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A B S T R A C T   

The presence of flavor defects in coffee beans can negatively impact quality, the consumer experience, and 
commercial trade. Potato taste defect (PTD), a flavor defect specific to East African coffee, is often characterized 
by a musty, vegetable-like aroma. While previous work has correlated PTD with the presence of 2-isopropyl-3- 
methoxypyrazine (IPMP), additional changes in the volatile profile of these beans can further amplify the distinct 
odor of this defect. The aim of this work was to develop a volatile fingerprint of PTD in roasted arabica coffee 
using headspace solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography 
with time-of-flight mass spectrometry (HS-SPME-GC × GC-TOFMS) and chemometrics. Examination of the HS- 
SPME-GC × GC-TOFMS data with tile-based Fisher ratio (F-ratio) analysis discovered 359 analytes that differ-
entiated clean coffee samples from those impacted by severe PTD (p-value < 0.01). It was determined that 327 of 
the identified analytes were more prevalent in the clean coffee samples while 32 analytes, including IPMP, 
exhibited higher signals in the impacted coffee samples. Principal components analysis (PCA) of the F-ratio 
results demonstrated that the coffee samples clustered based on the presence of PTD. Partial least squares (PLS) 
regression modeling further demonstrated that the compounds discovered by F-ratio analysis were correlated 
with PTD by accurately predicting the concentration of IPMP in the samples. Investigation of the compounds 
highly weighted in both the PCA and PLS loadings suggest that the presence of microorganisms on coffee beans 
after antestia bug damage could be a potential pathway for PTD. This damage results in an overall decrease of 
analytes that are known to have positive sensory contributions to coffee aroma. Collectively, the volatile 
fingerprint shown herein illustrates that PTD alters the biochemical process in coffee beans.   

1. Introduction 

Since coffee quality is directly linked to taste and aroma, the pres-
ence of product defects due to agricultural practices and/or an adverse 
agricultural environment can cause off-flavors and devalue the crop 
[1–3]. Potato taste defect (PTD) is a sporadic defect that occurs in coffee 
beans grown in the African Great Lakes region, namely those cultivated 
in Burundi, Rwanda, and Uganda [4,5]. As the name implies, this defect 
is characterized by the distinct musty, potato aroma of affected coffee 
beans. The occurrence of this defect has been linked to the presence of 
Antestiopsis orbitalis, an antestia bug native to this region that feeds on 
the coffee plant [5–7]. Chemically, studies of both green and roasted 
coffee beans have discovered that the presence and strength of PTD is 

correlated to 2-isopropyl-3-methoxypyrazine (IPMP) [4,8–11]. Howev-
er, the mechanism linking coffee plant damage from the antestia bug to 
the presence of IPMP in volatile headspace of affected beans remains 
unclear, especially since PTD can be present in coffee beans with and 
without visual insect damage [9]. It has been hypothesized that damage 
from the bug either provides favorable growth conditions for microor-
ganisms that can produce IPMP [12–14] or initiates the conversion of 
hydroxypyrazines naturally produced by the plant into methoxypyr-
azines like IPMP via O-methyltransferase expression [15]. 

While IPMP has been chemically linked to PTD [4,8–11], it is 
important to note that the chemical composition of coffee is highly 
complex with numerous other volatiles contributing to aroma [16]. The 
presence of these other analytes could, in turn, either heighten or mask 
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the odor of PTD. Volatile fingerprinting of coffee, especially of beans 
affected by PTD, has primarily been performed using one-dimensional 
(1D) gas chromatography-quadrupole mass spectrometry (GC–MS) 
[1–4,8–11]. For example, a recent study demonstrated that two key 
volatiles in roasted coffee aroma, 2-ethyl-3,5-dimethylpyrazine and 2- 
furfurylthiol, can mask the odor attributed to IPMP [11]. Other previ-
ous work applying headspace solid-phase microextraction GC–MS (HS- 
SPME-GC–MS) identified 22 analytes, including IPMP, whose signals 
differentiated samples that did not have a detectable off-odor (“clean” 
samples as scored by a sensory panel) from those affected by PTD [10]. 
Compounds with a higher abundance in the clean coffee samples 
generally had desirable aromas, whereas compounds linked to unde-
sirable aromas had larger signals in samples affected by PTD [10]. The 
results of these studies highlight the potential for PTD to affect the 
concentration of other volatiles present in coffee. 

However, 1D separation methods are inherently limited in their peak 
capacity, which constrains the number of analytes that can be resolved 
in a reasonable analysis time [17]. As a result, the discovery of volatiles 
impacted by the presence of PTD will also be limited due to the use of 
GC–MS. Fortunately, use of comprehensive two-dimensional gas chro-
matography with time-of-flight mass spectrometry (GC × GC-TOFMS) 
can readily increase the peak capacity of a 1D-GC separation. A GC × GC 
separation connects two complementary columns via a modulator, 
which continuously collects fractions of effluent from the first dimension 
(1D) separation and reinjects those fractions on the second dimension 
(2D) [18]. Due to this modulation process, the peak capacity of an ideal 
GC × GC separation is approximately 10-fold higher than its 1D-GC 
counterpart [19] and the sensitivity of the GC × GC separation is also 
enhanced [20]. The advantages of this separation platform has been 
illustrated in various food analysis studies [21,22], including those 
aimed at profiling coffee aroma [23–28]. 

While the increased resolving power provided by GC × GC-TOFMS is 
beneficial for chemical fingerprinting studies, manual identification, 
and signal integration of every peak present in a chromatogram can be 
burdensome due to the size and complexity of the data. Fortunately, the 
data set produced by GC × GC-TOFMS analysis enables the use of non- 
targeted chemometrics, which can identify statistically significant 
chemical signals and elucidate relationships among different samples in 
an automated fashion. For example, GC × GC-TOFMS and non-targeted 
chemometrics have been coupled to profile commercial espresso cap-
sules [26] and differentiate decaffeinated coffee from its regular coffee 
counterpart [27]. Fisher ratio (F-ratio) analysis has been one of the 
prominent methods utilized in food analysis studies for the discover of 
class-distinguishing analytes [27,29–33]. Using a priori knowledge of 
the sample classes, the ratio of the between-class variance to the pooled 
within-class variance (a F-ratio) can be calculated for every data point 
[34], peak listed in a table [35], or a tile (binned data) in a chromato-
graphic data set [36,37]. The output is a list of retention times for peaks 
ranked in descending order of their F-ratio, referred to as a “hit list”. A 
peak with a large F-ratio is likely class-distinguishing since there is a 
large variance between classes relative to the within-class variance. 

Implementation of F-ratio analysis should ensure that the discovery 
of chemically relevant differences is not hindered by retention time 
misalignment and spurious detector noise. The use of tiling (i.e., “smart 
binning”) can prevent the discovery of these instrumental artifacts by 
dividing the chromatogram into small, rectangular tile sections which 
capture the entire peak signal along with any retention time shifting. 
Furthermore, tile-based non-targeted methods can also improve the 
discovery of low-level peaks due to enhancements in the relative signal- 
to-noise (S/N) while also automatically removing redundant hits 
[36,37]. Given these advantages, a tile-based algorithmic platform has 
been recently commercialized and adapted for various experimental 
designs [38–41]. Herein, the capabilities of tile-based F-ratio analysis 
are illustrated on a HS-SPME-GC × GC-TOFMS data set of PTD in roasted 
arabica coffee. Olfactory analysis categorized these samples into four 
classes based on odor severity: clean, mild PTD, medium PTD, and 

strong PTD [10]. Class-distinguishing analytes discovered by tile-based 
F-ratio analysis were quantified using a pure mass channel (m/z) iden-
tified for the analyte. With GC × GC, a nearly a 10-fold larger peak 
capacity is anticipated [19] and enhanced S/N due to the use of thermal 
modulation [20]; thus, giving rise to the hypothesis that a significantly 
larger number of compounds will be discovered relative to our previous 
1D-GC–MS study [10]. The consequences of this improved discovery of 
relevant sensory compounds will be further discussed. Principal com-
ponents analysis (PCA) and partial least squares (PLS) regression are 
also performed to illustrate how the analytes discovered by tile-based F- 
ratio analysis contribute to the biochemical understanding PTD in coffee 
beans from the African Great Lakes region. 

