always available, such non-seismic
constraints, especially if determined with high precision, can
prove extremely useful in lifting degeneracies between various
solutions provided by pure seismic modelling.

3.2 Inferences From Static Models
Static models are depictions of the internal structure of stars
without considering their evolutionary history. In a strict sense,
the observed oscillation frequencies carry information only on the
current state of the star, but there can be multiple paths leading to
the current observed properties. Static models are particularly
useful to study stars in an evolutionary stage difficult to compute
numerically, or for which the evolutionary path is unclear.

Various techniques have been applied in the past to study the
internal structure of SdB stars and white dwarfs (Charpinet et al.,
2008; Van Grootel et al., 2010; Giammichele et al., 2018; Charpinet
et al., 2019; Fontaine et al., 2019), providing constraints on the
equation of state of dense stellar matter and the properties of semi-
convective mixing in advanced evolutionary phases.

Static seismic models have also been computed for the solar
case (See e.g., Basu and Thompson, 1996; Takata and

Shibahashi, 1998; Shibahashi et al., 1999; Shibahashi and
Tamura, 2006; Buldgen et al., 2020) where the presence of
high degree modes allows us to carry out a full scan via iterative
methods. Some non-standard static models have also been
computed by Hatta et al. (2021) for KIC 11145123, a young γ-
Doradus δ-Scuti hydrid pulsator. As such, static modelling
may also prove useful for modelling non-standard
evolutionary products such as results of mergers, stripped
cores, . . . for which pulsational properties may significantly
differ from what their standard evolutionary counterparts
would predict (See e.g., Deheuvels et al., 2022).

4 VARIATIONAL EQUATIONS

The most commonly used inversion techniques rely on the so-
called variational principle of adiabatic stellar oscillations (See
Chandrasekhar, 1964; Clement, 1964; Chandrasekhar and
Lebovitz, 1964; Lynden-Bell and Ostriker, 1967), that can be
derived from the functional analysis of the adiabatic oscillation
equations. It essentially states that at first order, perturbation
of the adiabatic eigenfrequencies of gaseous spheres will be
related to perturbations of the oscillation operator and link the
seismic observables to interior quantities. In other words,
small perturbations will follow, to first order, the following
equation

δ]n,ℓ

]n,ℓ
� < ξn,ℓ , δL ξn,ℓ( )>

In,ℓ
, (13)

with ]n,ℓ the frequency of the oscillation mode, ξn,ℓ its
eigenfunction, In,ℓ the mode inertia (see e.g., Unno et al., 1989,
for a general description of non-radial stellar oscillations) and δL
the perturbed operator of adiabatic oscillations. The notation
< .> denotes the scalar product over the functional space of the
solutions of the adiabatic oscillation equations. It is defined as

< a, b> � ∫
V
a · bρdV, (14)

with V the volume of the sphere and ρ the local value of the
density in the sphere.

Examples of small perturbations in the stellar case include the
effects of slow rotation, or minor mismatches between the
internal structure of the model and the observed star. The
former, that serves as initial condition for the inversion, will
often be called “reference model”, while the observed star or the
target model will often be refereed to as the “target” of the
inversion procedure.

It is worth mentioning that while the variational principle is
valid for “small perturbations” of an Hermitian operator (as is the
general operator describing the full 4th order system of adiabatic
stellar oscillations), the domain of validity of the linear
approximation is unclear, and likely depends on the oscillation
modes and the quality of the reference model. The variational
expressions have for example been generalized in the case of
mixed oscillation modes by Ong and Basu (2020) and Ong et al.
(2021).
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For the purpose of structure inversions, the equations are
reworked to provide a formally simple expression allowing us to
derive corrections to the internal structure of a given model
(Dziembowski et al., 1990). This expression is

δ]n,ℓ

]n,ℓ
� ∫R

0
Kn,ℓ

s1 ,s2

δs1
s1

dr + ∫R

0
Kn,ℓ

s2 ,s1

δs2
s2

dr +O δ2( ), (15)

where s1 and s2 are structural variables such as density,
pressure, sound speed, . . . Kn,ℓ

sj,sk
the structural kernel related

to variable sj in the (sj, sk) pair which depends on the structure
of the model and the eigenfunction of the oscillation mode.
The notation δ defines a difference between the reference
model and the observed target of a variable such as the
frequency, the density as a function of radius, . . . (See
Dziembowski et al., 1990, for the associated developments).
In Eq. (15), the last term denotes that the formalism is valid to
first order, and in some cases, higher order terms can become
non-negligible, making the first order approximation
inappropriate. Various pairs of structural kernels are
illustrated in Figure 3, namely for the density, squared
adiabatic sound speed, squared isothermal sound speed and
Ledoux discriminant. The similarity between the kernels
illustrates well the difficulties of asteroseismic inversions
who will only have a few available modes to carry out the
inversions.

The classical variational expressions are related to the
adiabatic sound speed and density profiles. However, these
expressions can be easily generalized to any physical quantity
appearing in the adiabatic oscillation equations (Elliott, 1996;
Basu and Christensen-Dalsgaard, 1997; Kosovichev, 2011;
Buldgen et al., 2017b). In addition, assuming a linearized form
of the equation of state can also be used to determine “secondary”
variables such as temperature or in principle, chemical
abundances. In such cases the Γ1 perturbations are rewritten as

δΓ1
Γ1

� z ln Γ1
z lnP

∣∣∣∣∣∣∣ρ,Y,ZδPP + z ln Γ1
z ln ρ

∣∣∣∣∣∣∣∣
P,Y,Z

δρ

ρ
+ z ln Γ1

zY

∣∣∣∣∣∣∣P,ρ,ZδY + z ln Γ1
zZ

∣∣∣∣∣∣∣P,ρ,YδZ,
(16)

with P, the local pressure, ρ, the local density, Y, the helium mass
fraction and Z, the heavy element mass fraction. Other
thermodynamic variables can be used in combination with the
appropriate Γ1 derivatives.

In practice however, this expression is not used in
asteroseismology to carry out inversions of the chemical
composition, but rather to naturally damp the contribution of
the second integral in the inversion thanks to the low amplitude
of the Γ1 derivatives with respect to Y. Such “tricks” lead to more
stable inversions for which the variational equation almost
reduces to an integral expression with one structural variable
instead of two. We will come back to this point in Section 5.

Lagrangian perturbations can also be considered in Eq. (15).
In this case, the perturbations of the structural variables will be
considered at fixed mass instead of fixed radius (Christensen-
Dalsgaard and Thompson, 1997). Instead of using individual
frequency differences, it is also possible to express the variational
equations for frequency separation ratios, as was shown in
Floranes et al. (2005) and applied in Bétrisey and Buldgen (2022).

One major weakness of the variational expressions using
individual frequencies is their strong sensitivity to surface effects.
They indeed rely on the adiabatic approximation, which is not valid
in the upper layers where the thermal and dynamical timescales are
of the same order of magnitude. Moreover, adiabatic oscillation
codes often use simplified boundary conditions and the poor
modelling of the upper convective layers by the mixing-length
theory will lead to inaccuracies of the oscillation frequencies at a
significant level with respect to the observational errors. Such
sensitivity can however be damped when using frequency
separation ratios for the inversion.

