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Abstract[1]

T he optimization of jet engines continues to be a prominent area of interest,
particularly with the new environmental standards in place. The need for re-

duced carbon emissions requires engineers to redesign the rotatory parts with fewer
components to reduce weight while maintaining a high level of efficiency. These
modifications increase the blade loading resulting in large adverse pressure gradi-
ents on the suction side of the airfoil. For instance, under these conditions and given
the low Reynolds numbers at the last stages of a low-pressure turbine (LPT) and
even more on low-pressure compressor (LPC), the boundary layer may separate on
the rear portion of the blade suction side. This phenomenon can have a significant
impact on the overall efficiency of the turbomachines. To address this issue during
the design process, it is essential to a priori assess the size of the recirculation bub-
ble and attempt to minimize it as much as possible.

The industry standard for simulating the stage-scale flow is the Reynolds-Averaged
Navier-Stokes (RANS) method. However, RANS frequently fails at off-design con-
ditions due to its inherent modeling assumptions. As an alternative, Large Eddy
Simulation (LES) reduces the modeling assumptions by accurately resolving a signif-
icant part of the unsteady flow but remains costly at high Reynolds numbers. Wall
models reduce the computational cost of LES by modeling the near-wall energetic
scales and enabling the application of LES to complex flow configurations of engi-
neering interest. However, most wall models assume that the boundary layer is fully
turbulent, at equilibrium, and attached. While these models have proven successful
in turbulent boundary layers under moderate adverse pressure gradients, when the
adverse pressure gradient becomes too strong, and the boundary layer separates,
equilibrium wall models are no longer applicable. To overcome this limitation, this
study proposes the use of Machine Learning (ML) and Deep Learning (DL) tech-

1Photograph of a airfoil in a wind tunnel, showing separated flow over the top surface.
DLR, CC-BY 3.0
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niques to develop wall shear stress models thanks to the recent hardware advances
combined with the exponential generation and accumulation of data. The Mixture
Density Network (MDN), originally developed to predict uncertainty, is employed
as a wall shear stress (WSS) model for the first time in the context of wall-modeled
Large Eddy Simulations (wmLES) of separated flows. Such a network does not
predict the mean wall shear stress conditioned by the inputs, but instead predicts
the wall shear stress probability distribution, assuming that any distribution can be
approximated by a linear combination of Gaussian distributions. The focus on the
accurate prediction of the first two statistical moments is crucial for separated flows.

Before training the MDN, intensive work on the database has been conducted to
study the near-wall physics and select suitable model input features. To study the
near-wall physics in different flow configurations, the relationship between the in-
stantaneous wall shear stress, velocity field, and pressure gradients is evaluated
using space-time correlations. These correlations are extracted from two wall-
resolved LES: a channel flow at a friction Reynolds number Reτ of 950 and the
two-dimensional periodic hill at a bulk Reynolds number Reb of 10,595. This latter
test case features a separation from the top of the hill leading to the development
of a free shear layer that reattaches further downstream, creating a large recircula-
tion bubble. The analysis of the correlations highlights that no instantaneous and
local correlation is observed in the vicinity of the separation. The domain of high
correlation appears to be shifted downstream. Therefore, the model inputs are the
velocity field, the pressure gradients, and the curvature extracted at a given wall
distance for multiple streamwise positions (taking both upstream and downstream
from the prediction location). These inputs are carefully non-dimensionalized using
the density, viscosity, and wall-model height, for better generalizability. An MDN is
trained on turbulent channel flows at various friction Reynolds numbers and on the
two-dimensional periodic hill at the bulk Reynolds number of 10,595. The model is
then evaluated a priori on synthetic data generated from the law of the wall and
shows good generalizability to higher friction Reynolds numbers. The relevance of
the MDN-model is subsequently evaluated a posteriori by performing wmLES using
the in-house flow solver Argo-DG, on two channel flows and the separated flow of
the two dimensional periodic hill. The novel WSS model outperforms the existing
data-driven WSS models in the literature on turbulent channel flows. The prediction
is significantly improved compared to the WSS model based on Reichardt’s velocity
profile on a turbulent separated boundary layer. Nonetheless, the size of the recir-
culation bubble is still underpredicted, indicating a direction for future research.
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Chapter 1
Introduction

H ave you ever thought about how artificial intelligence (AI) might modify the
world? Some of you may think about autonomous vehicles used to reduce the

fatality rate of driving and have a better carbon emission due to more efficient driv-
ing patterns. Some of you may think about Siri and Alexa, the two famous intelligent
assistants, that you may have encountered in your daily life. Some of you may think
about robots that have emerged in many fields (see Figure 1.1), including army (e.g.,
DARPA Robotics Challenge), medicine (e.g., surgical robots, prostheses), industry
(e.g., automotive manufacturing), aeronautics (e.g., drones). Some of you may be
concerned about the dark side of AI such as the generation of fake images, newspa-
pers, videos of politicians, and cybersecurity issues. As with any new technology,
there are potential drawbacks, and our modern society must address them. Since the
start of this thesis, these changes are already visible, with their positive and nega-
tive aspects. However, this question, with all its concerns, must be examined before
working on any Machine Learning (ML) and Deep Learning (DL) techniques. ML
and DL are relatively new paradigms used to address a variety of problems across
different fields. These techniques can form a new field of research on their own
by examining various models at the most fundamental mathematical level, under-
standing them in terms of learning theory, and developing fundamental approaches
for actual learning. This science lays the foundations of knowledge and theory to
be extensively used in other fields. Parts of these fields can be grouped under the
label of Machine Learning Engineering, in which researchers want to achieve better
performance by scaling up the system and making it practically work and other are
concerned by applications. Over the past few decades, numerous applications have
been developed across various fields. For example, business applications require the
analysis of customers’ behavior by predicting when they will change their subscrip-
tion or service provider. Computer vision is well-known for image reconstruction,

