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A B S T R A C T   

In recent years, comprehensive two-dimensional gas chromatography (GC × GC) has been gradually gaining 
prominence as a preferred method for the analysis of complex samples due to its higher peak capacity and 
resolution power compared to conventional gas chromatography (GC). Nonetheless, to fully benefit from the 
capabilities of GC × GC, a holistic approach to method development and data processing is essential for a 
successful and informative analysis. Method development enables the fine-tuning of the chromatographic sep
aration, resulting in high-quality data. While generating such data is pivotal, it does not necessarily guarantee 
that meaningful information will be extracted from it. To this end, the first part of this manuscript reviews the 
importance of theoretical modeling in achieving good optimization of the separation conditions, ultimately 
improving the quality of the chromatographic separation. Multiple theoretical modeling approaches are dis
cussed, with a special focus on thermodynamic-based modeling. The second part of this review highlights the 
importance of establishing robust data processing workflows, with a special emphasis on the use of advanced 
data processing tools such as, Machine Learning (ML) algorithms. Three widely used ML algorithms are dis
cussed: Random Forest (RF), Support Vector Machine (SVM), and Partial Least Square–Discriminate Analysis 
(PLS-DA), highlighting their role in discovery-based analysis.   

1. Introduction 

The origins of separation science can be traced back to the early 
beginnings of the 20th century. Walking down memory lane, one cannot 
ignore the remarkable evolution that the field has undergone over the 
course of many decades. Even though the early-developed methods are 
drastically different from those used in the field today, the basics remain 
conceptually the same: separating multiple components of a mixture 
based on their preferential interactions with a specific material [1]. It 
was not until 1957 that modern gas chromatography (GC) made its 
debut in the field of separation science thanks to Michael Golay [1,2]. 
GC promptly attracted a lot of attention due to its versatility and ability 
to provide fast and accurate separations [3]. It was soon recognized as a 
valuable analytical technique and a method of choice in various fields, 
including food, pharmacology, environmental science, and forensics, to 
name a few [4]. The fundamental concepts of GC are easy to grasp. GC is 
a technique that aims at separating volatile and semi-volatile organic 
compounds (VOCs) present within a given sample based on their in
teractions with a chromatographic column. This separation is achieved 

by using a chromatographic column containing a special coating, known 
as the stationary phase, and a mobile phase, typically an inert gas, to 
ensure analyte migration through the column. In GC, the choice of sta
tionary phase is critical because it determines the selectivity of the 
separation process. This selectivity relies on the type of interactions 
between the analyte and the stationary phase, including various forces 
such as dipole interactions, hydrogen bonding, and van der Waals forces. 
To optimize the separation, it is essential that the selected stationary 
phase closely matches the properties of the compounds being separated. 
A wide variety of columns are commercially available, each coated with 
stationary phases of different polarities. Hence, by selecting a column 
with a specific polarity, it is possible to fine-tune the separation of 
analytes and to improve the chromatographic performance. Practically, 
upon injection of a VOC-containing sample, the sample progresses 
through the column, and the VOCs interact with the stationary phase. 
Commonly, compounds with lower boiling points, i.e. more volatile 
compounds, migrate faster through the column and result in shorter 
retention times. Conversely, compounds with higher boiling points, i.e. 
less volatile compounds, interact more with the column coating and 
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hence elute later. Note that, while the volatility of the compounds can 
greatly influence the order of elution, it is however not the sole deter
minant. As mentioned earlier, the selectivity of the stationary phase also 
influences the separation process. This is why GC can effectively sepa
rate compounds with similar volatility, i.e. boiling points, but different 
chemical structures based on their interactions with the stationary phase 
[5]. 

Refusal to settle for the status quo and acknowledgment of the 
shortcomings of GC, including limited peak capacity, reduced resolution 
power, and lower sensitivity, led to the introduction of comprehensive 
two-dimensional gas chromatography (GC × GC) by Liu and Philips in 
1991, nearly three decades after GC was first introduced [6]. Despite 
both methods relying on the same fundamental separation protocol: 
injection, analyte separation with a chromatographic column, and 
detection, GC × GC remains a more sophisticated technique from a 
hardware perspective. GC × GC uses two columns with different selec
tivities to separate compounds based on different chemical properties. 
Commonly, the first-dimension (1D) column is of low to mid-polarity, 
while the second-dimension (2D) column is of mid to high polarity. 
Occasionally, reversed-phase column sets, i.e. the polarity of both di
mensions is inverted, may be used to accommodate specific sample re
quirements [7]. Both columns are connected in series using a special 
interface called a modulator, the heart of the GC × GC separation. The 
modulator ensures that the 1D effluent is repeatedly trapped and 
released into narrower bands, which are then reinjected into the 2D 
column during a process called modulation. The duration of each 
modulation cycle of trapping and releasing is defined by a modulation 
period (PM) [8,9]. Due to the mass conservation principle, the modu
lator, with its focusing effects, helps improve the detection limits of the 
technique by increasing the signal-to-noise ratio (S/N), thereby 
enhancing sensitivity. Moreover, one of the key advantages of GC × GC 
resides in its increased peak capacity. This makes it a highly suitable 
method to separate, with good resolution, complex samples that for 
instance would not be accurately resolved by conventional 

one-dimensional GC (1D-GC) due to overlaps of co-eluting peaks. 
Coupling GC ×GC with other techniques, specifically mass spectrometry 
(MS) significantly enhances the analytical capabilities of the technique 
and widens its scope of applications. For instance, in the academic 
setting, GC × GC–MS has become a go-to method in various omics fields 
due to its efficiency in identifying potential biomarkers, making it a 
potentially useful non-invasive medical diagnostic tool [10–12]. Owing 
to their high acquisition rates, i.e. 100 to 500 spectra per second, 
time-of-flight-MS (ToF-MS) detectors enable accurate reconstruction of 
chromatographic peaks, including narrow and rapidly eluting 2D peaks, 
thereby enhancing the sensitivity of the separation. These detectors are 
frequently used for both targeted and untargeted analyses due to their 
ability to acquire full mass range spectra with good sensitivity making 
them indispensable for analyzing complex matrices. Moreover, the 
introduction of fast scanning quadrupole MS (QMS) has further 
expanded the GC × GC scope of applications thanks to their high scan
ning rates (up to 10,000 u/s) [13]. 

The increased GC × GC resolving power is often perceived as a 
double-edged sword. On the one hand, the addition of a second sepa
ration dimension can significantly increase the complexity of the opti
mization process, as it introduces additional experimental parameters 
that need to be acknowledged. The interactions between all these pa
rameters can swiftly become difficult to assess, hence requiring attentive 
consideration during the method development stage [7,14]. On the 
other hand, the large amount of data generated during the chromato
graphic separation can at times be overwhelming for researchers who 
are interested in the method but lack expertise in GC × GC, leading to 
concerns about how to interpret the data. Method development is an 
essential step in any analytical workflow as it enables the generation of 
high-quality data (Fig. 1). Nevertheless, method development alone 
cannot guarantee the efficiency of the data processing step. In this re
gard, to fully leverage the potential of GC × GC, a holistic approach to 
both method development and data processing is important. In other 
words, the two steps need to be optimized in tandem to ensure an 

Fig. 1. Flow chart highlighting the synergistic relationship between method development and data processing. This figure illustrates the iterative process of 
developing a robust analytical workflow for GC × GC separations. As part of method development, theoretical modeling enables the optimization of the GC × GC 
experimental conditions and enhances the quality of the chromatographic separation, leading to the generation of high-quality data. In the data processing step, the 
combined use of chemometrics and machine learning algorithms helps alleviate the complexity of the produced data and enables the depiction of meaningful 
chemical information from complex datasets. 
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efficient and robust analysis. 
Theoretical modeling plays an important role in method develop

ment in GC in general and in GC × GC in particular. One of its key 
benefits is its ability to help understand how different experimental 
parameters, such as the temperature program and the carrier gas flow 
rate, impact the chromatographic separation quality [15]. Additionally, 
it can guide the selection of appropriate column sets that help to achieve 
a good orthogonal separation mechanism [16]. Furthermore, theoretical 
modeling can aid in the prediction of retention times and peak shapes of 
analytes in complex mixtures, facilitating the potential identification of 
unknown compounds [17,18]. Ultimately, these advantages aim to 
optimize the separation conditions to achieve the best possible separa
tion space occupation. Developing new theoretical models is a highly 
beneficial step in any analytical chemistry workflow. Nevertheless, as 
previously mentioned, generating high-quality data does not guarantee 
that the data will be easily processed and interpreted. Therefore, it is 
important to develop robust data processing workflows suitable for the 
analysis of the datasets at hand. In recent years, machine learning (ML) 
algorithms have become increasingly popular in GC × GC as they have 
demonstrated high capabilities in dealing with large sets of data and are 
progressively proving to be a great asset in extracting meaningful 
chemical information [19–23]. Their versatility makes them suitable to 
perform multiple tasks such as feature selection, pattern recognition, 
prediction, and classification. Additionally, they can greatly reduce the 
time and effort allotted to data analysis compared to mainstream 
methods that tend to be time-consuming and more prone to human error 
[24]. Furthermore, it is worth noting that their use can also be extended 
beyond data processing as they can play an important role in method 
development by predicting analyte retention, as highlighted by previous 
studies [25–27]. However, for the scope of this review, we focus 
exclusively on the application of ML algorithms in the data processing 
step. 

The present review is structured into two main sections. The first 
section provides a critical evaluation of the current state of theoretical 
modeling in GC × GC by providing an overview of the conducted 
research and highlighting the challenges that lie ahead. Particular 
attention is paid to thermodynamic modeling. In the second section, we 
highlight the importance of robust data processing workflows in 
extracting meaningful chemical information. Specifically, we focus on 
the rise of ML algorithms as efficient and powerful tools for handling 
large datasets. We discuss their advantages over traditional statistical 
methods and provide a comprehensive understanding of how they can 
be incorporated into the data processing workflow thoughtfully and 
informedly. 