2. Methods and materials 

2.1. Acquisition and assessment of coffee samples 

Arabica coffee samples from Burundi, Rwanda, and Uganda were 
sourced, roasted, and initially assessed by Counter Culture Coffee 
(Durham, NC, USA). The green coffee beans were sourced according to 
standard procedures, ensuring similarities in their screen size and 
moisture content and lack of primary and secondary defects [42]. De-
tails of the roasting conditions and olfactory evaluation of the ground 
coffee samples were previously reported [10,42]. Briefly, the green 
coffee beans were roasted to a light-medium roast, resulting in a weight 
loss of 11–13 % and score of 77–80 on the Agtron color scale, and then 
ground. These coffee samples (56 total) were then classified by a sensory 
panel into one of four groups (clean, mild PTD, medium PTD, and strong 
PTD) based on a previously established protocol [42]. This protocol 
involved grinding 10 g portions of whole roasted coffee beans into a 
clean cup, carefully smelling the grounds, and categorizing them based 
on their odor intensity. Suspected PTD samples were then confirmed via 
cupping protocols published by the Specialty Coffee Association [43]. 
After olfactory analysis, a total of 14 clean samples, 11 mild PTD sam-
ples, 13 medium PTD samples, and 18 strong PTD samples were for-
warded for analytical characterization (Table S1). The concentration of 
IPMP ranged from 0 ng/g – 3.1 ng/g for the clean samples, 1.6 ng/g – 
72.4 ng/g for the mild PTD samples, 4.9 ng/g – 79.8 ng/g for the me-
dium PTD samples, and 4.1 ng/g – 529.9 ng/g for the strong PTD 
samples. All samples were stored in airtight glass containers prior to 
sample preparation, extraction, and GC × GC-TOFMS analysis. 

2.2. Sample preparation and extraction 

All analytical standards were procured from Fisher Scientific or 
Sigma-Aldrich (USA). Preparation of the coffee samples for this study 
was similar to our previous methodology [10]. Ground roasted coffee 
(0.1 g) were added to a 20 mL SPME vial along with 1.5 g of sodium 
chloride, 4.5 mL of ethylenediaminetetraacetic acid (EDTA; 0.111 M), 
480 µL of methanol, and 20 µL of the internal standard, deuterated-2- 
isobutyl-3-methoxypyrazine (d3-IBMP; 5 ppm). A divinylbenzene/car-
boxen/polydimethylsiloxane (DVB/CAR/PDMS; fiber thickness: 50/30 
μm; Restek, Bellefonte, PA, USA) SPME fiber was utilized for the 
extraction of the headspace volatiles. This SPME fiber was selected due 
to its popularity and effectiveness in coffee studies 
[2,3,8,10,23,26,27,44], where it has been shown to extract a wide range 
of molecular weights and compound classes. Initial conditioning of a 
new DVB/CAR/PDMS fiber followed the manufacturer’s guidelines, 
where it was held in a 270 ◦C GC inlet for 1 hr. Prior to each sample 
extraction, the coffee samples were incubated at 60 ◦C for 15 min while 
being agitated at 250 rpm with on/off times of 5 s and 2 s, respectively. 
The headspace of the coffee samples was extracted for 30 min at 60 ◦C. 
Slightly different from previous work [10], this extraction temperature 
and time was found to provide an optimal balance between amplifying 
the chromatographic signal of IPMP while detecting other coffee vola-
tiles. The SPME fiber with the extracted volatiles was desorbed splitless 
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in the GC inlet for 5 min at 250 ◦C. Between sample extractions and 
chromatographic runs, the fiber was re-conditioned at 270 ◦C for 10 
min. Note, chromatographic blanks were periodically collected to 
ensure the SPME fiber was properly cleaned in between sample extrac-
tions. These chromatographic blanks did not show the presence of peaks 
and/or contaminants that could affect the results of this study. The 
sample extraction method utilized the L-PAL3 autosampler (LECO, St. 
Joseph, MI, USA). 

2.3. Chromatographic conditions 

Separations of each coffee sample were collected in duplicate using 
the LECO Pegasus BT 4D GC × GC-TOFMS equipped with an Agilent 
7890 GC (Agilent Technologies, Palo Alto, CA, USA) and a stock quad-jet 
thermal modulator. To prevent contamination and carryover from other 
experiments performed in the laboratory, a new set of conditioned GC 
columns was installed in the GC × GC-TOFMS, along with a new inlet 
liner. Splitless sample injections were separated on a polar Rtx-Wax 1D 
column (30 m × 0.25 mm × 0.25 μm; Restek), and a non-polar Rxi-1MS 
2D column (1.7 m × 0.18 mm × 0.18 μm; Restek). A Rtx-Wax column 
was used in the 1D to maintain a similar primary separation as in our 
previous 1D-GC–MS study, which also used this column type [10]. 
Furthermore, previous GC × GC studies on coffee volatiles have also 
used this GC × GC column configuration [23,27]. The 1D column was 
held at 40 ◦C for 5.5 min before ramping to 240 ◦C at 5 ◦C/min, where it 
was held for 5 min. The same temperature program was used for the 2D 
oven and modulator with an offset of +5 ◦C and +15 ◦C, respectively. 
The carrier gas, ultra-high purity helium (Grade 5, 99.999 %, Praxair, 
Seattle, WA, USA), operated at a constant flow rate of 1 mL/min. The 1D 
effluent was reinjected on the 2D column at a modulation period of 2 s. 
The ion source and transfer line temperatures were set to 225 ◦C and 
285 ◦C, respectively. The TOFMS collected m/z 45–350 at 100 Hz with 
an electron ionization energy of 70 eV after a 10 s acquisition delay. 

2.4. Data analysis 

Following data acquisition, the chromatograms were imported into 
Matlab 2019b (Mathworks, Inc., Natick, MA, USA) for further analysis. 
The chromatograms were baseline corrected and normalized to the peak 
area of the internal standard, d3-IBMP, at m/z 127. F-ratio analysis was 
performed by comparing the clean and strong PTD coffee samples. Note, 
since the number of samples in the clean and strong PTD class was un-
balanced, 14 strong PTD coffee samples were arbitrarily selected for the 
F-ratio comparison. Hence, with 14 coffee samples per-class and two 
replicates collected per-sample, a total of 28 chromatograms per-class 
were compared. A tile size of 10 s × 200 ms (1D × 2D) and cluster 
window size of 6 s × 120 ms was selected based on the peak widths and 
degree of retention time shifting observed in the chromatograms. The 
verification that these tile bin parameters were appropriate for these 
samples is provided in the next section. Using the four-grid schemes, F- 
ratios were calculated on every tile per-m/z that had a S/N greater than 
10. The resulting hits were then ranked according to their top F-ratio m/ 
z. Any remaining redundant hits and artifacts from the SPME fiber or 
column bleed were removed from the final hit list. As a result of this 
methodology, the final hit list contained both class-distinguishing (i.e., 
true positives) and non-class-distinguishing (i.e., false positives) 
analytes. 

