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A B S T R A C T   

The aim of this study was to identify the potential indicators of lamb meat quality by TMT and PRM-based 
proteomics combined with bioinformatic analysis. Lamb muscles were divided into three different meat qual-
ity groups (high, middle and low) according to tenderness (shear force, MFI value), colour (a* value, R630/580), 
and water-holding capacity (cooking loss, drip loss) at 24 h postmortem. The results showed that the abundance 
of phosphoglycerate kinase 1 (PGK1), β-enolase (ENO3), myosin-binding protein C (MYBPC1) and myosin reg-
ulatory light chain 2 (MYLPF) was significantly different in the three groups and could be used as potential 
indicators to characterize meat quality. Moreover, the postmortem processes of glycolysis, oxidative phos-
phorylation, and muscle contraction remarkably changed in different groups, and were the key biological 
pathways influencing meat quality. Overall, this study depicted the proteomic landscape of meat that furthers 
our understanding of the molecular mechanism of meat quality and provides a reference for developing non- 
destructive detection technology for meat quality.   

1. Introduction 

Lamb meat is an important source of animal products for human 
nutrition. It provides a good source of high-quality protein, essential 
amino acids, omega-3 fatty acids, vitamins (vitamin B6, B12) and min-
erals (phosphorus, iron, and zinc, etc.) (Willimas, 2007). According to 
Food and Agriculture Organization (FAO) figures, the global production 
of lamb meat was approximately 336.64 million tons in 2019 
(http://www.fao.org/faostat/zh/#data/QCL). Meat quality is an 
essential prerequisite for consumer acceptability and industrial profit-
ability, which includes meat tenderness, colour, water holding capacity 
(WHC) and flavour (Huang et al., 2020). Currently, high-quality meat 
demands have been increasing with higher living standards and 
increasing incomes, which has become a hot issue of global concern in 
the field of meat science. Meat quality deterioration mainly consists of 
discolouration, high drip loss and texture deterioration of meat in 
postmortem or retail displays. However, the loss or waste of meat caused 
by the deterioration of meat quality traits accounts for approximately 

20% per year, according to FAO’s report (http://www.fao.org/3/i 
4807e/i4807e.pdf), which leads to a huge waste for meat resources, 
environmental pollution, and economic loss. Biomarkers or indicators 
are molecular compositions of biological processes that reveal the dif-
ferential expression associated with the phenotype of a specific trait 
(Huang et al., 2020; Wu, Fu, Therkildsen, Li, & Dai, 2015). Thus, 
confirmation of indicators related to meat quality is the material basis 
for identifying and regulating postmortem meat quality, which is also 
the key link to study meat quality change and to provide control tech-
nologies. Therefore, it is necessary to confirm the key meat quality in-
dicators that could characterize and affect lamb meat quality in 
postmortem, and develop the accurate regulation and control technol-
ogies to evaluate and improve meat quality. 

Postmortem aging of muscle is an intricate biological process that 
involves physical and biochemical changes at the cellular level. For 
almost twenty years, several studies have reported the possible biolog-
ical pathways that can affect meat quality attributes during the con-
version of muscle to meat postmortem. For example, glycolysis 
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(Chauhan & England, 2018), calpain system (Koohmaraie & Geesink, 
2006), heat shock proteins (Ma & Kim, 2020), apoptosis (Zhang et al., 
2013) and post-translational protein modification (Li et al., 2021) were 
investigated. Despite this research progress, the key substances charac-
terizing meat quality traits are still unknown and it remains a large 
percentage of low-quality meat production without available targeted 
control. Furthermore, the application of proteomics to discover poten-
tial biological markers related to meat quality attributes has become a 
possible approach to solve this problem in the field of meat science 
(Huang et al., 2020; Wu et al., 2015; Wu, Fu, et al., 2015). Proteins can 
be considered the building blocks and functional executors of the cell 
and tissue. Therefore, in-depth research of the proteome of lamb meat 
will lay a foundation for comprehensively understanding the molecular 
mechanisms during muscle to meat conversion, and better guide treat-
ment to reduce the production of inferior meat in the industry. 

The objective of this study was to identify the differentially abundant 
proteins related to lamb meat quality in three different lamb meat 
quality traits (DLMQTs) groups by the tandem mass tag (TMT)-10plex 
labelling-based proteomics. Then, for the subsequent validation phase, 
parallel reaction monitoring (PRM) targeted proteomics and western 
blotting approaches were used to further confirm the key potential 
protein indicators of postmortem lamb meat quality. These data re-
sources will reveal a map of molecular changes related to lamb quality, 
to better understand the molecular mechanism of meat quality degra-
dation and provide a reference for regulating and controlling postmor-
tem lamb meat quality. 

2. Materials and methods 

2.1. Sample collection 

One hundred 6 to 8 month-old Tan sheep (male) from ten batches 
were supplied by Ningxia Yanchi Tan Sheep Industry Development 
Group Co., Ltd., China (with the same feeding patterns). All sheep were 
slaughtered according to the cutting technical specification of mutton 
(NY/T 1564–2007, the ministry of agriculture of the People’s Republic 
of China, 2007). Ten sheep were slaughtered per day for ten consecutive 
days. A total of 100 left Longissimus thoracis (LT) lamb muscles (hot 
carcass weight: 20.09 ± 1.69 kg) were collected within 45 min after 
bleeding. The samples were displayed in the air and wrapped with 
oxygen-permeable polyethylene (PE)-film with an oxygen transmission 
rate of 10,600 cm3/ (m2⋅24 h⋅atm) and moisture transmission amount of 
68.5 g/ (m2⋅24 h), and stored at a chilling room (2 ± 2 ◦C) in the 
slaughterhouse. After 24 h, the pH, shear force, meat colour (a* and 
R630/580), cooking loss and drip loss of the fresh LT muscle samples 
were measured immediately. Meanwhile, about 200 g samples were 
retrieved at 24 h postmortem and immediately preserved in liquid ni-
trogen, and then stored at − 80 ◦C until processing. 

One hundred muscle samples were clustered into 3 different meat 
quality groups (Group1, Group2 and Group3, n = 3 x 6 = 18 samples) 
according to the tenderness (shear force and MFI), colour (a* value and 
R630/580) and WHC (cooking loss and drip loss) of lamb meat at 24 h 
postmortem. Group 1 with the higher a* value, R630/580, MFI, and the 
lower shear force, drip loss and cooking loss; Group 2 with the middle a* 
value, R630/580, MFI, shear force, drip loss and cooking loss; and Group 
3 with the lower a* value, R630/580, MFI, and the higher shear force, 
drip loss and cooking loss. The procedure was considered as a full- 
randomized block design with slaughter day as a blocking factor. The 
experimental unit (LT muscle) was considered as a plot and hot carcass 
weight was distorting variation sources controlled by the experimental 
design in order to minimize the residual variation. 