FIGURE 3 | Structural kernels for various structural pairs and for low degree oscillations modes for a representative model of 16CygA from Buldgen et al. (2022).
Each panel illustrates a different variable that can be used for variational inversions of the structure of a star as well as the degeneracy in the shape of the kernels for low
degree modes.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 9423736

Buldgen et al. Inversions of Stellar Structure

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Indeed, as they directly use frequency differences, the
variational equations will suffer to some extent from the same
caveats as directly using the individual frequencies as constraints
in evolutionary or static modelling. This implies that the
variational expression 15 will have to be supplemented by a
surface correction term that often takes a polynomial form

F ]( ) � ∑
k

ck ]( )]k, (17)

with ] a given frequency and ck the surface correction
coefficients associated with the power k of the frequency.
Existing surface corrections include the classical polynomial
approach of degree 7 applied in helioseismology (Rabello-
Soares et al., 1999), the two-terms Ball and Gizon (2014)
correction and the Sonoi et al. (2015) formula that can also
be linearized, or applied to the frequencies beforehand using
their empirical relation of the surface correction with effective
temperature and surface gravity.

It is therefore important to keep inmind that the validity of the
variational relations is limited. It can for example be measured
using error functions such as

En,ℓ � Λn,ℓ
LHS − Λn,ℓ

RHS

Λn,ℓ
LHS

, (18)

with Λn,ℓ
LHS the relative frequency difference and Λn,ℓ

RHS the right-
hand side of Eq. (15).

As illustrated in Figure 4, the accuracy of the variational
inversion will vary depending on the oscillation modes
considered as well as the structural variables used. Such
considerations might be very important when choosing the
most adapted variable pair for a given target and set of
observed frequencies before carrying out an inversion of the
structure.

5 LINEAR INVERSION TECHNIQUES - THE
SOLA METHOD

The variational equations provide the basis for the use of linear
inversion techniques in helioseismology. Namely, under the
hypothesis of the validity of the linear integral relation 15,
these equations can be solved to provide corrections to
structural variables. The linear approaches provide one step of
correction, and are not iterated, unlike the non-linear methods we
present in Section 6. As mentioned above, the variational
equations can be rewritten for a wide range of physical
quantities, offering some degree of freedom regarding the
target of the inversion.

However, the situation is in practice far more complex. Linear
inversion techniques such as the OLA (Backus and Gilbert, 1970),
SOLA (Pijpers and Thompson, 1994) or RLSmethods (Tikhonov,
1963) have been adapted for inverting helioseismic data (see
Christensen-Dalsgaard et al., 1990; Sekii, 1997, for a comparison
between OLA and RLS) and (see Reese, 2018, for a review).
Inversions of stellar structure using asteroseismic data have so far
been limited to the use of the SOLAmethod2, which is the one we
will describe here.

The philosophy behind the SOLA inversion is to compute
linear combinations of the relative frequency differences based
the following cost function

P ci( ) � ∫R

0
Kavg r( ) − T r( )[ ]dr + β∫R

0
K2

cross r( )dr

+λN + tan θ
∑N

i
ciσ i( )2

< σ2 > +∑N
i

ci ∑L
k

akψk ]i( ),
(19)

FIGURE 4 | Illustration of the verification of the integral relation between relative frequency differences and relative structure differences for solar models including
various transports of the mixing of chemicals, using Eq. 18, using models from Buldgen et al. (2017b) and various structural pairs, namely (ρ, c2) (ρ, Γ1) (u, Γ1) and (A, Γ1).

2We note however that instances of RLS inversions of the internal rotation of
distant stars can be found in Deheuvels et al. (2014); Schunker et al. (2016a).
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with T the target function of the inversion, λ a Lagrange
multiplier, N an additional regularization term (as will be
discussed later), ci the inversion coefficients, θ and β the trade-
off parameters, σi the uncertainties of the relative frequency
differences, < σ2 > � 1

N∑N
i�1σ2i and N the number of observed

frequencies. The term ∑L
kakψk(]i) is a polynomial expression for

the surface correction defined in Eq. (17), with L the number of
surface terms in the polynomial definition. In addition to these
quantities, we define in Eq. (19) two terms, Kavg and Kcross, the
averaging and cross-term kernels, defined from the
recombination of the structural kernels with the inversion
coefficients. They will have the form.

Kavg � ∑N
i

ciK
i
s1 ,s2

, (20)

Kcross � ∑N
i

ciK
i
s2 ,s1

, (21)

if the target function of the inversion is related to the variable s1 in
the (s1, s2) structural pair.

In other words, the SOLA method is based on a trade-off
between precision and accuracy. The goal is to compute the best
fit to the target function of the inversion while avoiding to amplify
too much the observational uncertainties. Looking at Eq. (20), it
is straightforward to see that the number of observed frequencies
will play a crucial role for the accuracy of the method. The more
frequencies are observed, the more structural kernels are available
for recombination, and the more accurate the inversion will be.

The situation in asteroseismology is however very far from that of
helioseismology. Since the surface of the star is not resolved,
geometric cancellation forbids the detection of solar-like
oscillations of angular degree higher than 3. This has important
consequences for the capabilities of linear inversions, as the datasets
for the best Kepler targets count at most ≈ 50 to ≈ 60 individual
frequencies with low degrees. In such conditions, full scans of the
internal structure, as carried out for the Sun, are not achievable.

Most of the time, the linear inversion of the structure will be
limited by the number of frequencies and the validity of the linear
formalism. An important difference between asteroseismic and
helioseismic inversions is that the fundamental parameters, mass,
radius and age of the star under study are not known. The solar
case thus consists in an ideal environment where the bounds of
the integrals in Eq. (15) are known, and where the knowledge of
the age of the Sun provides a degree of control on the computed
models, ensuring the validity of the linear formalism.

This will not be the case in asteroseismology, implying that a
workaround has to be found, and some care has to be taken when
interpreting the results of linear inversions. In practice, one can
include an additional term in the cost function of the inversion
related to the minimization of the mean density, as suggested by
Roxburgh et al. (1998). In such condtions, one can consider that
using dimensional and dimensionless frequencies, denoted ] and
~] would be equivalent and that

]obs − ]ref
]ref

� ~]obs − ~]ref
~]ref

, (22)

if the mean density is perfectly fitted. This implies that the actual
corrections derived by the inversion are for the dimensionless
variable and not its dimensional counterpart. Another pragmatic
approach to take this scaling effect into account is to carry out
inversion for ensembles of models with the same mean density,
determined for example from mean density inversions (See
Section 5.3). This “scaling” effect can become very important
when comparing actual differences between models. It also
illustrates some degree of degeneracy in seismic inferences,
and shows the importance of independent radii estimates from
interferometric measurements, or combination of parallaxes and
spectroscopic measurements. In practice, any high-quality non-
seismic constraints will prove very useful to seismic modelling,
and also explains why binary systems are still key testbeds of
stellar physics, even in the era of space-based photometry
missions (Appourchaux et al., 2015; Metcalfe et al., 2015;
Bazot et al., 2016; Farnir et al., 2020; Salmon et al., 2021).
Figure 5 illustrates such differences for two models of the
Kepler target 16CygA from Farnir et al. (2020). The behaviour
of the dimensional and dimensionless relative differences in
squared isothermal sound speed can be quite different,
showing the importance of understanding what variable is
actually constrained by the inversion.

Another limitation of linear inversions is the range of validity
of the linear formalism. In practice, calibrations using only non-
seismic parameters will not be sufficient to ensure the
applicability of the variational formalism to the inverse
problem. Thus, as already noted by Thompson and
Christensen-Dalsgaard (2002), a preliminary form of seismic
modelling must be carried out before the inversion is
performed, which implies that seismic data is already used
beforehand. From a modelling point of view, this means that
the inversion step is not completely independent of the
preliminary modelling procedure, and that inversions relying
on the variational equations can often be biased. This problem
can become more substantial if the amplitification of the
observational uncertainties is small, meaning that the

FIGURE 5 | Differences between the dimensional ((u), dashed line) and
dimensionless (~u, plain line) squared isothermal sound speed for models of
16CygA from Farnir et al. (2020). The differences are those computed in
Buldgen et al. (2022), Figure 13A and are linked to models of 16CygA
showing differences in their mean density values between 1 (orange and green
lines) and 2% (red lines).
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inversion appears artificially precise. In this context, providing a
set of reference models large enough is very important to ensure
that the precision of the inversion is correctly assessed from the
point of view of model-dependencies, non-linearities, and impact
of empirical surface corrections.