To identify the class-distinguishing analytes in the hit list (i.e., the 
true positives), a t-test (assuming unequal variances) was calculated for 
every analyte discovered. A p-value was calculated using the signal 
encapsulated in the tile surrounding each hit at the top F-ratio m/z. Hits 
with a p-value < 0.01 from a t-test were considered as true positives, 
which were subjected to later identification and quantitation efforts, 
while hits with a p-value > 0.01 were labeled as false positives [33]. 
Next, for those analytes determined to be true positives, tentative 
compound identifications were determined by matching the acquired 

mass spectrum to the NIST 11 library (National Institute of Standards 
and Technology, Gaithersburg, MD, USA). A match value (MV) ≥ 800 
was required for (tentative) identification [45]. Multivariate curve 
resolution-alternating least squares (MCR-ALS) was used to improve 
identification efforts for 283 analytes by resolving the hit mass spectrum 
from the background noise and interferences [46]. Hits that still could 
not be identified with a MV ≥ 800 after applying MCR-ALS are labeled as 
“unknown” and numbered. Lastly, for those true positive analytes, ac-
curate concentration ratios between the clean and strong PTD samples, 
referred to as [Strong]/[Clean] herein, were determined using a pure m/ 
z for each hit. Pure analyte m/z were discovered using a recent extension 
to the tile-based software known as the signal ratio (S-ratio) algorithm 
[47]. Two signal consistency metrics are implemented to discover pure 
m/z for the target analyte using two metrics, a lack-of-fit (LOF) and p- 
value from a t-test (assuming unequal variances). Ideally, a pure analyte 
m/z should have a significant difference in signals between two classes 
(i.e., a small p-value), but the peak shapes between classes should be 
similar (i.e., no significant LOF is identified). Therefore, the S-ratio 
calculated for a sufficiently pure analyte m/z accurately approximates 
the true concentration ratio [47]. Meanwhile, m/z from an unresolved 
analyte(s) with little chemical variation between classes will have a high 
p-value, low LOF, and S-ratio equal to 1. Using these metrics, the purest 
m/z for quantitation had the lowest LOF (maximum LOF tolerated = 20 
%) and p-value (maximum p-value tolerated = 1×10− 4). Every class- 
distinguishing analyte had at least one m/z that met the LOF and p- 
value thresholds to be labeled as sufficiently pure for quantitation. For 
improved visualization of solely the analytes discovered by F-ratio 
analysis, “stitch” GC × GC chromatograms were constructed. The prin-
ciples of this visualization technique have been described previously 
[48,49]. Briefly, this method extracts the chromatographic signal within 
a 10 s × 200 ms tile at a pure analyte m/z for every class-distinguishing 
analyte. A S/N filter of 10 was implemented to remove noise from the 
extracted tiles. The tiles were then inserted back into an empty “chro-
matogram” at their original retention time locations. 

Both PCA and PLS models were developed using these “stitch” 
chromatograms with PLS Toolbox 8.9 (Eigenvector Research, Manson, 
WA, USA). The signals from each sample, quantified at the pure analyte 
m/z, were mean-centered and inputted into PCA to demonstrate the 
differences between PTD odor classes after F-ratio analysis. The hits 
discovered by F-ratio analysis were also utilized to build a predictive 
model of IPMP concentration via PLS regression. For PLS modeling, the 
data was divided into a calibration and validation data set using the 
Kennard-Stone algorithm. A calibration model using 42 coffee samples 
was built using the mean-centered signal data and auto-scaled values for 
IPMP concentration. Venetian-blinds cross-validation with 6-splits was 
performed to determine the appropriate number of latent variables (LVs) 
for the model and calculate a normalized root-mean-square error of 
cross-validation (NRMSECV). The validation data set was then input into 
the PLS model to determine the NRMSE of prediction (NRMSEP). 

3. Results and discussion 

The total ion current (TIC) chromatograms of a clean (A) and strong 
PTD (B) sample are shown in Fig. 1, illustrating the complexity of the 
volatile headspace and need for a GC × GC separation to discover ana-
lytes indicative of PTD. A peak detection algorithm identified approxi-
mately 500 peaks present in these TIC GC × GC chromatograms, 
excluding artifacts such as streaks. The total peak capacity for these GC 
× GC separations was 3750 based on an average 1D and 2D width-at-base 
(Wb) of 8 s and 200 ms, respectively. For reference, the 1D-GC TIC 
chromatograms for these coffee samples had a peak capacity of 390, 
based on an average Wb of 10 s, and only identified ~100 peaks present 
[10]. The ~5-fold increase in the number of peaks resolved can be 
attributed to the increased peak capacity and S/N provided by a GC ×
GC separation. Visual comparison of the chromatograms shown in Fig. 1 
demonstrates that the strong PTD sample (B) has an overall reduction in 
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signal compared to the intensity of the peaks present in the clean sample 
(A). The scale-expanded chromatograms between 16 and 22 min on the 
1D and 1–1.8 s on the 2D (Fig. 1C and D) further highlight the differences 
in these samples. Fig. 1C and D denotes the locations of three repre-
sentative analytes known to contribute to the aroma of coffee: (1) 2- 
ethyl-6-methylpyrazine, (2) 2,3-diethylpyrazine, and (3) linalool. 
Note, the peaks corresponding to IPMP and the internal standard (IS), 
d3-IBMP, are also labeled in Fig. 1C and D. Close examination of this 
region highlights not only the complexity of these chromatograms, but 
also noticeable concentration differences between the clean and strong 
PTD coffee samples. For example, alkylpyrazines like 2-ethyl-6-methyl-
pyrazine (labeled as analyte 1) and 2,3-diethylpyrazine (labeled as an-
alyte 2) are known to contribute a roasted, nutty aroma in the coffee 
headspace [44,50]. Linalool (labeled as analyte 3) has also been iden-
tified as one of the few alcohols pertinent to the odor of arabica coffee 
[3], providing a floral and fruity aroma in roasted coffee [50]. However, 

Fig. 1C and D shows that the signal for these analytes are ~1.5-fold to 
~50-fold lower in the strong PTD sample compared to the clean coffee 
sample. Meanwhile, Fig. 1C and D demonstrates that the signal for IPMP 
(outlined by the pink oval) becomes present in the strong PTD coffee 
sample, which is consistent with previous studies [9,10]. The chro-
matographic complexity highlighted in Fig. 1 illustrates the utility in 
applying non-targeted chemometric methods to develop a “compre-
hensive” volatile fingerprint of PTD in coffee. 

To ensure consistency between the work presented herein and our 
previous 1D-GC–MS study [10], the normalized signal for IPMP in the 
GC × GC-TOFMS chromatograms (Fig. 1) collected for every coffee 
sample was quantified using m/z 152, the molecular ion for IPMP. The 
signals for the two replicates were then averaged together and plotted 
against the IPMP concentration determined with 1D-GC–MS (Fig. 2A) 
[10]. The data points in Fig. 2A are color coded according to their 
sensory classification: clean (red), mild PTD (yellow), medium PTD 

Fig. 1. Normalized TIC GC × GC chromatograms of coffee samples categorized as clean (A) or strong PTD (B) based on their odor. Both chromatograms are plotted 
on the same color scale. (C-D) A zoom-in on the chromatograms from 16 to 22 min on 1D and 1–1.8 s on 2D. IPMP and the internal standard (IS) are labeled along 
with three representative analytes: (1) 2-ethyl-6-methylpyrazine, (2) 2,3-diethylpyrazine, and (3) linalool. The pink oval outlines the peak location of IPMP for 
improved visualization of the absence of IPMP in the clean coffee sample. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 2. (A) Relationship between the average peak intensity of IPMP measured herein using GC × GC-TOFMS and the IPMP concentration determined in a previous 
1D-GC–MS study [10]. Samples are color coded based on their sensory classification: clean (red), mild PTD (yellow), medium PTD (green), and strong PTD (blue). (B) 
Box-and-whiskers plot relating the peak intensity of IPMP measured herein to the different PTD odor attributions. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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(green), and strong PTD (blue). Despite a few outlier samples, the GC ×
GC-TOFMS and 1D-GC–MS measurements for IPMP are in good agree-
ment. Fig. 2B relates the GC × GC-TOFMS intensity of IPMP to the 
different sensory classifications of PTD. With a p-value < 0.01, a one- 
way analysis of variance (ANOVA) statistical test demonstrates that 
the intensity of IPMP is statistically significantly different between the 
four odor attributions. Again, these results are consistent with those 
previously obtained [10]. Based on the results in Fig. 2, a supervised 
chemometric comparison of the GC × GC-TOFMS chromatograms ob-
tained from the clean and strong PTD coffee samples is the most 
promising approach for identifying analytes that contribute to the vol-
atile fingerprint of PTD. Note, PCA was first applied to determine if the 
samples naturally cluster based on the presence or severity of PTD; 
however, no distinct clustering could be observed using the first few 
principal components (Fig. S2). Therefore, tile-based F-ratio analysis of 
the clean and strong PTD samples (the two extremes of the sensory panel 
classification) was selected to elucidate the PTD-related differences in 
the headspace of roasted coffee. 

