
Vol.:(0123456789)1 3

European Journal of Nuclear Medicine and Molecular Imaging 
https://doi.org/10.1007/s00259-023-06510-y

ORIGINAL ARTICLE

Multicentric development and evaluation of  [18F]FDG PET/CT and CT 
radiomic models to predict regional and/or distant recurrence 
in early‑stage non‑small cell lung cancer treated by stereotactic body 
radiation therapy

François Lucia1,2,3,4  · Thomas Louis3 · François Cousin3 · Vincent Bourbonne1,2 · Dimitris Visvikis2 · Carole Mievis5 · 
Nicolas Jansen5 · Bernard Duysinx6 · Romain Le Pennec7,8 · Malik Nebbache1 · Martin Rehn1 · Mohamed Hamya1 · 
Margaux Geier9 · Pierre‑Yves Salaun7,8 · Ulrike Schick1,2 · Mathieu Hatt2 · Philippe Coucke5 · Roland Hustinx3,10 · 
Pierre Lovinfosse3

Received: 29 August 2023 / Accepted: 3 November 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Purpose To develop machine learning models to predict regional and/or distant recurrence in patients with early-stage 
non-small cell lung cancer (ES-NSCLC) after stereotactic body radiation therapy (SBRT) using  [18F]FDG PET/CT and CT 
radiomics combined with clinical and dosimetric parameters.
Methods We retrospectively collected 464 patients (60% for training and 40% for testing) from University Hospital of Liège 
and 63 patients from University Hospital of Brest (external testing set) with ES-NSCLC treated with SBRT between 2010 
and 2020 and who had undergone pretreatment  [18F]FDG PET/CT and planning CT. Radiomic features were extracted using 
the PyRadiomics toolbox®. The ComBat harmonization method was applied to reduce the batch effect between centers. 
Clinical, radiomic, and combined models were trained and tested using a neural network approach to predict regional and/
or distant recurrence.
Results In the training (n = 273) and testing sets (n = 191 and n = 63), the clinical model achieved moderate performances 
to predict regional and/or distant recurrence with C-statistics from 0.53 to 0.59 (95% CI, 0.41, 0.67). The radiomic (origi-
nal_firstorder_Entropy, original_gldm_LowGrayLevelEmphasis and original_glcm_DifferenceAverage) model achieved 
higher predictive ability in the training set and kept the same performance in the testing sets, with C-statistics from 0.70 to 
0.78 (95% CI, 0.63, 0.88) while the combined model performs moderately well with C-statistics from 0.50 to 0.62 (95% CI, 
0.37, 0.69).
Conclusion Radiomic features extracted from pre-SBRT analog and digital  [18F]FDG PET/CT outperform clinical param-
eters in the prediction of regional and/or distant recurrence and to discuss an adjuvant systemic treatment in ES-NSCLC. 
Prospective validation of our models should now be carried out.

Keywords Non-small cell lung cancer · Stereotactic body radiation therapy · Radiomics · Machine learning · [18F]FDG 
PET/CT

Introduction

Stereotactic body radiation therapy (SBRT) has become a 
therapeutic standard for inoperable early-stage non-small 
cell lung cancer (ES-NSCLC). Numerous studies have 
shown very excellent local control and minimal toxicity 
[1–3]. Although this new technique has been broadly rec-
ognized for its remarkably high rate of local control, the 
dominant risk of recurrence is the occurrence of distant 

François Lucia, Thomas Louis, Roland Hustinx, and Pierre 
Lovinfosse equally contributed.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00259-023-06510-y&domain=pdf
http://orcid.org/0000-0001-7286-1350


 European Journal of Nuclear Medicine and Molecular Imaging

1 3

metastases [4]. Moreover, dosimetric parameters seem to 
have an impact on local control (LC) but not on the risk of 
regional or distant relapse [5].

Ongoing studies are evaluating the benefit of con-
comitant treatment, including immunotherapy, to SBRT 
(NCT03924869, NCT03050554, NCT03833154), and one 
study showed an improvement in recurrence-free survival 
with immunotherapy [6]. Thus, it would be interesting to 
have non-invasive tools to select patients at high risk of 
regional or distant relapse who could benefit from con-
comitant or adjuvant systemic therapy to avoid their side 
effects [6]. Gao et al. developed a multicenter model based 
on clinical parameters with internal and external validation 
to predict distant metastatic spread [7]. The model iden-
tified a high-risk patient subgroup who had greater rates 
of distant metastases. However, this model had a medium 
sensitivity and was not statistically significant in the testing 
sets [7]. The authors highlighted the potential of radiomics 
to improve results.