5.1 Dealing With Surface Effects
The additional surface correction term in Eq. (17) leads to various
complications in asteroseismic inversions. The additional term in
Eq. (19) can often have a very significant impact on the inversion
results, as it leads to a less favourable trade-off for a method
already limited by the low number of observed modes to fit the
target function. Determining the actual impact of the surface
corrections on inversion results is particularly important, as in
some cases they will lead to a larger variation of the inverted result
than the uncertainties derived from the SOLAmethod. This is the
case for mean density inversions, which thus require a more
careful analysis. Indeed, the precision on the determined mean
density will have an impact on the determined stellar mass using
evolutionary modelling or the determined planetary mass from a
radial velocity curve.

The classical polynomial fit used for helioseismic inversions is
not applicable in the context of asteroseismology. It was usually
advised to consider a polynomial of order up to 7 to fit the
“surface term” (Rabello-Soares et al., 1999), which is not possible
with asteroseismic data. Reese et al. (2012) initially attempted to
limit the correction to the first order, but tests in hare and hounds
exercises showed that this was even less efficient than not
considering any correction (Reese et al., 2016).

With the advent of the new empirical corrections of Ball and
Gizon (2014) and Sonoi et al. (2015), the surface term could be
reduced to two additional terms. In such conditions, the surface
term can sometimes be directly included in the fitting of the
SOLA cost-function with limited impact on the quality of the fit
of the target function of the inversion regarding accuracy, but will
actually impact the amplitude of the inversion coefficients and
thus the precision of the inversion. However, with very limited
datasets, or for some more unstable inversions, the addition of
two terms in the cost-function can lead to low quality
reproduction of the target.

In such conditions, surface corrections can also be applied
following the empirical formula of Sonoi et al. (2015) as a
function effective temperature and surface gravity before
carrying the inversion, using the corrected frequencies as the
observed ones. An analysis of the importance of surface
corrections for mean density inversions on red giant stars
using averaged 3D atmospheric models and non-adiabatic
frequency computations has been carried out in Buldgen et al.
(2019b). They showed that applying the surface corrections
beforehand could be more efficient than including it in the
cost-function, as it did not affect the fit of the target function.
A similar observation was made for Kepler 93 by Bétrisey et al.
(2022). However, further tests and more thorough analyses have
to be carried out for other indicators and datasets before
concluding on the best approach to take into account surface
effects. In addition, such studies do not necessarily indicate that
the surface corrections are ultimately accurate, and an efficient

workaround is then to avoid the surface effect dependency in the
inversion altogether, as will be discussed in Section 6.

5.2 Inversions of Localized Corrections
The original SOLA inversions have been designed for
determining local average corrections of the solar rotation
profile (Pijpers and Thompson, 1994) from the variational
expressions applied in the slowly rotating case. The same
approach can be directly applied to structural inversions, with
the only major change being that a cross-term contribution
appears due to Eq. (15) including two integrals compared
with the single integral relation of rotation perturbations.

Inversions of localized averages have been extensively
performed in helioseismology, as well as comparisons with the
RLS technique and applications to various structural pairs. The
application of SOLA inversions to asteroseismic data was
foreseen quite early, with studies on artificial data already
carried out in the 1990s and early 2000s (Gough and
Kosovichev, 1993a; Gough and Kosovichev, 1993b; Roxburgh
et al., 1998; Basu et al., 2002; Takata and Montgomery, 2002). In
most cases, the expected quality of the dataset was actually higher
than what was actually brought by the space-based photometry
missions, with some artificial datasets going as high as 100
observed frequencies, which unfortunately has not been
achieved for any solar-like oscillator observed by Kepler.

In the case of localized inversions, the target function of the
inversion usually is a Gaussian-like function of the form

T � αr exp − r − y

Δ + Δ
2r0

( )2( ), (23)

with α a normalisation constant, y the center of the Gaussian
target function and Δ � ΔAc(y)

cA
is linked to the width of the

Gaussian, ΔA being a free parameter, and c(y) and cA the
adiabatic sound speed at the maximum of the kernel and at a
radius of 0.2R, respectively.

The regularisation termN of Eq. (19) is then a unimodularity
constraint on the averaging kernel of the form

∫R

0
Kavgdr � 1, (24)

to avoid high amplitudes of the inversion coefficients that can
make the procedure unstable.

Applications of the SOLAmethod in its original form to actual
asteroseismic data can be found as early as 2004 (di Mauro, 2004).
More recent applications aiming at determining localized
corrections to Kepler targets can be found in (Bellinger et al.,
2017; Bellinger et al., 2019; Kosovichev and Kitiashvili, 2020;
Bellinger et al., 2021; Buldgen et al., 2022). Such applications have
been limited to the best Kepler targets, such as the 16Cyg binary
system. Even in such cases, localised kernels can only be obtained
in the deep layers, as a result of the availability of only low degree
modes. An illustration of Gaussian averaging kernels obtained for
16CygA is illustrated in the right panel of Figure 6.

As shown in the left panel of Figure 6, such inversions have
confirmed the accuracy of the reference evolutionary models for
both stars determined from asteroseismic modelling using the
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method of Farnir et al. (2020). The fact that the SOLA inversion
cannot pinpoint differences between models of solar twins is not
really a surprise. Indeed, the effects of varying the transport of
chemicals by inhibiting settling of heavy elements to mimick
turbulence at the base of the convective envelope, changing the
radiative opacity tables, or changing the reference solar
abundances is rather small for a given set of parameters such
as mass, radius and age. From the analysis of solar models, the
differences seen are of the order of 1% at the base of convective
envelope and reduce to 0.2% in the deep radiative layers. In these
conditions, linear asteroseismic inversions, showing uncertainties
of a few percent, might not be able to pintpoint such small
differences in structure if the fundamental parameters of a star are
well constrained.

This points towards a quite stringent restriction of linear
inversions, as they have a sort of “niche” where their
application might be useful. In practice, an unsatisfactory
agreement between the observed and modelled frequency
separation ratios, r02 or r01, may indicate that carrying out
inversions of the internal structure can be useful, as shown in
Bellinger et al. (2019). However, if all frequency separation ratios
are well reproduced, linear inversions of the internal structure
might only confirm the validity of the evolutionary models and
the traces of additional processes such as macroscopic mixing of
chemicals might be looked for using frequency glitches (Monteiro
and Thompson, 2005; Mazumdar et al., 2012; Mazumdar et al.,
2014; Verma et al., 2014; Verma et al., 2017; Verma et al., 2019;
Verma and Silva Aguirre, 2019) or depletion of light elements
such as Lithium and Beryllium (Deal et al., 2015).

Localised inversions have also been applied to post main-
sequence Kepler targets such as in Kosovichev and Kitiashvili
(2020) and Bellinger et al. (2021). However, the validity of the
variational equations in the context of mixed modes still needs to be
thoroughly investigated, as shown by Ong and Basu (2020) and Ong

et al. (2021), as coupling effects can cause the classical relation to
break down for mixedmodes, implying that a non-linear formalism,
taking properly into account the coupling using the full system of
oscillation equations might be required. In this context, non-linear
inversions appear the most favourable approach for extracting
meaningful constraints from asteroseismic data.

