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Abstract
Cambodia plans to expand its rice sector and become a prominent rice exporter. A key concern is that soil fertility is a crucial 
factor affecting rice production, and nutrient leaching into the environment can lead to reduced nutrient uptake and lower rice 
yield. Carbonized waste biochar has gained recognition not only as a potential soil fertility enhancer but also as a significant 
nutrient leaching reducer. It is currently being introduced in many regions. The study was to evaluate how a combination of 
chemical fertilizers and rice husk biochar affects nutrient leaching into the topsoil layer and plow sole of soil columns during 
direct seeding with continuous flooding, and to assess their combined effects on rice growth and yield. In the leachate from 
these two soil layers, except for ortho-phosphate (PO4

3−), the combination of CHEM + BIO2 or + BIO4 treatment (chemi-
cal fertilizers + biochar at a rate of 2t ha−1 or + biochar at a rate of 4t ha−1) significantly decreased ammonium (NH4

+) and 
nitrate (NO3

−) levels more than CHEM alone, particularly in the plow sole, suggesting that their combination and biochar 
sorption capacity are beneficial for nitrogen use by plants. CHEM + BIO2 had varying effects, whereas CHEM + BIO4 led 
to a significant increase in rice yield, plant biomass, tiller number, panicle length, grains per panicle, and grain weight per 
panicle. These findings suggest that incorporating biochar amendments in rice production can reduce N leaching. However, 
there is no evidence to support its effectiveness in reducing P leaching. Therefore, further studies are needed to determine 
the usefulness of this approach.
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1  Introduction

Rice is a major crop in Cambodia, crucial to the country’s 
economy and food security (Kea et al. 2016; Mishra et al. 
2018). Traditional farming methods are used, with small-
holder farmers growing rice on small plots of land (i.e., rice 
fields) using simple tools and techniques (Cramb et al. 2020). 
Some rice fields are situated under reconstituted or conserved 
conditions, especially after crop rotation and/or deforestation 
(Hok et al. 2015; Kong et al. 2021). Under these two condi-
tions, conventional tillage in those rice fields has created a 
surface layer of soil (called the topsoil layer) and a compacted 
layer of soil (the plow sole), usually seen in tropical agricul-
ture (Wasaya et al. 2019). Plowing the soil helps to prepare the 
topsoil surface for new plantations by burying the straws and 
potential weeds (Azimi-Nejadian et al. 2022; Jin et al. 2020) 
and allows water infiltration and nutrients to reach the rooting 
zones (Islam et al. 2021), especially to release an unavailable 
form of nitrogen (N) (e.g., dinitrogen (N2), ammonia (NH3

−), 
and hydroxyammonia (NH2OH)) (Singh et al. 2020). Moreo-
ver, the implementing tillage (i.e., turning the soil) increases 
soil moisture in the topsoil layer (Rehm et al. 2021), while the 
plow sole can limit water infiltration beyond the rooting zones, 
keeping rice fields under water during rice growth (McDonald 
et al. 2006) and limiting nutrient leaching (Patel and Singh 
1981). Although conventional tillage has been important in 
rice production since ancient times (Nesbitt 1998), there has 
been a growing trend towards mechanization and modern 
farming practices, such as the use of agrochemicals (Chhay 
et al. 2017; Kimkong et al. 2023).

In this sense, Cambodian farmers often use chemical fer-
tilizers, especially nitrogen (N) (urea), to increase rice yield 
(Dong et al. 2015). However, more than 55% of N fertilizer 
applied to irrigated land in tropical agriculture is not taken up 
by rice itself (Inamura et al. 2009; Zhu et al. 2016), resulting 
in surface runoff, NH3

− volatilization, and N leaching (Dong 
et al. 2015; Li et al. 2017). There is limited awareness of N 
leaching in Cambodia (Verma et al. 2020; survey data, pers. 
communication), and long-term use of phosphorus (P) ferti-
lizer or manure can also increase P leaching into groundwater 
and surface water (Kang et al. 2011). Excess P leaching is, on 
the other hand, negatively affects water quality (Nelson et al. 
2005) and leads to eutrophication (Huang et al. 2018). In pre-
vious studies, controlled-release fertilizers such as polymer-
coated fertilizer, granular fertilizer, and zeolite have been used 
to reduce nutrient leaching (N and P) from rice fields (Chen 
et al. 2018), but their high cost makes them a significant bar-
rier to their widespread use (Lawrencia et al. 2021; Vejan et al. 
2021). To address this issue, efficient and comprehensive strat-
egies are needed, such as using other feedstocks like wood bio-
char, rice straw biochar, converted agricultural residues, bam-
boo biochar, corn stover, oak wood, spruce, and/or Scots pine 