2. Theoretical modeling 

Theoretical modeling in GC × GC dates back to the early days of the 
technique and the first prediction model was pioneered by Beens et al. in 
1998 [28]. The perpetual concern of every theoretical work conducted 
in the frame of GC × GC was and still is to harness the wealth of 
knowledge acquired over the years from GC modeling and effectively 
transpose it to a more complex separation system. Theoretical modeling 
in GC × GC reached its peak between the early 2000s and the early 
2010s, with few studies published outside of this time frame. The pre
sent review does not intend to provide a detailed explanation of the 
work conducted during this period, nor to provide the explicit mathe
matical formulation of every prediction model. For more in-depth ex
planations, the readers are directed to the appropriate references. 
However, the focus of this review is to outline what was accomplished in 
the field of theoretical modeling in GC × GC and identify the research 
topics that still require further attention. A special focus is attributed to 
thermodynamic-based modeling, as it is one of the most commonly used 
approaches in the field. Note that despite the growing popularity of GC 
× GC, there is a marked scarcity of literature reviews focused on the 
subject of theoretical modeling of GC × GC separations and 

consequently retention time predictions. This particular subject is often 
briefly and superficially mentioned in the context of 1D-GC advance
ments [29]. 

Theoretical modeling has made significant advancements over the 
years. Multiple efforts were dedicated to developing approaches capable 
of accurately describing all aspects of the chromatographic separations. 
This yielded a wide variety of methods, from models describing the ki
netics and thermodynamics of the separation to computer-based models 
[30–34]. Despite these achievements, there is still room for improve
ment as some aspects may require further refinement to achieve greater 
accuracy. In recent years, it is apparent that the main focus of research in 
GC × GC has shifted towards the practical applications of the technique, 
as well as data processing. This is portrayed by the number of excellent 
and highly-informative review papers that were recently published in 
this regard [35–39]. This shift in focus is most likely caused by the 
introduction of advanced hardware, which encompasses cutting-edge 
technological improvements in the modulator structure and function
alities, as well as the use of high-resolution MS detectors. Consequently, 
it appears that theoretical modeling has taken a backseat to technolog
ical progress. While modeling is currently no longer a major focus of 
research, it remains an important aspect of method development, as it 
ensures a thorough understanding of the separation mechanism and 
helps assess the full potential of the method. Thus, it is important to find 
a balance between the urgent need for applications and the importance 
of fundamental research to avoid fast and short-term fixes. 

2.1. Early-developed models 

Over the years, numerous theoretical models were introduced to 
provide a thorough understanding of various aspects of GC × GC. In this 
section, we provide a brief compilation of some of the early-developed 
prediction models and briefly discuss their underlying concepts. Note 
that, herein, to provide a comprehensive overview of the topic, we 
include a few additional recent references that either build upon early- 
developed models or use less common approaches. 

Most of the first prediction models were dedicated to calculating 
chromatographic parameters, with a special focus on the retention index 
(RI). Briefly, the RI of an analyte is calculated based on its retention time 
relative to the retention of a series of reference compounds, typically n- 
alkanes. In other words, the analyte’s RI corresponds to an interpolation 
of its retention time between two bracketing reference compounds. As 
opposed to the absolute retention times, RIs are system-independent 
constants that provide a standardized measure for the identification 
and quantification of compounds making them a quite popular tool in 
GC. Numerous works proposed RI-based retention time prediction 
models. Some of the earliest works were published by Beens et al. [28] 
and Vendeuvre et al. [40]. Both studies proposed similar methodologies 
for retention time calculations including the use of linear retention 
indices (LRI) for the prediction of the 1D retention times (1tr) and Kovats 
indices for the prediction of the 2D retention times (2tr). Good agree
ments between the experimental and the predicted chromatograms were 
achieved, even though higher secondary retention time deviations were 
noticed. Despite their wide applicability and usefulness, RIs still present 
numerous limitations in that they depend on both the temperature 
program and the type of stationary phase coating. In this context, Seeley 
et al. closely examined the repercussions of ignoring these dependencies 
on the calculation accuracy of the RIs. Although a less accurate model 
was produced, this approach could still be used as an a priori model that 
provides a rough idea of the space occupation of a specific analyte [41]. 
Commonly, RIs are calculated through single-column measurements. 
However, multiple efforts were dedicated to adapting these calculations 
to the GC × GC framework [42–48]. RI-calculations for GC × GC sep
arations present numerous challenges in comparison to the more 
straightforward calculations in 1D-GC. This topic was extensively dis
cussed in the literature [30,46,47,49–52]. Besides the need to report two 
distinct RI values, one for the 1D separation and another for the 2D 
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separation, adjusted retention time calculations are needed for 2D RI 
generation. These calculations necessitate 2D column dead time mea
surements, which are rather challenging to achieve experimentally. 
Moreover, while a series of n-alkanes are often used to calculate RIs, they 
might not be the most suitable reference compounds for 2D-RI calcula
tions. Rationally, more polar compounds tend to be more retained by the 
2D column compared to the n-alkanes. Therefore, the compound of in
terest will most likely not be bracketed by the alkanes making it difficult 
to report an RI value. This limitation was acknowledged by multiple 
works that suggested the use of more polar mixtures such as fatty acid 
methyl esters (FAMEs) [30,43], ketones [42], or the Phillips mix com
pounds [53]. The starting point for 2D-RI calculations consists in 
generating the so-called isovolatility curves for the reference standards. 
Several approaches were used to generate these curves using serial or 
continuous injections of reference compounds [28,30,42–44,54]. Most 
of these methods require collecting a significant amount of retention 
data and could potentially lead to a decrease in the 1D peak resolution 
due to the use of long modulation periods [31]. Although early devel
oped models heavily relied on the use of RIs, multiple studies showed 
that other numerical approaches involving retention factor (k) [32] and 
flow calculations [55,56] could be considered viable options for reten
tion time predictions. Regardless of the used approach, greater 2tr 
modeling errors were overall registered. For instance, relative 2tr errors 
of 10 % [40,41], 5 % [28], and 2 % [32] were reported. 

Most of the aforementioned approaches limit their investigation to 
small sets of compounds usually belonging to the same chemical fam
ilies, such as hydrocarbons [28,40], alkanes, and pyridines [32]. 
Furthermore, they rely on the use of system-dependent single-column 
GC data. In other words, they require prior measurements of every 
analyte’s retention data on a specific stationary phase using a specific 
temperature program. This leads to a subsequent amount of measure
ments before establishing the actual prediction model. To circumvent 
this issue, the solvation parameter model was introduced for retention 
data predictions. This model aims at describing the intermolecular in
teractions between the solute (analyte) and the stationary phase through 
the use of a set of solvation descriptors. Each descriptor corresponds to a 
physical property, i.e. solute size, solute polarizability, hydrogen bond 
acidity of the solute, hydrogen bond basicity of the solute, and the excess 
polarizability of the solute [57]. Initially, the solvation parameter model 
is intended for the prediction of retention factors. Nevertheless, it can be 
mathematically transformed to calculate RIs instead and subsequently to 
predict retention times on both dimensions. In this context, standard 
errors of 1 % and 5 % were reported for 1tr and 2tr predictions, respec
tively [58]. Computer-based models involving molecular simulations 
[59] and/or correlations of the chemical structure to physicochemical 
properties and biological activities such as quantitative 
structure-retention relationship models (QSRR) were also deployed for 
retention time predictions in GC × GC [60,61]. These models correlate 
the chemical structure of compounds to their retention behavior. 

Most of these early works sought to investigate the same research 
topics. One of their focuses was to accurately assess the interactions 
between the analytes and the column’s stationary phase and to optimize 
the column combinations accordingly. Additionally, these models were 
often deployed to assist in determining the ideal temperature pro
gramming conditions necessary to achieve maximum separation effi
ciency and good chromatographic peak shape. 

2.2. Thermodynamic-based modeling 

The GC × GC separation can be regarded as a thermodynamic pro
cess because it involves analyte partitioning between two phases: the 
stationary phase and the mobile phase. This distribution process is ruled 
by thermodynamic principles. Therefore, since the early days of theo
retical modeling in GC × GC, researchers sought to develop models that 
describe the thermodynamics of the separation. For instance, Zhu et al. 
harnessed thermodynamic properties to predict RIs across different 

column temperature conditions [30]. Jaramillo et al. introduced a new 
model that enables the thermodynamic modeling of the isovolatility 
curves of a set of alkanes [31]. Lu et al. used thermodynamics to predict 
the retention times of multiple pyridines [32]. Given the prediction 
accuracy yielded by thermodynamic-based models, these models have 
become a significant tool in retention time prediction in GC × GC. An 
overview of the available literature reveals a particular emphasis on 
relating the GC equilibrium constant (K) to the well-known thermody
namic indices, enthalpy (ΔH), entropy (ΔS), and molar heat capacity 
(ΔCp) [62]. This thermodynamic treatment of K enables a better un
derstanding of the solute-stationary phase intermolecular interactions. 

2.2.1. Thermodynamic expressions of the GC equilibrium constant (K) 
The GC equilibrium constant (K) also known as the chromatographic 

partition coefficient is at the heart of thermodynamic-based modeling. 
Several methods for calculating K were reported in the literature. One of 
the first thermodynamic expressions of K consisted in the use of the two- 
parameter van’t Hoff model, in which the equilibrium constant for a 
specific analyte i, Ki is described using Eq. (1), where R is the molar gas 
constant. 

ln(Ki) = −
ΔHi

RT
+

ΔSi

R
(1) 

Even though it was convenient to express K as a means of a two- 
parameter model, this simplified expression retains one substantial 
shortcoming. It disregards the temperature-dependency of the thermo
dynamic indices since the model treats them as constants. As a result of 
this approximation, the two-parameter model was shown to lead to poor 
model performance regarding retention time prediction in GC [63–65] 
and could introduce systematic errors, as reported by Karolat and Har
ynuk [66]. 