1
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segmentation, tracking, and labeling. Bioinformatics has reused computer vision
tools to classify images in medicine to be applied for diagnostics and pathology. ML
techniques are also utilized in physics and chemistry to develop new drugs, generate
images from CAD (Computer Aided Design) layers, and simulate galaxies and the
universe. These applications would not have been possible without two fundamental
aspects. The first aspect is the access to large (labeled) databases made possible by
more powerful hardware capable of recording a massive amount of data. The second
aspect is the use of Graphical Processing Units (GPUs). GPUs are great at tasks
that can be run in parallel and neural networks are specifically designed to run in
parallel. The development of GPUs and their intensive use led to the resurgence of
DL techniques in 2012.

b)

c)

d) e) f)

a)

Figure 1.1: (a) Self-driving cars (European Parliament, 2019); (b) Image for the
automotive industry by Boris Fojtík, Economic Analyst at Tatra banka; (c) Ap-
ple intelligent assistant Siri; (d) Darpa Robotics Challenge; (e) Deepfake extracted
from https://www.eqengineered.com/insights/what-is-a-deepfake; (f) Sur-
gical robot system (Kent, 2020).

AI is a powerful tool that can have significant effects on humans, cultures, societies,
and the environment. While it has the potential to be an ally, it can also be a

https://www.eqengineered.com/insights/what-is-a-deepfake
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dangerous enemy if not handled carefully. Our society must therefore use AI care-
fully and follow political, economic, ethical, and legal guidelines to prevent misuse.
However, there are specific areas where the use of AI can be well controlled with
minimal risk to our society, where ML and DL tools can be successfully employed
to reduce the complexity of a computational chain, for instance. In the aerospace
industry, engineers are always in search of the best performances for the new en-
gines that will equip our future aircraft. Designers work on multiple aspects, such
as the request to reduce fuel consumption and noise, the components’ strength and
weight, the thrust generated by the engine, and many other parameters for a safe
and comfortable flight. In this context, ML can be used to improve modeling.

As we delve into the aerospace industry, it is interesting to understand how aircraft
actually fly. Newton’s third law of action and reaction is responsible for propelling
an aircraft forward. To achieve this motion, the jet engine (see Figure 1.2a) must
produce high thrust at its exit. Thrust is typically proportional to the product of the
mass flow and the velocity difference between the inlet and outlet. For a turbofan,
thrust is usually produced by a high mass flow, whereas for a military engine it is
produced by a high velocity. In a turbofan, the exhaust is obtained as a combination
of two flows. Some of the incoming air passes through the core of the engine, and the
rest of the incoming air passes through the fan, bypassing the interior assemblies.
This part of the air generates the majority of the thrust (up to 80%) in a separate
nozzle. The ratio of these two flows is called the bypass ratio. For example, the
A380, the world’s largest commercial aircraft, has a bypass ratio of 8. The main
objective of a turbofan engine is to rotate the fan that drives the bypass air. To
achieve this, a series of components are needed. The key is to compress it to a high
pressure (e.g., 40 bar) and to heat up the incoming air to a high temperature (e.g.,
1850 K). For this purpose, a series of compressor stages is used to bring the air to
a higher pressure. The rotating blades of the compressor add energy to the fluid,
increasing its (temperature and) pressure to levels adequate for the targeted cycle
efficiency. The majority of temperature increases occur in the combustion chamber,
which is situated immediately after the compressor. The turbine, located immedi-
ately after the combustion chamber, provides energy for rotation and is connected
to the compressor by a common shaft. The high-energy fluid leaving the combustion
chamber drives the turbine blades. The turbine blade has a specific airfoil shape
(see Figure 1.2b) that creates lift and causes it to rotate. By transferring its energy
to the turbine, the fluid pressure drops. This release of energy drives the compressor
and the fan.
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(a) Schematics of a turbofan engine, im-
age extracted from the website https://
mechanicalboost.com/turbofan/.

(b) Low Pressure Turbine blade (T106C), vi-
sualization of the skin friction in gray scales,
Cenaero credits.

Figure 1.2: Illustration of a turbofan engine, which produces a high-speed jet at its
exit to propel the aircraft forward; the engine consists of a series of compressor stages
(low and high) followed by the combustion chamber; the very hot air produced by
combustion is then injected into a series of turbine stages (high and low) to recover
energy from it thanks to the specific shape of the blades, as shown on the right.