Fluorodeoxyglucose positron emission tomography/
computed tomography  ([18F]FDG PET/CT) is a molecu-
lar imaging technique combining metabolic and functional 
assessment, enabling improved diagnostic accuracy and 
initial staging and restaging of lung cancer, as well as opti-
mization of treatment and follow-up of therapeutic response 
[8]. Regarding the prognostic impact of  [18F]FDG PET/CT, 
results are divergent for the standardized uptake (SUV) and 
metabolic tumor volume on outcomes [9–13].

It has been shown that tumor heterogeneity could be stud-
ied by quantitative analysis of medical images, including 
 [18F]FDG PET/CT and CT. These complementary analyses 
have enabled the development of predictive and prognostic 
models for ES-NSCLC [14–18]. However, to the best of our 
knowledge, no radiomic studies have included a complete 
dosimetric analysis which may be an important bias in pre-
dicting the risk of recurrence. Machine learning (ML) meth-
ods, in particular artificial neural networks (ANN) [19, 20], 
allow to build predictive models by combining parameters 
using a flexible non-linear relationship [21].

The aim of this study was to develop ML models to pre-
dict the risk of regional and/or distant recurrence in patients 
with ES-NSCLC treated by SBRT using  [18F]FDG PET/CT 
and/or CT radiomic features from the primary tumor vol-
ume, combined (or not) with clinical parameters.

Methods

Patients’ information

Patients with histologically or clinically diagnosed ES-
NSCLC T1 (< 3 cm) and T2 (3–5 cm) without lymph node 
involvement treated with SBRT between April 2010 and 

December 2020 from two institutions (University Hospital 
(CHU) of Liège in Belgium and CHU of Brest in France) 
were retrospectively considered. Clinical and pathological 
data included age, date of diagnosis, gender, WHO perfor-
mance status (PS), clinical T stage, tumor size as measured 
on CT (according to the report of the radiologist), histol-
ogy, mutational status, tumor size, smoking history, history 
of lung surgery or radiation therapy, and peripheral versus 
central (defined by a tumor located within 2 cm of the proxi-
mal bronchial) tumor location (Table S1). We also collected 
detailed dosimetric parameters. Exclusion criteria were 
locally advanced NSCLC, metastatic tumors, cancers other 
than non-small cell histology, a history of lung cancer within 
the last 5 years, incomplete course of SBRT, and a con-
comitant or adjuvant systemic treatment. For patients who 
could not undergo or refused biopsy, the clinical diagnosis 
of NSCLC was validated by multidisciplinary tumor board, 
including a clinical lung cancer pulmonologist, radiologist, 
nuclear medicine physician, and radiation oncologist, on the 
basis of strong imaging suspicion that showed a high uptake 
on  [18F]FDG PET/CT and an increase in two consecutive 
CT scans acquired 3 months apart. Clinical staging of the 
lung cancer was performed according to the 8th Union for 
International Cancer Control TNM staging system using 
CT, brain imaging (magnetic resonance imaging (MRI) or 
CT), and  [18F]FDG PET/CT. Of the 597 eligible patients, 70 
patients were not included because  [18F]FDG PET/CT was 
not available (n = 50) or because of poor quality of PET/CT 
or CT imaging (n = 20) (supplemental data D, figure S1). 
Finally, a total of 527 patients were included consisting of 
63 patients from the CHU of Brest and 464 at the CHU of 
Liège. Regarding the 63 patients from the CHU of Brest, 21 
who had an analog PET/CT (2016–2018) and 42 who had a 
digital PET/CT (2019–2020).

The study was approved by both institutional ethical 
committees.

Treatment

Detailed treatment protocols are available in the supplemen-
tal data A.

At the CHU of Liège, SBRT was administered using 
a dedicated machine (CyberKnife®, Accuray). For each 
patient, the most suitable respiratory gating method was 
chosen [22]. Prescription doses at the 80% isodose line of 
PTV ranged from 40 to 60 Gy in 3 to 5 fractions.