2.2. Meat quality traits analysis 

2.2.1. pH value 
A portable pH meter (Testo 205 pH meter, Lenzkirch, Germany) was 

used for the detection of pH value. The probe was inserted 2 cm into the 
meat, and each sample with the three technical replicates. Before each 
set of recordings, the pH meter was calibrated at the chilling room 
(average temperature above 2 ◦C) using pH 4.0 and pH 7.0 buffers. 

2.2.2. Shear force and cooking loss 
We utilized the method from the previous literature (Hopkins, Too-

hey, Warner, Kerr, & van de Ven, 2010), with little modification. The 
samples were weighed (about 65 g), and cooked for 35 min at 71 ◦C in 
the waterbath with a thermoregulator and a 1500 W heating element 
(HH-4, Weipinyiqi, Shenzheng, China) and then blotted dry with filter 
paper and reweighed. One hundred muscle samples were cooked in ten 
cooking batches, and 10 muscle samples were allocated to each batch. 
When the samples cooled at 4 ◦C for one night and determined the shear 
force using a tenderometer (C-LM4, Northeast Agricultural University, 
Harbin, China), muscle samples were cut with 1 cm × 1 cm × 1.5 cm 
cube, and each sample with the ten technical replicates. The cooking loss 
percentage was calculated using the following formula: 

Cooking loss% =
Raw weight − Cooking weight

Raw weight
× 100%  

2.2.3. Myofibrillar fragmentation index (MFI) 
The MFI was conducted as previously described (Rajagopal & 

Oommen, 2015). 1 g sample was homogenized for 30 s using Ultra 
TurraxT10 (IKA Labortechnik, Staufen, Germany) in the 10-fold volume 
of ice-cold extraction buffer (100 mmol/L KCl, 20 mmol/L K2HPO4, 1 
mmol/L EDTA, 1 mmol/L MgCl2, 1 mmol/L NaN3), and repeated three 
times with an interval of 60 s on the ice. And then, the tissue homoge-
nate was centrifugated (Neofuge 15R, Heal Force, Shanghai, China) at 
3000 g for 15 min at 4 ◦C. The precipitate was suspended in a 2.5-fold 
volume of ice-cold extraction buffer for 15 s, and the myofibril sus-
pension was thinned with the extraction buffer to adjust the protein 
concentration of 0.5 mg/mL. The diluted samples were added into 96- 
well seahorse plates (Corning®, No.3599, New York, USA) and detec-
ted their absorbance at 540 nm using the microplate reader (Multimode 
Microplate Reader, Spark®, Tecan, Switzerland). MFI value was ob-
tained by multiplying the absorbance value at 540 nm with 200. 

2.3. a* value and R630/580 

Meat colour measurements were performed on fresh samples at 24 h 
postmortem of storage at 4 ◦C. Meat colour value was evaluated after 45 
min of blooming at 4 ◦C by Minolta CM-600D spectrophotometer 
(Konica Minolta Sensing Inc., Osaka, Japan). An aperture size of 8 mm 
with a D65 illuminant and a 10◦ standard observer were used 
throughout the experiment. The a* value reading from the average of 
four sites randomly selected on the surface of each fresh cut sample, 
visible fat and connective tissue were avoided. The CIE L*, a* and b* 
readings and reflectance values from 360 nm to 740 nm at 10 nm in-
tervals were used to characterize the surface colour. The ratio of 
reflectance at 630 to 580 nm (R630/580) was computed as a measure-
ment of the surface meat colour stability. 

2.3.1. Drip loss 
The measurement of drip loss was performed according to previous 

literature (Jin et al., 2021). About 10 g sample of meat (0.5 cm × 5 cm ×
10 cm) was collected with the direction of muscle fibers and weighed, 
which was suspended in a polythene bag at 4 ◦C chilling room. After 24 
h, the sample was soaked up by filter paper and reweighed. The drip loss 
percentage was calculated below: 

Loss drip(%) =
W1 − W2

W1
× 100% 

Where W1 represents the initial weight (g) of muscle sample, W2 
represents the sample end weight after the loss of natural dripping water 
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at 4 ◦C for 24 h. 

2.4. Proteomics data acquisition 

2.4.1. Protein extraction and tryptic digestion 
The muscle samples were lysed in SDT buffer (100 mM Tris-HCl, 4% 

SDS, 1 mM DTT, pH 7.6) with protease inhibitor cocktail (R0278, Sigma, 
USA), and homogenized twice for 60 s (FastPrep-24, MP Biomedicals, 
USA) with arenaceous quartz and ceramic sphere. Subsequently, sam-
ples for ten times ultrasonic wave extraction, 10 s one time with a recess 
of 15 s, which were heated in a boiling water bath for 15 min and 
centrifugated at 14,000 g for 40 min to take away the tissue residue. The 
supernatants were filtered by 0.22 μm membrane and collected filtrate, 
and then the concentration of protein was detected by the BCA Protein 
Assay Kit (Thermo Fisher Scientific Inc. Waltham, MA). Dithiothreitol 
(DTT) was added into the extracted protein with a final concentration of 
100 mM and heated in a boiling water bath for 5 min. After cooling 
down to room temperature, UA buffer (150 mM Tris-HCl, 8 M Urea, pH 
8.0) was added to the protein solutions and centrifugated at 14,000 g for 
15 min to remove the detergent, DTT and other low molecular weight 
components by repeated ultrafiltration (Microcon units, 10 kD). And 
then, iodoacetamide (IAA) (100 mM IAA in UA buffer) was added to 
block reduced cysteine residues and the samples were incubated for 30 
min in darkness at room temperature, and centrifugated at 14,000 g for 
15 min. The filters were rinsed with UA buffer three times and then 100 
mM triethylammonium bicarbonate (TEAB) buffer twice by centrifu-
gation (14,000 g, 15 min). Finally, the suspensions of protein were 
digested with trypsin (Promega) in a proportion of 1:50 at 37 ◦C for 16 h, 
and then desalted by Sep-Pak C18 cartridges (Empore™ SPE, Sigma, 
USA) as well as vacuum-dried using Speed Vac. 

2.4.2. TMT labelling 
After C18 washing, 100 μg of peptides from each of the 18 muscle 

samples were taken for the following TMT-10plex labelling-based pro-
teomics analysis. Two samples were mixed with an equal number of 
peptides from the same groups. And then using TMT-10plex label re-
agents to label the nine peptide samples according to the manufacturer’s 
specifications (Thermo Fisher Scientific, San Jose, USA). 

2.4.3. Peptide pre-fractionation by high-pH HPLC 
Labelled peptide samples fractionated using High pH Reversed-Phase 

Peptide Fractionation Kit (Thermo Fisher Scientific Inc. Waltham, MA). 
The differentially-labelled peptides were equally mixed and redissolved 
in 0.1% trifluoroacetic acid solution and loaded into the equilibrated. 
Subsequently, under the condition of the aqueous phase, the peptides 
were combined with the hydrophobic resin and desalted by washing the 
column with water using low speed centrifugation. Finally, a step 
gradient of increasing acetonitrile concentrations in a high pH elution 
buffer was then loaded to the columns to elute binding peptide samples 
in 10 different fractions gathered by centrifugation. The collected frac-
tions were desalted by C18 cartridges (Empore™ SPE, Sigma, USA), and 
were vacuum centrifuged to dryness and reconstituted in 12 μL Milli-Q 
water with 0.1% formic acid (FA). 