As an extension to the two-parameter model, Clarke and Glew 
introduced a six-parameter model (Eq. (2)) that acknowledges the effect 
of temperature on the thermodynamic indices [67]. 

ln(Ki) = A +
B
T
+ C ln(T) + DT + ET2 + FT3 (2) 

The A, B, C, D, E, and F terms are constants that are temperature- 
independent but analyte and stationary phase-dependent. The contri
bution of the last three terms was deemed negligible and the expression 
was reduced to a three-parameter model (Eq. (3)) [67], which has since 
become the most popular thermodynamic expression of K. 

ln(Ki) = A +
B
T
+ C ln(T) (3) 

The A, B, and C terms are related to the thermodynamic indices ΔH, 
ΔS, and ΔCp evaluated at a reference temperature Tref [68]. In this 
respect, Blumberg introduced a new approach termed K-centric modeling 
that aims to provide more refined calculations for the thermodynamic 
indices. This approach no longer estimates these indices at a reference 
temperature Tref but rather considers a predetermined reference distri
bution coefficient (Kref ) for the calculations. This model was shown to be 
particularly interesting in cases where the analytes exhibit either too 
small or too large retention factors at the selected Tref . Furthermore, it 
offers valuable insights for cases where a compound is evenly distributed 
between the mobile and the stationary phase (k = 1) [62]. This new 
calculation procedure was exploited by Stevenson et al. to generate 
retention maps that describe analyte distribution in the GC × GC sepa
ration space [69]. 

In this review, the A, B, and C terms (Eq. (3)) will be referred to as 
thermodynamic parameters. They are commonly determined through 
single-column isothermal retention time measurements [70,66]. Since K 
is related to the chromatographic retention factor through the K = βk 
expression (β is the phase ratio), isothermal measurements of every 
analyte’s retention factor (ki) on a specific stationary phase enable the 
calculations of Ki. The A, B, and C terms are then calculated through 
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curve-fitting of the Ki vs. T data points. Despite its proven efficiency and 
accuracy, this calculation method is often considered time-consuming. 
To address this issue, multiple efforts were dedicated to reducing the 
operator time by no longer collecting the data using isothermal runs but 
by using a series of temperature-programmed runs [71–74]. One of the 
first works to adopt this approach was the computer-based model 
introduced by Dorman et al. [33]. McGinitie et al. also used the same 
methodology for the estimation of the thermodynamic parameters for 
the three-parameter thermodynamic model (Eq. (3)). In this context, the 
total data collection time for a set of ten compounds was reduced from 
41.6 h to 2.0 h [75]. Furthermore, they investigated the impact of 
manual versus automatic injection conditions on the accuracy of the 
measurements [76]. In addition, they developed a calibration method to 
account for variations in the column geometry, which enhanced the 
calculation of the thermodynamic parameters. With this method, ther
modynamic data obtained for a given stationary phase can be used for 
predictions across columns with the same stationary phase but different 
geometries [77]. Karolat and Harynuk offered a new take on the 
calculation of the thermodynamic parameters through their additive 
thermodynamic model. This model breaks down the molecule into its 
fundamental building blocks and estimates the thermodynamic contri
bution of every block. These blocks can then be rearranged to form other 
molecules for which the thermodynamic parameters are calculated by 

simply adding the contributions of the individual blocks. This method 
proved to be efficient for the retention time predictions of a series of 
alcohols and ketones [66]. 

2.2.2. Performance of thermodynamic-based models 
Often during thermodynamic modeling of GC separations, the ana

lytes’ movements down the GC column are monitored through an iter
ative procedure, also known as the modified version of the time 
summation model [17,31,68,78–81]. During this process, the chro
matographic separation is divided into small isothermal time intervals, 
typically as short as 0.1 s [33,68,80]. While the overall strategy remains 
the same, each thermodynamic model has its unique specificities, 
intending to reduce the errors associated with the calculations. 
Thermodynamic-based models proved to be efficient in accurately pre
dicting retention times and their performance was assessed by using a 
wide variety of compounds (Fig. 2). Although the model performance 
varied from one compound to the other most likely due to the use of the 
simplified thermodynamic model (Eq. (1)), Dorman et al. reported a 
good agreement between the calculated and measured retention times of 
the Grob mix compounds with a variance of less than 1 % between the 
theory and the experiment [33]. McGinitie et al. worked with a single 
standard mixture of alkanes, alcohols, and ketones for which average 
errors of 0.64 % for 1tr and 2.22 % for 2tr predictions were obtained [17]. 

Fig. 2. Examples of GC × GC chromatograms predicted using thermodynamic-based modeling. A) (i) Experimental and (ii) predicted dioxin congeners separations. 
Reproduced from C. Stultz, R. Jaramillo, P. Teehan, F. Dorman, Comprehensive two-dimensional gas chromatography thermodynamic modeling and selectivity 
evaluation for the separation of polychlorinated dibenzo-p-dioxins and dibenzofurans in fish tissue matrix, J. Chromatogr. A 1626 (2020). https://doi.org/10.1016/J. 
CHROMA.2020.461311. B) (i) Experimental and (ii) modeled GC × GC chromatograms of hydrocarbons. Reproduced from R. Jaramillo, F.L. Dorman, Retention time 
prediction of hydrocarbons in cryogenically modulated comprehensive two-dimensional gas chromatography: A method development and translation application, J. 
Chromatogr. A (2019). C) Comparison between the experimental and predicted separation space occupation of two sets of standard mixtures: the Grob mix com
pounds (i and ii) and the fragrance mix compounds (iii and iv). Adapted with permission from M. Gaida, F.A. Franchina, P.-H. Stefanuto, J.-F. Focant, Top-Down 
Approach to Retention Time Prediction in Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry, Anal. Chem. 94 (2022) 17,081–17,089. 
https://doi.org/10.1021/acs.analchem.2c03107. Copyright 2023 American Chemical Society. D) (i) Second-dimension separation modeling errors for multiple 
separations of Grob mix compounds. (ii) An experimental and corrected modeled GC × GC separation of the Grob mix analytes. Reproduced from R. Jaramillo, F.L. 
Dorman, Retention time prediction in thermally modulated comprehensive two-dimensional gas chromatography: Correcting second dimension retention time 
modeling error, J. Chromatogr. A 1581–1582 (2018) 116–124. https://doi.org/10.1016/j.chroma.2018.10.054. 
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Silva et al. on the other hand reported average retention time errors of 
3.6 s for 1D and 0.2 s for 2D for endogenous steroids [82]. Regardless of 
the chemical composition of the used samples, most of the published 
works reported higher modeling errors for the 2tr predictions in com
parison with those of the 1tr. Also, higher 2tr modeling errors are often 
reported for cryogenically-modulated systems in comparison to 
flow-modulated ones. For example, a relative deviation of 7 % for 2tr 
predictions for a series of n-alkanes and polyaromatic hydrocarbons 
(PAH) was reported for a cryogenically-modulated system [70], whereas 
only a mean error of 2.2 % was reported for the 2tr prediction of a series 
of n-alkanes in a flow-modulated run [83]. The underlying reasons 
behind this trend will be further discussed in the following section. 
Numerous recent publications focused on reducing the discrepancy be
tween the experimental and predicted 2tr either by empirical corrections 
of the modeling errors or by implementations of newer modeling stra
tegies. By acknowledging the impact of the carrier gas velocity and the 
elution temperature on the 2tr modeling error, Jaramillo et al. intro
duced an empirical correction model that reduced the average error of a 
mixture of alkanes from 0.197 to 0.017 s [80]. Moreover, Burel et al. 
introduced a new expression of the equilibrium constant that endorses 
the effect of temperature and pressure and thus managed to reduce the 
2D modeling error from 7.3 to 2.2 % [83]. Newer modeling strategies 
featured the use of thermodynamically-modeled isovolatility curves for 
retention time predictions. This approach gave satisfactory results and 
yielded average modeling errors of 11 s and 0.09 s on both dimensions, 
respectively [31]. Recently, we introduced a new modeling approach 
that breaks down the GC × GC run into two separate 1D-GC and treats 
the modulator as a second injection device. In this context, separate 
1D-GC retention time predictions are conducted and then combined to 
account for the GC × GC separation space. This system-independent 
approach gave favorable results in terms of separation space descrip
tion and occupancy [18,68]. 

2.2.3. Advantages, challenges, and limitations 
Thermodynamic-based models can be distinguished based on their 

inherent ability to account for the experimental variations that may 
occur during chromatographic separation. Specifically, the thermody
namic parameters, i.e. A, B, and C, are calculated based on experimental 
measurements. Therefore, they accurately describe the effects of tem
perature on the analyte’s retention factor. Furthermore, from an 
experimental point of view, thermodynamic-based models are often 
considered a slightly superior approach to RI-based models. Even 
though 1D-RI measurements are conducted straightforwardly, 2D-RI 
estimations were proven to be instrumentally challenging and time- 
consuming [54]. 

While modeling the GC × GC 1D separation is moderately simple 
since the separation primarily depends on the compounds’ volatility, i.e. 
boiling point, the same cannot be inferred for the 2D modeling. The fast 
pace of the 2D separation, the presence of the modulator interface, the 
limited user control over the experimental parameters especially in 
cryogenically-modulated systems, and the intricacy between all the 
involved factors all combined significantly increase the complexity of 
the 2D separation modeling. 