(Soinne et al. 2014; Xu et al. 2014; Liu et al. 2016; Munda 
et al. 2018; Ma et al. 2019; Yin et al. 2021). Interestingly, 
with its high surface area and ion exchange capacity (e.g., 
anions or cations depending on the combustion temperature 
and feedstock used (Lawrinenko and A. Laird 2015; Rizwan 
et al. 2016; Brassard et al. 2019a), rice husk biochar showed a 
significant reduction in nutrient leaching through different soil 
layers during rice growth, thereby increasing yield (Asai et al. 
2009; Yoo et al. 2014; Sarong and Orge 2015; Mohammadi 
et al. 2017; Singh et al. 2018; Brassard et al. 2019b; Wanta-
neeyakul et al. 2021). A previous study showed significant 
increases in plant biomass, plant height, tiller number, and 
panicle number (Selvarajh et al. 2020). Additionally, Koyama 
et al. (2016) showed better panicle length and root biomass, 
but Liu et al. (2021) showed a non-significant root length. 
Chen et al. (2021) and Chen et al. (2023) showed better grains 
per panicle and grain weight per panicle, respectively.

In recent years, the unaffordable prices of chemical ferti-
lizers have led to a significant underuse of these fertilizers by 
farmers, with 80% underusing them owing to financial consid-
erations (Chhay et al. 2017; Ye et al. 2022). Overuse of these 
fertilizers can lead to nutrient leaching into the environment 
(Tyagi et al. 2014; Huang et al. 2017b; Ke et al. 2018), causing 
public health issues (Erisman et al. 2013; Gwenzi et al. 2015; 
Ahmed et al. 2017; Dimkpa et al. 2020). In Cambodia, the 
use of chemical fertilizers is a major cause of water quality 
degradation (Ebers et al. 2017; Chhun et al. 2020), threaten-
ing the livelihoods of rural Cambodians who rely on ground-
water and surface water (Guppy and Shantz 2011; Bun et al. 
2021). This study introduces rice husk biochar, a carbonized 
organic waste from agriculture, as a potential solution (Das 
et al. 2023). Rice husk is locally abundant and cost-effective, 
with a production over 2 million tons in 2014. Only 10% of 
rice husk is used as fuel for household cooking and brick kilns, 
and the rest is thrown away or burned out (Nguyen et al. 2015). 
The study aimed to evaluate the impact of chemical fertilizers 
combined with rice husk biochar on leaching of NH4

+, NO3
−, 

and PO4
3− contents into the topsoil layer and plow sole using 

a soil column experiment. Additionally, the study assessed the 
effects of biochar occurrence and quantity on the rice growth 
and yield. The application of biochar is found to positively 
affect nutrient leaching and rice growth and yield; however, 
excessive biochar may result in adverse consequences.

2 � Materials and Methods

2.1 � Column Experimental Design

The experiment was carried out in a greenhouse at the 
Cambodian Agricultural Research and Development 
Institute (CARDI, latitude 11°28′32.33″ N and longitude 
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104°48′25.37″ E in a tropical climate) from June to the 
end of September 2021. A soil “Prateah Lang (sand over 
clay, White et al. 2006)” was selected for this experi-
ment because it is the most common soil group (28%) 
among the 11 soil groups of Cambodia's irrigated land 
for rice only (White et al. 1997). Specifically, the FAO/
UNESCO soil classification system would classify this 
soil “Prateah Lang” mainly as Gleyic Acrisols soil (Bal-
lester et al. 2021).