2.4.4. LC-MS/MS 
The labelled peptides were analyzed by LC-MS/MS system with a Q 

Exactive mass spectrometer (Thermo Scientific) that was combined with 
EASY-nLC (Thermo Scientific) for 60 min. Redissolved peptide samples 
were loaded into a reverse-phase trap column (Thermo Scientific 
Acclaim PepMap100 nano-Viper C18, 100 μm × 2 cm,), and linked with 
the C18 reversed phase analytical column (Thermo Scientific Easy Col-
umn, 75 μm × 10 cm) in 0.1% FA solution and isolated by a linear 
gradient of solution (84% acetonitrile and 0.1% FA) with the flow rate of 
300 nL/min gathered using IntelliFlow approach. MS worked at a 
positive-ion-mode. The MS data were obtained with a data-dependent 
mode selecting dynamically the precursor ions from the survey scan 

(300–1800 m/z) for the higher energy collisional dissociation (HCD) 
fragmentation. The resolution of MS1 was set to 70,000 (200 m/z). the 
automatic gain control (AGC) target was set to 3e6, the maximum injects 
time to 50 ms, and the dynamic exclusion duration was 40 s. MS2 res-
olution for HCD spectra was set to 17,500 (200 m/z), and isolation width 
was 2 m/z, normalized collision energy was 30 eV and the underfill ratio 
was 0.1%. 

2.5. PRM analysis 

According to the data analysis results for TMT labelling-based pro-
teomics, 18 targets proteins of interest (ENO1, ENO3, PKM, PGM1, 
NDUFB9, NDUFA4, UQCRH, UQCRQ, CYC1, NDUFA2, NDUFB7, 
MYLK2, LOC101113001, TPM2, TTN, TNNI1, TNNC1, MYL1) were 
verified by PRM targeted proteomics. The experiment’s strategy was the 
same as the TMT labelling-based proteomics. Adding the independent 
retention time peptides into the samples. 200 μg proteins from each of 
the 18 tissue samples were prepared for the following PRM targeted 
proteomics detection. Subsequently, the nine samples were digested as 
described above, and the solvent of the peptides was 0.1% FA in water. 
We took the same number of peptides from each sample and mixed the 
suitable dosage of stable isotope internal standard peptide. 1 μg peptide 
was taken from each sample and mixed with 20 fmol standard peptides 
(Pierce™ Peptide Retention Time Calibration Mixture, NO. 88320, 
Thermo Scientific) for detection by high performance liquid chroma-
tography (HPLC) system (Thermo Scientific). Buffer A was 0.1 FA in 
water and buffer B was 0.1% FA with 84% acetonitrile in water. Samples 
were separated at 300 nL/min across a linear gradient ranging from 5% - 
10% buffer B in 2 min, and then from 10% to 30% buffer B in 43 min 
followed by a sharp increase to 100% buffer B in 5 min, and then 
maintained for 10 min. The separated samples were analyzed by Q- 
Exactive HF (Thermo Scientific) for 60 min in the positive ion detection 
mode. MS1 scanning range and resolution were set to 300–1800 m/z and 
60,000 (200 m/z), respectively. MS2 resolution was set to 30,000 (200 
m/z) and the normalized collision energy (NCE) setting as 27. The raw 
data of PRM were analyzed by skyline software (version 3.5.0). 

2.6. Western blotting analysis 

To extract the proteins from the lamb muscles, 18 LT muscle samples 
were minced and lysed on ice by RIPA lysis buffer (Sigma, USA) added to 
protease inhibitor cocktail (Sigma, USA), and then the protein concen-
tration was determined by the BCA Protein Assay Kit (Thermo Fisher 
Scientific Inc. Waltham, MA). Equal amounts of the protein lysates were 
separated by 10% of separating gel and 4% of stacking gel of SDS-PAGE 
and transferred to the PVDF blotting membrane (Millipore, Darmstadt, 
Germany). PVDF membranes were blocked with 5% nonfat dry milk in 
TBST solution (137 mM NaCl, 20 mM Tris, 0.1% Tween-20), PVDF 
membranes were incubated and put up 4 ◦C for the night overnight with 
the following first antibodies: PGK1 (AV48140, 1:1000, Sigma-Aldrich, 
St. Louis, MO), ENO2 (A12341, 1:1000, ABclonal, Wuhan, China), 
MYLPF (ab79935, 1:1000, Abcam Inc., Cambridge, MA), MYBPC1 
(ab124196, 1:1000, Abcam Inc., Cambridge, MA), ACTB (SAB2100037, 
1:1000, Sigma-Aldrich, St. Louis, MO), TNNI2 (A7937, 1:1000, ABclo-
nal, Wuhan, China), CAPZB (SAB2500193, 1:1000, Sigma-Aldrich, St. 
Louis, MO), NDUFV3 (ab272584, 1:1000, Abcam Inc., Cambridge, MA), 
COX6A2 (ab110264, 1:1000, Abcam Inc., Cambridge, MA), 
LOC101114379 (A3976, 1:1000, ABclonal, Wuhan, China), GAPDH 
(AB-M-M001, 1:500, Goodhere Bio, Hangzhou, China), β-Tubulin 
(abs137976, 1:5000, Abcam Inc., Cambridge, MA), And then the PVDF 
membranes were incubated with the appropriate secondary antibody 
(goat anti-mouse IgG H&L (HRP), ab6789, 1:2000, Abcam Inc., Cam-
bridge, MA or goat anti-rabbit IgG H&L (HRP), AS014, 1:1000, ABclo-
nal, Wuhan, China) for 80 min at room temperature. Finally, the bands 
were tested by an ECL detection kit (Bio-Rad, Hercules, USA) and 
captured on a ChemiDocTMMP imaging system (UVP, Upland, CA, 
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USA). The relative abundance of each band was calculated by normal-
izing with GAPDH/β-Tubulin using the Quantity One software (version 
4.62, Bio-Rad). 

2.7. Bioinformatics analysis 

Log2(fold change) was performed by the mean of proteins abundance 
ratio in LT lamb muscle among three DLMQTs groups (Group 1/Group 2, 
Group 1/Group 3, and Group 2/Group 3). t-test was analyzed for each 
couple of groups to be compared (P < 0.05). The criteria for significantly 
differential abundance proteins choice were that the P value should be 
<0.05 and |Log2(fold change) | (Log2(FC)) should be more than 
log2(1.2). Protein data were processed and analyzed with the freely 
available MaxQuant search engine and searched in the Uniprot database 
of Ovis_aries_63813_20201207.fasta (https://www.uniprot.org/uniprot 
). InterProScan software version 5.36–75 was performed to find the 
protein domain signatures. Blast2 GO software was used to analyze GO 
enrichment analysis. KGEE pathway analysis of differential abundance 
proteins were performed using the online Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database (http://geneontology.org/). Fisher’ 
exact test was applied to find the enrichment analysis, and only func-
tional categories and pathways with P values <0.05 were considered as 
significant. The protein-protein interaction (PPI) information of 54 dif-
ferential abundance proteins was performed to find their gene symbols 
by STRING software version 11.5 (http://string-db.org/). The results 
were downloaded in the XGMML format and imported into Cytoscape 
software version 3.8.2 (http://www.cytoscape.org/). 