At the CHU of Brest, a respiratory-sorted 4-dimensional 
computed tomography (4DCT) dataset was generated using 
the planning CT (Siemens, Somatom) coupled with Varian 
real-time position management (RPM) gating system. The 
prescribing goal was that 99% of the planning target volume 
(PTV) should receive at least 99% of the dose, with a maxi-
mum dose to the PTV of up to 140% of the prescribed dose. 
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Prescribed doses ranged from 48 to 60 Gy in 3 to 5 fractions. 
All treatments were delivered by volumetric modulated arc 
therapy (VMAT).

Endpoints

Regional failure was defined as lymph node metastasis in the 
hilar, mediastinal, or supraclavicular lymph node stations. 
Metastatic recurrence was defined as failure in the same lung 
lobe (farther than 1.5 cm from the primary tumor), in other 
pulmonary lobes (ipsi- or contralateral lung) or in other 
organs. These failures had to be confirmed histologically or 
clinically on the basis of CT and  [18F]FDG PET/CT results 
and validated by a multidisciplinary committee. The differ-
ential diagnosis between a recurrence and a second primary 
lung tumor had to take into account the pathology findings, 
the interval between the relapse and the primary tumor, and 
the location of the failure in comparison to the SBRT field 
[23]. In the case of death, the cause was reported to be can-
cer-specific or not. Specific death was considered when the 
patient presented with cancer relapse at the time of death, 
except for patients with another identified cause of death. 
All events were measured from the first day of radiotherapy 
(RT). OS was calculated from the first day of RT to the date 
of death from any cause. Patients alive at the time of analy-
sis were censored upon the last follow-up. Follow-up was 
calculated using a reverse Kaplan–Meier estimation [24].

PET/CT imaging

PET/CT studies were performed with 3 types of scanners 
and 3 types of acquisition. At CHU of Liège, studies were 
acquired using cross-calibrated Philips Gemini TF or BB. 
At CHU of Brest, studies were performed with a Siemens 
Biograph mCT (between 2016 and 2018) and with a Sie-
mens digital Biograph Vision 600 (between 2019 and 2020) 
(supplemental data B, Table S1).

Planning CT imaging

CT studies were performed with 2 types of scanners and 2 
types of acquisition. At CHU of Liège, studies were acquired 
with a Philips Brilliance Big Bore CT (Philips Healthcare). 
At CHU of Brest, studies were performed with a Siemens, 
Somatom (Siemens Healthcare, Malvern, PA, USA). No 
contrast-enhancing agent was used (supplemental data B, 
Table S1).

Tumor volume delineation

[18F]FDG PET exams were imported into a MIM worksta-
tion (MIM Software®, Cleveland, OH, USA). Segmentation 
of the 3D primary tumor volume was semi-automatically 

performed by an experienced radiation oncologist (F.L.) 
using a gradient-based method (PET-Edge®) [25].

The primary tumor was also delineated on (i) the CT of 
PET/CT and (ii) the planning CT (the expiration CT scan 
was used at the CHU of Liège and the average was used 
at the CHU of Brest). Each CT was segmented indepen-
dently using a previously validated semi-automatic approach 
exploiting 3D Slicer® and the GrowCut algorithm [26].

Semi-automatic segmentation was performed by one 
other expert for  [18F]FDG PET exams (P.L.) and CT scans 
(F.C.) blinded to the results of the previous delineation by 
F.L. in a randomly selected subset (n = 50) of the training set 
to evaluate the inter-reader variability (supplemental data C).

Radiomic feature extraction

One hundred and six radiomic features were extracted from 
the segmented volumes in each image modality using PyRa-
diomics v3.0.1 (Boston, MA, USA) [27] and follow the IBSI 
(imaging biomarker standardization initiative) benchmark 
[28]. Radiomic features were extracted after 2 × 2 × 2  mm3 
spatial resampling of all PET images, and 1 × 1 × 1  mm3 
spatial resampling of CT using a cubic spline interpolation. 
For the calculation of the texture matrix-based features, 
image intensities were discretized using fixed bin number 
(FBN, using 64 bins) [28]. As a result, 318 radiomic features 
(106 × 3 for PET, CT of PET, and planning CT) were avail-
able for each patient. Given the number of PET/CT and CT 
model configurations and acquisition/reconstruction param-
eters present in our multicentric database, ComBat a posteri-
ori statistical harmonization method was applied [29]. Then, 
a normalization with the z-score was carried out because the 
feature ranges were very different, and high-value features 
could have a greater impact on classifier performance than 
low-value features.