Two sets of soil column samples represent the recon-
stituted and conserved conditions of rice fields in tropical 
agriculture (Fig. 1A). Under each condition, all the soil 
(column) samples were selected at three different sam-
pling profiles (i.e., up to horizon B as defined by the FAO 
Guidelines for Soil Description (FAO 2006)). And each 
soil column represents two soil layers (i.e., the topsoil 
layer and the plow sole; Fig. 1B). For the reconstituted 
conditions, soil samples were dug from the rice fields. 
In the laboratory, after removing plastic and stubble, the 
soil columns were prepared and repacked into the corre-
sponding topsoil layer and plow sole (5.65 kg and 6.82 kg, 
respectively). The soil columns were then gently com-
pacted with a wooden hammer to reach the field bulk 
density of each layer (see Table 1). For the conserved 
conditions, the soil columns were sampled directly from 
the rice fields to avoid any disturbance of the topsoil layer 
and plow sole, using a thick-wall 5 mm PVC pipe (50 cm 

long and 15 cm in diameter) to keep the original structure 
of each layer.

A rice husk biochar (hereafter, biochar) was burned in 
a muffle furnace at 400 °C for 4 h (Karam et al. 2022). 
Before rice sowing, the biochar was added to each soil 
column, about 10–15 cm in the topsoil layer, as an amend-
ment during the soil preparation. Different treatments were 
applied in each soil column: chemical fertilizers (CHEM) 
(including urea, DAP, and KCl) at a ratio rate of 60:30:30 
of NPK, respectively; CHEM + BIO2 (i.e., CHEM + bio-
char at a rate of 2t ha−1); CHEM + BIO4 (CHEM + biochar 
at a rate of 4t ha−1); and CNTL, control (i.e., no chemical 
and no biochar). A rice cultivar (locally named Sen Pidao) 
was selected for the direct seeding irrigation method under 
continuous flooding (Fig. 1B). During the whole experi-
ment, following the soil group considered, the CHEM 
treatment was applied two times in each soil column: the 
first time (NPK: 60 kg ha−1, 50 kg ha−1, 50 kg ha−1; respec-
tively) during the soil preparation at the beginning, and 
the second time (only N: 100 kg ha−1) during the boosting 
stage (i.e., 40 days), except for the CNTL treatment. To 
collect the leachate, the thick-wall 5 mm PVC pipe was 
drilled with two holes from the two soil layers: one hole 
at a depth of 30 cm (from the top) for the topsoil layer and 
another one at 50 cm for the plow sole. The two holes were 
wrapped in a nylon mesh to prevent an interruption of the 
sedimentation and were equipped with a faucet.

Fig. 1   Two sets of soil column samples were designed to repre-
sent rice fields under continuous flooding using a soil group (called 
Prateah Lang (Gleyic Acrisols soil)) under reconstituted (A1) and 
conserved (A2) conditions. A soil column (B) represents the topsoil 
layer and the plow sole, which varies between 15–25  cm depth for 
rice cultivation (Katoh et  al. 2004; Li et  al. 2016; Xue et  al. 2022) 

and 15–30 cm depth based on the soil groups and irrigation history 
(Nosalewicz and Lipiec 2014; Tuzzin de Moraes et al. 2016), respec-
tively. CHEM represents the chemical fertilizers at a ratio rate of 
60:30:30 of NPK, respectively; CHEM + BIO2, CHEM + biochar at 
a rate of 2t ha−1; CHEM + BIO4, CHEM + biochar a rate of 4t ha−1; 
CNTL, control (no chemical and no biochar)
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2.2 � Measuring Biochar and Soil Characteristics

Triplicate samples of the biochar were analyzed for its 
basic characteristics, including pH (1:5 H2O), total nitro-
gen (Total N) (%), available phosphorus (P) (mg 100 g−1), 
and exchangeable potassium (K) (cmol kg−1) following the 
methods described for the soil analysis (below), except for 
available N (mg 100 g−1). The latter was measured with 
NH4N-KCl extraction and Kjeldahl methods (Keeney and 
Nelson 1983; Sáez-Plaza et al. 2013).