For tile-based F-ratio analysis, selection of the appropriate 1D and 2D 
tile dimensions is crucial to mitigate the discovery of false positives (i.e., 
non-class-distinguishing analytes) due to the variance produced from 
retention time shifting [51]. Ideally, the tile size should be large enough 
to encompass both the typical width of a peak and the degree of reten-
tion time shifting present between samples. Fig. 3A and B shows the 
summed 1D and 2D peak profiles of IPMP in the clean (red) and strong 
PTD (blue) classes. Minor run-to-run shifting of 1 modulation (2 s) is 
observed as irregular peak shape in the 1D peak profiles while the 2D 
profiles show no significant signs of shifting. Therefore, as illustrated by 
the vertical dashed lines in Fig. 3A and B, a tile size of 10 s × 200 ms (1D 
× 2D) was selected. Using this tile size, F-ratio analysis was performed by 
comparing the clean and strong PTD chromatograms. Fig. 3C shows the 
F-ratio distribution for the 495 hits initially discovered, with F-ratios 
ranging from 65.2 to 0.01. As indicated by the arrow, IPMP was 
discovered near the top of the hit list (hit #2) with an F-ratio of 54.3. 
Since an F-ratio was calculated for every tile possessing a summed signal 
greater than the S/N of 10 threshold, the initial hit list encompasses both 
class-distinguishing true positive and false positive hits. Typically, hits 
discovered near the top of the hit list (larger F-ratios) are more likely to 
be class-distinguishing, with a larger between-class variance relative to 
the within-class variance, while hits at the bottom of the list (smaller F- 
ratios) are more likely to be false positives. 

Identifying, quantifying, and determining the statistical significance 
for all 495 hits discovered by F-ratio analysis using a manual top-down 
mining approach can be burdensome. To focus identification and 
quantitation efforts to solely class-distinguishing analytes, a p-value 
from a t-test (assuming unequal variances) was calculated using the 
signal encapsulated within a 10 s × 200 ms tile surrounding each hit at 

the top F-ratio m/z. Hits with a p-value < 0.01 (orange) are identified as 
class-distinguishing (i.e., true positive) while hits with a p-value > 0.01 
(purple) are identified as a false positive (Fig. 4A). This p-value 
threshold, corresponding to the 99 % confidence level, was selected to 
minimize the erroneous inclusion of false positive hits during later 
identification and quantitation efforts [33]. In total, 359 out of 495 hits 
were determined to be class-distinguishing (p-value < 0.01) and became 
the focus for later data analysis efforts. Furthermore, the arrows on 
Fig. 4A indicate the location of the first false positive (hit #121; F-ratio 
= 21.1) and last true positive hit identified in the hit list (hit #491; F- 
ratio = 0.14). Hence, 239 true positives were interspersed with 136 false 
positives at F-ratios below 21.1, which could have been missed if the F- 
ratio hit list was cut-off at a certain number of hits or at a pre-determined 
F-ratio threshold. 

The receiver operating characteristic (ROC) curve shown in Fig. 4B is 
generated for the hit list using the labels of true or false positive, defined 
in Fig. 4A. ROC curves can be beneficial in chemometrics for optimizing 
specific parameters within a method [51,52] or comparing the perfor-
mance of different chemometric methods [39,40,53]. For this study, the 
ROC curve highlights the importance of using a p-value threshold to 
discover analytes related to the occurrence of PTD in roasted arabica 
coffee. To define, a ROC curve shows the relationship between the true 
positive rate versus the false positive rate for a given analytical method 
[54]. Moving down the hit list, the true positive rate was calculated as 
the cumulative sum of true positive hits divided by the total number of 
true positives (i.e., the 359 hits with a p-value < 0.01). The false positive 
rate was calculated in a similar fashion by keeping track of the running 
sum and total number of false positive hits discovered. As shown in 
Fig. 4B, the steps between the first false positive and last true positive hit 
(denoted with arrows) demonstrate how most of the class-distinguishing 
analytes before the last true positive hit were intermingled with a small 
number of false positives at low F-ratios. Additionally, the area under 
the ROC curve (AUC) defines the probability that the p-value threshold 
correctly distinguished between true or false positives, where an AUC of 
1 represents the maximum classifying power [54]. The AUC for the ROC 
curve in Fig. 4B equals 0.93, which means that the p-value threshold of 
0.01 could distinguish between significant chemical differences and 
background variation with high accuracy. Ultimately, the high AUC 
speaks to the outstanding performance of the tile-based F-ratio software 
[55]. 

The first 30 identifiable class-distinguishing (i.e., true positive) 
analytes discovered by F-ratio analysis are listed in Table 1, while 
Table S2 provides similar information for all 359 true positives identi-
fied in Fig. 4. A MV ≥ 800 between the hit and library mass spectrum 
was required for tentative analyte identification [45]. However, iden-
tification for some of these class-distinguishing analytes was challenging 
due to the presence of larger, overlapping interferent signals, so a 

Fig. 3. (A) The 1D peak profile of IPMP at m/z 152 in for the clean (red) and strong PTD (blue) coffee samples. The dashed lines represent the 1D tile size of 10 s. (B) 
The 2D peak profile of IPMP at m/z 152 with dashed lines representing the 2D tile size of 200 ms. (C) The F-ratio distribution for all 495 hits discovered. The arrow 
indicates the hit number and F-ratio for IPMP. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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chemometric decomposition method known as MCR-ALS was applied in 
these situations. In total, 145 analytes could not be identified even after 
MCR-ALS decomposition (Table S2). This work discovered many ana-
lytes that were previously identified in the literature as a potential 
marker for PTD [10]. However, discrepancies between this work and 
previous literature [10,11] may exist due to differences in the roasting 
degree of the coffee beans or chromatographic methodology. Table 1 
also highlights several analytes that have not been documented in coffee 
beans previously, denoted by a dagger (†). Note, these compound names 
are tentative since the identifications are based off the analyte mass 
spectrum alone; future studies with chemical standards can confirm 
their identification. However, many of these tentative compounds are 
structurally like other volatiles documented in coffee [2,3,56–60]. The 
pure analyte m/z used for quantifying the concentration ratio ([Strong]/ 
[Clean]) is also provided along with its p-value and LOF. Twenty-three 
out of the 359 total analytes were only present in one class (marked 
with an asterisk; Table 1 & Table S2). The [Strong]/[Clean] for analytes 
that had a larger signal in the clean samples ranged from 0.02 to 0.82 
while the [Strong]/[Clean] for analytes with a larger signal in the strong 
PTD samples ranged from 1.36 to 29.81 (Table S2). Since many volatiles 
in the coffee headspace are responsible for the final aroma of the beans, 
Table 1 and Table S2 reports the known organoleptic/odor properties 
[50] for 96 of the discovered analytes. Closer examination of these 
sensory descriptions highlights that analytes with desirable coffee 
aromas (e.g., roasted, nutty, cocoa, fruity) were found in decreased 
abundance in the strong PTD samples. Conversely, analytes discovered 
with larger signals in the strong PTD samples had less favorable aromas 
(e.g., vegetable-like, musty, aldehydic). These results further support the 
hypothesis that the diminished concentration of compounds with 
pleasant aromas further amplifies the odor attributed to PTD [10]. 

The locations of all 359 class-distinguishing analytes (Table 1 & 
Table S2) can be visualized as stitch GC × GC chromatograms, which are 
shown in Fig. 5A and B. These stitch chromatograms categorize the 
analytes as either having higher signal in the clean (A) or strong PTD (B) 
coffee samples. This grouping was based on their determined concen-
tration ratio ([Strong]/[Clean]) using the S-ratio algorithm [47]. Based 
on Fig. 5A and B, 327 analytes discovered had statistically higher 
abundance in the clean samples ([Strong]/[Clean] < 0.82), whereas the 
remaining 32 analytes had higher signals in the strong PTD class 
([Strong]/[Clean] > 1.36). These stitch chromatograms can also be 
visualized by projecting the determined concentration ratios onto win-
dows surrounding every peak (Fig. 5C). As referenced earlier, the TIC 
chromatograms of a clean and strong PTD sample highlighted an overall 
decrease in signal for the strong PTD samples (Fig. 1). The results in 
Fig. 5 demonstrate that this overall lower signal in the TIC 

chromatogram is due to a decrease in analyte concentrations in the 
strong PTD samples. Additionally, visual comparison of the TIC (Fig. 1) 
and stitch (Fig. 5) chromatograms demonstrates that F-ratio analysis 
discovered many class-distinguishing analytes, which were not observed 
in Fig. 1. These analytes were not observed in the TIC chromatogram due 
to their signal being smaller than the noise when all the m/z were 
summed together [48]. This result illustrates that both F-ratio analysis is 
capable of discovering analytes near the limit of quantitation [61] and 
PTD is responsible for altering the volatile profile of coffee by affecting 
analytes at all concentration levels. 