2.8. Statistical analysis 

Statistical analysis was carried out by IBM-SPSS Statistics Software 
(version 26.0, IBM, Armonk, NY, USA). The linear mixed model (LMM) 
was considered to determine significant differences with DLMQTs 
groups as the fixed effect and random effects for slaughter day, and hot 
carcass weight as covariate. All lamb meat quality traits (pH, MFI, a* 
value, R630/580, cooking loss and drip loss) and the relative abundance 
of differential proteins was modelled in similar fashion. For shear force 
and cooking loss, models included fixed effect for DLMQTs groups and 
random effects for slaughter day, shear force test date and cooking 
batches, and hot carcass weight as covariate. The predicted means were 
compared using a least significance differences (LSD) level of 5%. The 
GraphPad Prism (version 9), Origin (version 2021b) and R (version 
4.1.2) were used to draw graphics. The results were expressed as mean 
± standard error. 

Refer to the predecessors’ analysis methods (Starkey, Geesink, 
Collins, Hutton Oddy, & Hopkins, 2016; Starkey, Geesink, van de Ven, & 
Hopkins, 2017), the mixed models were performed using ASReml-R 
(Butler, 2009) within the R software environment (R Core Team, 
2014) to make the prediction models for meat quality traits. There were 
six different models used for identifying the relationships with each 
model containing the covariates of PGK1, PGM1, ENO3, PKM, NDUFA2, 
NDUFB7, TPM2, TTN, TNNI1, TNNC1, MYL1, MYBPC1 and MYLPF. 
Slaughter day and hot carcass weight as the random terms were included 
in all models. Moreover, shear force test date and cooking batches are 
also the random terms for Model 1 and Model 5. The models are as 
follows: 

Model 1: Shear force = PGK1 + PGM1 + ENO3 + PKM + NDUFA2 +
NDUFB7 + MYBPC1 + MYLPF + TPM2 + TTN + TNNI1 + TNNC1 +
MYL1 + slaughter day + hot carcass weight + cooking batches + shear 
force test date. 

Model 2: MFI = PGK1 + PGM1 + ENO3 + PKM + NDUFA2 +
NDUFB7 + MYBPC1 + MYLPF + TPM2 + TTN + TNNI1 + TNNC1 +
MYL1 + slaughter day + hot carcass weight. 

Model 3: a* = PGK1 + PGM1 + ENO3 + PKM + NDUFA2 + NDUFB7 
+ MYBPC1 + MYLPF + TPM2 + TTN + TNNI1 + TNNC1 + MYL1 +
slaughter day + hot carcass weight. 

Model 4: R630/580 = PGK1 + PGM1 + ENO3 + PKM + NDUFA2 +
NDUFB7 + MYBPC1 + MYLPF + TPM2 + TTN + TNNI1 + TNNC1 +
MYL1 + slaughter day + hot carcass weight. 

Model 5: Cooking loss = PGK1 + PGK1 + PGM1 + ENO3 + PKM +
NDUFA2 + NDUFB7 + MYBPC1 + MYLPF + TPM2 + TTN + TNNI1 +
TNNC1 + MYL1 + slaughter day + hot carcass weight + cooking 
batches. 

Model 6: Drip loss = PGK1 + PGM1 + ENO3 + PKM + NDUFA2 +
NDUFB7 + MYBPC1 + MYLPF + TPM2 + TTN + TNNI1 + TNNC1 +
MYL1 + slaughter day + hot carcass weight. 

Each model was simplified by using the Wald F statistic of small 
samples (Kenward & Roger, 1997), and the non-marginal fixed terms 
that were not significant at the level of 0.05 were sequentially removed 
(Kenward & Roger, 1997). The marginal and conditional R2 values of six 
models were calculated after the non-significant items were removed 
(Nakagawa & Schielzeth, 2013). 

3. Results 

3.1. Characterization of the proteomic landscape of raw lamb meat 

A total of 100 LT muscles were collected from lambs within 45 min 
after slaughter. The meat quality traits (pH, shear force, MFI, a* value 
R630/580, drip loss and cooking loss) at 24 h postmortem were deter-
mined. Among them, three groups were selected as the different 
DLMQTs samples: Group 1 had a higher a* value, R630/580, MFI, and 
lower shear force, drip loss and cooking loss, Group 2 had a middle a* 
value, R630/580, MFI, shear force, drip loss and cooking loss, and Group 
3 had a lower a* value, R630/580, MFI, and higher shear force, drip loss 
and cooking loss. The differences in shear force (Fig. 1A), MFI (Fig. 1B), 
a* value (Fig. 1C), R630/580 (Fig. 1D), drip loss (Fig. 1E), cooking loss 
(Fig. 1F) and pH value (Fig. 1G) of the three DLMQTs groups were 
determined at 24 h postmortem, and all meat quality indices showed a 
significant difference in the three DLMQTs groups (P < 0.05, Table S1), 
except for pH value (P > 0.05, Table S1). Hierarchical cluster analysis 
showed a clear stratification in the three DLMQTs groups according to 
the results of shear force, MFI, a* value, R630/580, cooking loss and 
drip loss of lamb meat at 24 h postmortem (Fig. 1H). 

Eighteen samples (Group 1, Group 2 and Group 3, n = 6) from the 
100 LT lamb muscles were used for quantitative protein expression 
profiling. From these samples, 2208 proteins had a false discovery rate 
(FDR) <1% at the levels of peptide and protein using a TMT labelling 
based quantitative mass spectrum strategy. Among them, 2176 proteins 
were quantified in the three DLMQTs groups (Fig. 2A). For data analysis, 
we compared the Group 1/Group 2, Group 1/Group 3 and Group 2/ 
Group 3 of the three DLMQTs groups, and a total of 317, 233 and 69 
differentially abundant proteins (DAPs) were identified respectively, 
according to t-test adjusted (P < 0.05) and |log2(fold change)| = log2FC 
> log21.2 (Fig. 2B). The DAPs in Group 1/Group 2, Group 1/Group 3 and 
Group 2/Group 3 were analyzed using Venn diagram showed that a total 
of 429 proteins were discovered, of which 10 proteins were differen-
tially expressed among the Group 1/Group 2, Group 1/Group 3 and 
Group 2/Group 3 (Fig. 2C). To reveal the molecular landscape and 
proteomics features of lamb meat, the fuzzy c-means algorithm was 
performed to cluster protein expression profiles in the three DLMQTs 
groups (Fig. 2D). Six different pattern clusters represented regulated 
proteins differently. Among them, cluster 2 represented that these pro-
teins were downregulated, and cluster 5 represented that these proteins 
were upregulated, whereas cluster 1, cluster 3, cluster 4 and cluster 6 
represented those proteins that showed a bimodal expression pattern. In 
addition, we performed domain, GO (Gene ontology, cellular compo-
nent (CC), biological process (BP), molecular function (MF), and KEGG 
(Kyoto encyclopedia of genes and genomes) enrichment analyses for 
each cluster to reveal the molecular profile of lamb meat. 
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3.2. The key biological pathways and proteins associated with lamb meat 
quality 