Triplicate soil samples from each layer of the three sam-
pling profiles were measured. The soil characteristics (such 
as bulk density (BD) (g cm−3), pH, soil organic matter 
(SOM) (%), Total N (%), available N (g 100 g−1), ammonium 
(NH4

+) (mg 100 g−1), available phosphorus (P) (mg L−1), 
and exchangeable potassium (K) (cmol kg−1)) were meas-
ured immediately after soil sampling. BD was measured using 
volumetric metal rings (5 cm long, 5 cm in diameter). Soil pH 
was measured with the pH (1:5 H2O) soil/water suspension 
method (Rayment and Higginson 1992). Soil organic matter 
(SOM) was measured with the Walkley–Black method (Gupta 
and Chaurasia 2014). Total N and NH4

+ contents were meas-
ured with the Kjeldahl method (Baethgen and Alley 1989; 
Gupta and Chaurasia 2014; Bremner 2016), whereas avail-
able phosphorus (P) was measured with the Olsen method 
(Olsen 1954; Zhou et al. 2001). Exchangeable potassium (K) 
was measured with the Flame photometer method (Gupta and 
Chaurasia 2014).

The basic characteristics of biochar and soil as measured 
from the topsoil layer and plow sole are shown in Table 1. 
Total N and exchangeable K values for biochar with alka-
line pH were high, while available P was low. Soil organic 
matter (SOM), Total N, and exchangeable K values for the 
topsoil layer were significantly higher than those for the 
plow sole: t (10) =-7.84, p < 0.001; t (10) =-4.24, p = 0.001; 
t (10) = -3.96, p = 0.002, respectively. The bulk density (BD) 
of the plow sole was significantly higher than that of the 
topsoil layer: t (10) = 13.70, p < 0.001. However, neither soil 
pH nor NH4

+ values for the two soil layers were significantly 

different: t (10) = -2.12, p = 0.059; t (10) = -0.17, p = 0.865, 
respectively.

2.3 � Measuring Soil Column Leachate

Triplicate leachate samples from each faucet of the topsoil 
layer and plow sole were collected at 7-day intervals using 
the sampling bottle container (polypropylene material). The 
leachate samples were measured immediately for ammo-
nium (NH4

+) (mg L−1) and nitrate (NO3
−) (mg L−1) with 

the Vario Tube Test and for ortho-phosphate (PO4
3−) (mg 

L−1) with the ortho method with a table. All three variables 
were measured using a photometer (Part Number 214020, 
MD600, Lovibond, Germany).

2.4 � Measuring Rice Growth and Yield

Triplicate rice samples were measured for plant biomass 
(g plant−1), tiller number, grains per panicle, grain weight 
per panicle (g), panicle length (cm), root biomass (g), and 
root length (cm), except for total yield (g plant−1). The plant 
height of each soil column was measured at 7-day intervals 
using a 3-m measuring tape. During the maturity period, 
plant samples were split into straw and panicle to count the 
tiller number. Samples of panicle were randomly selected 
to count the grains per panicle. The soil column was care-
fully broken to preserve the root structure. The root area was 
shaped and soaked in water to be cleaned. The root length 
was then measured, and the dried weight of straw, leaves, 
and roots were determined after oven-drying at 70 ◦C to a 
constant weight for 48 h.

2.5 � Data Analysis

All statistical analyses were conducted using R (R Core 
Team 2021). A one-way analysis of variance (ANOVA) 
was performed to assess the effects of chemical fertilizers 
and their combination with biochar on nutrient leaching 

Table 1   Mean values (± 1 SD, standard deviation) for the rice husk 
biochar (n = 3) were randomly estimated from a 3-kg rice husk bio-
char, and the topsoil layer (n = 9) and plow sole (n = 9) of the rice 
fields were estimated from the three soil profiles. SOM stands for soil 

organic matter; Total N for total nitrogen; Available N for available 
nitrogen; Exchangeable K for exchangeable potassium; and NH4

+ 
for ammonium. The numbers (in bold) were significantly different 
between the two soil layers (T-test, p < 0.05)

Description Bulk density 
(BD)
(g cm−3)

pH
(1:5 H2O)

SOM (%) Total N (%) Available N
(mg 100 g−1)

Available P
(mg 100 g−1)

Exchangeable K
(cmol kg−1)

NH4
+

(mg 100 g−1)

Rice husk biochar - 7.80 ± 0.162 - 5.60 ± 0.030 29.60 ± 0.009 2.60 ± 0.020 4.03 ± 0.042 -
Topsoil layer 

(0–20 cm)
1.60 ± 0.052 6.10 ± 0.144 0.45 ± 0.091 0.03 ± 0.005 - 5.97 ± 0.213 0.17 ± 0.008 5.91 ± 0.172

Plow sole 
(20–40 cm)