When describing 2D retention, researchers often resort to the use of 
multiple assumptions to overcome the complexity of the system. The 
most commonly used assumption consists in perceiving the 2D separa
tion as isothermal and occurring at the 1D elution temperature. 
Furthermore, the modulator interface has been subject to numerous 
simplifying assumptions, especially in thermally-modulated systems. 
The modeling of these systems is significantly challenging compared to 
flow-modulated systems. Specifically, because it is difficult to assess the 
temperature variations that occur within the modulator as a result of the 
constant cooling and heating processes. This dilemma, in part, explains 
why fewer modeling works are conducted using thermal modulation 
[18,33,70,79–82]. The thermal modulation of GC × GC systems is often 
viewed as a dynamic process. When passing through the modulator, the 

analyte goes through very fast sorption and desorption phenomena due 
to the periodic cold and hot jets. So far, none of the conducted research 
was able to assess how the analyte’s passage through the modulator 
affects its retention behavior instead some assumptions were made. 
Furthermore, it is still difficult to estimate the moment in time when 
each analyte is trapped by the cold jet and to calculate the equilibration 
time needed by the analyte to reach the preset temperature after going 
through the cold jets. In this regard, Jaramillo et al. modeled the analyte 
retention within the modulator using the modulator’s offset temperature 
and estimated the time the analytes are trapped by the cold jet to the 
sum of the retention time and the modulation period [80]. Recently, we 
offered a new take on GC × GC modeling by omitting altogether the 
modulator from the modeling process. Instead, it was simply considered 
as a second injection device, thus offering a system-independent 
approach [18]. Another relevant reason why thermally modulated sys
tems are less commonly used in theoretical modeling compared to 
flow-modulated systems is due in part to the limited user control over 
pressure. With thermal modulators, there exists only one pressure con
trol point, at the inlet of the 1D column, while flow modulators allow 
pressure control at the head of both dimensions’ columns. Therefore, 
most of the experimental parameters that govern the separation, such as 
the carrier gas velocity and the pressure profile must be calculated 
theoretically. This can result in increased modeling errors. Note that, 
along with the preferential use of flow modulators, the majority of the 
published works model systems with flame ionization detectors (FID) 
instead of MS detectors to ease the calculation process since the outlet 
pressure is easily assessed in systems using FIDs. However, in reality, 
most commercially and industrially available GC × GC systems use 
thermal modulators and MS detectors. Hence, it is important to allot 
more time to understand the intricacies of these systems and to develop 
models that could be readily used in practical settings. Overall, despite 
the necessary use of approximations, good modeling performances were 
achieved by most of the aforementioned methods. Nevertheless, more 
work and further refinements are still needed to avoid oversimplifying 
the GC × GC system, particularly at the modulator stage. 

Despite the wide variety of available prediction models, GC × GC still 
lacks a fully automated system-independent method. Moreover, most of 
the available software packages only allow for theoretical simulations of 
1D-GC. Additionally, it is important to create a comprehensive database 
that encompasses all the retention data that was collected across 
different instruments, configurations, and stationary phases. In this re
gard, we acknowledge the recent publication of a retention database by 
Brehmer et al. [84]. This database can tremendously help in the data 
collection step by significantly reducing the amount of time dedicated to 
the initial measurements. It not only streamlines method development 
but also allocates more time for the challenging data processing step, a 
topic we will cover in the following section. Furthermore, this database 
can also facilitate the sharing of knowledge among researchers, ulti
mately advancing and reviving the field of theoretical modeling in GC ×
GC. 

3. Machine learning algorithms for GC £ GC–MS data processing 

Undoubtedly, the high dimensionality of the data generated by GC ×
GC–MS often calls for a robust and effective data processing step to 
extract meaningful information [85]. Traditional chemometric tools 
may, at times, not be enough to fully leverage the potential of the 
technique as they often rely on the quality and format of the collected 
data. Furthermore, some of these tools, may not be designed to operate 
directly on complex three-dimensional data structures such as the ones 
generated by GC × GC–MS. As a result, there has been a growing interest 
in using advanced ML algorithms for GC × GC–MS data processing. 
Briefly, ML is a sub-field of artificial intelligence (AI) that involves 
training algorithms on large datasets, allowing them to recognize pat
terns and relationships within the data, and make decisions about other 
new sets based on the learned information. One of the key features of ML 
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algorithms is their ability to iteratively adjust their parameters over time 
to improve the overall performance and accuracy of the model [86]. ML 
algorithms can be used in both supervised and unsupervised fashion. 
Supervised learning considers sample class affiliations during the 
training of the model, and it mainly focuses on building regression 
and/or classification models. For instance, random forest (RF) is a su
pervised ML algorithm that simultaneously trains multiple decision trees 
to enhance the accuracy of the predictions. On the other hand, unsu
pervised learning does not consider sample class memberships and helps 
depict clustering patterns among the data and/or reduces its dimen
sionality (Fig. 3). Principal component analysis (PCA) may be one of the 
most popular unsupervised ML algorithms. It is commonly used as a 
dimensionality reduction technique. In other words, it helps transform 
high-dimensional datasets into lower-dimensional datasets while mak
ing sure to express as much of the original variation as possible. It has 
come to our attention that frequently PCA is discussed separately from 
other ML algorithms. One possible explanation for this differentiation 
could be that PCA only serves a specific purpose in data analysis. While 
other ML algorithms are versatile and can serve a wider range of tasks, 
such as classification, regression, pattern recognition, and prediction, 
PCA is primarily used for exploratory data analysis. Its initial function is 
to screen high-dimensional data by reducing its dimensionality. 

Lately, the processing of GC × GC–MS data has been the subject of 
several informative review papers. Stefanuto et al. provided a thorough 
and detailed overview of the entire data processing scheme, from pre- 
processing to validation [36], while Pollo et al. discussed the use of 
fundamental chemometric tools in the analysis of -omics-related data
sets [35]. On the other hand, Stilo et al. provided a comprehensive 
overview of the various approaches employed in chromatographic 
fingerprinting [37], while Jimenez-Carvelo and Cuadros-Rodriguez 
critically discussed the use of untargeted data analysis approaches in 
foodomics [87]. More recently, Trinklein et al. discussed the latest de
velopments in chemometric tools and their application in nontargeted 

analysis [38]. While some of these reviews have mentioned the incor
poration of ML in GC × GC–MS data processing, the depth, and extent of 
these discussions have so often been limited. ML algorithms are 
frequently introduced as “the next big thing” in data processing. How
ever, it is important to acknowledge that they have already received 
wide acceptance in the GC × GC field and are yielding highly promising 
results. Their feasibility has been demonstrated in diverse domains, and 
they have been successful in analyzing GC × GC–MS data collected from 
different matrices. 

3.1. Algorithm selection 

Similar to other analytical techniques, the processing of GC × GC–MS 
data is a tedious procedure that involves numerous steps. Although the 
details of some of these steps are beyond the scope of this review, it is 
however worth stressing their importance for accurate and robust data 
analysis. Before the use of ML algorithms, GC × GC data undergoe a pre- 
processing step [36]. This initial phase is of the utmost importance since 
it significantly affects the interpretation of the outcome of the data 
processing step. It ensures the removal of outliers and helps standardize 
the data to make it ready for use in model building [88]. Briefly, 
pre-processing includes multiple steps. Before engaging in data pro
cessing, one needs to make sure that the data is suitable for analysis 
including checking its format and identifying any missing entries in the 
datasets. If so, data imputation techniques can be performed [89]. Once 
data verification is completed, normalization and scaling are conducted 
through a variety of techniques. Transformation techniques may also be 
applied to correct the noise in the data [88]. Once the data is in good 
shape, an exploratory data processing step is often conducted using 
unsupervised multivariate statistical tools, such as PCA and hierarchical 
cluster analysis (HCA) to reveal any underlying patterns in the data or to 
highlight clustering trends, if any, among the samples based on 
batch-related effects [36,90,91]. PCA aims to provide a visual 

Fig. 3. Overview of the most commonly used machine learning algorithms in GC × GC data processing.  
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interpretation of the data using as few components as possible. These 
components are called principal components (PC) and are ordered based 
on the amount of variation they explain in the original dataset. PCA is 
used to depict trends and relationships among the measured variables. 
HCA, on the other hand, is a clustering technique that groups the 
measured variables into clusters based on their distance or similarity. 
After completion of the data preparation and gaining a global under
standing of the datasets, ML algorithms can be employed to cater to the 
specific requirements of the scientific problem being investigated. In this 
review, we do not aim to provide an exhaustive analysis of how these 
algorithms operate, as numerous previous reviews have already exten
sively covered the topic [92–95]. We also do not aim to list all the 
available ML algorithms. Instead, our focus is on three of the commonly 
used ML algorithms in the field of GC × GC: random forest (RF), support 
vector machine (SVM), and partial least squares-discriminant analysis 
(PLS-DA) and their practical applications for the analysis of GC ×
GC–MS data. Nevertheless, to ensure that the reader can grasp the 
concepts behind these algorithms, we provide a brief fundamental un
derstanding of the functioning of the discussed ML techniques. More
over, it is worth noting the emergence of deep learning algorithms as a 
promising tool for large dataset analysis [96–98]; however, this topic 
falls outside the scope of this review. 

The selection of the appropriate ML algorithm is of paramount 
importance to achieve the desired performance in data analysis. With a 
multitude of ML algorithms available, each serving different purposes 
and leaning on different statistical and mathematical concepts, it is 
important to choose the most suitable one for the specific analytical task. 
Generally, cross-validation (CV) is used to assess an ML model’s per
formance. In other words, it serves as an indicator of how well the model 
is likely to perform when applied to a new set of data. It requires par
titioning the data into two different sets: the first set is called a training 
set and is used to build the model. The second set is referred to as the 
validation set and is used to evaluate the accuracy of the model. 