This brief explanation indicates that there are many components and sub-components
that affect the engine behavior and thus its thrust, making the engine conception a
complex process. Among all these components, the compressor and the turbine are
crucial in the engine design as they bring the air to specific states to ensure proper
engine operation. During the conception, engineers take specific care when designing
these two components by optimizing the number of stages, blades per row, and blade
shape. For example, reducing the number of blades per stage is a way of reducing
the engine weight and, therefore, its fuel consumption, which is of particular impor-
tance given the new environmental standards in place. By decreasing the number of
blades on each row while maintaining the same amount of work per stage, the load-
ing per blade is increased. This is the well-known concept of high lift design (Gier

https://mechanicalboost.com/turbofan/
https://mechanicalboost.com/turbofan/
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et al., 2010). This high lift results in an intense adverse pressure gradient on the
suction side of the blades. At cruising altitude, the Reynolds number is relatively
low, which promotes the formation of a laminar boundary layer on the suction side.
Such a boundary layer can not withstand the large pressure gradient and may sepa-
rate. Downstream of the separation point, the free shear layer transitions (Horton,
1968) due to instabilities, wake interaction, and free-stream turbulence. Then, in
the most favorable case, the turbulent boundary layer may reattach. In the case of
very low Reynolds numbers, the boundary layer may never reattach, leading to a
massive laminar separation bubble that causes high losses and decreases the engine
efficiency. Ultimately, understanding and predicting the flow behavior on blades
is crucial for designing an engine. The aforementioned explanation applies to Low
Pressure Turbine (LPT), but a similar conclusion can be drawn for Low Pressure
Compressor (LPC).

Computational Fluid Dynamics (CFD) can be considered as a branch of fluid me-
chanics that uses numerical algorithms to solve and analyze problems involving
fluid flows. CFD involves various phases such as geometry preparation, meshing,
solution generation, and post-processing. It also requires the choice of a discretiza-
tion method (e.g., Finite Element method, Finite Volume method, Finite Difference
method, Spectral Element method, Lattice Boltzmann method, to cite but a few).
Although CFD is an excellent tool for predicting the flow behavior for realistic geom-
etry, LPT aerodynamics remains a challenging configuration for CFD tools because
it requires the prediction of a separation-induced transition, a phenomenon that is
not yet fully understood. Moreover, in the particular case of turbulent flows, special
attention to near-wall grid resolution and turbulence model is required. Indeed, a
turbulent flow is unsteady, chaotic, and highly three-dimensional, composed of a
wide range of scales. These scales are illustrated (see Figure 1.3) with the example
of a car driving on a motorway. As the car moves, it creates a wake. This wake is a
turbulent flow composed of vortices whose size is comparable to the car width L up
to vortices whose size is equal to the Kolmogorov scale η (Pope, 2000). Each scale
has its own amount of energy, with the largest eddies containing the highest energy.
These eddies break down into smaller ones of lower energy and themselves transfer
their energy to even smaller eddies through an inviscid process. At the smallest
scales, the energy is dissipated through viscous action. This process of transferring
energy from one scale to another is known as the energy cascade, first described
in 1922 by Richardson in his book (Richardson, 2007). Figure 1.3 illustrates this
energy cascade composed of the energy-contained, inertial, and dissipation range.
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The energy is expressed as a function of the wave number κ. Therefore, the eddies
of large scale L have a small wave number, while the eddies of small scale η have
a high wave number. The accuracy of the discretization method will depend on
its capabilities to capture the entire energy spectrum and thus to resolve all the
turbulent scales or a part of it, up to a cutting wave number κc.

Energy-contained
range

Inertial
range

Dissipation
range

E ∝ κ2 E ∝ κ−5/3

Energy
injection

Energy
transfer

Energy
dissipa-
tion

LES

DNS

κ

E

Figure 1.3: Diagram of the energy spectrum combined with an image of the instan-
taneous turbulent structures around a car (Doutrelant and Wong, 2021).

In wall-bounded flows, a high-shear region develops in the near-wall region bounded
by the wall on one side and the top of the boundary layer on the other. A turbulent
boundary layer can be divided into four parts: the viscous sublayer, the buffer layer,
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the log-law region, and the wake region (see Figure 1.4). In the viscous sublayer,
the viscous shear stress dominates the turbulent shear stress. Indeed, close to the
wall, in this thin layer, the turbulent fluctuations are damped. On the other hand,
in the log-law layer, the turbulent shear stress predominates over the viscous shear
stress, which can then be neglected. In between, in the buffer layer, the viscous
shear stress and the turbulent shear stress are of equal magnitude, and neither can
be neglected. Most of the turbulence is generated in this region. The wake region
is also called the velocity-defect layer (Coles’s Law of the Wall). In this latter re-
gion, the velocity profile deviates from the logarithmic law. This deviation is even
more pronounced in non-equilibrium boundary layers with (adverse) pressure gradi-
ents. The end of the log-law region, which also corresponds to the beginning of the
wake region in wall units y+ (i.e., the inner scaling of the boundary layer, refer to
Eq. 3.2), depends on the friction Reynolds number. The inner layer, which regroups
the viscous sublayer, the buffer layer, and the log-law region, ends approximately at
y/δ ≃ 0.15, where δ is defined as the boundary layer thickness. The theory behind
boundary layers is further explained in Chapter 3. To properly resolve the bound-
ary layer, both the viscous and turbulent shear stresses need to be captured by the
numerical scheme.