Prognosis analysis

Prediction of regional and/or distant recurrence was chosen 
as the primary endpoint. Prediction of distant recurrence 
(with or without regional recurrence), isolated regional 
recurrence, and cancer-specific survival was chosen as 
the secondary endpoints. In addition to the radiomic fea-
tures, data also included clinical and dosimetric parameters 
(Supplemental data B, table S2). Three models have been 
designed for each endpoint: (I) a standard model (including 
only clinical and dosimetric data), (II) a radiomic model, and 
(III) a combined (including clinical, dosimetric, and radi-
omic features) model. The full dataset of CHU of Liège was 
separated by random sampling in a training cohort (60%, 
n = 273) and a testing cohort (40%, n = 191).

Features were first selected using the Mann–Whitney test 
after harmonization and normalization. Only statistically 
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associated features in regard to the outcome were retained. 
Correlation between the retained features was then assessed 
with the Spearman correlation coefficient, keeping only 
the most significant feature in case of a Spearman coeffi-
cient ≥ 0.7. Selected features were then combined using a 
decremental neural network approach based on each fea-
ture’s ranking, the ranking being set by the importance of 
the feature in the proposed model. The neural network was 
a multilayer perceptron network, embedded in SPSS Mod-
eler V18.3® (IBM, NY, USA). For each model, the least 
important feature is put apart and the remaining features 
are being provided for the development of the next model. 
The chosen model was the one maximizing the mean accu-
racy based on the 1000 replications of the bootstrapping. 
Before each model was built, correction for unbalanced data 
was performed using the Synthetic Minority Over-sampling 
Technique-Nominal Continuous (SMOTE-NC). Multilayer 
perceptron is a classifier based on the feedforward artificial 
neural network (https:// spark. apache. org/ docs/ latest/ ml- class 
ifica tion- regre ssion. html# multi layer- perce ptron- class ifier). 
Multilayer perceptron consists of multiple layers of nodes. 
Each layer is fully connected to the next layer in the net-
work. Nodes in the input layer represent the input data. All 
other nodes map inputs to outputs by a linear combination 
of the inputs with the node’s weights ww and bias bb and 
applying an activation function. The number of nodes NN 
in the output layer corresponds to the number of classes. 
Multilayer perceptron employs backpropagation for learning 
the model. We use the logistic loss function for optimization 
and L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-
Shanno) as an optimization routine. Regarding the optimiza-
tion parameters of our multilayer perceptron network. About 
the details of each step, the initial tuning parameters were 
defined as follows: the softmax activation function, an initial 
lambda of 5.10−7, an initial sigma of 5.10−5, and an interval 
center of 0 with an interval offset of ± 0.5. For objectives, we 
have used and build a new model and enhance model stabil-
ity (bagging). For basics, we have selected neural network 
model and multilayer perceptron. For hidden layers, we have 
selected “automatically comput number of units.” For stop-
ping rules, we have chosen “use maximum training time (per 
component model): 15 min” (this is the default settings). 
For ensembles, we have chosen voting (default settings). We 
have used 1000 for the number of component models for 
boosting and/or bagging: 1000. In the advanced part, we 
have selected 30 for overfit prevention set and for the repli-
cate results, analyses are replicated with seed 229,176,228 
by default. Finally, for missing values in predictors, we have 
chosen to “delete listwise removes records with missing val-
ues on predictors from model building.”

The trained models were then evaluated on the testing 
sets. Statistical analysis was then performed with MedCalc® 
(version 15.8, MedCalc Software bvba, Ostend, Belgium). 