1.93 ± 0.020 6.52 ± 0.432 0.13 ± 0.009 0.02 ± 0.002 - 4.50 ± 0.327 0.13 ± 0.017 5.94 ± 1.105
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and the differences among treatments that enhanced all the 
variables describing rice growth and yield. All effects and 
differences were statistically significant, followed by post-
hoc comparisons using Tukey’s HSD (Honestly Significant 
Difference) test, which differed at the p < 0.05 level. The 

significant differences in variables describing the biochar 
and the two soil layers computed by the T-test for equality 
of means differed at the p < 0.05 level. All data were log-
transformed (y = log(x + 1)) to improve the normality and 
homogeneity of variance. The graphics of nutrient leaching 
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Fig. 2   Mean values (± 1 SD, standard deviation) for the nutrient 
leaching (NH4

+, NO3
−, and PO4

3−) (n = 12, each) through the top-
soil layer and plow sole of soil columns. The graphs show their lea-
chate accumulation at 7-day intervals: (a–b) ammonium (NH4

+), 
(c–d) nitrate (NO3

−), and (e–f) ortho-phosphate (PO4
3−). CHEM 

represents the chemical fertilizers at a ratio rate of 60:30:30 of NPK, 
respectively; CHEM + BIO2, CHEM + biochar at a rate of 2t ha−1; 
CHEM + BIO4, CHEM + biochar at a rate of 4t ha−1; CNTL, control 
(no chemical and no biochar)
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(or leachate) accumulation, rice growth, and yield were plot-
ted using Origin Pro.

3 � Results

3.1 � Nutrient Leaching in the Topsoil Layer and Plow 
Sole

There was no significant difference in nutrient leaching 
between the reconstituted and conserved conditions (Lai 
et  al. 2022). However, rising nutrient leaching (NH4

+, 
NO3

− and PO4
3−) during the experiment (7–56 days) con-

firmed higher leachate measured in the topsoil layer than that 
in the plow sole (Fig. 2). Comparing the CHEM treatment 

with other treatments, including biochar (i.e., CHEM + BIO2 
and CHEM + BIO4), the biochar significantly affected the 
NH4

+ and NO3
− contents leaching into the topsoil layer 

(p < 0.05), but not the PO4
3− content (Fig. 3). However, into 

the plow sole, the biochar did not significantly affect the 
NH4

+ content but reduced the NO3
− content (p < 0.05). In 

any case, the CNTL treatment highlighted the significantly 
lowest values for these three variables.

3.2 � Rice Growth and Yield

The CHEM + BIO4 treatment, followed by CHEM + BIO2, 
resulted in the highest values for rice yield, plant biomass, 
and tiller number (p < 0.05, Fig. 4a, b and c). On a percent-
age basis, for the rice yield, the CHEM + BIO4 treatment 

Fig. 3   Boxplots showed the nutrient leaching through the topsoil 
layer and plow sole of the rice fields under different treatments. 
Mean values (± 1 SD, standard deviation) for NH4

+, NO3
−, and 

PO4
3− (n = 12, each) were estimated from the reconstituted and con-

served conditions for each soil layer. Nutrient leaching (y) was log-
transformed (y = log(x + 1)), x represents each leaching variable (mg 
L−1). For the topsoil layer and plow sole of soil columns, the signifi-

cant differences among treatments were analyzed using a one-way 
analysis of variance (ANOVA) (Tukey’s HSD test, p < 0.05) and were 
indicated by lower letters (a, b, c) in the soil columns. CHEM rep-
resents the chemical fertilizers at a ratio rate of 60:30:30 of NPK, 
respectively; CHEM + BIO2, CHEM + biochar at a rate of 2t ha−1; 
CHEM + BIO4, CHEM + biochar at a rate of 4t ha−1; CNTL, control 
(no chemical and no biochar)
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increased it by 16% compared to the CHEM + BIO2 treat-
ment, 31% (CHEM), and 52% (CNTL), while for the plant 
biomass, by 20% (CHEM + BIO2), 54% (CHEM), and 70% 
(CNTL). And, for the tiller number, the CHEM + BIO4 
treatment increased it by 20% (CHEM + BIO2), 49% 
(CHEM), and 67% (CNTL). However, the two added bio-
char treatments enhanced the highest grains per panicle and 
panicle length (p < 0.05, Fig. 4d and e). For the grains per 
panicle, the CHEM + BIO4 treatment increased it by 15% 
compared to the CHEM + BIO2 treatment, 26% (CHEM), 
and 50% (CNTL), while for the panicle length, by 8% 
(CHEM + BIO2), 20% (CHEM), and 30% (CNTL).