On the one hand, Direct Numerical Simulation (DNS) is the best solution for de-
scribing accurately laminar, transition, and turbulent flows because it resolves the
entire spectrum. However, this method remains computationally intractable at the
high Reynolds numbers (Choi and Moin, 2012) typical for most turbomachinery pas-
sages. On the other hand, one may find turbulence modeling approaches. The two
major approaches are Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy
Simulation (LES). RANS and Unsteady RANS (URANS) methods are mainly used
for industrial applications due to their computational efficiency. RANS aims to solve
directly for the mean quantities, which significantly reduces the computational cost.
Nonetheless, in off-design conditions, the flow inside turbomachinery components is
dominated by complex features, which are outside the range of reliability of RANS
turbulence models. LES reduces the number of modeling assumptions and enables
high-resolution simulations of transitional and turbulent flows by resolving accu-
rately a part of the inertial range of the energy spectrum (see Figure 1.3), up to a
cutting wave number. LES resolves the large scales and models the interaction of the
small unresolved scales on the large resolved ones using sub-grid scale (SGS) mod-
els. These models can be explicit (e.g., Sagaut (2006)) or implicit (e.g., Grinstein
et al. (2007)). The latter is called implicit LES (iLES). When employing implicit
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Figure 1.4: Universal Law of the Wall.

filtering, the discretization errors are adjusted to substitute the subgrid scale ef-
fects (Beck, 2015). Unfortunately, wall-resolved LES (wrLES) methods, where the
wall-nearest grid point is within the viscous sublayer, remain prohibitively expen-
sive at high Reynolds numbers (Choi and Moin, 2012). As approaching the wall, the
energy containing eddies become smaller and a fine grid resolution is required in the
near-wall region to properly resolve these structures. Even at moderate Reynolds
numbers, the resolution of this near-wall region requires significant computational
resources as illustrated on Figure 1.5. The cost of resolving a high Reynolds number
turbulent boundary layer flow using DNS, wrLES, and wmLES can be evaluated
with the formula of Choi and Moin (2012):

NDNS ∼ Re
37/14
Lx

, NwrLES ∼ Re
13/7
Lx

, and NwmLES ∼ ReLx , (1.1)

where ReLx is defined as ReLx = ue Lx/ν, with ue the external velocity, Lx the
length of the flat plate and ν the kinematic viscosity.

It motivates the development of wall-modeled LES (wmLES), where the wall-nearest
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region is coarsened to reduce the computational cost, which moves the first grid point
away from the viscous sublayer. The effect of the unresolved near-wall physics is
then usually represented by a shear stress boundary condition computed from a wall
model that depends on flow quantities inside the computational domain. The advan-
tage of wall-modeled LES for practical flows of aeronautical interest is highlighted
by the formula 1.1, and even more at high Reynolds numbers. This observation
is reinforced in Figure 1.5, where an estimated computational cost (i.e., the cost
per one-time unit required on an AMD Opteron cluster) for wmLES and wrLES of
a turbulent flow over flat plates is plotted as a function of the Reynolds number.
As indicated, wrLES is computationally challenging and requires massively parallel
computing resources. With the use of wmLES, the computational cost is signifi-
cantly reduced and passes below 5 days according to Alam and Fitzpatrick (2017).
As a consequence, new approaches have been proposed over the last decades to
develop wall models and improve their reliability for more complex flows. Further-
more, their application to industrially relevant flows is still to date a topic of research.

Figure 1.5: Example of comparison of computational cost of LES (Alam and Fitz-
patrick, 2017).

The present work builds upon the thesis of Frère (2018), which developed cost-
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effective wall-modeled LES techniques for high Reynolds number turbulent flows in
a high-order flow solver. Her study identified limitations in the wall shear stress
(WSS) model based on Reichardt’s velocity profile, particularly its inadequacy in
accurately capturing flow separations. As such, the present thesis aims to improve
wall models for predicting flow separations and reattachments that are encountered
in industrially relevant flows such as turbomachinery. Among the different possi-
bilities to enhance WSS models, DL techniques have been selected. Deep Neural
Networks (DNNs) are employed when there exists a structural relation, fully or par-
tially unknown, between the inputs and outputs. The current research aims to ex-
ploit the approximation capabilities of deep neural networks (DNNs), first described
by (Hornik, 1991), to establish a more general model for the complex relationship
between instantaneous flow fields, geometric parameters as input, and wall shear
stress as output using DNS or wrLES databases.

1.1 Objectives and structure of the thesis

The main objective of this thesis is to enhance wall models using Deep Learning
techniques to address flow separation and reattachment. The development of data-
driven wall models is a relatively recent research topic that raises many challenges.
For instance, there are still many open questions regarding interpretability, robust-
ness, generalizability, and convergence. Moreover, deciding which neural networks
to utilize, how to train them, and what type of data to consider are significant chal-
lenges on their own. To cope with these challenges, this thesis is divided into three
main parts.

The first part focuses on the generation, analysis, and preprocessing of wrLES
databases. The simulations are carried out using the in-house flow solver Argo-
DG, developed at Cenaero. This code was initially developed during the thesis
of Hillewaert (2013) and it has been further validated during the thesis of Carton de
Wiart (2014) on various academic benchmarks such as the DNS of the Taylor-Green
vortex (Carton de Wiart et al., 2013a), and the LES of homogeneous isotropic turbu-
lence and channel flow (Carton de Wiart et al., 2013b). The code has been shown to
produce results with similar accuracy as those obtained with academic ones. More-
over, it has been used to run DNS and LES of industrial configurations featuring
transitional flow (Carton de Wiart and Hillewaert, 2012; Hillewaert et al., 2014).
Since a WSS model can be seen as a non-linear function establishing a relation
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between flow quantities extracted in the computational domain and the wall shear
stress, space-time correlations between these quantities are evaluated for the various
databases generated with Argo-DG. These correlations provide physical insights into
the possible relationships between the variables and act as feature selections for the
neural network.