To determine the threshold values for significant parameters 
(with a p-value ≤ 0.05), the receiver operating characteristic 
(ROC) curve was used with the Youden index. Models were 
evaluated on the internal and external testing cohorts using 
ROC (area under the curve (AUC), sensitivity (Se), specific-
ity (Sp), balanced accuracy (Bacc), and C-statistic [30] as 
well as F1-Max). Patients have then been dichotomized into 
low- and high-risk groups. The Kaplan–Meier curves of the 
models were drawn. The difference between low- and high-
risk groups has been tested using the Logrank test. The Har-
rell concordance index (C-index) was calculated. Decision 
curves were also used for the models’ evaluation.

Results

Among 527 patients who underwent SBRT for ES-NSCLC, 
regional and distant recurrence was found in 105 (20%) and 
143 patients (27%), respectively, without significant differ-
ences between cohorts (Supplemental data C, table S2).

Models for the regional and/or distant recurrence

In the training, testing, and external testing sets, 188 
(68.9%), 120 (62.8%), and 48 (76.2%) patients had a regional 
and/or distant recurrence, respectively (p = 0.11) (Supple-
mental data C, table S2).

Thirty PET and CT radiomic features were preselected 
using the Mann–Whitney test on the training set. At the sec-
ond step (Spearman rank correlation coefficient), 5 radiomic 
features from PET imaging only showed intra-correlation lev-
els below 0.7 and were subsequently used to train the models.

The best clinical model combined 3 features (clinical stage, 
histology, and age). The best radiomic and combined models 
were based on 3 radiomic features from PET imaging only 
(original_firstorder_Entropy, original_gldm_LowGrayLev-
elEmphasis, and original_glcm_DifferenceAverage) and 4 
(same radiomic features and clinical stage) variables, respec-
tively, among which the most important one was original_first-
order_Entropy (contribution of 48% and 43%, respectively).

Composition of each model is available in supplemental 
data B, Table S3.

In the training set (n = 273), the clinical model achieved 
a poor prediction of the risk of regional and/or distant 
recurrence with an AUC of 0.58 (95% CI, 0.52, 0.64) and 
a C-statistic of 0.59 (95% CI, 0.53, 0.65) with a cut-off of 
70%. The radiomic and combined models achieved higher 
performance with an AUC of 0.74 (95% CI, 0.69, 0.80) 
and a C-statistic of 0.71 (95% CI, 0.66, 0.77) with a cut-
off of 77% and AUC of 0.67 (95% CI, 0.61, 0.73) and a 
C-statistic of 0.65 (95% CI, 0.59, 0.71) with a cut-off of 
85%, respectively (Table 1). The predictive performance of 
the clinical, radiomic, and combined models for regional 

https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
https://spark.apache.org/docs/latest/ml-classification-regression.html#multilayer-perceptron-classifier
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and/or distant-free survival were significant (p = 0.0042, 
p < 0.0001, and p < 0.0001, respectively), with a C-index 
of 0.54 (95% CI, 0.48, 0.61), 0.68 (95% CI, 0.62, 0.74), 
and 0.59 (95% CI, 0.53, 0.65), respectively (figure S2).

In the testing (n = 191) and external testing sets (n = 63), 
the clinical model predicted the risk of regional and/or dis-
tant recurrence with lower AUCs of 0.53 (95% CI, 0.46, 
0.60) and 0.51 (95% CI, 0.38, 0.64) and C-statistics of 0.53 
(95% CI, 0.45, 0.60) and 0.54 (95% CI, 0.41, 0.67), respec-
tively, with a cut-off of 70%. The radiomic model was the 
most efficient model with AUCs of 0.79 (95% CI, 0.72, 0.84) 
and 0.83 (95% CI, 0.71, 0.91) and C-statistics of 0.70 (95% 
CI, 0.63, 0.77) and 0.78 (95% CI, 0.66, 0.88), respectively, 
with a cut-off of 77%. In comparison, the combined model 
resulted in lower (although still much higher than clinical 
only) AUCs of 0.67 (95% CI, 0.60, 0.73) and 0.56 (95% CI, 
0.43, 0.68) and C-statistics of 0.62 (95% CI, 0.54, 0.69) and 
0.50 (95% CI, 0.37, 0.63), respectively, with a cut-off of 77% 
(Tables 2 and 3). Only the radiomic model was significantly 
predictive for regional and/or distant-free survival (p < 0.05), 
with C-indexes of 0.70 (95% CI, 0.64, 0.76) and 0.71 (95% 
CI, 0.59, 0.82), respectively (Fig. 1).