RF and SVM have emerged as the most frequently used ML algo
rithms in GC × GC–MS data analysis [19,99–104], closely followed by 
PLS-DA [102,105–107]. Therefore, this section will primarily focus on 
exploring these algorithms (Fig. 4). However, it is important to 
acknowledge the potential applicability of other ML-based algorithms, 
including linear discriminant analysis (LDA) [20,105], Monte-Carlo 
neural network (MCNN) [108], cluster resolution (CR) [109], and 
even customized ML software [110]. 

3.1.1. Random forest 
RF is one of the most popular ML algorithms widely used in classi

fication and regression tasks. Being an ensemble algorithm, RF operates 
by building a forest of decision trees, with each tree operating inde
pendently on a randomly selected subset of the original dataset. At the 
outset, the original dataset is divided into numerous subsets, referred to 
as bootstrapped datasets. Generally, these datasets are generated by 
random selection of two-thirds of the samples in the initial dataset, with 
a possibility for a sample to be represented more than once. The 

remaining one-third of the samples are assigned to a subset known as the 
out-of-bag (OOB) dataset. This set acts as an external validation dataset 
that enables the calculation of the misclassification error of the model 
trained using the bootstrapped dataset. This error is called the OOB error 
and is an important metric for evaluating the model’s performance 
[111]. 

In GC × GC–MS data analysis, RF is commonly employed in a su
pervised fashion for classification purposes [19,100,101,105]. In this 
context, each decision tree in the forest generates a class prediction and 
the overall prediction of the model is determined by the majority vote 
across all trees. The accuracy of an RF model largely depends on its 
hyperparameters, therefore careful tuning of these parameters is 
necessary for achieving optimal results [112]. Among these parameters, 
we can cite the number of decision trees, the number of predictor var
iables to sample, and the minimum leaf size. Selecting the optimal 
number of decision trees is a rather challenging task, in the sense that 
there is no rule of thumb regarding what the optimal value should be. As 
a matter of fact, not only it depends on the quality, complexity, and size 
of the dataset, the optimal number of decision trees also depends on the 
desired level of accuracy and the purpose of the study. Nevertheless, as a 
general guideline, for an accurate and robust RF model, it is recom
mended to use a sufficiently large number of trees, but not too large to 
avoid overfitting [112]. Moreover, it is wise to explore a range of values 
at the beginning of the analysis and perform cross-validation (CV) or 
monitor the OOB error to evaluate the model’s performance under 
different settings. Then, the user could settle for the value that entails 
the best answer to the research question at hand. For instance, Strozier 
et al. employed an RF model with 5000 trees to classify chemical threat 
agents analyzed by GC × GC-ToF-MS according to their origin [113]. 
Andersen et al. also used 5000 trees to identify putative blood-based 
multiple sclerosis biomarkers [103]. In contrast, Beccaria et al. in 
their study to distinguish between patients with a specific pulmonary 
infection and those with other pathologies, opted for 1000 decision trees 
[101]. These studies serve as examples of how the number of trees can 
be adapted across different analyses. Unlike the decision tree number, 
most of the other important hyperparameters often have numerical 
recommendations that are typically set by default in software packages, 
such as R [114] or MATLAB [115]. As an example, the number of pre
dictor variables to sample (n), is set to the 

̅̅̅̅
N

√
in classification problems, 

where N is the total number of variables in the original dataset, and N/3 
in regression problems. This is based on the original work conducted by 
Breiman, where it was shown that using relatively small n improves the 
performance of the RF model in that it reduces the correlation between 
decision trees [111]. Another example is the minimum leaf size. It is set 
to 1 for classification tasks and 5 for regression tasks. This means that 
each terminal leaf node will have at least one sample assigned to it for 
classification and 5 for regression. These default values can be used as a 
starting point for model building. Nevertheless, for better model per
formance, these default values can be further optimized by using various 
optimization techniques, including but not limited to Bayesian Optimi
zation (BO), grid search, random search, and genetic algorithms [116]. 

Fig. 4. Graphical representation of the three most commonly used machine learning algorithms in GC × GC data processing.  
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3.1.2. Support vector machine 
SVM is a supervised ML algorithm that can solve both classification 

and regression problems. Lately, it has been repeatedly used for classi
fication purposes of data acquired through GC × GC–MS analyses [20, 
102,105,117,118] The central idea in SVM consists in segregating input 
data into different classes using a so-called decision boundary. This 
boundary could be a line, a hyperplane, a curve, or a surface depending 
on the relationship between the input and output data. The data points 
that are the closest to the decision boundary are referred to as support 
vectors and the distances between the support vectors and the decision 
boundary are called margins. Intuitively, the further the data points are 
from the decision boundary, the better the separation is. Therefore, SVM 
seeks to maximize the margins to find the most optimal decision 
boundary that makes the separation between classes as wide as possible. 
The algorithm is referred to as linear SVM if the decision boundary is 
linear, i.e. straight line or a hyperplane. If the decision boundary is 
non-linear, i.e. a curved line or a complex surface, the algorithm is called 
non-linear SVM. In this context, kernel functions are used to transform 
the data from its lower-dimensional space to a higher-dimensional space 
where a linear decision boundary can be applied. The kernel functions 
used in SVM include linear, polynomial, radius, and sigmoid kernels. 
Their choice depends on the nature of the data and the problem to solve 
[94,119]. Therefore, similarly to RF models, for greater model accuracy, 
SVM hyperparameters need to be tuned [119]. Often, the kernel type is 
the first parameter to be adjusted as it is vital for the classification of the 
data. Depending on the chosen kernel type, other hyperparameters may 
also need to be optimized. As an example, for the analysis of GC ×
GC-QMS measurements of crude oils, Guilherme et al. opted for a radial 
basis function (RBF) kernel and used the grid search optimization 
technique to determine the most optimal C and γ values [105]. These 
hyperparameters are specific to the RBF kernel. The C parameter serves 
as a trade-off between model accuracy and margin maximization. Small 
values of C result in wider margins, which reduces overfitting but may 
increase the likelihood of misclassification errors. Conversely, larger 
values of C result in narrower margins, decreasing the probability of 
misclassification but potentially increasing overfitting. The γ hyper
parameter affects the shape of the decision boundary, where larger 
values lead to a more flexible and complex boundary and smaller values 
to a more restricted boundary. Therefore, the authors investigated a 
search space formed by all possible combinations between 0.001 ≤ C ≤
100, and 10− 6 ≤ γ ≤ 10 [105]. Similarly, Rist et al. fine-tuned the C 
parameter when using SVM with a linear kernel [117]. In addition to 
hyperparameter tuning, Reichenbach et al. assessed the performance of 
multiple SVM models by benchmarking different types of kernels. Spe
cifically, they explored the effects of varying the degree of the poly
nomial (cubic and quadratic), for poly-type kernels, on the accuracy of 
the model. Additionally, they investigated the use of a Gaussian kernel, 
which is an RBF kernel, with a moderate γ value, and kernels with small 
to moderate scales of hyperparameters. By benchmarking these different 
kernels, the authors aimed to identify the optimal kernel configuration 
for their wine classification task [20]. 

3.1.3. Partial least squares-discriminant analysis 
PLS-DA is a variation of the PLS regression algorithm that simulta

neously operates as a dimensionality reduction technique and a 
discriminant analysis technique serving both regression and classifica
tion tasks [95]. Its goal is to find a linear relationship between the input 
data (X), i.e. the measured variables, and the output data (Y), i.e. the 
samples class membership through the use of components labeled as 
latent variables (LV). These LVs are constructed to capture the maximum 
covariance between X and Y. While the output variables in classification 
tasks are categorical, PLS-DA only handles continuous variables. 
Therefore, the first step in PLS-DA model building is to transform cate
gorical variables into continuous variables by using dummy codes such 
as − 1, 0, and +1. To summarize the essence of the algorithm, PLS-DA 
calculates weight and loading vectors for each LV. The first LV is 

selected to maximize the covariance between X and Y, while subsequent 
components are selected to maximize the covariance between X and Y 
variables that were not explained by the previous components [95]. 
Typically, the selected number of LVs in a PLS-DA model is defined 
through the CV process. Venetian blind CV along with k-fold CV are 
popular methods for PLS-DA hyperparameter tuning [102,105,107]. 
Briefly, Venetian blind CV divides the dataset into multiple 
non-overlaying subsets of equal size. Each subset acts exactly once as a 
validation set, while the other remaining sets are used as training sets. 
This process is repeated multiple times based on the frequency chosen by 
the user. Then, the results are averaged to obtain an estimate of the 
model’s accuracy. On the other hand, k-fold CV randomly divides the 
original dataset into k subsets, often referred to as folds, of equal size. 
Typically, one of the folds is held apart as a validation set, while the 
other remaining folds are used for model training. This process is 
repeated k times, each time with a different fold held out for validation. 
The model’s performance is reported as the average performance across 
the k validation sets. For example, through Venetian blind CV, some 
authors were able to optimize the PLS-DA model by reducing the 
number of LVs down to 5 [105] and 3 [107], while others performed 
5-fold CV to select the optimal number of LVs [102]. PLS-DA models can 
be used for prediction purposes, meaning that they can predict the class 
membership of a new sample based on its measured variables. In this 
context, the new set of data is projected into the LV space using the 
weight vectors, and their corresponding Y variables are calculated using 
the loading vectors. PLS-DA can also be used for feature selection tasks 
by ranking the X variables based on their influence on the model. 