The second part is dedicated to the training and the implementation of the novel
data-driven WSS model in a high-order flow solver. Based on the analysis of the
weaknesses of the existing WSS models, the thesis proposes a novel approach: the
use of neural networks that can predict statistical distributions rather than point-
wise estimates. These networks are not trained with the standard loss functions but
instead with the negative log-likelihood, which accounts for the first two statistical
moments when the underlying distributions are Gaussians. However, this type of
network raises questions about the reconstruction of the WSS structures.

The third part concentrates on validating the proposed model on different test cases,
including flows with turbulent boundary layers and those featuring separation. This
part also evaluates the robustness, interpretability, and generalizability of the novel
WSS model. The robustness is assessed by evaluating the stability of the simulations
and the quality of the results. The interpretability is evaluated using the SHAP val-
ues (SHapley Additive exPlanations), and the generalizability is evaluated a priori
using synthetic data.

Each part of this project has a specific objective that contributes to the overall
goal. The first objective is to define the test cases, which must be computationally
feasible and include the necessary features for developing innovative data-driven
WSS models. It is important to include at least one test case with separation to
gain insight into this phenomenon. The long-term goal is to create a model that
can generalize on any flow configuration, but there is debate within the scientific
community about whether a universal model is achievable, or even necessary. It
may be better to create multiple models that can switch according the different
phenomena during the simulations. The second objective of the first part is to select
relevant features for the training of the data-driven WSS model. The second part’s
objective is to identify the most appropriate neural networks for the problem at
hand. Deep Learning offers various neural network architectures that are specific to
certain tasks and can be combined to create a new network with multiple embedded
invariants (i.e., the internal properties that are encoded in the network architecture).
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The implementation of wall models in Argo-DG has been successful during the thesis
of Frère (2018), but the challenge remains to implement data-driven wall models in
a lightweight version that will not slow down simulations. The use of data-driven
models also comes with the cost of generating labeled databases and the challenge
of properly training the neural network. The third part’s objective is to validate the
novel model on test cases with separation, evaluate the improvement with respect
to wall models already implemented in Argo-DG, and the existing data-driven WSS
models in the literature. The rest of the thesis is organized as follows.

Chapter 2: Background in Deep Learning
Because the present work aims to use Deep Learning techniques, a rapid review of
well-known neural network is performed in Chapter 2.

Chapter 3: State of the art in wall modelling
Chapter 3 presents a review of the data-driven wall models that have been developed
over the last decade. We will also briefly review more standard wall models that
are widely used in the wmLES community. A list of constraints and limitations on
the implementation of the novel wall models is specified, taking into account the
existing models and what can be achieved in the high-order flow solver.

Chapter 4: Analysis of space-time correlations in representative turbulent
flow configurations
Chapter 4 addresses the question of the databases. Neural networks can deal with
large databases to be able to understand the underlying physics. In the framework
of wall models, the goal is to model the complex relation between instantaneous
volume quantities (e.g., velocity, pressure gradient), geometrical parameters (e.g.,
curvature, relative positions), and the wall-parallel components of the wall shear
stress. Moreover, this relation is sought for separated flows. hence, a test case
containing a separation of a turbulent boundary layer is essential. Because the
training will be performed on high-quality data extracted from wrLES, the two-
dimensional periodic hill at a bulk Reynolds number Reb of 10,595 is selected. This
test case is sufficiently challenging for a wall model and can be run on modern
clusters. However, relying on a single test case is insufficient. When training a neural
network on a single configuration, it will overfit (i.e., to be too specific to the studied
configuration) on that configuration and will not be able to generalize to other
geometries. Therefore, two turbulent channel flows are added to the databases as
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well as synthetic data extracted from the law-of-the-wall (LOTW). This chapter also
focuses on analyzing these databases through space-time correlations (i.e., Pearson
and distance correlations) that act as feature selection for the neural network. This
work, presented at the conference ETMM13, has been selected for a special edition
in the journal "Flow, Turbulence and Combustion" (Boxho et al., 2022).

Chapter 5: Development of a new data-driven wall shear stress model
Chapter 5 presents the different neural network (NN) architectures used to develop
novel wall shear stress models. As mentioned earlier, there is a wide variety of
NN architectures that have their own embedded invariants. It is crucial to identify
the specific invariant that should be embedded in the architecture to enable the
network to extract the underlying physics. This chapter focuses on what a neural
network is, how it is constructed, and how it is trained. Furthermore, the network
must conform to the implementation constraints outlined in Chapter 3. While it
may seem that everything is possible in the a priori implementation, practical lim-
itations may arise in the production environment. Therefore, it is important to
evaluate these constraints and integrate them into the design of the neural network.
Additionally, proper preprocessing of the database (e.g., cleaning, splitting, and
non-dimensionalizing) is essential for successful neural network training. Therefore,
the importance of nondimensionalization is highlighted for generalization purposes.

Chapter 6: Pathway to the successful network architectures for wall mod-
eling
Chapter 6 reviews the history of neural network training, which has led to the es-
tablishment of the most successful networks for the development of wall shear stress
models. It discusses the first non-dimensionalization tested at the beginning of the
thesis, which was discarded to adopt the one described in Chapter 5 because it was
too sensitive to the polynomial order. Although the space-time correlations, per-
formed in Chapter 4, have indicated the optimal stencil size, several stencils have
been tested to validate the conclusion drawn from the feature selection. The chapter
closes with a discussion on the overfitting and underfitting of the trained network
and how to improve upon the predictions.