The resulting PCA scores (A) and loadings (B) plots shown in Fig. 6 
was produced using the 359 analytes discovered by F-ratio analysisthat 
have a significant difference in concentration between the clean and 
strong PTD sample classes. Compared to the original PCA model 
(Fig. S2), which captured only 53.6 % of the variance, the PCA model 
shown in Fig. 6A and B now captures 91.79 % of the total variance 
within the data. The increased percent variance captured is due to the 
reduction of background noise and retention time misalignment in the 
data [62]. The scores plot in Fig. 6A also now illustrates that the coffee 
samples cluster based on the presence of PTD, where the clean samples 
(red) are separated from those affected by PTD at any odor attribution 
level (yellow, green, and blue). Note, there is no observable difference in 
the PCA model after excluding the signal of IPMP from the data set 
(Fig. S3), so the sample clustering observed shown in Fig. 6 was not 
solely due to IPMP. The differentiation between the clean samples and 
those affected by PTD primarily occurs along PC 1 (Fig. 6A). Inspection 
of the PCA loadings (Fig. 6B) emphasizes that this differentiation along 
PC 1 is driven by five class-distinguishing analytes: IPMP (hit #2), 3-(2- 
cyclopentenyl)-2-methyl-1,1-diphenyl-1-propene (hit #24), 2,4-di-tert- 
butylphenol (hit #34), 1,1,3-trimethyl-3-phenylindan (hit #37), and 
2,4-diphenyl-4-methyl-2(E)-pentene (hit #40). All five of these highly 
loaded analytes were found to have large signal differences between the 
clean and strong PTD class, with [Strong]/[Clean] ranging from 4.5 to 
29.8 (Table 1). Fig. 6B also demonstrates that most of the analytes 
discovered have more subtle differences between their classes since their 
loadings cluster around zero. However, these analytes with minor con-
centration differences are still pertinent since they contribute to the 
aroma profile of coffee. 

The results presented in Fig. 6 and previous literature [4,8–11] 
highlight that IPMP and a small handful of analytes are responsible for 
differentiating clean and PTD-affected coffee beans. However, this cur-
rent study aims to delve deeper and showcase how a complete volatile 
profile of these roasted coffee beans can contribute to a fuller under-
standing of PTD. For this goal, PLS regression was selected to relate the 
compounds discovered by F-ratio analysis to the concentration of IPMP. 

Fig. 4. Reduction of the F-ratio hit list by determining a p-value threshold. (A) The p-value calculated for each hit using their top F-ratio m/z. A total of 359 hits 
(orange) were determined to be true positives (i.e., class-distinguishing) since their p-value < 0.01, which was the p-value threshold. The remaining 136 hits (purple) 
were determined to be false positives (i.e., not class-distinguishing) since their p-value > 0.01. The black arrows denote the first false positive (hit #121) and last true 
positive (hit #491). (B) A receiver operating characteristic (ROC) curve prepared using the results shown in (A). The first false positive (hit #121) and last true 
positive (hit #491) are denoted again for reference. The area under the curve (AUC) is also provided. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 7 shows the PLS prediction of IPMP concentration using the entire F- 
ratio hit list, excluding IPMP (hit #2) since it was being predicted. The 
regression plot in Fig. 7A highlights the relationship between the IPMP 
concentration measured previously [10] and the concentration pre-
dicted by the PLS model, where each sample is color coded according to 
its sensory information. While the data in Fig. 7A is color coded ac-
cording to the odor attributed to PTD, it is important to note that the PLS 
regression does not take this sensory information into account when 

developing a model. Ideally, the measured and predicted concentrations 
should be equal (i.e., fall along the black 1:1 line). Fig. 7A shows that the 
PLS model developed using the F-ratio hit list can accurately predict 
IPMP concentration since the samples cluster closely around the 1:1 line 
and the model has low prediction errors (< 11 %). Using this PLS model, 
the linear regression vector (LRV) can be investigated to determine how 
each volatile analyte discovered by F-ratio analysis correlates with the 
concentration of IPMP. Note, discovering the relationship that each 

Table 1 
The first 30 identifiable hits (MV ≥ 800) discovered by F-ratio analysis. The hit list is ranked in descending order of their F-ratio hit number. Compounds not previously 
identified in coffee are denoted by a dagger (†). A concentration ratio for each analyte was calculated as [Strong]/[Clean] using a pure m/z based upon applying the S- 
ratio algorithm [47]. The metrics for determining m/z purity (p-value and LOF) are also reported. Analytes present in only one sample class are denoted by an asterisk 
(*). For these analytes, only a p-value is reported. Sensory descriptions are listed for known analytes [50].  

Hit 
Number 

Time, 1D 
(min) 

Time, 2D 
(s) 

Compound MV S-ratio 
m/z 

[Strong]/ 
[Clean] 

p- 
value 

LOF 
(%) 

Sensory Description 

1 † 26.57  0.77 7-Benzofuranamine, 2-methyl- 811 147 0.55 7.5E- 
11  

15.0  

2  18.67  1.47 IPMP 849 152 20.4 4.9E- 
08  

8.60 Earthy, Vegetable, Potato 

4 † 38.30  1.16 1,3-Pentadiene, 1,1-diphenyl-, (Z)- 823 205 10.9 9.7E- 
08  

15.7  

5 † 25.03  0.86 3(2H)-Benzofuranone, 7-methyl- 801 148 0.47 4.7E- 
08  

10.3  

6 † 39.77  1.43 Benzene, 1,1′-(1,1,2,2-tetramethyl-1,2- 
ethanediyl)bis- 

817 119 20.7 1.8E- 
07  

5.60  

7 †,*  37.23  1.60 Benzene, 1,1′-(1,4-dimethyl-1-butene-1,4- 
diyl)bis- 

809 221 Strong only 3.1E- 
07   

8 † 37.83  1.29 1,5,6,7-Tetramethyl-3-phenylbicyclo[3.2.0] 
hepta-2,6-diene 

803 194 15.0 2.6E- 
05  

19.7  

9  17.07  0.33 Pyridine, 3-ethyl- 813 136 0.31 5E-08  18.2 Caramellic, Roasted, 
Hazelnut 

10  22.80  0.94 Benzofuran, 2-methyl- 826 103 0.42 5.3E- 
07  

12.7 Burnt, Phenolic 

12  17.67  0.27 2,4,6-Octatriene, 2,6-dimethyl- 855 79 0.46 7.8E- 
09  

15.6 Sweet, Floral, Nutty 

13 † 23.70  0.87 1H-Indole, 2,3-dihydro- 801 117 0.49 1.9E- 
07  

15.6  

16  22.63  0.93 2-Propenal, 3-phenyl- 869 133 0.17 5.9E- 
08  

7.60 Sweet, Spicy, Honey, 
Cinnamon 

17  14.40  1.02 Cyclohexene, 1-methyl-4-(1- 
methylethylidene)- 

902 103 0.81 3.1E- 
04  

16.8 Fresh, Sweet, Pine, Citrus 

21  21.07  1.20 3-Methyl-2,3-dihydro-benzofuran 803 105 0.39 2.5E- 
07  

14.2  

24 † 35.77  1.37 1-Propene, 3-(2-cyclopentenyl)-2-methyl- 
1,1-diphenyl- 

810 222 29.8 1.9E- 
06  

10.8  

25  17.97  1.34 2-Methyl-3-isopropylpyrazine 820 108 0.43 7E-07  10.7 Coffee 
28  24.70  0.86 Furan, 2-(2-furanylmethyl)-5-methyl- 910 74 0.46 2.9E- 