5.3 Inversions of Global Indicators
As a result of the difficulties of carrying out full profile inversions,
a compromise was struck by Reese et al. (2012) who decided to
focus on global quantities rather than attempt at localizing
kernels. The main goal of such “indicator” inversions is to
focus on one single quantity at a time using the variational
expressions, trying to extract constraints on some well-chosen
key quantities instead of detailed profiles. The chosen quantities
are determined based on the structural properties under
investigation, such as the mean molecular weight gradient in
the deep radiative layers, or the profile of an entropy proxy close
to the border of a convective zone.

A main difficulty of linear asteroseismic inversions is to find
appropriate target functions for SOLA inversions that can be
easily fitted with a very limited number of frequencies.
Consequently, Reese et al. (2012) focused on a physical
quantity well-known to be constrained by solar-like
oscillations, the mean density. Buldgen et al. (2015a), Buldgen
et al. (2015b), Buldgen et al. (2018) then focused on generalizing
the formalism to other physical quantities. The linear inversion of
an indicator will be computed as follows

δE

E
� ∑N

i

ci
δ]i
]i
, (25)

with E the indicator, ci the inversion coefficients determined by
the SOLA method and ]i the individual frequencies.

FIGURE 6 | Left: relative differences in dimensionless squared isothermal sound speed for 16CygA as a function of normalized radius. Each colour represents a
different reference model for the inversion. The set of reference models is that of Buldgen et al. (2022), Table 2. Right: averaging kernels for the localized inversion of
16CygA using the (u, Y) structural pairs [adapted from Buldgen et al. (2022)].
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The indicator is related to structural variables using an integral
definition

E � ∫R

0
f r( )g s1( )dr, (26)

and applying an eulerian linear perturbation to this equation
leads to

δE

E
� ∫R

0

s1f r( )
E

zg s1( )
zs1

δs1
s1

dr � ∫R

0
T E

δs1
s1

dr, (27)

which defines the target function of the indicator T E which will
be used in Eq. (19) for this specific inversion.

An additional term is introduced in the SOLA cost-function,
denotedN in Eq. (19). For the case of indicator inversion, it takes
the following form

N � k −∑N
i

ci⎡⎣ ⎤⎦, (28)

with k an integer that relates the scaling of the indicator with
respect to mass. The argument is based on the relation between an
indicator and the frequencies, which go as

���
GM
R3

√
. Since the radius

is essentially fixed by the definition of the boundary of the integral
variational relation, the scaling ends up being a scaling with mass.
The idea is to determine the properties of a homologous
transformation that will lead to the correct rescaling of the
indicator value.

Essentially, if the indicator goes as E ∝ Mk/2, then a small
perturbation of δE/E = ϵ will lead to a small perturbation of the
frequencies δ]/] = ϵ/k. In these conditions, it can be shown that a
homologous transformation with ∑ici = k leads to the correct
rescaling of the indicator. Such inversions have been called
“unbiased” in Reese et al. (2012). In practice, this term acts as
an additional regularization term for the inversion to avoid high
amplitudes of the inversion coefficients. As seen above, similar
regularization terms are introduced for localized inversions in the
form of unimodularity constraints for the kernels.

This additional constraint has also been associated with simple
“non-linear” generalizations of the indicator inversions, following
the approach of an iterative scaling of the model using
homologous relations. This iterative scaling can be shown to
provide generalized formulations of Eq. (25) which will depend
on the value of the additional coefficient in the
regularization term.

5.3.1 Mean Density
Mean density inversions were defined in Reese et al. (2012), as a
potential application of the SOLA method to refine the
determinations of stellar fundamental parameters from
asteroseismic data. These inversions have been further tested
later on in Buldgen et al. (2015b) for solar like stars, and applied
to radial oscillations of post-main sequence stars in Buldgen et al.
(2019b). The integral definition of the stellar mean density is

�ρ � 3
4πR3

∫R

0
4πr2ρdr. (29)

Hence, the target function is given by

T �ρ r( ) � 4πρr2

R3ρR
, (30)

with ρR � M
R3. An illustration of the target function in the case of

16CygA is provided in the bottom right panel of Figure 8. This
function is usually fitted using structural kernels of the (ρ, Γ1)
structural pair in the variational equation.

Mean density inversions have been applied to a wide variety of
targets, mostly on the main sequence. They offer the advantage of
providing an accurate determination of the mean density, beyond
the capabilities of asymptotic estimates such as the large
frequency separation (Vandakurov, 1967) and being less
sensitive to surface effects than the latter.

Due to the easily fitted target function, mean density
inversions are one of the few that can be applied with a very
limited number of observed frequencies (See Reese et al., 2012;
Buldgen et al., 2015b), without recalibration of the trade-off
parameters. These inversions are thus suitable for an
“automated’ approach in modelling pipelines. However, they
suffer from an overestimated precision of the inversion. As a
result of the shape of the target function, the inversion coefficients
are not very large and the amplification of the uncertainties is
small. While this may seem as an advantage, it also means that the
error bars on the determined mean density cannot be directly
estimated using the SOLA method. In fact, the spread of results
observed when using multiple models and empirical surface
corrections is often much larger than the 1σ error bars
provided by the SOLA method. This is illustrated in Figure 7
for Kepler 93. In practice, mean density inversions must then be
applied to a given set of models and their precision is closer to
0.2% or 0.3% (See Bétrisey et al., 2022) rather than the claimed
0.1% or less computed from the propagation of the observational
uncertainties.

FIGURE 7 | Effect of surface corrections and model-dependency on
mean density inversions of Kepler 93 [adapted from Bétrisey et al. (2022)] as a
function of mass of the reference model. Red crosses show the reference
mean density values, olive green crosses show results without surface
corrections, blue and grey crosses show results using the Sonoi et al. (2015)
and Ball and Gizon (2014) corrections in the SOLA cost function, whereas
brown crosses show results using coefficients extracted from MCMC
modelling and applied beforehand.
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5.3.2 Acoustic Radius
Acoustic radius inversions were defined in Buldgen et al. (2015b).
The acoustic radius of a star is defined as

τ � ∫R

0

dr

c
, (31)

and is related to the large frequency separation in the asymptotic
regime as Δ] = 2/τ.

These inversions can be carried out with both the (c2, ρ) or the
(ρ, Γ1) structural pair. As discussed above, structural pairs
involving either Γ1 or Y as secondary variable should be
preferred to minimize naturally the cross-term contribution.
Therefore, for the (ρ, Γ1) structural pair, some manipulations
are made using the definition of the squared adiabatic sound
speed, c2, and permutations of integrals to define the target
functions of the inversion. In this form, the acoustic radius
inversion has a non-zero target function for the cross-term
contribution.

The target functions are defined as.

T τ,avg � 1
2cτ

− m r( )
r2

ρ ∫r

0

1
2cτP

dx[ ]
−4πr2ρ ∫R

r

ρ

x2 ∫x

0

1
2cτP

dy( )[ ]dx, (33)

T τ,cross � −1
2cτ

, (34)

with ρ the local density, m the mass contained within the layer of
radial position r, P the pressure, c the adiabatic sound speed, and τ
the acoustic radius. An illustration of the target functions for
16CygA is illustrated the upper panels of Figure 8. Moreover, the
supplementary regularization constraints on the inversion
coefficients shows that their sum must be equal to −1.