Chapter 7: Fully developed turbulent flow in channel configuration
Chapter 7 presents the training of a neural network on the channel flow configura-
tions only. This chapter sets the basis of the methodology for developing data-driven
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WSS models. The model is first tested a priori on an unseen channel flow config-
uration and the synthetic database. Then, the model is evaluated a posteriori on
a turbulent channel flow at two friction Reynolds numbers. In the Deep Learning
terminology, the a posteriori test evaluates the model performance in the produc-
tion environment. Therefore, in this context, it corresponds to a wmLES using the
trained data-driven WSS model.

Chapter 8: Separated flow in the two-dimensional periodic hill flow con-
figuration
Chapter 8 focuses on the main objective of this thesis: the application of the data-
driven WSS model to a separated flow. As in Chapter 7, the model is initially trained
on databases featuring separation, coupled with a turbulent channel database, to
eventually aim at a more universal model. The trained model is tested a priori on
the two-dimensional periodic hill. Finally, a wmLES is performed on the same test
case using the data-driven WSS model to evaluate the model’s ability to capture
the separation and reattachment phenomenon in the production environment. It
should be noted that the production environment can not be incorporated during
the training process. A model that performs well a priori may struggle to accu-
rately reproduce the underlying physics of the wall when used in practice due to
grid resolution, numerical transient, and feedback loop between the predicted wall
shear stress and the volume data, to name just a few. This work, presented as
a keynote lecture at the ECCOMAS 2022 conference, has been submitted to the
journal "Physics of Fluids" and is currently under review.



Chapter 2
Background in Deep Learning

T his chapter introduces the main concepts of Machine Learning (ML) and Deep
Learning (DL) techniques (algorithms), from the presentation of the simplest

neural network architecture to its training with a loss function whose gradient is
computed using backpropagation. To an uninitiated reader, these words may seem
unfamiliar, but by the end of this chapter, the DL nomenclature should no longer
be a secret.

Section 2.1 presents the DL and ML techniques under a probabilistic view. Sec-
tion 2.2 focuses on supervised learning and discusses the generation of a database
as samples from a joint probability and how a model can infer this data by approx-
imating a conditional probability. This discussion leads to the definition of the loss
function for regression problems. Section 2.2.1 introduces the various concepts that
build the training process on the simplest neural network architecture: the multi-
layer perceptron (MLP). Section 2.2.2 introduces the convolutional neural network
(CNN) and how they embed the knowledge that nearby pixels are typically related
to each other, compared to MLP. The concept of feature selection is presented in
Section 2.3. Section 2.4 focuses on the interpretability of a neural network and in-
troduces the SHapley Additive exPlanations. The chapter ends with a few words
about PyTorch, the open library we used to train our data-driven wall models.

15
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2.1 Probability

DL and ML are focused on making predictions and are fundamentally probabilistic.
For instance, researchers aim to predict the probability of a patient having a heart
attack in the next year based on his clinical history. In anomaly detection, engineers
want to assess how likely a set of measurements from a turbojet engine would be if
it were operating normally. In the field of economics, economists aim to estimate
the likelihood that a specific customer will purchase a particular book. Ultimately,
it is necessary to use the language of probability. To illustrate the necessity to use
probability, we consider two cases: (i) distinguishing images of horses and cows and
(ii) weather forecasting.

Horses and cows Distinguishing between images of horses[1] and cows[2] can be a
challenging task, especially when the resolution of the images is low (see Figure 2.1).
At higher resolutions, a human can easily distinguish between the two animals.
However, at lower resolutions, it can be difficult or even impossible to identify which
image depicts the horse and which depicts the cow. If one is absolutely certain that
the picture depicts a cow, then the probability that the corresponding label y is
"cow" is denoted as

⇒ P (y = "cow") = 1 .

If one has no evidence about the corresponding label of the image, then the proba-
bility is written as

⇒ P (y = "cow") = P (y = "horse") = 0.5

(i.e., the two probabilities are equally likely). If one is reasonably confident but not
quite sure that the image is a horse, then the probability satisfies,

⇒ 0.5 < P (y = "horse") < 1 .

Weather This second case concerns the prediction of the probability that it will
rain tomorrow in Belgium. If you are a native Belgian, you know this probability is
high in winter.

1Image extracted from https://ihearthorses.com/chestnut-horse/
2Image extracted from https://www.pbs.org/wnet/story-jews/video/episode-1/

attachment/brown-cow/

https://ihearthorses.com/chestnut-horse/
https://www.pbs.org/wnet/story-jews/video/episode-1/attachment/brown-cow/
https://www.pbs.org/wnet/story-jews/video/episode-1/attachment/brown-cow/
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Figure 2.1: Grayscale images of horse and cow at different resolutions (from left to
right: 300× 300, 200× 200, 100× 100, 50× 50, and 20× 20 pixels).

These two examples highlight that probability provides a formal way of expressing
the degree of certainty (or uncertainty). Probability is a function that maps a set
to a real value. Formally, the probability of an event A in a given sample space S
is P (A). An event is a set of outcomes from a given sample space. In the simple
example of throwing a die, the sample space is discrete and is S = {1, 2, 3, 4, 5, 6}.
If the die is not tainted, the probability of rolling a 2 is 1/6. Formally the event is
denoted as A = 2 with probability P (2) = 1/6.

P (A) satisfies the following properties,

Axioms of Probability Theory

• For any event A, its probability is never negative, i.e., P (A) ≥ 0;

• Probability of the entire sample space is 1, i.e., P (S) = 1;

• For any countable sequence of events A1,A2, . . . that are mutually ex-
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clusive (Ai ∩ Aj = ∅ for all i ̸= j), the probability that any happens is
equal to the sum of their individual probabilities,

P (
∞⋃
i=1

Ai) =
∞∑
i=1

P (Ai) .