3.2. Performance assessment of ml algorithms in GC × GC–MS data 
analysis 

Given the complexity of GC × GC–MS data, it is common practice to 
benchmark multiple ML algorithms. This process enables users to assess 
different algorithms and identify the ones that exhibit superior perfor
mance and align best with the specific analytical objectives of the study. 
Typically, several factors are considered when determining the most 
suitable technique. These factors include the model’s training time, 
which is particularly important when investigating large datasets, as 
well as model complexity. Simpler models are generally preferred as 
they are easier to interpret. Scalability is also a pivotal factor in that it 
ensures that the algorithm can effectively handle high-dimensional 
datasets, such as those produced by GC × GC–MS, where the number 
of variables exceeds the number of samples. Furthermore, resource re
quirements also need to be considered. However, the most significant 
parameter to acknowledge is the accuracy of the model. Commonly, 
model performance is evaluated using CV, and specific performance 
evaluation metrics can be calculated using the predictions made by the 
trained model on the validation set (Table. 1) [22,107,117,120,121]. 
Note that the formula displayed in Table 1 are applicable for binary 
classification tasks, i.e. classification tasks involving only two classes. 
However, these calculations can be easily altered to accommodate 
multi-class classifications by either calculating the performance mea
sures for each class individually or by averaging across all classes. 

The performance of an ML model can also be assessed through 
graphical representations such as the receiver operating characteristic 
(ROC) curve (Fig. 5). This curve plots the true positive rate, i.e. sensi
tivity, against the false positive rate, i.e. 1-specificity, using different 
threshold values. Based on this curve, a scalar value called the area 
under the ROC curve (AUROC) can be calculated. The AUROC ranges 
between 0 and 1, with 0.5 indicating a poor model performance (no 
prediction ability) and 1 representing a perfect classification [122]. ROC 
curves and AUROC calculations are commonly used when bench
marking different algorithms since they allow for easier and more 
straightforward comparison between different models [102]. Confusion 
matrices (CM) also enable a visual interpretation of the performance of 
an ML model (Fig. 5). The CM allows for a clear understanding of the 
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model’s performance by providing a detailed visual breakdown of the 
model’s predictions through numeric representations of true positive, 
true negative, false positive, and false negative predictions. It is often 
represented as a matrix plot or a heatmap [113,123]. 

In the spirit of comparing and assessing different ML algorithms, 
Reichenbach et al. estimated the accuracy of 17 different ML techniques. 
These techniques, including decision trees, discriminant analysis, SVM, 
k-nearest neighbor (KNN), and ensemble methods, were applied to 
classify wines based on their varieties, geographic regions, vintages, and 
wineries. The performance evaluation of all these algorithms was con
ducted using the leave-one-out CV (LOOCV) [20]. Similar to other CV 
methods, LOOCV divides the input data into a training set and a vali
dation set. Notably, in LOOCV, the validation consists of only one 
sample, while the remaining samples form the training set. This pro
cedure is repeated for each sample in the input dataset. Among the 17 
compared methods, SVM-based models achieved the highest average 
accuracies, reaching approximately 90 %. Ensemble techniques fol
lowed closely with average accuracies reaching around 87 %. 
Conversely, decision trees were among the least successful methods as 
they exhibited relatively lower performance. Similarly, in a study con
ducted by Guilherme et al., SVM outperformed other algorithms, such as 
PLS-DA, quadratic discriminant analysis (QDA), LDA, and KNN [105]. 
When classifying individuals according to their sex and age using 
metabolite profiles from urine and plasma, SVM along with PLS-DA, and 
generalized linear model net (glmnet) demonstrated comparable levels 

of accuracy [117]. Furthermore, when comparing SVM to PLS-DA and 
RF, RF exhibited superior overall performance [102]. These findings 
emphasize the absence of one-algorithm-suits-all since the choice of 
methods highly depends on the requirements and characteristics of the 
investigated data. 

3.3. Feature selection 

Feature selection (FS) is among the most appealing aspects of ML 
algorithms and is extensively used in the context of GC × GC–MS data 
analysis. FS aims to reduce the initial pool of variables (features) to a 
subset of the most informative and discriminative features (Fig. 6). Not 
only it significantly reduces the computational time since only a limited 
number of features is used during model training, FS also enhances 
model performance and mitigates overfitting issues. In light of all these 
advantages, FS is usually carried out before constructing a prediction 
model that can reliably classify external samples. Particularly in GC ×
GC–MS data processing, where hundreds to thousands of compounds 
can be present in a single chromatogram, FS plays a crucial role in 
eliminating irrelevant, redundant, and noisy data, which significantly 
increases the quality and the interpretability of the results. Typically, in 
ML-based GC × GC–MS data processing workflows, a common sequence 
of steps is often followed. First, a classification model is built using the 
entire dataset, followed by a validation step to access the accuracy of the 
model. Subsequently, an FS step is applied to identify the most class- 
distinguishing features. Following FS, a reduced model is trained 
solely using the subset of features identified by FS, which is then applied 
for the classification of new sets of data. FS is performed differently from 
one ML algorithm to the other [124]. In this section, however, we refrain 
from diving into the specifics of FS in ML algorithms since it is beyond 
the scope of this review. Nevertheless, we will discuss some examples 
illustrating the efficacy of combining GC × GC–MS analysis with FS 
using ML algorithms and emphasizing its applicability across various 
fields. For in-depth insights into the various methods of performing FS 
with ML algorithms, we recommend referring to the following refer
ences [125–127]. 

The majority of the studies primarily focused on using FS for 
biomarker discovery. In a recent investigation by Cen et al., the effect of 
COVID-19 vaccines on the exhaled VOC profile of individuals was 
compared to that of non-vaccinated individuals. Their approach 
involved two steps. They initially selected a subset of 12 candidate 
biomarkers using variable importance in projection (VIP) scores calcu
lated within a PLS-DA model. Then, these biomarkers were validated 
using an RF model [120]. In another COVID-19 study, VIP scores were 
calculated to distinguish between healthy individuals and those infected 
by the disease. This study identified putative biomarkers that could 

Table 1 
Performance metrics used to evaluate machine learning models. TP: True posi
tive, TN: True negative, FP: False positive, and FN: False negative.  

Metric Formula Description 

Accuracy TP + TN
TP + TN + FP + FN 

Ability of the model to predict the 
classes of the input data. 

Misclassification 
error 

FP + FN
TP + TN + FP + FN 
or 1 − accuracy 

Proportion of instances that are 
incorrectly classified by the 
model. 

Precision TP
TP + FP 

Proportion of true positive 
predictions among all positive 
predictions made by the model. 

Recall TP
TP + FN 

Proportion of positive instances 
that are correctly predicted by the 
model out of all the actual positive 
instances in the input dataset. 

Specificity TN
TN + FP 

Proportions of true negative 
instances that are correctly 
classified by the model. 

F1-score 2×
Precision × Recall
Precision + Recall  

Indicator of the overall accuracy 
of the model by balancing 
between precision and recall.  

Fig. 5. Graphical representation of the A) Receiver Operating Characteristic (ROC) curve and the Area Under the ROC curve (AUROC) and the B) Confusion matrix 
(CM). TP: True Positive, TN: True Negative, FP: False Positive, and FN: False Negative. 
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allow for a noninvasive diagnosis and monitoring of the disease. These 
biomarkers were further validated using a genetic algorithm-based ML 
model [106]. Additionally, in the same context of the COVID-19 
pandemic, Favela et al. employed FS to investigate the chemical 
composition of facemasks [110]. Furthermore, Beccaria et al. identified 
potential biomarkers for tuberculosis diagnosis in exhaled breath [102], 
while Andersen et al. identified blood-based biomarkers for multiple 
sclerosis using FS in conjunction with RF [103]. 

FS was also applied to the study of various food matrices. Zou et al. 
combined FS with RF to distinguish between regular and decaffeinated 
coffee. The newly discovered markers were then used to construct a 
prediction model capable of predicting the type of new coffee samples 
[19]. Lima et al. used a PLS-DA model to assess the authenticity of fish 
oil supplements [107], while Paiva et al. used the same ML algorithm to 
classify beers and to identify 31 analytes that are correlated with con
sumer preferences [128]. Li et al. used multiple ML models to assess the 
authenticity of orange juice and identified key compounds that could 
differentiate between biological origins, geographical origins, harvest
ing years, and processing methods [121]. FS was also employed in other 
studies involving the differentiation of virgin and recycled polyethylene 
terephthalate [123], the study of the algal metabolome [109], and the 
characterization of jet fuel properties [108]. 

3.4. ML algorithms vs. traditional statistical methods 

Comparing ML algorithms to traditional statistics is not as easy as 
one might think. Some can even argue that it is like comparing apples to 
pears since the two fields operate in a notably different manner. Instead 
of thinking about using them interchangeably or favoring one over the 
other, it may be more beneficial to consider their use based on the 
specific objectives and requirements of the analysis. For instance, if the 
goal is to build a classification model and then use it to make pre
dictions, ML algorithms are more suitable for the task. On the other 
hand, if the objective is to explore relationships between variables and to 
test hypothesis, a statistical model may then be more appropriate. Both 
approaches have their strengths and limitations, hence the decision 
should be based on the problem at hand. 

One of the benefits of ML algorithms is their high flexibility to handle 
various and complex types of data. As opposed to traditional statistical 
methods, that often require assumptions like normal distribution and 
equal variances across classes, ML algorithms do not rely on such a priori 
assumptions. This feature becomes particularly handy when dealing 
with datasets that have unbalanced class sizes and/or inherent biolog
ical variations within the same class. 