07  
9.10  

31  13.50  0.79 1,3,7-Octatriene, 3,7-dimethyl- 924 93 0.32 2.6E- 
06  

14.0 Fruity, Floral 

32  27.60  0.85 Phenylethyl acetate 802 159 0.53 1.1E- 
06  

10.0 Floral, Sweet, Honey, 
Fruity, Cocoa 

33  17.43  1.51 Pyrazine, 2-ethyl-5-methyl- 877 93 0.14 1.1E- 
07  

11.6 Coffee, Nutty, Roasted 

34  37.23  0.66 2,4-Di-tert-butylphenol 908 191 4.50 2.5E- 
06  

4.00  

36  21.40  1.52 cis-4-Decenal 809 98 0.41 3.5E- 
06  

5.10 Citrus, Aldehydic, 
Cardamom 

37 † 35.40  1.53 1,1,3-Trimethyl-3-phenylindan 896 236 19.6 6.8E- 
06  

4.80  

38  21.83  1.03 5,6,7,8-Tetrahydroquinoxaline 805 119 0.50 6.7E- 
07  

19.5 Nutty, Roasted, Cereal 

39 † 24.97  1.09 Benzofuran, 4,7-dimethyl- 862 144 0.57 2.9E- 
08  

5.60  

40 † 38.90  1.31 2,4-Diphenyl-4-methyl-2(E)-pentene 883 236 19.8 4.3E- 
06  

4.90  

41  23.03  0.82 2-Furfurylfuran 901 100 0.47 6.8E- 
06  

14.8 Rich, Roasted 

42  17.83  1.24 3-Octen-2-one, (E)- 874 68 0.49 9.2E- 
07  

18.4  

43 †,*  37.23  1.23 Benzene, (1,3-dimethyl-3-butenyl)- 807 105 Strong only 3.9E- 
06   

45 †,*  39.33  1.44 Benzene, [2-methyl-1-(1-methylethyl) 
propyl]- 

801 91 Strong only 7.8E- 
07    
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analyte has with IPMP is a direct benefit of coupling PLS modeling with 
tile-based F-ratio analysis. The LRV value for each analyte is provided in 
Table S2. Fig. 7B displays the LRV as a GC × GC chromatogram, where 
the value for each hit is projected onto a 2D window surrounding its 
retention time location. For the PLS model, a positive LRV (blue) in-
dicates that the given compound has a direct relationship with IPMP 
concentration while a negative LRV (red) indicates an inverse 

relationship between the compound and IPMP. A visual comparison of 
the LRV in Fig. 7B and the projection of the concentration ratio for each 
analyte in Fig. 5C shows a striking similarity, where every analyte with a 
[Strong]/[Clean] > 1.36 has a positive LRV value and every analyte 
with a [Strong]/[Clean] < 0.82 has a negative LRV value in the PLS 
model. Tables 2 and 3 provide a list of the top 20 compounds identified 
in the LRV with a positive and negative loading, respectively. Despite 

Fig. 5. Visualization of the 359 class-distinguishing hits discovered by F-ratio analysis. (A) Stitch GC × GC chromatogram of the 327 hits that were discovered to 
have a higher signal in clean coffee samples ([Strong]/[Clean] ≤ 0.82). For each hit, the sample with maximum signal at the S-ratio m/z [47] was extracted from the 
data and placed into the stitch chromatogram. (B) Stitch GC × GC chromatogram of the 32 hits that were discovered to have a higher signal in strong PTD coffee 
samples ([Strong]/[Clean] ≥ 1.36). (C) Projection of the calculated concentration ratios on the window surrounding each peak shown in (A-B). 

Fig. 6. Results from PCA using the normalized intensity measured at the S-ratio m/z [47] for the discovered hits. (A) Scores plot for the model built using the signal 
for all 359 statistically significant hits in the clean (red), mild PTD (yellow), medium PTD (green), and strong PTD (blue) samples. (B) Loadings plot for the model 
shown in (A), where each gray dot corresponds to one of the statistically significant hits discovered. Five highly loaded hits (hit #2, 24, 34, 37, and 40) on PC 1 are 
labeled. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. PLS prediction of IPMP concentration using the normalized intensity measured at the S-ratio m/z [47] for all discovered hits except for IPMP (hit #2). (A) 
Regression plot for the PLS model. The black line symbolizes ideal agreement between the predicted and measured concentrations. Samples used to build the 
calibration model are shown as unfilled circles while samples used in the external validation set are shown as filled diamonds. Samples are color coded based on their 
sensory classification: clean (red), mild PTD (yellow), medium PTD (green), and strong PTD (blue). The number of LVs, NRMSECV, and NRMSEP for each PLS model 
is provided. (B) Projection of the linear regression vector value for each peak on its surrounding window. Positive loadings are highlighted in blue while negative 
loadings are highlighted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the variation observed in each sensory class (Fig. 2), the PLS model 
accurately utilizes the entire volatile profile of PTD to predict IPMP 
concentration. Ultimately, the PLS modeling results underscore that the 
entire coffee headspace, not just IPMP and a select number of analytes, 
plays a significant role in PTD. 

Box-and-whiskers plots relating the normalized intensity for eight 
exemplary analytes to their PTD odor attribution are shown in Fig. 8. 
Additional compounds are shown in Fig. S4. The top row (Fig. 8A – D) 
focuses on four analytes that were responsible for the sample clustering 
on the PCA scores plot (Fig. 6) and had positive loading in the PLS model 
(Fig. 7; Table 2): 3-(2-cyclopentenyl)-2-methyl-1,1-diphenyl-1-propene, 
2,4-diphenyl-4-methyl-2(E)-pentene, 2,4-di-tert-butylphenol, and 1,1,3- 
trimethyl-3-phenylindan. Many of the volatiles highlighted in Fig. 8A – 
D and Table 2 are aromatic hydrocarbons and oxygenated compounds, 
with their signals elevated in the PTD-affected coffee samples. The 
presence of these analytes can potentially elucidate the biochemical 
mechanism linking antestia bug damage to PTD. For example, one po-
tential pathway is that bug damage to the coffee plant creates favorable 

conditions for microorganisms, with research highlighting that bacteria 
and fungi found on PTD-affected coffee beans produced IPMP as a 
metabolite [12–14]. Previous research has shown that the presence of 
microorganisms on coffee beans can cause the concentration of various 
compound classes like hydrocarbons, phenols, ketones, and aldehydes in 
coffee to increase [3,63,64]. These types of compounds can form by 
microorganisms oxidizing the lipids naturally present in the coffee beans 
[3]. Lipid oxidation induced by microorganisms can potentially explain 
the increased signals observed in Fig. 8A and B and other analytes in 
Table 2 like 6,10-dimethyl-2-undecanone (hit #99) and decanal (hit 
#116). Phenols and phenylindanes like the analytes highlighted in 
Fig. 8C and D are formed during the roasting process via the degradation 
of chlorogenic acids [3,58]. Studies on defective Brazilian coffee beans 
found higher levels of chlorogenic acids in microbe affected green coffee 
[3,65]. Hence, the increased abundance of 2,4-di-tert-butylphenol and 
1,1,3-trimethyl-3-phenylindan could be due to the PTD-affected coffee 
beans having a higher concentration of chlorogenic acids prior to 
roasting. More specifically, 2,4-di-tert-butylphenol has also been 

Table 2 
The top 20 discovered hits with a positive loading in the LRV of the PLS model. The hit list is ranked in descending order of their F-ratio hit number. S-ratios for each 
analyte were calculated as [Strong]/[Clean] using a pure m/z. Tentative compound identifications were made if the mass spectrum match a library spectrum with a 
MV ≥ 800. Peaks that could not be identified are listed as an unknown (Unk) and numbered according to their order in the hit list (Table S2).  