Acoustic radius inversions show a similar behaviour to mean
density inversions, as the target functions are easily fitted by the
kernels. They can thus be applied to a wide range of targets, but
suffer from two main drawbacks. First, just as the mean density

inversion, the SOLA method overestimates the precision of the
inversion, meaning that the uncertainties derived from the
propagation of the observational uncertainties cannot be
trusted. Second, as a result of the behaviour of the target
function, which results from the definition of the acoustic
radius, the inversion is more sensitive to surface effects and
thus difficult to apply to observed targets. This high sensitivity
prohibits the use of acoustic radius inversions in practice and they
have only been applied to the 16Cyg binary system in Buldgen
et al. (2016a). While Buldgen et al. (2015b) concluded that the
method was robust with respect to surface changes in the models
and non-adiabatic effects in the oscillation computations, further
investigations are required to determine in more details the
robustness of these inversions using more sophisticated tests
and comparisons.

5.3.3 Core Condition Indicators
Given the importance of constraining the core conditions of
distant stars to determine reliable estimates of their ages, much
effort has been devoted to define appropriate core condition
indicators. Three of them were defined in recent years, with
different observed targets in mind.

The first indicator was defined in Buldgen et al. (2015b) and
based on the asymptotic expression of the small frequency
separation. The idea was to determine the quantity

t � ∫R

0

1
r

dc

dr
dr, (35)

using the (c2, ρ) structural pair. As mentioned above, the use of
this structural pair has been shown to lead to higher amplitude of
cross-term contributions. The target function for this indicator is
defined by

T t �
1
r
dc
dr∫R

0
1
r
dc
dr dr

. (36)

FIGURE 8 | Target functions of various indicators as a function of normalized radius, taken for a model of 16CygA. Upper left and right: target functions for the
acoustic radius inversion. Bottom left: target function for the t core condition indicator. Bottom right: target function for the mean density.
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Due to the difficulty of fitting the target function of this indicator,
Buldgen et al. (2015b) opted for a modified version of the SOLA
method, trying to fit the antiderivative of the target function
rather than the target function itself. This leads to a slight
modification of the SOLA cost function with the first term
being written

∫R

0
∫r

0
T t x( )dx − ∫r

0
Kavg x( )dx[ ]2

dr. (37)

This approach has been shown by Reese et al. (2012) and
Buldgen et al. (2015b) to show reasonably accurate results for
both mean density and core condition indicator, at the expense of
a lower stability since oscillatory behaviours are allowed around
the target function of the inversion. Regarding the additional
regularization term, the value of k for the sum of the inversion
coefficients is shown to be 1.

An illustration of the target function of the t indicator is provided
in the lower left panel of Figure 8. Buldgen et al. (2015b) concluded
that this indicator would be mostly well-suited for young low mass
stars, and published results only include tests on artificial data. It is
worth noting that all indicators defined so far, namely �ρ, τ and t have
their roots in the asymptotic relations of solar-like oscillations.

A second core condition indicator, denoted tu, was derived in
Buldgen et al. (2015a), to allow us to access to the core conditions
of low-mass stars at later stages of core hydrogen burning. The
definition of this new quantity is

tu � ∫R

0
f r( ) du

dr
( )2

dr, (38)

with u = P/ρ, the squared isothermal sound speed and f(r) a
weight function defined as

f r( ) � r r − R( )exp −7 r
2

R
( ), (39)

The target function for this indicator is defined as

T tu �
−2u
tu

d

dr
f r( ) du

dr
( ), (40)

and the inversion is carried out using either the (u, Y) or the (u,
Γ1) structural pair. Tests on artificial data showed that both pairs
led to a similar accuracy of the inversion. From a numerical point
of view, the (u, Y) pair leads to a lower cross-term that is more
easily damped, whereas using the (u, Γ1) pair relies on the low
amplitude of the relative differences in Γ1 between the reference
model and the target. An illustration of the target function of the
tu indicator is shown for 16CygA in the right panel of Figure 9.
The value of k in Eq. 28 is of 4 for tu inversions.

The tu inversion has been applied to a few targets in Buldgen et al.
(2016a), Buldgen et al. (2016b), Buldgen et al. (2017a). In the case of
16Cyg, a recent re-study by Buldgen et al. (2022) concluded that the
origin of the slight discrepancies were not due to mismatches of the
internal structure. As shown in the left panel of Figure 9 illustrating
the results for 16CygB, amain drawback of the tu inversion is its very
high amplification of the observational errors, leading to a reduced
significance of the inversion.

The last core condition indicator was defined in Buldgen et al.
(2018) and is aimed at applications for stars with convective cores
such as F-type solar-like oscillators. The idea is to carry out an
inversion related to a proxy of the entropy of the stellar plasma,
defined as S5/3 � P

ρ5/3, which shows a plateau in convective regions.
The height of this plateau will be sensitive to the size of the
convective core. The definition of the indicator is

Score � ∫R

0

g r( )
S5/3

dr, (41)
with

g r( ) � r α1 exp −α2
r

R
− α3( )2( )(

+α4 exp −α5
r

R
− α6( )( ))

tanh α7 1 − r

R
( )4( ),

(42)

with α1 = 16, α2 = 26, α3 = 0.06, α4 = α5 = 6.0, α6 = 0.07, and α7 = 50.
The parameter valuesmight be varied depending on the observed star
and as discussed in Buldgen et al. (2018). The intricate formulation of
the weight is an attempt at extracting at best the information of the
entropy plateau of the convective core, while keeping acceptable fits
with a limited number of kernels of low degree modes. The target
function of the inversion is defined in this case by

T Score �
−g r( )
ScoreS5/3

. (43)

The value of k in Eq. 28 is −2/3. The inversion will be carried out
using the (S5/3, Γ1) or (S5/3, Y) structural pair.

An illustration of the target function for an F-type star model
with a convective core is provided in the left panel of Figure 10,
the extent of the core can be clearly seen from the plateau in the
profile of 1/~S5/3, with ~S5/3 � GM1/3

R S5/3. This inversion has been
applied to artificial data in Buldgen et al. (2018), and to actual
observed targets in Buldgen et al. (2017a), Salmon et al. (2021),
and Buldgen et al. (2022), showing in some cases significant
differences with respect to the reference models.

Detailed studies of F-type stars have not yet been undertaken
and require more care as a result of the potential higher impact of
surface effects. A generalization of the technique to the use of
frequency separation ratios instead of individual frequencies
could perhaps alleviate the issue.

5.3.4 Envelope Indicator
In addition to defining core conditions indicators, Buldgen et al.
(2018) decided to attempt at providing constraints on the entropy
plateau in the convective envelope of solar-like stars. This
appproach was partly motivated by results in the solar case
(Buldgen et al., 2017c), showing a significant variation of the
height of the entropy plateau in the solar convective zone for
models built with different opacity tables.

The indicator was defined as follows

Senv � ∫R

0
h r( )S5/3dr. (44)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 94237313

Buldgen et al. Inversions of Stellar Structure

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


with the weight function h(r) defined as

h r( ) � α1 exp −α2
r

R
− α3( )2( ) + α4 exp −α5

r

R
− α6( )2( )[

+ 0.78

1 + exp
R

r
− 1
α7

( )/α8( )( )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× rα9 tanh α10 1 − r

R
( )4( )( ),

(45)
with α1 = 30, α2 = 120, α3 = 0.31, α4 = 7.3, α5 = 26, α6 = 0.33, α7 =
1.7 α8 = 1.2, α9 = 1.5, and α10 = 50. The target function of the
inversion is given by

T env � h r( )S5/3
Senv

. (46)

With these definitions, the value of k in the additional
regularization term is given by 2/3. An illustration of the
target function, as well as the normalized variable ~S5/3 �
GM1/3

R S5/3 is provide in right panel of Figure 10.
While the number of parameters in the definition of the weight

function is high, only the α1, α2 and α3 values are modified in
practice. They drive the peak in the target function that can be
used to extract information in intermediate radiative regions or
even regions close to the base of the convective envelope. It is
however extremely difficult to extract information on the entropy
plateau of the convective envelope for asteroseismic targets due to
the absence of high and intermediate degree modes. Thus, the
corrections derived by the Senv indicator will be linked to a

FIGURE 9 | Left: tu inversion results as a function of mean density for 16CygA, using no surface correction (blue) and the Sonoi et al. (2015) correction (green),
orange crosses showing the reference values (adapted from Buldgen et al. (2022)). Right: target function for the tu indicator for a model of 16CygA.