The concepts of event and sample space have been defined, but the notion of a
random variable has not yet been introduced. A random variable, denoted by X,
is a measurable function from a sample space to a measurable space. It can be any
quantity and is not deterministic. The distribution over the random variable X is
denoted by P (X), while P (X = a) represents the probability of X taking the value a.

In fluid dynamics, a turbulent flow has a statistical description. For instance, the
velocity field u(x, t) (where x and t denote space and time, respectively), in a tur-
bulent flow, is random. If a fluid flow experiment can be repeated many times under
a given set of conditions, we can consider the event A, such as A = {ui < 10m/s},
where ui is the ith component of the velocity extracted at a given time and location.
The event A may or may not occur, and A is therefore random. In this example, ui

is a random variable, and it only means that it does not have a unique value (i.e.,
its value is not the same value each time the experiment is repeated under the same
set of conditions).

There is a problem of consistency between the random nature of turbulent flows
and the deterministic nature of classical mechanics embodied in the Navier-Stokes
equation. Why are the solutions of deterministic equations of motion random? This
question can be answered by two observations. Firstly, there are unavoidable per-
turbations in the initial conditions, boundary conditions, and material properties.
Secondly, turbulent flows are highly sensitive to such perturbations (Gleick, 1988)
(especially at high Reynolds numbers). The Lorenz equations provide one of the
simplest examples of a chaotic system.

Similarly to images containing millions of pixels, where each pixel can be considered
a random variable, the input (e.g., the three components of the velocity field) of
a data-driven wall shear stress model is also a random variable or, more precisely,
a random vector. When dealing with multiple random variables, there are several
quantities of interest.
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• Joint probability, noted as P (A = a,B = b), answers the question: what is
the probability that A = a and B = b simultaneously?

• Conditional probability, noted P (A = a|B = b) is the probability of A = a,
konwing that B = b.

• Bayes’ theorem is one of the most useful equations in statistics:

P (A|B) =
P (B|A)P (A)

P (B)
. (2.1)

• Marginalization is the operation of determining P (B), the marginal proba-
bility or the marginal distribution (i.e., the result of the marginalization) from
P (A,B):

P (B) =
∑
A

P (A,B) .

• Independence is an interesting property to examine. If the random variable
A is independent of the random variable B, then the occurrence of one event of
A does not reveal any information about the occurrence of an event of B. From
this observation, we get that P (B|A) = P (B). Applying Bayes’ theorem, we
can directly deduce that P (A|B) = P (A).

The probability distribution of the random variable X can be further characterized
by measuring its expectation

E[X] =
∑
x

xP (X = x), (2.2)

and its variance
Var[X] = E[(X − E[X])2] . (2.3)

2.2 Supervised learning

First of all, there are three classes of learning: supervised, unsupervised and semi-
supervised. In supervised learning, the data is explicitly labeled. In unsupervised
learning, the data is not labeled. The DL models will detect the underlying patterns
that distinguish one set of data from another (e.g., clustering problems). Finally,
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semi-supervised learning is an intermediate class. Labeling data can be costly. In
semi-supervised learning, a small part of the database is explicitly labeled. A DL
model is trained to predict these known labels. The trained model is then used to
label the rest of the database. Only the labels with sufficiently high confidence are
kept to retrain the model.

In the previous section, the basics of probability theory were reviewed. Based on
this, the notion of supervised learning can be clearly posed. Consider an unknown
joint probability distribution pX,Y , where X represents the input (i.e., usually a p-
dimensional vector of features or descriptors) and Y , the output (i.e., a real value
or a category). The training data is drawn from this distribution as,

(xi, yi) ∼ pX,Y (2.4)

where xi ∈ X , yi ∈ Y , i = 1, . . . , N . The training data is generated identically and
independently distributed (i.i.d.) with a finite size N . It is important to note that
in practice, there is no prior information available about this joint probability.

Under supervised learning, there are usually two types of inference problems.

• Classification: Given (xi, yi) ∈ (X × Y) = Rp × △C , for i = 1, . . . , N , we
want to estimate for any new x,

argmax
y

p(Y = y|X = x) . (2.5)

• Regression: Given (xi, yi) ∈ (X × Y) = Rp × R, for i = 1, . . . , N , we want
to estimate for any new x,

E[Y |X = x] . (2.6)

In other words, inference involves estimating, for any new (x, y), the conditional
probability p(Y = y|X = x).

Consider a function f : X → Y produced by a learning algorithm (e.g., polynomial
fitting, random forest, or neural networks). The prediction of this function can be
evaluated through a loss function l : Y × Y → R so that L (y, f(x)) ≥ 0 measures
how close the prediction f(x) is to y.
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By modeling the conditional probability with a Gaussian distribution, then we get,

p(y|x, f) = N (y|f(x), σ2) , (2.7)

where f(x) describes the expected value function. To fit such a model, we maximize
the likelihood of the data over f to get,

argmax
f

p(y|x, f) = argmax
f

N∏
i=1

p(yi|xi, f)

= argmax
f

N∏
i=1

N (yi|f(xi), σ
2)

= argmax
f

N∏
i=1

1√
2πσ

exp

(
−(yi − f(xi))

2

2σ2

)
.