To better understand and elaborate the biological processes and the 
key proteins affecting the changes in lamb meat quality traits post-
mortem, we searched for biological pathways in the KEGG database in 
which the DAPs at the different levels of DLMQTs were involved. KEGG 
annotation indicated that the three DLMQTs groups’ lamb meat pro-
teomes were significantly enriched in regulation of actin cytoskeleton, 
leukocyte trans endothelial migration, thermogenesis, muscle contrac-
tion, retrograde endocannabinoid signalling, oxidative phosphorylation, 
diabetic cardiomyopathy, hippo signalling pathway, ribosome biogen-
esis in eukaryotes, glycolysis/gluconeogenesis, starch and sucrose 
metabolism, various types of N-glycan biosynthesis, NF-kappa B 

signalling pathway and cytosolic DNA-sensing pathway, NOD-like re-
ceptor signallhaveing pathway (t-test, P value <0.05) (Fig. 3A). A total 
of more than ten pathways were significantly changed among the Group 
1/Group 2, Group 1/Group 3 and Group 2/Group 3. In particular, 
glycolysis, oxidative phosphorylation, and muscle contraction pathways 
have been reported that have a strong effect on the conversion of muscle 
to meat in postmortem (Hou et al., 2020; Huang et al., 2020; Yu et al., 
2017; Yu et al., 2017). Therefore, we focused on the biological pathways 
of the differential proteins, including glycolysis, oxidative phosphory-
lation and muscle contraction, and 54 DAPs were involved in these 
pathways (Fig. 3B). To pinpoint the effects of these differential proteins 
on the key biological pathways and molecular functions of lamb meat 
and protein interactions, we performed the protein-protein interactions 
(PPI) and 191 interactions identified in the PPI analysis (Fig. 3C). 

Fig. 1. Characterization of meat quality in three dif-
ferential lamb meat quality traits (DLMQTs) groups at 
24 h postmortem. (A) shear force, (B) MFI value, (C) 
a* value, (D) R630/580, (E) drip loss, (F) cooking 
loss, (G) pH value, (H) Hierarchical cluster analysis 
for three DLMQTs groups according to shear force, 
MFI, a* value, R630/580, drip loss and cooking loss of 
lamb meat at 24 h postmortem. Predicted means and 
standard error bars are plotted. P value: * P < 0.05, ** 
P < 0.01, *** P < 0.001, **** P < 0.0001. Each group 
with 6 samples.   
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Fig. 2. The proteomic landscape of lamb meat in three DLMQTs groups. (A) The number of proteins was identified and quantified in lamb meat, respectively, (B) The 
significantly dysregulated proteins among the three DLMQTs groups (P value <0.05 and FC > 1.2), (C) Venn diagram of remarkably changed proteins (FC > 1.2 and 
P < 0.05) in the three DLMQTs groups, (D) 2176 quantified proteins in three DLMQTs groups were used for functional analysis by Fuzzy c-means clustering. Each 
group with 3 samples in Proteomics analysis (Two samples were mixed with an equal number of peptides from the same groups). 
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Fig. 3. KEGG pathway and protein-protein interaction analysis for the differentially abundant proteins (DAPs) related to meat quality among three DLMQTs groups. 
(A) A total of 429 DAPs were performed by the KEGG pathway enrichment (P < 0.05), (B) The heatmap of 54 key dysregulated proteins and their regulating pathways 
in three DLMQTs groups, (C) Protein-protein interaction analysis of the significantly dysregulated proteins taken from the STRING database were plotted as a 
network, only connected nodes are shown, (D) The volcano plots for mutations of the DAPs associated with meat quality. Each group with 3 samples in Proteomics 
analysis (Two samples were mixed with an equal number of peptides from the same groups). 
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Among them, a total of 11 proteins (PGK1 (phosphoglycerate kinase 1) 
(Silva et al., 2019), PGM1 (phosphoglucomutase 1) (Fuente-Garcia 
et al., 2019; Silva et al., 2019), PKM (pyruvate kinase PKM isoform X2) 
(Kim, Jeong, Yang, & Hur, 2019; Wu, Fu, et al., 2015; Wu, Gao, et al., 
2015), ENO1 (α-enolase) (Hou et al., 2020; Huang et al., 2020), ENO3 
(β- enolase) (Yu et al., 2018), MYLPF (myosin regulatory light chain 2) 
(Kim et al., 2019; Silva et al., 2019), MYL1 (myosin light chain 1) (Kim 
et al., 2019; Silva et al., 2019), TNNI2 (troponin I, fast skeletal muscle) 
(Kim et al., 2019; Silva et al., 2019), TNNC1 (troponin C type 1) (Bel-
darrain et al., 2018; Yu et al., 2018), CAPZB (F-actin-capping protein 
subunit beta isoform X1) (Boudon et al., 2020), TTN (titin) (Weng et al., 
2021) have been reported as the differentially abundant proteins related 
to meat quality attributes in previous studies. In addition, 17 proteins, 
including ENO2 (γ-enolase), UQCRQ (complex III subunit 8), UQCRH 
(cytochrome b-c1 complex subunit 6), LOC101114379 (NADH dehy-
drogenase [ubiquinone] 1 alpha subcomplex subunit 5), NDUFV3 
(NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial 
isoform X2), NDUFA2 (NADH dehydrogenase [ubiquinone] 1 alpha 
subcomplex subunit 2 isoform X1), CYC1 (cytochrome c domain- 
containing protein), NDUFB7 (complex I–B18), LOC101113001 (cyto-
chrome b-c1 complex subunit), COX6A2 (cytochrome c oxidase 

subunit), NDUFA4 (NDUFA4 mitochondrial complex), NDUFB9 (NADH 
dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9 isoform X1), 
TPM2 (tropomyosin beta chain isoform X1), ACTB (actin, cytoplasmic 
1), MYLK2 (myosin light chain kinase 2), MYBPC1 (myosin-binding 
protein C) and TNNI1 (troponin I, slow skeletal muscle), showed a dif-
ferential abundance among at least two DLMQTs groups (P < 0.05 and 
FC > 1.2). Therefore, these 28 DAPs may be related to lamb meat quality 
traits by TMT- proteomics (Fig. 3D). 