FIGURE 10 | Left: target function of the Score indicator and normalized inverse profile of S5/3 as a function of normalized radius for a 1.07M⊙ harboring a convective
core. Right: target function of the Senv indicator and normalized profile of S5/3 as a function of normalized radius for a solar model [adapted from Buldgen et al. (2018)].
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mixture of variations in the deep and intermediate radiative
layers.

This indicator has been tested on artificial data, showing
promising results, and more recently on 16Cyg, where it did
not succeed in providing significant corrections to the models,
but rather a confirmation of their quality. This indicator seems to
be better suited for low mass stars, for which the convective
envelope goes deeper and can be more easily probed with low
degree modes using the variational expressions.

6 SURFACE INDEPENDENT NON-LINEAR
INVERSIONS

As noted above, linear variational inversions show two main
weaknesses. First, the simplified single step correction provided
by linear methods may not be sufficient to actually reproduce the
data. Iterative approaches (although used for solar models (Antia
and Basu, 1994), but have yet to be successfully adapted and
applied to asteroseismic data. The adaptation would be quite
difficult, especially with the RLS method originally used that
usually retains a strong linear trend due to the regularization
term. In contrast, damping too much the regularization leads to
non-physical oscillatory behaviour of the solution, which is also
problematic. Switching from the RLS method to the SOLA
method, as done for example in Buldgen et al. (2020) for the
Sun, would require additional interpolations and the convergence
of the technique would depend heavily on the behaviour of the
averaging kernels as well as on the surface correction.

Indeed, the use of individual frequencies leads to a strong
impact of surface effects on the inferred values, meaning that the
inversion will be intrisically limited by the accuracy of the
empirical surface corrections. Using relative differences in
frequency separation ratios instead of individual frequencies
may partially alleviate the issue, but it might lead to intrinsic
non-linearity problems and frequency separation ratios might
still be, in some cases, significantly affected by activity effects
(Thomas et al., 2021). Another limitation of using frequency
separation ratios is that the information of the stellar mean
density is lost through the scaling of the ratios by the large
frequency separation.

In this context, asteroseismic inversions would ideally need to
be able to intrisically and reliably circumvent the surface effects of
solar-like oscillations, within an efficient iterative scheme.

In the following Sections, we will present two approaches
based on the phase relation of solar-like oscillations that fulfill
those two requirements. Another advantage of these methods is
that, as they solve the full fourth order system of oscillation
equations, the issue of mode coupling arising in the case of mixed
modes observed in subgiants and red giants will not affect the
results, unlike the variational equations (Ong and Basu, 2020;
Ong et al., 2021).

The approach chosen here is based on the fact that if ω is an
eigenfrequency of the star, then it must satisfy a phase equation
(Vorontsov, 1998; Roxburgh and Vorontsov, 2000) in which the
internal structure can be described from inner phaseshifts and the
outer layers from outer phaseshifts (see below). In such an

approach, the fitting is carried out by reconnecting partial
wave solutions in the inner and outer layers at a suitable
point. The reconnexion point is chosen such that the
oscillation will be almost vertical but still deep enough so that
surface effects do not impact the inner solution.

This method allows us to efficiently separate the contribution
of the outer layers without the need for additional empirical
corrections. As the inner phase shift is independent of the surface
layers and is the constraint used to represent the internal
structure, the inversion of the inner layers is essentially
independent of the surface effects.

The technique will be applied to HD177412A, the more
massive component of the binary system HIP 93511, using the
dataset derived by Appourchaux et al. (2015) from almost 2 years
of continuous Kepler observations.

6.1 Non-Linear Inversion Using Inner
Phaseshifts
The inversion technique presented in this Section subtracts the
effect of the surface layers and seeks to infer the structure of the
inner layers. More specifically, we use as fitting condition that the
inner phase shifts of the solution of the oscillation equations of a
model, using the observed frequencies, should collapse to a
function only of frequency in the outer layers of a star
(Vorontsov, 1998; Vorontsov, 2001; Roxburgh I. and
Vorontsov S., 2003; Roxburgh, 2015). In other words, we use
the fact that the contribution of the outer layers is a function only
of frequency (although unknown) for low degree modes. Other
surface layer independent fitting procedures could equally be
used, e.g., matching the ratio of small to large separations of the
model and observations, or matching phase differences
(Roxburgh and Vorontsov, 2013; Roxburgh, 2015).

The inner phase shift δn,ℓ(]) is the departure of the solution of
the oscillation equations from a harmonic function and is
defined by

ωψ

dψ/dt � tan ωτ − ℓπ/2 + δ( ), where ψ t( ) � rP′
ρc( )1/2, ω � 2π], (47)

calculated at some fractional radius xf in the outer layers, where
τ � ∫r

0
dr/c is the acoustic radius at the radial position r, c the

local sound speed and P′ the Eulerian pressure perturbation.
This provides a fitting criterion for the inversion of the form

αn,ℓ ≡ π
]n,ℓ
Δ0

+ δn,ℓ − π n + ℓ/2( ) � α0 ]( ), (48)

where Δ0 is an estimate of the large frequency separation and
α0(]) is an unknown function only of frequency and not of ℓ,
depicting the contribution of the surface layers to the
eigenfrequency. The outer phase shift, α0, is a parametrised
function of ], (here we used a sum of Nα Chebyshev
polynomials) and the associated coefficients are determined by
a best fit to αnℓ. The fitting condition is then

χ2df � 1
N] −Nα

∑ αn,ℓ − α0
ϵn,ℓ

( )2

, (49)
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where ϵn,ℓ is the error in the inner phase shift, δn,ℓ, obtained by
propagating the error in the frequencies (σn,ℓ) through the
calculation of the inner phaseshift. Nα is the number of
coefficients in the polynomial representation of the outer
phase shift α0. It is worth noting that the value of Δ0 or the
effects of a misidentification of radial order values for the modes
has no impact on the method, as they are absorbed in the value
of α0.

6.1.1 Inversion Procedure
The acoustic structure of a model is determined by the profiles of
the local density ρ(r), the local pressure P(r) and the first adiabatic
exponent Γ1(r). The density profile provides the mass distribution
and the pressure follows from hydrostatic support and a pressure
surface value, denoted here Ps. The first adiabatic exponent can be
taken either from an initial trial model or as given a fixed value of
5/3 since the departure from 5/3 remains very small in the stellar
interior (except in massive stars). Errors in the value of the surface
pressure are unimportant as they have only a very small effect on
the interior solution obtained with the inversion.

The model can be parametrised in many ways. For example
one can use the value of the stellar mass and radius, and the local
density ρ(r) on a radial mesh or, as we used here, with the values
of d log ρ/dr at a set of radial mesh points together with some
interpolation and integration algorithm to reconstruct the
structure.

The starting point of the inversion is some initial trial (input)
model. It can be in principle a very simplified depiction of the
structure such as a polytrope, but will be in practice some stellar
model calculated with some stellar evolution code. The
parameters used in the representation of the model through its
inner and outer phaseshifts are iteratively modified to reduce the
value of χ2df, stopping when it reaches 1.0, meaning that the
internal structure as seen by the data is correctly reproduced with
the parametric profile.