LRV Ranking LRV F-ratio Hit Number Time, 1D (min) Time, 2D (s) Compound MV [Strong]/[Clean] 

1 1.16E-03 34  37.23  0.66 2,4-Di-tert-butylphenol 908 4.50 
2 8.52E-05 40  38.90  1.31 2,4-Diphenyl-4-methyl-2(E)-pentene 883 19.8 
3 5.85E-05 116  20.37  1.92 Decanal 805 1.63 
4 1.34E-05 24  35.77  1.37 1-Propene, 3-(2-cyclopentenyl)-2-methyl-1,1-diphenyl- 810 29.8 
5 1.14E-05 43  37.23  1.23 Benzene, (1,3-dimethyl-3-butenyl)- 807 Strong only 
6 8.89E-06 20  40.03  1.12 Unk7  Strong only 
7 8.23E-06 149  20.23  1.55 Unk50  2.70 
8 7.76E-06 11  31.80  1.44 Unk2  5.17 
9 7.51E-06 155  36.00  1.55 Propane, 2-cyclohexyl-2-phenyl- 801 Strong only 
10 7.06E-06 99  25.00  0.19 2-Undecanone, 6,10-dimethyl- 923 1.36 
11 5.14E-06 282  44.30  0.91 Unk92  4.86 
12 4.92E-06 6  39.77  1.43 Benzene, 1,1′-(1,1,2,2-tetramethyl-1,2-ethanediyl)bis- 817 20.7 
13 4.80E-06 3  43.23  0.97 Unk1  2.81 
14 4.22E-06 252  33.87  0.96 Acenaphthene 901 2.04 
15 3.11E-06 325  35.03  1.30 1,1′-Biphenyl, 3,4-diethyl- 812 1.43 
16 3.07E-06 37  35.40  1.53 1,1,3-Trimethyl-3-phenylindan 896 19.6 
17 3.07E-06 8  37.83  1.29 1,5,6,7-Tetramethyl-3-phenylbicyclo[3.2.0]hepta-2,6-diene 803 15.1 
18 2.93E-06 19  37.53  1.33 Unk6  Strong only 
19 2.86E-06 4  38.30  1.16 1,3-Pentadiene, 1,1-diphenyl-, (Z)- 823 10.9 
20 2.41E-06 364  45.07  0.57 1,4-Benzenediol, 2,6-bis(1,1-dimethylethyl)- 802 1.38  

Table 3 
The top 20 discovered hits with a negative loading in the LRV of the PLS model. The hit list is ranked in descending order of their F-ratio hit number. S-ratios for each 
analyte were calculated as [Strong]/[Clean] using a pure m/z. Tentative compound identifications were made if the mass spectrum match a library spectrum with a 
MV ≥ 800. Peaks that could not be identified are listed as an unknown (Unk) and numbered according to their order in the hit list (Table S2).  

LRV Ranking LRV F-ratio Hit Number Time, 1D (min) Time, 2D (s) Compound MV [Strong]/[Clean] 

1 − 1.29E-03 210  15.53  0.95 Pyrazine, 2,6-dimethyl- 915  0.56 
2 − 8.74E-04 153  28.37  0.80 2-Naphthalenol 886  0.60 
3 − 8.74E-04 306  30.70  0.41 3-Acetylpyrrole 869  0.60 
4 − 4.34E-04 261  32.40  0.78 Unk84   0.63 
5 − 4.00E-04 271  22.17  0.68 Furyl ethyl ketone 874  0.59 
6 − 2.02E-04 200  31.63  0.78 2,7-Naphthalenediol 859  0.55 
7 − 1.91E-04 120  24.07  0.97 Pyrazine, 2-methyl-5-(1-propenyl)-, (Z)- 875  0.50 
8 − 8.29E-05 148  19.37  1.28 Pyrazine, 2-methyl-6-propyl- 845  0.31 
9 − 7.20E-05 258  32.20  0.76 Unk83   0.57 
10 − 6.20E-05 5  25.03  0.86 3(2H)-Benzofuranone, 7-methyl- 801  0.47 
11 − 5.70E-05 81  24.23  0.63 2,2′-Bifuran 801  0.45 
12 − 5.55E-05 217  22.37  0.89 3-Acetyl-2,5-dimethyl furan 863  0.52 
13 − 5.48E-05 117  25.73  0.65 3-Methyl-2-thiophenecarboxaldehyde 901  0.52 
14 − 5.46E-05 51  28.57  0.75 4-Hydroxybenzo[b]thiophene 809  0.54 
15 − 5.35E-05 113  24.77  0.76 2-Acetyl-3-methylpyrazine 863  0.10 
16 − 4.10E-05 255  34.40  0.81 Unk81   0.48 
17 − 4.08E-05 1  26.57  0.77 7-Benzofuranamine, 2-methyl- 811  0.55 
18 − 4.06E-05 223  29.63  0.61 2-Thiophenecarboxylic acid, 4-nitrophenyl ester 805  0.54 
19 − 3.88E-05 245  33.80  0.77 Thiophene, 2-phenyl- 890  0.29 
20 − 3.74E-05 10  22.80  0.94 Benzofuran, 2-methyl- 826  0.42  
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identified as a volatile indicative of bacterial growth on food products 
[66,67]. Thus, these results highlight that microbe damage could be a 
potential cause of PTD. 

In contrast, Fig. 8E-H shows the diminished intensity of four analytes 
that had a negative loading in the PLS model (Fig. 7; Table 3): 2,6-dime-
thylpyrazine, 3-acetyl-2,5-dimethyl furan, furyl ethyl ketone, and 3-ace-
tylpyrrole. Although these analytes were downregulated in samples 
affected by PTD, their signal remains invariant across the mild, medium, 
and strong PTD beans (Fig. 8D – H). Pyrazines and furans like those 
volatiles highlighted in Fig. 8E and F are the most important contribu-
tors to coffee aroma [3], providing cocoa, nutty, and roasted notes [50]. 
Ketones and pyrroles (examples shown in Fig. 8G and H), while not 
primary coffee odorants [3], can also provide sweet and fruity aromas 
[50]. These analytes primarily form during the roasting process, where 
major chemical reactions convert sugars, lipids, proteins, and chloro-
genic acids into hundreds of volatile components [16]. For instance, a 
previous study found that sucrose and other carbohydrates were more 
concentrated in non-defective green coffee beans relative to those 
affected by microbial growth [3]. In turn, the non-defective beans had 
higher levels of furans and pyrroles after roasting [3]. The same study 
also indicated that roasted defective coffee beans could exhibit a higher 
concentration of alkylpyrazines due to an imbalance in amino acid and 
sugar content, thereby promoting the formation of pyrazines [3]. The 
work herein and previously reported [10] suggests that alkylpyrazines 
are less concentrated in PTD-impacted samples [10]. Given the 
complexity of the roasting process, future work is needed to elucidate 
how the chemical composition in both clean coffee beans and those 
affected by PTD impacts the volatile profile of the ultimate roasted 
product. Nonetheless, the decreased abundance of these analytes sug-
gests that their absence contributes to PTD odor severity and may be 
further indication that biochemical changes are occurring in PTD- 
affected beans prior to roasting. 