3.3. Validation of potential indicators related to lamb meat quality by 
parallel reaction monitoring and western blotting approaches 

To confirm whether 28 DAPs can be used as indicators of lamb meat 
quality traits, the abundance level of 18 of these 28 proteins in the three 
DLMQTs groups was verified using PRM targeted proteomics, while the 
other 10 proteins of 28 were evaluated by western blotting as the PRM 
was not able to identify them. First, we performed quantitative analysis 
of these proteins by PRM technology and the results showed the 18 
proteins (ENO1, ENO3, PGM1, PKM, NDUFB9, NDUFA4, NDUFA2, 
NDUFB7, UQCRH, UQCRQ, CYC1, LOC101113001, TPM2, TTN, TNNI1, 
TNNC1, MYLK2, MYL1 in Fig. 4A. The results showed that the 

Fig. 4. Verification of the differentially abundant proteins (DAPs) by non-synthetic peptide-based parallel reaction monitoring (PRM) and western blot approaches of 
ten PRM-undetected proteins. (A) The abundance of 18 DAPs (ENO1, ENO3, PGM1, PKM, NDUFB9, NDUFA4, NDUFA2, NDUFB7, UQCRH, UQCRQ, CYC1, 
LOC101113001, TPM2, TTN, TNNI1, TNNC1, MYLK2 and MYL1) was detected by non-synthetic peptide based PRM technology, (B) Western blotting images of 10 
DAPs (PGK1, ENO2, LOC101114379, NDUFV3, COX6A2, MYLPF, MYBPC1, TNNI2, CAPZB ACTB), Ref represented the standard sample (18 pooled controls for each 
band, (C) Abundance of 10 DAPs was performed by western blotting. Predicted means and standard error bars are plotted. P value: * P < 0.05; ** P < 0.01; *** P <
0.001. Each group with 3 samples in PRM (Two samples were mixed with an equal number of peptides from the same groups) and 6 samples in western blot analysis. 
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abundance level of PGM1 was strikingly different in the three DLMQTs 
groups (P < 0.05), and there was no significant difference in the other 
eight proteins (ENO1, NDUFB9, NDUFA4, UQCRH, UQCRQ, CYC1, 
MYLK2, LOC101113001) (P > 0.05). Moreover, the abundance of the 9 
proteins (ENO3, PKM, NDUFA2, NDUFB7, TPM2, TTN, TNNI1, TNNC1, 
MYL1) showed a remarkable difference only between the two DLMQTs 
groups (P < 0.05). In addition, the abundance level of another 10 pro-
teins (PGK1, ENO2, LOC101114379, NDUFV3, COX6A2, MYLPF, 
MYBPC1, TNNI2, CAPZB, ACTB) was detected by western blotting 
(Fig. 4B). The results confirmed that the abundance level of PGK1 in 
Group 3 was significantly higher than that in Group 1 and Group 2 (P <
0.01), and there was no significant difference between Group 1 and 
Group 2 (P > 0.05). The MYLPF and MYBPC1 proteins were more 
abundant in Group 1 than in Group 2 and Group 3 (P < 0.01), and there 
was no significant difference between Group 2 and Group 3 (P > 0.05, 
Fig. 4C). Therefore, we found that there was a significant difference in 
13 dysregulated proteins (PGM1, PGK1, ENO3, PKM, NDUFA2, 
NDUFB7, MYBPC1, MYLPF, TPM2, TTN, TNNI1, TNNC1 and MYL1) 
relative abundance between the three DLMQTs groups (P < 0.05, Table 
S1). Suggesting that these 13 dysregulated proteins may related to lamb 
meat quality traits, which could impact lamb meat quality attributes via 
glycolysis, oxidative phosphorylation, and muscle contraction path-
ways. To define the relationship between lamb meat quality traits and 
13 dysregulated proteins. Mixed models were fitted using ASReml-R 
within the R software environment to perform the prediction models 
for lamb meat quality traits (shear force and MFI, a*, R630/580, cooking 
loss and drip loss). As shown in Table 1, For model 1, it was found that 
shear force was significantly affected by PGK1, ENO3, MYBPC1, MYLPF 
and TPM2 (P < 0.001), the marginal R2 = 0.90 and the conditional R2 =

0.92. And the MFI value was significantly affected by PGK1, ENO3, 
PGM1, NDUFA2, NDUFB7, MYBPC1, MYLPF, TNNI1 and MYL1 (P <
0.05) in model 2, with a marginal R2 = 0.85 and a conditional R2 = 0.87. 
In addition, the PGK1, ENO3, PGM1, MYBPC1, MYLPF, TPM2, TTN, 
TNNI1 and TNNC1 were all significant predictors of both a* and R630/ 
580 in model 3 and 4 (P < 0.001). When individual traits were modelled 
(Model 5) against cooking loss, the PGK1, ENO3, PGM1, NDUFB7, 
MYBPC1, MYLPF, TNNI1, TNNC1 and MYL1 were significant (P < 0.01), 
the marginal R2 = 0.69 and the conditional R2 = 0.92. Moreover, for 
model 6, the results revealed that drip loss was significantly influenced 
by PGK1, ENO3, PGM1, NDUFA2, MYBPC1, MYLPF, TNNI1 and TNNC1 
(P < 0.001), the marginal R2 = 0.87 and the conditional R2 = 0.93. 
Therefore, the results indicated that the postmortem lamb meat quality 
traits (shear force, MFI, a* value, R630/580, cooking loss and drip loss) 
were significantly affected by the glycolytic enzymes (PGK1 and ENO3) 
and the structural proteins (MYBPC1 and MYLPF). The potential in-
dicators were selected if they met the following criteria: (1) only pro-
teins that have been reported can be used the potential indicators in 
previous studies related to meat quality traits; (2) only proteins with 
different abundance proteins among at least two DLMQTs groups by 
proteomics (P < 0.05); and (3) only proteins that showed a significant 
association with meat quality traits (general linear mixed models, P <
0.05). Therefore, it is suggested that PGK1, ENO3, MYBPC1 and MYLPF 
may be used as potential indicators affecting and determining the 
changes of lamb meat quality after slaughter (Fig. 5). 

4. Discussion 

Several studies have reported that proteomics is relevant to identify 
the differentially abundant proteins that genuinely reflect changes in 
meat quality. Moreover, proteomics can be used to understand the 
molecular mechanism of the conversion from muscle to meat postmor-
tem (Huang et al., 2020; Wu, Fu, et al., 2015; Wu, Gao, et al., 2015). 
However, previous studies only focused on the determination of the 
differentially abundant proteins regarding differential meat tenderness 
(Beldarrain et al., 2018; Boudon et al., 2020), differential drip loss 
(Zhang, Wang, Xu, & Xu, 2019) or differential colour stability (Wu, Fu, 

Table 1 
Differentially abundant proteins which significantly affected meat quality traits 
(regression coefficients, standard errors and probability level).1   