These models were used to separate patients into two 
groups: low- and high-risk of regional and/or distant recur-
rence (Tables 1, 2, and 3; Fig. 2). According to the clinical 
model, the high-risk patient subgroup had a higher rate 
of regional and/or distant metastases in the training set 
(44.4.% [36 of 81] versus 25.5% [49 of 192], p = 0.0033), 
the internal test set (40.6% [28 of 69] versus 35.2% [43 of 
122], p = 0.56), and the external testing set (29.4% [5 of 17] 
versus 27.8% [10 of 36], p = 0.84). For the radiomic model, 
the rate of regional and/or distant metastases in the high-
risk subgroup was increased in the training set (47.7% [72 
of 151] versus 10.7% [13 of 122], p < 0.0001), the inter-
nal test set (52.5% [62 of 118] versus 12.3% [9 of 73], 
p < 0.0001), and the external testing set (41.7% [15 of 36] 
versus 0% [0 of 27], p = 0.0004). Only the radiomic model 
was significant in the internal and external testing sets.

Applying both models to the overall cohort, more 
patients with regional and/or distant recurrence would 
adequately receive a systemic treatment following the radi-
omic model (n = 149) than the clinical model (= 69). How-
ever, unnecessary systemic treatment would be avoided in 
more patients using the clinical model: 258 vs 200. Con-
versely, more patients with recurrence would not be treated 
with the clinical model: 102 vs 22 patients.

Finally, DCA are available in supplemental data D, 
figure S14.

Models for the distant recurrence, isolated regional 
recurrence, and cancer‑specific survival

These models are available in supplemental data E. Ta
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Discussion

In our study, we developed a machine learning radiomic-
based model that could be used in clinical practice to 
predict the risk of regional and/or distant recurrence and 
potentially guide clinicians in the decision to offer con-
comitant and/or adjuvant systemic therapy to patients with 
ES-NSCLC treated by SBRT. This model outperformed 

the clinical model with a high sensitivity (from 85 to 
100%) and a moderate specificity (from 53 to 58%).

In ES-NSCLC, the dominant pattern of recurrence after 
local treatment with SBRT is the development of lymph 
node or distant metastases [4]. Prediction of regional and 
metastatic recurrence risk before SBRT for ES-NSCLC is 
a key issue. Systemic therapy, including immunotherapy, 
could be considered in addition to SBRT in these high-
risk patients. A retrospective study showed that some 

A

B

P=0.96

C-index : 0.49 (95% CI: 0.42, 0.56)

C

P<0.0001

C-index : 0.70 (95% CI: 0.64, 0.76)

P=0.072

C-index : 0.53 (95% CI: 0.46, 0.61)

D

P=0.76

C-index : 0.51 (95% CI: 0.31, 0.66)

E

P=0.0004

C-index : 0.71 (95% CI: 0.59, 0.82)

F

P=0.51

C-index : 0.59 (95% CI: 0.45, 0.74)

Fig. 1  Kaplan–Meier survival curves for regional and/or distant recurrence in Liège testing set for clinical (A), radiomic (B), and combined (C) 
models and in Brest external testing set for clinical (D), radiomics (E) and combined (F) models
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patients may benefit from adjuvant chemotherapy [31]. 
One recent study showed an improvement in recurrence-
free survival with the addition of immunotherapy to SBRT 
[6] and prospective studies are ongoing (NCT03924869, 
NCT03050554, NCT03833154). It would be of great inter-
est to have a non-invasive tool to select patients who would 
benefit from this additional treatment to avoid immunother-
apy-induced side effects [6].