4. Conclusion 

Volatile fingerprinting of PTD in roasted arabica coffee beans was 
performed using HS-SPME-GC × GC-TOFMS and non-targeted chemo-
metrics. Tile-based F-ratio analysis discovered 359 analytes that 
changed with statistical significance, including IPMP, that differentiated 
clean and strong PTD coffee samples. These analytes were quantified 
using a pure m/z, providing a determination of the concentration ratio. 
Most of the analytes (327 out of 359 hits) had higher signals in the clean 
coffee samples with analyte concentrations ranging from present only in 

clean class to a [Strong]/[Clean] equal to 0.82. Meanwhile, only 32 
analytes had larger abundances for the strong PTD class with their 
[Strong]/[Clean] ranging from 1.36 to only being present in these 
samples. Notably, examination of the known sensory properties for some 
volatiles revealed that analytes with desirable coffee aromas were found 
in decreased abundance in the strong PTD samples. PCA using the sig-
nals for these 359 hits illustrated sample clustering based on the pres-
ence of PTD while PLS modeling demonstrated that the compounds 
discovered by F-ratio analysis can accurately predict the concentration 
of IPMP. Compounds that are heavily weighted in both the PCA and PLS 
loadings implies that damage from microorganisms is one possible 
pathway for PTD. In turn, the damage from microorganisms can induce 
biochemical changes, which decrease the concentration of analytes with 
positive aroma descriptions. However, it is important to note that this 
research cannot exclude that these biochemical changes are also caused 
by the stress response pathway of O-methyltransferase expression in the 
coffee plant [15]. To further understand the differences in the volatile 
profile of samples affected by PTD, more work is required to deepen the 
link between antestia bug predation and the biochemical processes 
occurring inside green coffee beans and during roasting. 
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Fig. 8. Box-and-whiskers plots relating the intensity measured at the S-ratio m/z [47] to their PTD odor attribution for eight analytes that were highly loaded in the 
PCA and PLS models. The top row highlights analytes with signals larger in the PTD affected samples: (A) 3-(2-cyclopentenyl)-2-methyl-1,1-diphenyl-1-propene, (B) 
2,4-diphenyl-4-methyl-2(E)-pentene, (C) 2,4-di-tert-butylphenol, and (D) 1,1,3-trimethyl-3-phenylindan. The bottom row highlights analytes with signals larger in 
the clean coffee samples: (E) 2,6-dimethylpyrazine, (F) 3-acetyl-2,5-dimethyl furan, (G) furyl ethyl ketone, and (H) 3-acetylpyrrole. 
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D. Grimont, C. Cilas, Pantoea coffeiphila sp. nov., cause of the ‘potato taste’ of 
Arabica coffee from the African great lakes region, Int. J. Syst. Evol. Microbiol. 65 
(2015) 23–29, https://doi.org/10.1099/ijs.0.063545-0. 

[13] J.B. Ndayambaje, A. Nsabimana, S. Dushime, F. Ishimwe, H. Janvier, M.P. Ongol, 
Microbial identification of potato taste defect from coffee beans, Food Sci. Nutr. 7 
(2019) 287–292, https://doi.org/10.1002/fsn3.887. 

[14] A.R. Hale, P.M. Ruegger, P. Rolshausen, J. Borneman, J. in Yang, Fungi associated 
with the potato taste defect in coffee beans from Rwanda, Bot. Stud. 63 (2022), 
https://doi.org/10.1186/s40529-022-00346-9. 

[15] K.E. Frato, Identification of Hydroxypyrazine O-Methyltransferase Genes in Coffea 
arabica: A Potential Source of Methoxypyrazines That Cause Potato Taste Defect, 
J. Agric. Food Chem. 67 (2019) 341–351, https://doi.org/10.1021/acs. 
jafc.8b04541. 

[16] W.B. Sunarharum, D.J. Williams, H.E. Smyth, Complexity of coffee flavor: A 
compositional and sensory perspective, Food Res. Int. 62 (2014) 315–325, https:// 
doi.org/10.1016/j.foodres.2014.02.030. 

[17] J.M. Davis, J.C. Giddings, Statistical theory of component overlap in 
multicomponent chromatograms, Anal. Chem. 55 (1983) 418–424, https://doi. 
org/10.1021/ac00254a003. 

[18] Z. Liu, J.B. Phillips, Comprehensive two-dimensional gas chromatography using an 
on-column thermal modulator interface, J. Chromatogr. Sci. 29 (1991) 227–231, 
https://doi.org/10.1093/chromsci/29.6.227. 

[19] M.S. Klee, J. Cochran, M. Merrick, L.M. Blumberg, Evaluation of conditions of 
comprehensive two-dimensional gas chromatography that yield a near-theoretical 
maximum in peak capacity gain, J. Chromatogr. A 1383 (2015) 151–159, https:// 
doi.org/10.1016/j.chroma.2015.01.031. 

[20] A.L. Lee, K.D. Bartle, A.C. Lewis, A model of peak amplitude enhancement in 
orthogonal two-dimensional gas chromatography, Anal. Chem. 73 (2001) 
1330–1335, https://doi.org/10.1021/ac001120s. 

[21] C. Cordero, J. Kiefl, P. Schieberle, S.E. Reichenbach, C. Bicchi, Comprehensive two- 
dimensional gas chromatography and food sensory properties: Potential and 
challenges, Anal. Bioanal. Chem. 407 (2015) 169–191, https://doi.org/10.1007/ 
s00216-014-8248-z. 

[22] F. Stilo, C. Bicchi, A. Robbat, S.E. Reichenbach, C. Cordero, Untargeted approaches 
in food-omics: The potential of comprehensive two-dimensional gas 
chromatography/mass spectrometry, TrAC - Trends Anal. Chem. 135 (2021), 
116162, https://doi.org/10.1016/j.trac.2020.116162. 

[23] D. Ryan, R. Shellie, P. Tranchida, A. Casilli, L. Mondello, P. Marriott, Analysis of 
roasted coffee bean volatiles by using comprehensive two-dimensional gas 
chromatography-time-of-flight mass spectrometry, J. Chromatogr. A 1054 (2004) 
57–65, https://doi.org/10.1016/j.chroma.2004.08.057. 

[24] S.T. Chin, G.T. Eyres, P.J. Marriott, Identification of potent odourants in wine and 
brewed coffee using gas chromatography-olfactometry and comprehensive two- 
dimensional gas chromatography, J. Chromatogr. A 1218 (2011) 7487–7498, 
https://doi.org/10.1016/j.chroma.2011.06.039. 

[25] F.J.M. Novaes, A.I. da Silva Junior, C. Kulsing, Y. Nolvachai, H.R. Bizzo, F.R. de 
Aquino Neto, C.M. Rezende, P.J. Marriott, New approaches to monitor semi- 
volatile organic compounds released during coffee roasting using flow-through/ 
active sampling and comprehensive two-dimensional gas chromatography, Food 
Res. Int. 119 (2019) 349–358, https://doi.org/10.1016/j.foodres.2019.02.009. 

[26] G.R. Lopes, S. Petronilho, A.S. Ferreira, M. Pinto, C.P. Passos, E. Coelho, 
C. Rodrigues, C. Figueira, S.M. Rocha, M.A. Coimbra, Insights on Single-Dose 
Espresso Coffee Capsules’ Volatile Profile: From Ground Powder Volatiles to 
Prediction of Espresso Brew Aroma Properties, Foods 10 (2021) 2508, https://doi. 
org/10.3390/foods10102508. 

[27] Y. Zou, M. Gaida, F.A. Franchina, P.H. Stefanuto, J.F. Focant, Distinguishing 
between Decaffeinated and Regular Coffee by HS-SPME-GC×GC-TOFMS, 
Chemometrics, and Machine Learning, Molecules 27 (2022), https://doi.org/ 
10.3390/molecules27061806. 

[28] A. Pua, Y. Huang, R.M. Vivian Goh, K.-H. Ee, L. Li, M. Cornuz, B. Lassabliere, 
L. Jublot, S.Q. Liu, B. Yu, Multidimensional Gas Chromatography of Organosulfur 
Compounds in Coffee and Structure-Odor Analysis of 2-Methyltetrahydrothiophen- 
3-one, J. Agric. Food Chem. 71 (2023) 4337–4345, https://doi.org/10.1021/acs. 
jafc.2c08842. 

[29] E.M. Humston, J.D. Knowles, A. McShea, R.E. Synovec, Quantitative assessment of 
moisture damage for cacao bean quality using two-dimensional gas 
chromatography combined with time-of-flight mass spectrometry and 
chemometrics, J. Chromatogr. A 1217 (2010) 1963–1970, https://doi.org/ 
10.1016/j.chroma.2010.01.069. 

[30] P.H. Stefanuto, K.A. Perrault, L.M. Dubois, B. L’Homme, C. Allen, C. Loughnane, 
N. Ochiai, J.F. Focant, Advanced method optimization for volatile aroma profiling 
of beer using two-dimensional gas chromatography time-of-flight mass 
spectrometry, J. Chromatogr. A 1507 (2017) 45–52, https://doi.org/10.1016/j. 
chroma.2017.05.064. 
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