ML algorithms also excel in handling high-dimensional datasets, 
where the number of variables exceeds the number of samples. This 

Fig. 6. Examples of identification of class-distinguishing analytes using machine learning (ML) algorithms feature selection techniques. A) Identification of potential 
Tuberculosis markers using 3 ML algorithms: Random Forest (RF), Support Vector Machine (SVM), and Partial Least Squares-Discriminant Analysis (PLS-DA). i) 
Feature selection workflow. ii) Chemical classes of the identified class-distinguishing analytes. iii) Venn Diagram representing the features selected from the 3 ML 
algorithms. Reproduced with permission from M. Beccaria, C. Bobak, B. Maitshotlo, T.R. Mellors, G. Purcaro, F.A. Franchina, C.A. Rees, M. Nasir, A. Black, J.E. Hill. 
Exhaled Human Breath Analysis in Active Pulmonary Tuberculosis Diagnostics by Comprehensive Gas Chromatography-Mass Spectrometry and Chemometric 
Techniques, J. Breath Res. 13 (2019) 016,005. Date of publication: 05 November 2018. https://doi.org/10.1088/1752-7163/aae80e. © IOP Publishing. B) Top 20 
features identified using RF to distinguish between regular and decaffeinated coffee. i) Confusion matrix. ii) Chemical classes of the Top 20 features. iii) Unsupervised 
PCA scores plot. iv) Supervised PCA scores plot. Reproduced from Y. Zou, M. Gaida, F.A. Franchina, P.H. Stefanuto, J. Focant. Distinguishing between Decaffeinated 
and Regular Coffee by HS-SPME-GC × GC-TOFMS, Chemometrics, and Machine Learning, Molecules. 27 (2022) 16. C) identification of features that effectively 
discriminate between COVID-19 infected patients and healthy patients using a PLS-DA model. i) PCA performed using the reduced dataset. ii) VIP scores plot of the 
most class-distinguishing analytes in each group. Reproduced from E. Barberis, E. Amede, S. Khoso, L. Castello, P.P. Sainaghi, M. Bellan, P.E. Balbo, G. Patti, D. 
Brustia, M. Giordano, R. Rolla, A. Chiocchetti, G. Romani, M. Manfredi, R. Vaschetto. Metabolomics Diagnosis of Covid-19 from Exhaled Breath Condensate, Me
tabolites. 11 (2021). 
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scenario is often, if not always, encountered in GC × GC studies. 
Oppositely, traditional statistical methods face challenges in analyzing 
such datasets since they are primarily designed for low-dimensional 
data, where the number of samples is larger than the number of vari
ables [129]. The high-dimensionality of the data poses numerous chal
lenges when attempting to plot a specific response against all variables 
in a linear fashion. This difficulty arises not only due to the high number 
of variables but also because the data itself may exhibit multiple re
sponses, making it more complex to visualize and interpret the re
lationships between variables and responses. This is where ML 
algorithms come in handy. By leveraging advanced techniques such as 
dimensionality reduction and feature selection, they tremendously and 
effectively decrease the complexity of the data. 

ML algorithms are known for their high adaptability as they are 
capable of learning and adjusting their predictions based on the un
derlying data distribution. They help automate the process of model- 
building and decision-making, resulting in considerable time and 
effort savings in comparison to manual data curation. Nevertheless, it is 
important to acknowledge that despite their advantages, ML algorithms 
are not immune to certain challenges and limitations. Some algorithms 
do not enable an easy and straightforward interpretation of the results. It 
can be, at times, difficult to understand the rationale behind certain 
predictions and outcomes. Furthermore, ML algorithms are not exempt 
from overfitting, which occurs when the model becomes overly tailored 
to the training set and hence fails to perform for external datasets. An 
accurate and efficient use of ML algorithms often require solid expertise 
in algorithm selection, hyperparameter tuning, and data interpretation. 
Moreover, in light of the exponential increase in the use of ML-based 
methods in particular and AI in general, ethical considerations have 
nowadays become increasingly significant. The apprehension about AI 
surpassing human intelligence is now more relevant than ever. 

4. Final remarks 

It is undeniable that GC × GC has now entered its golden age and has 
become an indispensable tool in the analysis of volatile and semi-volatile 
molecules across different fields. Nevertheless, in order to unlock the full 
potential of the technique, a thorough method development step needs 
to be combined with a robust and accurate data processing workflow. In 
this review, through an extensive examination of the literature, we 
provided a comprehensive overview of the current state-of-the-art in 
theoretical modeling and ML-based data processing workflows in GC ×
GC. 

As part of method development, theoretical modeling in GC × GC 
plays an important role in optimizing separation conditions, thereby 
increasing efficiency and selectivity. Extracting meaningful information 
from GC × GC data is challenging due to the high-dimensionality of the 
data. Therefore, robust data processing workflows are of the utmost 
importance to effectively and efficiently analyze the data. To this end, 
the integration of ML algorithms into the data processing workflow can 
be highly beneficial. Algorithms such as RF, SVM, and PLS-DA have 
demonstrated great promise in GC × GC data analysis, particularly in 
biomarker discovery through feature selection. 

Despite the remarkable progress in both method development and 
data processing in GC × GC, several challenges remain. There is still a 
need for the development of more accurate, automated, and system- 
independent theoretical models. Furthermore, collaborations between 
chemists, statisticians, and computer scientists can be highly beneficial 
to fully explore the potential of ML algorithms in order to use them in an 
informed manner. 
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[94] S. Salcedo-Sanz, J.L. Rojo-Álvarez, M. Martínez-Ramón, G. Camps-Valls, Support 
vector machines in engineering: an overview, Wiley Interdiscip. Rev. Data Min. 
Knowl. Discov. 4 (2014) 234–267, https://doi.org/10.1002/WIDM.1125. 

[95] L.C. Lee, C.Y. Liong, A.A. Jemain, Partial least squares-discriminant analysis (PLS- 
DA) for classification of high-dimensional (HD) data: a review of contemporary 
practice strategies and knowledge gaps, Analyst 143 (2018) 3526–3539, https:// 
doi.org/10.1039/C8AN00599K. 

[96] V.B. Mathema, K. Duangkumpha, K. Wanichthanarak, N. Jariyasopit, E. Dhakal, 
N. Sathirapongsasuti, C. Kitiyakara, Y. Sirivatanauksorn, S. Khoomrung, CRISP: a 
deep learning architecture for GC × GC–TOFMS contour ROI identification, 
simulation and analysis in imaging metabolomics, Brief. Bioinform. 23 (2022), 
https://doi.org/10.1093/BIB/BBAB550. 

[97] J. Oh, A. Oldani, T. Lee, L. Shafer, Deep learning algorithms for assessing 
sustainable jet fuels from two-dimensional gas chromatography, in: AIAA Sci. 
Technol. Forum Expo. AIAA SciTech Forum 2022, 2022, https://doi.org/ 
10.2514/6.2022-0228. 

[98] T. Cajka, J. Hajslova, F. Pudil, K. Riddellova, Traceability of honey origin based 
on volatiles pattern processing by artificial neural networks, J. Chromatogr. A 
1216 (2009) 1458–1462, https://doi.org/10.1016/J.CHROMA.2008.12.066. 

[99] C.A. Rees, P.H. Stefanuto, S.R. Beattie, K.M. Bultman, R.A. Cramer, J.E. Hill, 
Sniffing out the hypoxia volatile metabolic signature of Aspergillus fumigatus, 
J. Breath Res. 11 (2017), https://doi.org/10.1088/1752-7163/AA7B3E. 

[100] G. Purcaro, C.A. Rees, J.A. Melvin, J.M. Bomberger, J.E. Hill, Volatile 
fingerprinting of Pseudomonas aeruginosa and respiratory syncytial virus 
infection in an in vitro cystic fibrosis co-infection model, J. Breath Res. 12 (2018), 
https://doi.org/10.1088/1752-7163/aac2f1. 

[101] M. Beccaria, T.R. Mellors, J.S. Petion, C.A. Rees, M. Nasir, H.K. Systrom, J. 
W. Sairistil, M.A. Jean-Juste, V. Rivera, K. Lavoile, P. Severe, J.W. Pape, P. 
F. Wright, J.E. Hill, Preliminary investigation of human exhaled breath for 
tuberculosis diagnosis by multidimensional gas chromatography—Time of flight 
mass spectrometry and machine learning, J. Chromatogr. B 1074–1075 (2018) 
46–50, https://doi.org/10.1016/j.jchromb.2018.01.004. 

[102] M. Beccaria, C. Bobak, B. Maitshotlo, T.R. Mellors, G. Purcaro, F.A. Franchina, C. 
A. Rees, M. Nasir, A. Black, J.E. Hill, Exhaled human breath analysis in active 
pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass 
spectrometry and chemometric techniques, J. Breath Res. 13 (2019), https://doi. 
org/10.1088/1752-7163/aae80e. 

[103] S.L. Andersen, F.B.S. Briggs, J.H. Winnike, Y. Natanzon, S. Maichle, K.J. Knagge, 
L.K. Newby, S.G. Gregory, Metabolome-based signature of disease pathology in 
MS, Mult. Scler. Relat. Disord. 31 (2019) 12–21, https://doi.org/10.1016/J. 
MSARD.2019.03.006. 

[104] E.B. Franklin, L.D. Yee, B. Aumont, R.J. Weber, P. Grigas, A.H. Goldstein, Ch3MS- 
RF: a random forest model for chemical characterization and improved 
quantification of unidentified atmospheric organics detected by chromatography- 
mass spectrometry techniques, Atmos. Meas. Tech. 15 (2022) 3779–3803, 
https://doi.org/10.5194/AMT-15-3779-2022. 

[105] G.L. Alexandrino, P.S. Prata, F. Augusto, Discriminating lacustrine and marine 
organic matter depositional paleoenvironments of Brazilian crude oils using 
comprehensive two-dimensional gas chromatography-quadrupole mass 
spectrometry and supervised classification chemometric approaches, Energy 
Fuels 31 (2017) 170–178, https://doi.org/10.1021/ACS. 
ENERGYFUELS.6B01925. 

