

GHENT UNIVERSITY GLOBAL CAMPUS

The Multimodal Sentiment Analysis Challenge: Humor, Emotional Reactions, and Stress

<u>MuSe-Personalization 2023: Feature Engineering,</u> **Hyperparameter Optimization, and Transformer-Encoder Re**discovery

Presenters: Ho-min Park

Authors: Ho-min Park, Ganghyun Kim, Arnout Van Messem, Wesley De Neve

Date: October 29, 2023

Location: Ottawa, Canada

- Introduction
- Methods
- Results
- Discussion
- Conclusions
- 06 Q&A

1. INTRODUCTION

4

[MuSe-Personalisation] Multimodal Emotional Stress Sub-challenge

N7

Methods

Last year's pose feature: simple Euclidean distance over time

2. METHODS

N7

Methods

Pose and joint

This year's pose feature: applying joint collection distances

Transformer- encoderNovel	SSL-based	Meta Learning on Hyperparameters
------------------------------	-----------	-------------------------------------

	$J_1^{ m t}$	J_2^{t}	•••	J_{15}^{t}		
J_1^{t}	0	30	•••	320		
J_2^{t}	30	0	•••	230		
•	•••	•••	•••	•••		
J_{15}^{t}	320	230	••••	0		

Distance matrix between joints

Novel Pose Feature Extraction

2. METHODS

Transformer-SSL-based Meta Learning on **Feature Extraction** Hyperparameters encoder

Novel Pose Feature Extraction

2. METHODS

Hyperparameter	_	Random Forest
Setting	-	Regressor

Model type	Hyperparameter	Min	Max	Number of
Model type	name	value	value	configurations
	Window length	200	400	3
General	Learning rate	0.0001	0.01	4
	Hop length	50	300	3
	Model complexity	2	128	7
	Number of layers	2	16	4
	Window length	2	60	10
Personal	Learning rate	0.0001	0.05	14
	Hop length	2	25	7

02 Methods →

SSL-based Feature Extraction Meta Learning on Hyperparameters

→

Development CCC Prediction

→

3. RESULTS

16

3. RESULTS

03

3. RESULTS

Results

Positive correlation with development CCC

General GRU

- Window length Learning rate
- Hopping length

Reverse trend observed between General model and Personal model

General Transformer-encoder

Window length

03 Results Personal Transformer-encoder

Window length

<u>3. RESULTS</u>

Feature	info		Aro	usal	Vale	ence	Combined	
Feature name	Туре	Dim	Baseline CCC	Our best CCC	Baseline CCC	Our best CCC	Baseline CCC	Our best CCC
Biosignal	S	3	-	0.8716	-	0.6651	-	0.7684
DeepSpectrum		1024	0.8064	0.9376	0.3536	0.9059	0.5800	0.9218
eGeMAPS	А	78	0.9073	0.8783	0.5892	0.9296	0.7483	0.9040
Wav2Vec2.0		1024	0.7421	0.8775	0.5142	0.9096	0.6282	0.8936
ViT		384	0.2691	0.8999	0.6050	0.8947	0.4371	0.8973
FaceNet	V	512	0.8260	0.8766	0.6491	0.8936	0.7376	0.8851
FAU		20	0.6382	0.9378	0.1468	0.8124	0.3925	0.8751
W2V-audio		512	-	0.9336	-	0.8718	-	0.9027
W2V-context	۸	768	-	0.9287	-	0.9258	-	0.9273
D2V-audio	A	512	-	0.9110	-	0.8713	-	0.8912
D2V-context		768	-	0.9186	-	0.9001	-	0.9093
Pose, original		26	-	0.8022	-	0.8775	-	0.8399
Pose, JCD-feature	V	105	-	0.8684	-	0.8017	-	0.8351
Pose, JCD-time	v	105	-	0.8884	-	0.8180	-	0.8532
Pose, JCD-both		105	-	0.8649	-	0.8649	-	0.8718
А		3	-	0.9577	-	0.9590	-	0.9584
V	Fusion	3	-	0.9478	-	0.9373	-	0.9426
A+V		6	0.9145	0.9625	0.8559	0.9636	0.8852	0.9631