Except for the root length, the CHEM + BIO4 treatment 
enhanced the highest values for the grain weight per panicle 
and root biomass (p < 0.05, Fig. 4h, f and g). For the grain 
weight per panicle, the CHEM + BIO4 treatment increased 
it by 15% compared to the CHEM + BIO2 treatment, 39% 
(CHEM), and 65% (CNTL), while for the root biomass, by 
18% (CHEM + BIO2), 48% (CHEM), and 66% (CNTL).

4 � Discussion

Previous studies have suggested that biochar can reduce 
nitrogen (N) leaching, such as NH4

+ and NO3
– (Li et al. 

2019; Xu et al. 2014), and increase the use efficiency of 
chemical fertilizers by rice growth, especially in the surface 
layer of soil (0–20 cm) like that of this study (Ding et al. 
2010; Yang et al. 2015; Oladele et al. 2019; Selvarajh et al. 
2021). A meta-analysis by Jeffery et al. (2011) compris-
ing 177 previous studies showed that the positive effects 
of biochar incorporation into soils outweighed the negative 
and neutral effects, with the exception of one study showing 
negative effects (Wang et al. 2016). This study showed that 
the relationships between chemical fertilizers and biochar 
applications were responsive to N leaching in the soil lay-
ers, but not to P leaching (Fig. 3). Biochar pore surfaces 
can react with some of the nutrients (i.e., N and P) released 
from chemical fertilizers (Joseph et al. 2018; Hestrin et al. 
2019; Haider et al. 2020). Owing to its larger surface area, 
negative surface charge, and charge density, biochar plays a 
role in reducing nutrient leaching, particularly immobiliz-
ing N (Lehmann et al. 2003), thereby decreasing N-induced 
pollution in the environment (Huang et al. 2017a; Sun et al. 
2018). For instance, Ding et al. (2010) showed that biochar 
can absorb ammonium ions (NH4

+) through cation exchange, 
resulting in different levels of nutrient leaching in different 
soil layers. Another study found that average NH4

+ leaching 
during whole rice growth (i.e., Oryza sativa L. Nanjing 5055 
and Oryza sativa L. Nanjing 9108) decreased in different 
soil layers (Zheng et al. 2019). This study also revealed that 
NH4

+ leaching was higher in the topsoil layer than in the 
plow sole (Fig. 2a, b). Some mechanisms underlying the 

decreased NO3
− leaching were also the ability of biochar 

to absorb the NO3
− content from the mixed soil. A study by 

Chen et al. (2021) showed that rice straw biochar at a rate 
of 20t ha−1 reduced NO3

− and Total N leaching by 30–39% 
and 13–14%, respectively. However, more than 30t ha−1 of 
rice straw biochar had negative effects on wheat yield and 
nutrient uptake (Sun et al. 2019). In contrast to N leach-
ing, Troy et al. (2014) and this study found that wood and 
rice husk biochar did not reduce PO4

3− leaching, and bio-
char from different feedstocks (e.g., corn stover, oak wood, 
spruce, and Scots pine) could not absorb PO4

3− leaching 
from an aqueous solution (Hollister et al. 2013; Soinne 
et al. 2014; Xu et al. 2014). Biochar also had the ability to 
increase PO4

3− leaching because it was a net PO4
3− source 

(Altland and Locke 2013; Nguyen et al. 2020), adding more 
PO4

3− content to the soil layers. The added biochar could 
reduce the ability of the soil to absorb the PO4

3− content 
(Cui et al. 2011; Soinne et al. 2014). Pratiwi et al. (2016) 
observed that the ability of biochar to absorb the PO4

3− con-
tent was extremely limited, i.e., at a rate of 4% w/w (biochar 
weight /soil weight) in loamy soil, and even to solubilize 
some initial PO4