[106] E. Barberis, E. Amede, S. Khoso, L. Castello, P.P. Sainaghi, M. Bellan, P.E. Balbo, 
G. Patti, D. Brustia, M. Giordano, R. Rolla, A. Chiocchetti, G. Romani, 
M. Manfredi, R. Vaschetto, Metabolomics diagnosis of covid-19 from exhaled 
breath condensate, Metabolites 11 (2021), https://doi.org/10.3390/ 
METABO11120847. 

[107] R.A.M. Lima, S.M.M. Ferraz, V.G.K. Cardoso, C.A. Teixeira, L.W. Hantao, 
Authentication of fish oil (omega-3) supplements using class-oriented 
chemometrics and comprehensive two-dimensional gas chromatography coupled 
to mass spectrometry, Anal. Bioanal. Chem. (2022), https://doi.org/10.1007/ 
S00216-022-04428-2. 

M. Gaida et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/S0021-9673(99)00158-2
https://doi.org/10.1016/S0021-9673(99)00158-2
https://doi.org/10.1016/j.chroma.2010.05.037
https://doi.org/10.1039/tf9666200539
https://doi.org/10.1039/tf9666200539
https://doi.org/10.1016/j.chroma.2021.462300
https://doi.org/10.1016/j.chroma.2021.462300
https://doi.org/10.1016/j.aca.2019.08.011
https://doi.org/10.1016/j.aca.2019.08.011
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0070
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0070
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0070
https://doi.org/10.1002/JSSC.201701343
https://doi.org/10.1002/JSSC.201701344
https://doi.org/10.1002/jssc.201701345
https://doi.org/10.1016/J.CHROMA.2023.464008
https://doi.org/10.1016/j.chroma.2013.12.008
https://doi.org/10.1002/JSSC.201200192
https://doi.org/10.1016/j.chroma.2014.01.019
https://doi.org/10.1016/j.chroma.2014.01.019
https://doi.org/10.1016/0021-9673(95)00692-3
https://doi.org/10.1016/0021-9673(95)00692-3
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0079
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0079
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0079
https://doi.org/10.1016/j.chroma.2018.10.054
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0081
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0081
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0081
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0081
https://doi.org/10.1007/s00216-015-8627-0
https://doi.org/10.1007/s00216-015-8627-0
https://doi.org/10.1016/j.chroma.2017.01.011
https://doi.org/10.1021/acsomega.3c01348
https://doi.org/10.1021/acsomega.3c01348
https://doi.org/10.1016/J.MICROC.2020.104830
https://doi.org/10.1016/J.MICROC.2020.104830
https://doi.org/10.1007/978-3-030-29407-6_5
https://doi.org/10.1007/978-3-030-29407-6_5
https://doi.org/10.1016/J.COFS.2020.09.008
https://doi.org/10.1016/J.COFS.2020.09.008
https://doi.org/10.1016/J.TRAC.2013.04.015
https://doi.org/10.3390/METABO4020433
https://doi.org/10.3390/METABO4020433
https://doi.org/10.1016/J.ACA.2020.07.027
https://doi.org/10.1016/J.CHROMA.2005.04.078
https://doi.org/10.1016/J.CHROMA.2005.04.078
https://doi.org/10.1080/21642583.2014.956265
https://doi.org/10.1080/21642583.2014.956265
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0093
http://refhub.elsevier.com/S0021-9673(23)00692-1/sbref0093
https://doi.org/10.1002/WIDM.1125
https://doi.org/10.1039/C8AN00599K
https://doi.org/10.1039/C8AN00599K
https://doi.org/10.1093/BIB/BBAB550
https://doi.org/10.2514/6.2022-0228
https://doi.org/10.2514/6.2022-0228
https://doi.org/10.1016/J.CHROMA.2008.12.066
https://doi.org/10.1088/1752-7163/AA7B3E
https://doi.org/10.1088/1752-7163/aac2f1
https://doi.org/10.1016/j.jchromb.2018.01.004
https://doi.org/10.1088/1752-7163/aae80e
https://doi.org/10.1088/1752-7163/aae80e
https://doi.org/10.1016/J.MSARD.2019.03.006
https://doi.org/10.1016/J.MSARD.2019.03.006
https://doi.org/10.5194/AMT-15-3779-2022
https://doi.org/10.1021/ACS.ENERGYFUELS.6B01925
https://doi.org/10.1021/ACS.ENERGYFUELS.6B01925
https://doi.org/10.3390/METABO11120847
https://doi.org/10.3390/METABO11120847
https://doi.org/10.1007/S00216-022-04428-2
https://doi.org/10.1007/S00216-022-04428-2


Journal of Chromatography A 1711 (2023) 464467

15

[108] C. Hall, B. Creton, B. Rauch, U. Bauder, M. Aigner, Probabilistic mean 
quantitative structure-property relationship modeling of jet fuel properties, 
Energy Fuels 36 (2022) 463–479, https://doi.org/10.1021/ACS. 
ENERGYFUELS.1C03334. 

[109] M.D. Sorochan Armstrong, O.R. Arredondo Campos, C.C. Bannon, A.P. de la Mata, 
R.J. Case, J.J. Harynuk, Global metabolome analysis of Dunaliella tertiolecta, 
Phaeobacter italicus R11 Co-cultures using thermal desorption—Comprehensive 
two-dimensional gas chromatography—Time-of-flight mass spectrometry (TD-GC 
× GC-TOFMS), Phytochemistry 195 (2022), https://doi.org/10.1016/J. 
PHYTOCHEM.2021.113052. 

[110] K.A. Favela, M.J. Hartnett, J.A. Janssen, D.W. Vickers, A.J. Schaub, H.A. Spidle, 
K.S. Pickens, Nontargeted analysis of face masks: comparison of manual curation 
to automated GCxGC processing tools, J. Am. Soc. Mass Spectrom. 32 (2021) 
860–871, https://doi.org/10.1021/JASMS.0C00318. 

[111] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32, https://doi.org/ 
10.1023/A:1010933404324. 

[112] P. Probst, M.N. Wright, A. Boulesteix, Hyperparameters and tuning strategies for 
random forest, WIREs Data Min. Knowl. Discov. 9 (2019), https://doi.org/ 
10.1002/widm.1301. 

[113] E.D. Strozier, D.D. Mooney, D.A. Friedenberg, T.P. Klupinski, C.A. Triplett, Use of 
comprehensive two-dimensional gas chromatography with time-of-flight mass 
spectrometric detection and random forest pattern recognition techniques for 
classifying chemical threat agents and detecting chemical attribution signatures, 
Anal. Chem. 88 (2016) 7068–7075, https://doi.org/10.1021/ACS. 
ANALCHEM.6B00725. 

[114] R Core Team, R: A Language and Environment for Statistical Computing., (n.d.). 
https://www.r-project.org/. 

[115] I. The MathWorks, MATLAB and Statistics Toolbox, (n.d.). 
[116] L. Yang, A. Shami, On hyperparameter optimization of machine learning 

algorithms: theory and practice, Neurocomputing 415 (2020) 295–316, https:// 
doi.org/10.1016/J.NEUCOM.2020.07.061. 

[117] M.J. Rist, A. Roth, L. Frommherz, C.H. Weinert, R. Krüger, B. Merz, D. Bunzel, 
C. Mack, B. Egert, A. Bub, B. Görling, P. Tzvetkova, B. Luy, I. Hoffmann, S. 
E. Kulling, B. Watzl, Metabolite patterns predicting sex and age in participants of 
the Karlsruhe metabolomics and nutrition (KarMeN) study, PLoS One 12 (2017), 
https://doi.org/10.1371/JOURNAL.PONE.0183228. 

[118] P.H. Stefanuto, R. Romano, C.A. Rees, M. Nasir, L. Thakuria, A. Simon, A.K. Reed, 
N. Marczin, J.E. Hill, Volatile organic compound profiling to explore primary 
graft dysfunction after lung transplantation, Sci. Rep. 12 (1) (2022) 1–10, https:// 
doi.org/10.1038/s41598-022-05994-2. 

[119] J. Shawe-Taylor, S. Sun, A review of optimization methodologies in support 
vector machines, Neurocomputing 74 (2011) 3609–3618, https://doi.org/ 
10.1016/J.NEUCOM.2011.06.026. 

[120] Z. Cen, B. Lu, Y. Ji, J. Chen, Y. Liu, J. Jiang, X. Li, X. Li, Virus-induced breath 
biomarkers: a new perspective to study the metabolic responses of COVID-19 
vaccinees, Talanta 260 (2023), https://doi.org/10.1016/J. 
TALANTA.2023.124577. 

[121] S. Li, Y. Hu, W. Liu, Y. Chen, F. Wang, X. Lu, W. Zheng, Untargeted volatile 
metabolomics using comprehensive two-dimensional gas chromatography-mass 
spectrometry—A solution for orange juice authentication, Talanta 217 (2020), 
121038, https://doi.org/10.1016/J.TALANTA.2020.121038. 

[122] A.P. Bradley, The use of the area under the ROC curve in the evaluation of 
machine learning algorithms, Pattern Recognit. 30 (1997) 1145–1159, https:// 
doi.org/10.1016/S0031-3203(96)00142-2. 

[123] H. Li, X. Wu, S. Wu, L. Chen, X. Kou, Y. Zeng, D. Li, Q. Lin, H. Zhong, T. Hao, 
B. Dong, S. Chen, J. Zheng, Machine learning directed discrimination of virgin 
and recycled poly(ethylene terephthalate) based on non-targeted analysis of 
volatile organic compounds, J. Hazard. Mater. 436 (2022), https://doi.org/ 
10.1016/J.JHAZMAT.2022.129116. 

[124] J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: a new 
perspective, Neurocomputing 300 (2018) 70–79, https://doi.org/10.1016/J. 
NEUCOM.2017.11.077. 
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