Two studies have focused on clinical parameters and 
have developed several scores to predict distant recurrence 
which included age, histology, or tumor stage as in our 
study [7, 32]. Gao et al. developed a multicenter model 
based on clinical parameters and standard PET features 
 (SUVmax) with internal and external validation to predict 
distant metastasis. The model identified a subgroup of 
high-risk patients who had increased rates of metastatic 
spread in the training set (23.9% [17 of 71] versus 12.5% 
[119 of 953], p = 0.006), the internal test set (26.7% [4 of 
15] versus 13.3% [32 of 241], p = 0.148), and the exter-
nal validation dataset (28.6% [4 of 14] versus 16.4% [19 

of 116], p = 0.259). This model has a moderate sensitiv-
ity and is not significant in the testing sets. In our study, 
the clinical model that yielded the best results includes 3 
clinical parameters also present in their model. Clinical 
and radiomic models identified a high-risk patient sub-
group with increased rates of distant metastases: (i) for 
the clinical model, in the training set (37.1% [59 of 159] 
versus 13.2% [15 of 114], p < 0.0001), the internal test set 
(32.8% [43 of 131] versus 25.0% [15 of 60], p = 0.36), and 
the external testing set (20.7% [6 of 29] versus 14.7% [5 
of 34], p = 0.77); (ii) and for the radiomic model, in the 
training set (48.5% [66 of 136] versus 5.8% [8 of 137], 
p < 0.0001), the internal test set (54.4% [49 of 90] versus 
8.9% [9 of 101], p < 0.0001), and the external testing set 
(37.0% [10 of 27] versus 2.8% [1 of 36], p = 0.0014). In 
comparison, the radiomic model outperforms the clini-
cal model to predict the occurrence of distant metastases. 
Moreover, we have chosen as endpoint recurrence at any 
time and not at 1 year, since the median time to recurrence 
is around 20 months (table S2) [7].

Fig. 2  Flow diagram of risk-
stratification strategy based on 
pretreatment  [18F]FDG PET/CT 
illustrated in the pooled set for 
clinical (A) and radiomic mod-
els (B). These models separate 
patients into two groups: low 
and high risk of regional and/
or distant recurrence. High-risk 
patients could have systemic 
treatment and low-risk group 
would be spared of a systemic 
treatment. Thus, more patients 
with recurrence would be 
treated with radiomic model 
149 (B) vs 69 (A). However, 
unnecessary systemic treat-
ment would be avoided in more 
patients with clinical model 
258 (A) vs 200 (B) patients but 
more patients with recurrence 
would not be treated 102 (A) vs 
22 (B) patients

A

B
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Several studies have investigated the prognostic factors 
of patients who received SBRT for ES-NSCLC using radi-
omic analysis on  [18F]FDG PET/CT [33] or CT scans [34]. 
However, very few studies have focused on regional and/or 
distant recurrence [17, 35–37]. The  [18F]FDG PET/CT stud-
ies were retrospective and monocentric, and none included 
a training–testing scheme or an external validation cohort. 
In addition, most of these studies considered a relatively 
small number of radiomic features that did not conform 
to IBSI guidelines and were based on different segmenta-
tion methods or intensity discretization schemes, which 
may partly explain why different features were identified 
in these studies. Reproducibility and comparison between 
radiomic studies not conforming to IBSI guidelines are not 
feasible [28]. In contrast, Yu et al. retrospectively studied 
the predictive value of radiomic parameters extracted from 
contrast-enhanced CT images in 2 cohorts of stage I NSCLC 
patients corresponding to a training cohort (n = 147) and an 
independent validation cohort (n = 295) [38]. They devel-
oped a model to predict overall survival and the risk of 
distant metastatic recurrence. Their model was composed 
of two radiomic features. However, the 2 cohorts had not 
received the same treatment: patients in the training cohort 
had received surgery, while those in the validation cohort 
had received SBRT. In addition, the cohorts showed a sig-
nificant difference in patient age, which may explain the 
difference in treatment. These potential biases may have an 
impact on the validity and reproducibility of the model. In 
another study, Sawayanagi et al. demonstrated the prognostic 
value of GTV-derived GLSZM features on the pretherapy 
CT image on OS in patients with localized NSCLC treated 
with curative SBRT [39]. In contrast to these studies, the 
present study was designed with a much larger sample size 
and, more importantly, with external testing sets treated by 
SBRT. Another important point is the reproducibility of our 
best model from analog PET/CT to digital PET/CT. Digital 
PET/CT has improved diagnostic accuracy, while reducing 
radiation dose and examination time, making it essential to 
validate radiomic models on this new technology of PET/
CT, which will be equipping the majority of centers over the 
next few years [40].