Coefficient Standard 
error 

P- 
value 

Marginal 
R2 

Conditional 
R2 

Model 1 – Shear force 
Intercept 92.19 7.34 *** 

0.90 0.92 

PGK1 − 5.49 4.51 *** 
ENO3 0.23 0.09 *** 
MYBPC1 − 17.89 2.95 *** 
MYLPF − 10.50 1.39 *** 
TPM2 1.17 0.30 ***  

Model 2 – MFI 
Intercept 58.10 6.51 *** 

0.85 0.87 

PGK1 − 3.04 3.04 *** 
ENO3 − 0.10 0.07 *** 
PGM1 − 0.14 0.38 *** 
NDUFA2 1.68 6.24 * 
NDUFB7 − 40.34 9.01 ** 
MYBPC1 3.01 1.80 *** 
MYLPF 5.83 1.11 *** 
TNNI1 0.51 0.37 ** 
MYL1 0.47 0.11 ***  

Model 3 – a* 
Intercept 14.60 0.99 *** 

0.89 0.94 

PGK1 − 2.20 0.49 *** 
ENO3 − 0.05 0.01 *** 
PGM1 0.07 0.04 *** 
MYBPC1 − 0.68 0.30 *** 
MYLPF 0.69 0.17 *** 
TPM2 0.03 0.03 *** 
TTN − 1.79 0.22 *** 
TNNI1 − 0.14 0.05 *** 
TNNC1 1.64 0.24 ***  

Model 4 – R630/580 
Intercept 4.33 0.20 *** 

0.88 0.96 

PGK1 − 0.46 0.10 *** 
ENO3 − 0.01 0.002 *** 
PGM1 0.01 0.01 *** 
MYBPC1 − 0.22 0.06 *** 
MYLPF 0.05 0.03 *** 
TPM2 0.02 0.01 *** 
TTN − 0.43 0.04 *** 
TNNI1 − 0.05 0.01 *** 
TNNC1 0.46 0.05 ***  

Model 5 – Cooking loss 
Intercept 27.74 3.27 *** 

0.69 0.92 

PGK1 − 5.98 1.36 *** 
ENO3 0.16 0.03 *** 
PGM1 − 0.11 0.18 *** 
NDUFB7 17.23 3.65 *** 
MYBPC1 0.81 0.77 *** 
MYLPF 0.78 0.53 *** 
TNNI1 0.12 0.18 ** 
TNNC1 − 3.71 0.56 *** 
MYL1 − 0.36 0.05 ***  

Model 6 – Drip loss 
Intercept 1.03 1.01 *** 

0.87 0.96 

PGK1 − 0.24 0.51 *** 
ENO3 0.10 0.01 *** 
PGM1 0.04 0.05 *** 
NDUFA2 − 3.31 0.67 *** 
MYBPC1 − 0.01 0.27 *** 
MYLPF − 0.11 0.19 *** 
TTN 2.08 0.26 *** 
TNNI1 0.09 0.07 *** 
TNNC1 − 1.19 0.24 ***  

1 P value: * P < 0.05, ** P < 0.01, *** P < 0.001. 
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et al., 2015; Wu, Gao, et al., 2015; Yu et al., 2018). Meanwhile, these 
reports lacked further validation of the differentially abundant proteins 
related to meat quality. In the present study, we performed quantitative 
proteomics analysis for the three DLMQTs groups (with the different 
tenderness, colour stability and WHC of lamb meat) from 18 LT lamb 
muscles using TMT proteomics. Subsequently, the differentially abun-
dant proteins were verified by PRM targeted proteomics and western 
blotting approaches to confirm the potential protein indicators associ-
ated with lamb meat quality traits. Three biological pathways were 
significantly changed in the three DLMQTs groups by proteomics com-
bined with bioinformatic analysis, including glycolysis, oxidative 
phosphorylation, and muscle contraction. The number of identified 
dysregulated proteins associated with glycolysis, oxidative phosphory-
lation and muscle contraction was 11, 20 and 23, respectively. This 
indicated that the biological pathways of glycolysis, oxidative phos-
phorylation and muscle contraction can affect the changes in postmor-
tem meat quality. 

4.1. Glycolysis 

After the bleeding of animals, anaerobic glycolysis continues until 
glycolytic enzyme inactivation or muscle glycogen depletion. With the 
progress of glycolysis postmortem, the gradual increase in lactic acid 
content will lead to a decrease in pH value, ATP synthesis and a series of 
complex physiological and biochemical changes. In our study, we found 
11 dysregulated proteins (HK1, ENO1, ENO2, ENO3, PGM1, PGM2, 
PGK1, PKM, PGD, PYGL and GFPT1) related to glycolysis among the 
three DMQTs groups by TMT proteomics. Among them, a total of 8 
proteins (ENO1, ENO2, ENO3, PGM1, PGM2, PGK1, PKM, PGD) were 
downregulated (Fig. 3B). This indicated that glycolysis was inhibited in 
Group 1 compared to both in Group 2 and Group 3. A previous study also 
reported that HQ (high-quality) pork meat had lower glycogen content 

and delayed glycolysis compared to LQ (low-quality) pork (Hou et al., 
2020), which is consistent with our results on lamb meat. Moreover, we 
performed PRM targeted proteomics and western blotting to further 
verify these dysregulated proteins, and the results showed that the 
abundance of ENO3, PGK1 and PKM in Group 3 was significantly higher 
than that in Group 1 and Group 2 (P < 0.05, Fig. 4A and C), and PGM1 
dramatically decreased protein the levels of in Group 1 compared to 
Group 3 (P < 0.05, Fig. 4A). Enolase (ENO) is one of the key enzymes of 
glycolysis and can catalyze 2-phosphoglycerate to form phosphoenol-
pyruvate. In mammals, ENO has three alleles (ENO1, ENO2 and ENO3), 
and encodes three isozymes (α-enolase, γ-enolase, and β-enolase, 
respectively) (Kato, Ishiguro, & Ariyoshi, 1983), ENO3 is mainly 
expressed in muscle tissue. Yu, Wu, Tian, Hou, et al. (2017), Yu, Wu, 
Tian, Jia, et al. (2017) found that the a* value of beef was negatively 
associated with ENO3 abundance during aging, which is consistent with 
our results. However, Joseph, Suman, Rentfrow, Li, and Beach (2012) 
reported that ENO3 abundance was positively correlated with the a* 
value in Longissimus lumborum (LL) of beef compared to Psoas major 
(PM). In addition, the observation showed that compared with the 
“dark” group (L* value: 43.2 ± 4.6) of pork, the overexpression of ENO3 
in the “light” group (L* value: 61.3 ± 2.5) (Sayd et al., 2006). For meat 
tenderness, previous studies have shown that there was a positive cor-
relation between ENO3 abundance and beef tenderness (Bjarnadóttir 
et al., 2012; Rosa et al., 2018). Moreover, the study also found that 
ENO3 decreased the oxidative damage of tender meat compared to that 
of the tough meat group (Malheiros et al., 2019). Therefore, we inferred 
that ENO3 is closely related to postmortem meat quality and can be used 
as a potential marker of meat quality, but it may be affected by species, 
varieties, oxidative damage, and muscle types. PGK1 is a key metabolic 
enzyme in the glycolytic pathway that catalyses the conversion of 1,3- 
diphosphoglyceride to 3-phosphoglycerate and produces the first ATP 
in glycolysis. The previous study showed that the abundance of PGK1 