Figure 11 shows the results starting with an input model of
HD177412A computed with the Liège evolution code (Scuflaire
et al., 2008), denoted here “LM”model. This model has a mass, M,
of 1.3M⊙, a radius, R, of 1.68R⊙ and a central hydrogen
abundance, Xc of 0.09. Its initial chemical composition is X0 =
0.7, Z0 = 0.02. This model was scaled toM = 1.25M⊙, R = 1.81R⊙,
which are the values determined from the seismic scaling
relations (Brown et al., 1991; Kjeldsen and Bedding, 1995) and
the observed values of ]max and Δ. It should be noted that the
initial model exhibited a convective core and that the inversion
has kept it in the final solution.

Figure 12 shows an inversion starting with an input STAROX
model (Roxburgh, 2008) denoted here “IR” with a mass of 1.1M⊙,
a radius of 1.22R⊙, a central hydrogen abundance of 0.05 and an
initial chemical composition of X0 = 0.7, Z0 = 0.02. This model
was also rescaled to the mass and radius values provided by the
seismic scaling relations, namely M = 1.25M⊙, R = 1.81R⊙.

FIGURE 11 | Upper panels: Agreement in outer phase shift for the input “LM”model (left) and the inverted model (right). Lower panels: Density (left) and squared
adiabatic sound speed profiles (right) for inversion result (black) and input model (red) for the so-called “LM” model.
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The models were represented by Nk values of d log ρ/dr on a
discrete mesh, and inversions undertaken with different values of
Nk between 10 and 180. A downhill simplex method (Nelder and
Mead, 1965) was used to search for a minimum in χ2. The
minimisation was made using the downhill simplex method
with the adjustable parameters being the density derivatives on
the model mesh (but any other model parameters would be
suitable). The model was constructed from these model
parameters - and the inner phase shift calculated for the
model using the observed frequencies as in Eq. 46 and chi2 as
in Eq. 48. Various values of the reconnexion point xf and different
Γ1 profiles (constant or that of the input model) were tested to see
the impact on the results.

The results of the inversion using the iterative regularization
procedure of Section 6.2 are also presented in Figure 12. In this
case, the radius of the model was further adjusted to 1.742R⊙ to
improve the fit. The solution of both the method illustrated here
and that of Section 6.2 are very similar, if starting from the same
input model. However they differ widely from the results using
the “LM” model instead of the “IR” one, as the presence of the
convective core is not confirmed in the latter case.

6.1.2 Results
As is clear from the figures, different types of inverted models
were obtained when starting from different initial conditions: the
solution is thus not unique and it appears that some feature of the

initial model remain after the inversion. This indicates a degree of
degeneracy in the solutions. We can separate two families of
solutions:

1. Using the “LM” model as input, the solution of the inversion
shows clear signatures of a convective core. However, as
shown in Figure 11 it was already present in the initial model.

2. Using the “IR” model as input, the solution has no convective
core but a steep hump in the sound speed typical of the end of
main sequence evolution of lower mass stars. Again, this
feature was already present in the reference model and the
inversion has just enhanced it.

We conclude that seismic inversion alone is unable to
distinguish between the solution with or without a convective
core. More precise data and higher frequency modes could help
lift this degeneracy and distinguish between the two families of
solutions. This requires a detailed study of the dependence of the
inner phase shifts on the precision of both the model and of the
frequencies, and possibly estimates of the limits on the luminosity
of the inverted model compared with the observed value.

6.2 Iterative Regularization
The basic approach to make asteroseismic inversions insensitive
to the structure of the outermost stellar layers and physics of the
oscillations in these layers is here the same as in the previous

FIGURE 12 | Inversion result (black) and input model (red) for the so-called “IR”model. The profiles resulting from the iterative regularization inversion ofSection 6.2
are shown in blue for comparison.
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section. Due to the low values of the sound speed in the
subsurface layers, the radial wavenumber of low-degree
p-modes is much larger than the horizontal wavenumber.
Therefore the radial eigenfunctions are expected to depend on
the oscillation frequency ω only, but not on the degree ℓ.

The major difference is in the regularization technique of the
inversion. Here, we use a nested iterative algorithm: inner and
outer iterations. Inner iterations are performed with a limited
number of linearized descents using conjugate gradients; the
number of inner iterations plays the role of regularization
parameter. The seismic model is taken as a new initial guess,
and the optimization process is repeated in the outer iterations. In
stellar seismology, the algorithm was tested on artificial data in
Roxburgh and Vorontsov (2002), Roxburgh I and Vorontsov S
(2003). It was applied to the inversion of observational
frequencies of HD177412A (Appourchaux et al., 2015), with
the results being described later in this section.

The practical implementation of the technique derives largely
from the helioseismic structural inversions of Vorontsov (2001,
2002); Vorontsov et al. (2013). The hydrostatic model is described
by cubic B-splines form(r)/r3 with knots distributed uniformly in
r2, allowing a piecewise-analytic representation of the pressure,
density and density-gradient profiles. The number of splines is
chosen high enough to reproduce adequately regions of rapid
spatial variation (e.g., the base of the convective envelope). In
stellar inversions, the radial profile of the adiabatic exponent Γ1(r)
is taken from the initial model and remains unchanged.

The seismic model is truncated at some level r = rb below the
photosphere, where wave propagation is close to that of a pure
sound wave, but not too deep for waves to remain nearly vertical
(rb = 0.99R in the inversion described below). For each mode in
the data set, of frequency ω and degree ℓ, we solve the fourth-
order system of the adiabatic oscillation equations by a shooting
technique in the interval 0 ≤ r ≤ rb. From the two solutions regular
at the center, we form the linear combination statisfying the
Laplace equation for gravity perturbations in the envelope. At the
truncation boundary r = rb, we match this numerical solution
with the wave function ψp proportional to the Eulerian pressure
perturbation (see Vorontsov et al. (2013)), and measure the
“phase propagation time” Tℓn defined as

ωTℓn � π n − nint + 1
2

( ) + arctan
dψp/dτ
ωψp

∣∣∣∣∣∣∣∣∣∣r�rb, (50)

with n the mode radial order, nint the number of nodes in the
Eulerian pressure perturbation below the truncation boundary,
and τ the acoustic depth. Tℓn can be interpreted as the wave
propagation time between r = rb and the upper turning point.
When the model fits the observational frequencies, the Tℓn-values
of all the observed modes fit an approximation

Tℓn � T1 ω( ), (51)
where T1(ω) is a slowly-varying function of frequency. We
approximate this function by a polynomial. The degree of the
polynomial shall be significantly smaller than the number of
modes in the observational data set, but high enough to absorb
variations coming from e.g., HeII ionization (which enter T1(ω) if
this region is not well described by the model). In the results
presented below, the polynomial degree is 10.

The mismatch between the model and the data is measured by
the merit function M defined as

FIGURE 13 | Result of structural inversion for HD177412A: the sound
speed (A), density (B) and buoyancy frequency (C). Dashed lines show a (re-
scaled) model taken as an initial guess; solid lines display the inverted result.
Dotted lines are the results obtained when the measured frequencies
were added with Gaussian noise, of variance corresponding to the reported
uncertainties, in 10 realizations, to address the sensitivity of the inversion to
random errors in the input data. The nearly-optimal mean density of the model
is 0.293 g/cm3. The c2-scale corresponds to a model of the original M =
1.1M⊙ mass but a bigger R = 1.74R⊙ radius.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org July 2022 | Volume 9 | Article 94237318

Buldgen et al. Inversions of Stellar Structure

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


M2 � 1
N

∑
ℓ,n

Tℓn − T1 ω( )
δTℓn

[ ]2

, (52)

where N is number of modes in the data set, and uncertainties
δTℓn are calculated from the uncertainties of the frequencies.
Values of M close to 1.0 or below indicate that the model fits the
oscillation frequencies adequately.