3− contents below 60 mg L−1.
This study found that the topsoil layer and the plow sole 

have high soil bulk density (BD) values (1.60 g cm−3 and 
1.92 g cm−3, respectively), indicating Gleyic Acrisols soil. 
This is higher than rice fields in Cambodia and sandy clay 
loam soil (1.45 g cm−3) (Olubanjo and Yessoufou 2019). 
These two authors noted that soil BD is always altered in 
response to compaction, which may be associated with var-
ious field operations, such as the passage of heavy machin-
ery in rice fields (Shaheb et al. 2021). These field opera-
tions often cause damage to the soil structure by reducing 
the pore space between soil particles (soil porosity) (Singh 
et al. 2015), which favors higher water flux retention in 
the plow sole with its high soil BD. However, soil organic 
matter (SOM) in soils was found to have less compaction 
(Athira et al. 2019) and improved nutrient-holding capac-
ity, reducing N leaching (Malcolm et al. 2019). This study 
also underlined less N leaching in the topsoil layer and 
especially in the plow sole when more biochar was added 
(Fig. 3, CHEM + BIO4). Biochar increases SOM (Han 
et al. 2016; Luo et al. 2018), a key component in soil inter-
actions (Siedt et al. 2021). Because all soil organisms rely 
on SOM, biochar can protect soil biodiversity, reduce N 
leaching, and improve the functioning of soil processes and 
enzyme activity. Soil enzyme activity can influence soil 
fertility and crop yield by participating in SOM decom-
position and nutrient cycling (Sun et al. 2022). Long-term 
biochar and N fertilizer applications have been associated 
with increased rice yield and reduced the Total N leaching 
(Ullah et al. 2020).

For rice development, soil tillage also releases accessi-
ble N content after a process of N fixation and nitrification 
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(Hirsch and Mauchline 2015; Zhang et al. 2021). When 
chemical fertilizers are combined with biochar, the physical 
and chemical reactions that occur during biochar granule 
production slow the rate and extent of N compound dis-
solution compared to chemical fertilizers alone, resulting in 
reduced N leaching (Chen et al. 2018; Shi et al. 2020) and 
increased rice growth and yield. Many studies concluded 
that higher rice yield was recorded in the presence of any 
biochar (Dong et al. 2015; Yang et al. 2019; Chen et al. 
2021; Xu et al. 2022; Ghorbani et al. 2023) owing to its role 
in building soil fertility (Xu et al. 2016; Panhwar et al. 2020; 
Liu et al. 2021). For instance, Yin et al. (2021) found that 
their biochar treatment (4t ha−1) significantly increased the 
rice yield. Their results were supported by this study with 
the same rate under the CHEM + BIO4 treatment (Fig. 4a). 
The combination of chemical fertilizers (30 kg ha−1) and 
biochar (3-6t ha−1) significantly affected rice harvest index, 
yield, and biomass (Oladele et al. 2019). Biochar signifi-
cantly enhanced tiller number (Kamara et al. 2015; Oladele 
et al. 2019; Chen et al. 2021) and improved traits such as 
panicle length, grain weight per panicle, and grains per pani-
cle. However, this study showed that there was no signifi-
cant difference between chemical fertilizers and biochar in 
improving root biomass and root length (Fig. 4g, h). Consist-
ently, Pratiwi and Shinogi (2016) showed that biochar only 
slightly increased root biomass and root length. The effects 
of biochar on root growth depend on soil nutrient conditions 
(Liu et al. 2021) and rice growth stages (Biederman and 
Harpole 2013). In a study of Joseph et al. (2021), rice roots 
in stage 2 (i.e., tillering starting from 1 month) intercepted 
and interacted with any biochar.

5 � Conclusion

The combination of chemical fertilizers with rice husk bio-
char (i.e., CHEM + BIO4) effectively decreased ammonium 
and nitrate leaching in Gleyic Acrisols soil. This effect can 
be attributed to an increase in soil water-holding capacity, 
nutrient accessibility, and uptake, leading to improved rice 
growth and yield. However, the presence of biochar did not 

reduce ortho-phosphate leaching, suggesting that factors 
like ion strength, soil texture, pH, and biochar rates should 
be considered. The study suggests that the combination of 
chemical fertilizers with rice husk biochar could be a viable 
solution in Cambodia owing to its low-cost production and 
ease of use compared to chemical fertilizers alone. As such, 
developing efficient approaches to control nutrient leaching 
in rice fields is crucial for improving agricultural production.
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