<u>3. RESULTS</u>

Feature	info		Arou	Arousal	
Feature name	Туре	Dim	Baseline CCC Our best CCC		Baseli
Biosignal	S	3	-	0.8716	
DeepSpectrum		1024	0.8064	0.9376	0.3536
eGeMAPS	А	78	0.9073	0.8783	0.5892
Wav2Vec2.0		1024	0.7421	0.8775	0.5142
ViT		384	0.2691	0.8999	0.6050
FaceNet	V	512	0.8260	0.8766	0.64
FAU		20	0.6382	0.9378	0.1
W2V-audio		512	-	0.9336	
W2V-context	٨	768	-	0.9287	
D2V-audio	A	512	-	0.9110	
D2V-context		768	-	0.9186	
Pose, original		26	-	0.8022	
Pose, JCD-feature	V	105	-	0.8684	
Pose, JCD-time	v	105	-	0.8884	-
Pose, JCD-both		105	-	0.8649	-
А		3	-	0.9577	-
V	Fusion	3	-	0.9478	-
A+V		6	0.9145	0.9625	0.8559

<u>3. RESULTS</u>

Feature	info		Aro	usal	Number of best models		d	
Feature name	Туре	Dim	Baseline CCC	Our best CCC	Baselir	for Val	for Valence	
Biosignal	S	3	-	0.8716			0.7684	
DeepSpectrum		1024	0.8064	0.9376	0.3536	0.9059	0.5800	0.9218
eGeMAPS	А	78	0.9073	0.8783	0.5892		-183	0.9040
Wav2Vec2.0		1024	0.7421	0.8775	0.5142			0.8936
ViT		384	0.2691	0.8999	0.6050			0.8973
FaceNet	V	512	0.8260	0.8766	0.64°	CPII		0.8851
FAU		20	0.6382	0.9378	0.1	GRU		0.8751
W2V-audio		512	-	0.9336				0.9027
W2V-context	۸	768	-	0.9287				0.9273
D2V-audio	Л	512	-	0.9110				0.8912
D2V-context		768	-	0.9186				0.9093
Pose, original		26	-	0.8022		Tran	eformer	0.8399
Pose, JCD-feature	V	105	-	0.8684		Ifafi	sionner	0.8351
Pose, JCD-time	V	105	-	0.8884	-	en	coder	0.8532
Pose, JCD-both		105	-	0.8649	-			0.8718
А		3	-	0.9577	-			0.9584
V	Fusion	3	-	0.9478	-			0.9426
A+V		6	0.9145	0.9625	0.8559	0.9050	0.8852	0.9631

03

Results

Eastures	Arousa	l [CCC]	Valence [CCC]		Combined [CCC]	
reatures	Base	Ours	Base	Ours	Base	Ours
A+V, A+V	0.7450	0.8262	0.7827	0.8844	0.7639	0.8553
A+V normalize, A+V-FAU	-	0.7875	-	0.8892	-	0.8384
A+V-FaceNet-eGeMAPS, A	-	0.8046	-	0.8434	-	0.8240
A+V+FAU+DeepSpectrum+W2V-context, A+V-FAU+eGeMAP+W2V-context	-	0.8258	-	0.8847	-	0.8553
A+V, A+V-FAU	-	0.8262	-	0.8892	-	0.8577

2nd place in the competition

4. DISCUSSION & CONCLUSIONS

4. DISCUSSION

Conclusions

Transformer-encoder

- Transformer-encoder architecture excels in personalization tasks, particularly in **Valence** predictions
- Except for the FAU feature, the model achieved the highest development CCC scores across all features
- Ability to capture **long range dependencies** using attention mechanism led to success
 - ✓ Window length was important

4. DISCUSSION

Hyperparameter Tuning

- managed to surpass the baseline development CCC in all unimodal predictions, except for the Arousal-eGeMAPS
 - Meta-learning discovered that learning rate and window length are crucial factors
 - ✓ Increase in window length negatively impacted development CCC of personalized Transformer-encoder model

4. DISCUSSION

Newly Crafted Features

- Pose features extracted through JCD and the different SSL-based features (Wav2Vec2.0 and Data2Vec), showed considerable promise in improving emotional dimension predictions
 - ✓ JCD based features demonstrated a notable enhancement over the original Pose feature
 - ✓ SSL-based features, particularly context-based ones, consistently scored higher CCC scores compared to their audio counterparts

4. CONCLUSIONS

In summary

- Given the MuSe-Stress 2023 baseline, we investigated three different approaches (New Features, Transformer-encoder, Hyperparameter Tuning), reaching the **2nd place in the competition**
 - still difficult to answer why and how the different approaches affect the CCC values

Future work

Conclusions

Investigate the generalizability of our newly engineered pose • features by testing them across different use cases that involve stress detection (e.g., driver behavior monitoring)

THANK YOU. QUESTIONS?