Fig. 5. Summary of the differentially abundant proteins (DAPs) and their biological pathways associated with lamb meat quality in the postmortem. rep-
resented the differentially abundant proteins related to meat quality, represented the potential indicators related to raw meat quality. 
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had a significant impact on drip loss and shear force of pork meat (Kim 
et al., 2019), which was in agreement with our findings. In addition, the 
observations found that meat quality is also influenced by the post- 
translational modification of glycolytic enzymes. For example, Weng 
et al. (2021) found that the phosphorylated PGK1, PGM1 and PKM 
proteins were upregulated in the breast muscle of 120-day geese (with 
the darker and redder meat, chewier and higher WHC) compared to 
70–day geese. The dynamic acetylation or deacetylation of glycolytic 
enzymes, such as ENO3, PGK1, PGM1 and PKM, can regulate the meat 
quality traits in the conversion of muscle to meat (Jiang, Liu, Shen, 
Zhou, & Shen, 2019). Moreover, our previous studies also found that 
protein phosphorylation negatively affects meat quality traits (Li et al., 
2021). Therefore, we concluded that glycolysis is one of the key bio-
logical pathways during the conversion of muscle to meat, and glycolytic 
enzymes will regulate the process of glycolysis and then affect post-
mortem meat quality. In addition, the general linear mixed model 
analysis showed that the level of PGK1 and ENO3 proteins had a sig-
nificant impact on shear force, MFI, a* value, R630/580, cooking loss 
and drip loss (P < 0.05, Table 1). Here, the significantly downregulated 
glycolytic enzymes (PGK1 and ENO3) may be used as potential in-
dicators for the different lamb meat quality traits. However, the mo-
lecular mechanism by which PGK1 and ENO3 proteins regulate meat 
quality and their relationship with protein posttranslational modifica-
tion still need to be further investigated. 

4.2. Oxidative phosphorylation 

The results showed that 20 dysregulated proteins were associated 
with oxidative phosphorylation and muscle contraction pathways 
(Fig. 3B). Oxidative phosphorylation is the coupling reaction of ADP and 
inorganic phosphoric acid to synthesize ATP, and most ATP in organisms 
comes from oxidative phosphorylation (Nolfi-Donegan, Braganza, & 
Shiva, 2020). The oxidative phosphorylation system of the mitochon-
drial inner membrane consists of five enzymes: complex I, complex II, 
complex III, complex IV and complex V. In the present study, a total of 
20 proteins involved in oxidative phosphorylation were identified 
among three DMQTs groups by TMT proteomics. Among them, 11 
proteins, complex I (NDUFB9, NDUFA4, NDUFB7, NDUFA2, NDUFV3, 
LOC101114379), complex II (UQCRQ, UQCRH, CYC1, LOC101113001) 
and complex IV (COX6A2), were significantly upregulated in Group 1 
compared to Group 2 and Group 3 (Fig. 3B). Yu et al. (2019) reported 
that oxidative phosphorylation was one of the important biological 
pathways related to differential beef quality traits of LL and PM muscles 
using a label-free proteomics strategy, which is consistent with our TMT 
proteomics findings. We subsequently verified these results by PRM 
targeted proteomics and western blotting, and the results showed that 
the abundance of NDUFA2 and NDUFB7 proteins was significantly 
higher in Group 1 and Group 3 than Group 2 (P < 0.01, Fig. 4A and C). It 
is interesting that NDUFA2 and NDUFB7 proteins only had a significant 
influence on MFI in model 2 (P < 0.05, Table 1). Therefore, whether the 
differentially abundant proteins of oxidative phosphorylation affect 
postmortem meat quality, or affect the changes in meat quality through 
other biological pathways need to be further studied. 

4.3. Muscle contraction 

In postmortem skeletal muscles, muscle contraction is the sustain-
able tension development that quickens the interdigitation of sarcomeric 
thin and thick filaments to an extreme extent, when the exhaustion of 
ATP and the release of Ca2+ from the sarcoplasmic reticulum (Muroya 
et al., 2007). In our study, we observed that a large number of differ-
entially abundant proteins associated with muscle contraction were 
upregulated using TMT proteomics. To further verify these results, we 
performed quantitative analysis of these proteins by western blotting 
and PRM targeted proteomics, and the results showed that the abun-
dance of seven proteins (MYBPC1, MYPLF, TPM2, TTN, TNNI1, TNNC1 

and MYL1) was significantly different among the three DLMQTs groups 
(Fig. 4A and C). Among them, MYBPC1 and MYPLF showed a significant 
influence on shear force, MFI, a* value, R630/580, cooking loss and drip 
loss by the general linear mixed model (P < 0.05, Table 1). Myosin 
regulatory light chain 2 (MYLPF, skeletal muscle isoform, fast skeletal 
muscle) encodes fast myosin regulated light chain, which is mainly 
expressed in fast fibers, and plays an important role in the development 
of fast and slow skeletal muscle fibers (Schiaffino & Reggiani, 2011). A 
previous study showed that the anterior region of the porcine longissimus 
thoracis et lumborum muscle had a lower shear force and drip loss and a 
higher MYLPF abundance (Kim et al., 2019), which is consistent with 
our results. Gu, Wei, Zhang, and Liu (2020) also reported that MYLPF 
was positively correlated with a* value of lamb meat. Hence, MYLPF 
may be used as a potential indicator for meat quality, we inferred that 
this may be related to MYLPF being involved in cytoskeleton composi-
tion and influencing the type composition of muscle fibers, affecting 
meat quality. However, whether MYLPF can really be used as an indi-
cator to characterize meat quality and its characterization mechanism 
need to be further investigated. MYBPC1 (myosin-binding protein C, 
slow-type) is a major myosin-binding protein isoform in vertebrate 
striated skeletal muscle that plays an important role in effective energy 
metabolism, muscle contraction and relaxation (Chen et al., 2011). The 
previous study found that MYBPC1 is positively related to marbling of 
intramuscular fat of Japanese Black beef cattle (Tong et al., 2014). 
Moreover, the findings also showed that myosin light chains can affect 
the glycolytic rate postmortem (Choi, Ryu, & Kim, 2007). 

5. Conclusion 

Proteomics analysis is a valuable and powerful tool that provides a 
comprehensive understanding of the difference in lamb meat quality 
traits postmortem. In this study, we quantified 2176 proteins in three 
different lamb meat quality groups by TMT proteomics. Among them, 4 
dysregulated proteins (ENO3, PGK1, MYBPC1 and MYLPF) were verified 
to be associated with meat quality by PRM targeted proteomics and 
western blotting approaches, which may be used as potential indicators 
to assess and characterize the postmortem lamb meat quality. The mo-
lecular biological pathways suggested that glycolysis, oxidative phos-
phorylation and muscle contraction remarkably changed in different 
meat quality groups, and were the key pathways influencing postmor-
tem meat quality. Therefore, this study will provide an important mo-
lecular basis for understanding the mechanism of postmortem meat 
quality, and offer a reference for developing regulation technology and 
detection technology to improve lamb meat quality in the future. 
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