The relations between small variations of the model
parameters and variations of the phase of the wave function
ψp at the truncation boundary (the last term in Eq. (49)), needed
for the linearized descents, as well as the relation between this
phase variation and variation of frequency, needed for calculating
δTℓn, stem from the linear perturbation analysis of Vorontsov
et al. (2013), Appendix A.

A set of “elementary” model variations is then defined as
partial sums of the B-splines describing m(r)/r3 starting from the
stellar center (i.e., each elementary variation is defined as a
truncated representation of the equilibrium model). They are
then normalized such as to ensure nearly equal relative variations
of equilibrium density. We thus arrive to an algebraic system

Ax � fδ , (53)
where the components of the x vector are the amplitudes of
elementary variations, and the mismatch between Tℓn and T1(ω)
defines the components of fδ. The equations are then normalized
to bring random errors in the right-hand side to unit variance.

The amplitudes of elementary variations are controlled by a set
of orthogonal polynomials of a discrete (integer) variable (index i
of xi). A choice of the polynomial set is known to be governed by a
choice of the weight function in their orthogonality relation. This
function is specified by the Euclidean norms of corresponding
columns of matrix A (Strakhov and Vorontsov, 2001). This
particular choice of the weight function, which defines the
polynomials, ensures that the response of the components of x
to random frequency errors is nearly uniform, at least in the first
gradient descents. The upper degree of the polynomial set has to
be high enough to allow proper resolution of the inversion (set at
35 in the results below; the exact choice is not important as
regularization is performed by limiting the number of iterative
descents, not by constraining the functional space of allowed
solutions). To ensure better stability of the inversion in the outer
layers, the polynomials were additionally apodized with a cosine
bell function in the interval between r = 0.7R and r = 0.9R and set
to zero above.

An important ingredient of the seismic inversion when the
stellar massM and radius R are not well known is the degeneracy
of the oscillation frequencies with respect to an homology
rescaling. When represented in dimensionless variables, one
particular seismic model describes a two-parametric family of
physical models, where the density profile ρ(r) scales asM/R3, the
squared sound speed c2(r) scales as M/R, the squared buoyancy
frequency N2 and squared oscillation frequencies ω2 both scale as
M/R3. Thus an initial proxy model represented in dimensionless
variables will describe a two-parametric family of physical models
which differ in M and R. We bring the measured frequencies to
their dimensionless values without imposing the stellar mass and

radius: instead, we adjust M/R3 in this scaling such as to achieve
the best performance of the inversion (the best likelihood of the
result after convergence). In this way, the inversion provides a
best-fit value for M/R3. The inverted dimentionless model now
describes a one-parametric family of physical models, all of which
satisfy the input data. Each model in this family can be rescaled to
different values ofM and R, keepingM/R3 unchanged. In this re-
scaling, which does not change the oscillation frequencies, ρ(r)
and N2(r) remain unchanged, but c2(r) re-scales in proportion
to M2/3.

The results obtained with the observational p-mode
frequencies of HD177412A and an evolved model of 1.1M⊙
star with a central hydrogen abundance of Xc = 0.05 (model
“IR” of the previous section) taken as an initial guess are shown in
Figure 13. Descents to an adequate value of the merit function
(below 1.0) were performed in 7 inner and 15 outer iterations.
The steep decrease in the sound-speed towards the center (panel a
of Figure 13), together with big density contrast (panel b of
Figure 13) indicate that the star is at a very late stage of the main-
sequence evolution. The resulting steep gradient in the molecular
weight is responsible for the sharp variation of the buoyancy
frequency (panel c of Figure 13). We note that the prominent
wiggles in the N2-curves below 0.1R are due to model
discretisation (the cubic spline for m(r)/r3 is continuous
together with two derivatives, but provides N2(r) with
discontinuities in its gradient).

We do not see any signature of a convective core in the results
of this inversion. Comparing with results reported in the previous
section, we have to admit that with the amount and quality of
frequency measurements available for HD177412A, the seismic
inversion alone cannot answer the question of whether or not the
star has a convective core. Additional non-seismic constraints
have to be invoked to address this question.

7 CONCLUSION

This paper is an attempt at providing a brief review of the
available inversion techniques for determining the structure of
solar-like oscillators. In general, seismic inversions can also
involve the determination of the internal structure of a star
from evolutionary computations or static computations, which
we briefly discussed in Section 3. Most inversions wrongly refer
today to the specific class of the linear methods based on the
variational integral relations between frequency perturbations
and structural corrections. These techniques have originated in
helioseismology and are now being applied to the high-quality
datasets provided by space-based photometry missions.

These methods still allow us to provide interesting estimates of
the corrections to be applied to the internal structure of a given
target, but intrinsic limitations such as the linearity of the integral
relations and the treatment of surface effects remain major
weaknesses of these techniques. In practice, while the era of
space-based photometry missions has provided high quality data,
it is still far from being enough to enable a full scan of the internal
structure of a distant star using, for example, the SOLA method
described in Section 5. As discussed in this section, the versatility
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in the definition of the target function of the SOLAmethod allows
us to compromise between determining global or local estimates
of corrections, with global estimates being sometimes more easy
to derive from a limited dataset. Another good example of this
versatility being shown in Pijpers et al. (2021). Such approaches
have been applied with success to the best Kepler targets and will
remain applicable to both TESS and PLATO data in the future,
especially to very precisely estimate the mean density of observed
targets from a limited oscillation spectrum. Inversions of
indicators as well as localized inversions would remain only
applicable for the best targets with very rich oscillation spectra.

Further improvements of the linear methods include the
development and application of inversions based on relative
frequency separation ratios. Indeed, Deheuvels et al. (2016)
and Farnir et al. (2019) have shown that they could be used to
constrain the extent of convective cores from solar-like
oscillations and such inversions would likely alleviate the issue
of the surface-effect dependency.

In addition to discussing linear variational inversion
techniques, we also presented surface independent non-linear
inversions based on the phase shifts of solar-like oscillations. Such
methods have proven to be very efficient at determining the
internal structure of solar-like oscillators for both artificial and
real Kepler datasets while suppressing efficiently the contribution
of surface regions.

In practice however, our results confirm that non-seismic data
can play a key role in discriminating between various families of
inverted models. In this context, GAIA data will certainly be
helpful in determining precise luminosity values, provided that
accurate spectroscopic parameters are available. Interferometric
radii determinations, when available, may also prove extremely
helpful in this respect. It is indeed no surprise that the results
presented here are for bright components of binary system, which
are known to be prime testbeds of the theory of stellar structure
and evolution.

An important point to note is that most of the inversions so
far have been performed for main-sequence solar-like
oscillators exhibiting only pure pressure modes (with the
exception of Kosovichev and Kitiashvili (2020) and
Bellinger et al. (2021)). The wealth of seismic information
contained in mixed oscillation modes thus still remains to be
fully exploited. In this aspect, the non-linear inversions
presented in Section 6 are a promising avenue to take
directly into account the intrinsic non-linearity of the
mixed modes and to provide constraints on the internal
stratification of subgiant and red-giant stars. Initial
applications of phase matching for mixed modes can be
found in Roxburgh (2015) for artificial data and a detailed
characterization using evolutionary models of the stratification
of a subgiant can be found in Noll et al. (2021), studying its
consequence for core overshooting in the main sequence.
These works provide benchmark approaches to further
constrain the internal structure of evolved stars, for which
insights on the core stratification will play a key role in
improving our understanding of the missing efficient
angular momentum transport at play in these stages.
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