We also developed models for distant recurrence and iso-
lated regional recurrence, as we could discuss different man-
agement for this last group of patients [41]. The subgroup 
of patients with isolated regional recurrence seems to have 
a better prognosis, and we could avoid systemic treatment 
and propose close monitoring to offer them early localized 
salvage treatment (supplemental data E).

In our study, the three radiomic features retained in the 
radiomic model are extracted from PET imaging and are 
robust to inter-reader segmentation variations (intra-class 
correlation > 0.80). The most important, original_first-
order_Entropy (implied in 48% in the radiomic model), is a 

first-order feature which classifies heterogeneous tumors as 
the most likely to develop regional or/and distant recurrence. 
The other 2 are textural features (original_gldm_LowGray-
LevelEmphasis and original_glcm_DifferenceAverage) one 
of which (original_glcm_DifferenceAverage) is a parameter 
already highlighted in a previous study (feature called dis-
similarity in this study) carried out on part of the Univer-
sity Hospital of Liège cohort for the risk of recurrence and 
cancer-specific survival [14]. The combined model per-
formed less well than the radiomic model alone, due to the 
poorer performance of the clinical parameter (tumor stage) 
incorporated into the model. No dosimetric parameter was 
predictive of the risk of regional and/or distant recurrence. 
This result is consistent with the literature, where dosimetric 
parameters are correlated only with local control but not 
with the risk of relapse outside radiotherapy fields [5, 42].

Our study has several limitations. Its retrospective nature 
can lead to several biases, including the lack of histologic 
confirmation of the primary tumor in few cases as is the case 
in many studies based on SBRT-treated lung cancer patients. 
Nevertheless, each case was evaluated in a multidisciplinary 
committee to minimize this bias. The 2 external testing sets 
had shorter follow-up than the Liège cohort, which may 
explain the lower recurrence rate and the lowest number of 
cancer-specific deaths. Longer-term evaluation of the radi-
omic model on these 2 cohorts would be interesting. Our 
model had a high sensitivity but a poor specificity; it means 
that the model is more prone to detect not only the disease 
even when this is not present but also a higher rate of false 
positives, resulting in a model still not able to identify true 
positives only. However, from a clinical point of view, it 
seems more interesting to have a better sensitivity than spec-
ificity to treat almost all patients at risk of recurrence. Neural 
networks are often described as “black boxes,” making the 
models generated difficult to understand [43]. However, in 
our study, our best model was composed of only 3 radi-
omic features whose respective contributions are available 
to make the model comprehensible and generate hypotheses 
about its expression of tumor heterogeneity. Another impor-
tant issue in radiomic studies is the correlation of radiomic 
features with standard metrics (such as SUV measurements 
or metabolic volume) especially in PET. In our study, the 3 
features composing our model have a low to moderate cor-
relation with the standard parameters ((ρ) = 0.29 to 0.42). In 
radiomic studies, particularly those involving PET, volume, 
represented by the number of voxels, is probably the most 
important confounding factor. This problem concerns low-
volume lesions, due to the limited spatial resolution of PET 
and the large-scale sampling of voxels, which means that 
texture analysis is performed on a small number of voxels, 
making the information provided by these texture features 
of limited relevance to volume alone. Several studies have 
addressed this issue, with the latest results showing that the 
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lower limit for exploiting texture features would be around 
5 to 10  cm3, depending on the features and methodology 
adopted in the radiomic workflow, notably the gray-scale 
discretization method or the design of texture matrices [43, 
44]. In our study, the range of considered volumes was 4–60 
 cm3 with rather large mean and median values of 11 and 8 
 cm3 respectively, which corresponds to 500 voxels for the 
smallest volume but a mean and median number of 5800 
and 2500 voxels respectively. Despite these limitations, our 
study scores 53% (19 out of 36 items) on the radiomic qual-
ity score (Supplemental data F), which places it in favorable 
comparison with the greater part of prior radiomic studies.

Conclusion

Radiomic features extracted from  [18F]FDG PET/CT out-
performed clinical variables in selecting patients with ES-
NSCLC treated with SBRT at high risk of regional or dis-
tant recurrence and could be useful to better individualize 
patients who would benefit from adjuvant systemic treat-
ment. Prospective validation is necessary.
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