As maximizing a function is similar to maximizing its logarithm, we obtain,

argmax
f

[
N∑
i=1

−(yi − f(xi))
2

2σ2
− log

(√
2πσ

)]

= argmin
f

1

2σ2

N∑
i=1

(yi − f(xi))
2 + log

(√
2πσ

)
︸ ︷︷ ︸

≥
∑N

i=1(yi−f(xi))
2

To obtain a loss that is independent of the size of the training data, the last expres-
sion is normalized by N to get,

L (y, f(x)) =
1

N

N∑
i=1

(yi − f(xi))
2 . (2.8)

Equation 2.8 is the Mean Square Error (MSE) loss employed for regression prob-
lems. For classification problems, the cross-entropy loss is obtained similarly.

In fluid dynamics, the joint probability distribution can refer to a fluid-flow exper-
iment (e.g., experimental or numerical) conducted under specific operating condi-
tions, such as initial and boundary conditions, as well as the Reynolds number. The
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training data consists of realizations of this experiment. The present work belongs to
the supervised learning class, where data is explicitly labeled by performing Direct
Numerical Simulations of multiple test cases to obtain pairs of inputs (i.e., velocity,
pressure gradients, etc.) and outputs (i.e., the wall shear stress). Chapter 4 covers
the generation of the database in detail. A WSS model has to predict the wall shear
stress as a continuum value. Therefore, a WSS model assisted by neural networks
falls into the category of regression problems. Neural networks, known as univer-
sal approximators, are selected to solve this regression problem using a very large
labeled dataset. These points are treated in chapters 3 and 5.

2.2.1 Multi-layer Perceptron

A neural network is a tool for developing new engineering models. To construct a
mathematical tool that can infer predictions in a production environment, one needs
a database, a model composed of parameters to be fitted, and an optimization pro-
cedure. The entire training process (i.e., including the definition of the network
architecture, handling data, specifying the loss function, and training the model) is
covered by considering the multi-layer perceptron (MLP), which is the simplest
deep neural network.

For the remainder of this section, the focus is set on regression problems as the main
goal is to develop a wall model that will capture the relationship between variables
extracted in the computational domain and the wall shear stress. The primary ob-
jective is not only to characterize the relationship between the inputs and outputs
but also to make predictions.

2.2.1.1 Architecture

An MLP (Fig.2.2) consists of several layers: input, hidden, and output layers. Each
layer has a number of neurons. The number of input neurons depends on the input
size, while the number of output neurons depends on the output size. The number
of neurons in a hidden layer is a hyperparameter set by the user or optimized by
Bayesian optimization.

As illustrated in Figure 2.2, each layer is connected to the next layer, and this
connection has a certain weight. The state transferred from one layer to the next is
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Figure 2.2: Sketch of an MLP with three hidden layers.
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→ h(0) = W (0)x . (2.9)

To establish a connection with a well-known model, a linear regression can be per-
formed by a neural network without hidden layers, meaning that the input layer
is directly connected to the output layer through an affine transformation. This
simplified architecture is based on the hypothesis that the relationship between the
input and output is linear. To overcome this limitation, one may deal with "a more
general class of functions" by incorporating one or more hidden layers. However,
stacking hidden layers on top of each other requires tracking and updating additional
parameters without improving the results. The composition of an affine function is
itself an affine function, meaning that the model remains a linear model.

To fully utilize the benefits of multilayer architecture, a non-linear activation func-
tion σ is applied to each hidden unit following the affine transformation. This
activation function is the key ingredient to bring the non-linearity required to re-
construct any function and to consider neural networks as universal approximators.
Activation functions are really central in deep learning. They should be differen-
tiable operators that add non-linearity. To summarize, incorporating non-linearities
helps to build expressive neural network architectures. Figure 2.3 presents four acti-
vation functions with their corresponding formulas. Note that ReLU, which stands
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for rectified linear unit, and its counterpart Leaky ReLU are piecewise linear and
are not differentiable at x = 0, where x represents the abscissa of the graph. By
default, the left-hand-side derivative is applied when the input is zero. The sigmoid
and the Tanh activation functions are both squashing functions because they squash
any input in the range (−∞,+∞) to a value between 0 and 1 (or −1 and 1).
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Figure 2.3: Activation functions and their formula.

Considering an activation function σ, the state h(k) at layer k can be written as,

h(k) = σ
(
W (k)h(k−1)

)
. (2.10)

Base on Equation 2.9 and the notation defined in Figure 2.2, the prediction of the
neural network ŷ is written as a function of the the input x, the weights w

(k)
ij and

the activation function as,

ŷ = f(x;W ) = W (3) σ

W (2) σ

W (1) σ
(
W (0)x

)︸ ︷︷ ︸
=h(0)


︸ ︷︷ ︸

=h(1)


︸ ︷︷ ︸

=h(2)
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No activation function is used in the last layer because a regression problem aims
at predicting a continuum of values. For classification problems, a softmax func-
tion is usually imposed at the output layer. Different activation functions can be
incorporated into the same neural network. Activation functions are not optimized
during the training process as the user defines them. Only the weights and bias are
parameters that are fitted.

2.2.1.2 Gradient descent

Training a neural network is nothing more than optimizing over a very large pa-
rameterized space. The model parameters w

(k)
i,j are fitted through an optimization

procedure based on the definition of an appropriate objective function which is a
measure of fitness. Such a concept has already been introduced as the loss function
in Section 2.2. The loss function is defined with respect to the model parameters
and depends upon the data. The learning process consists of minimizing the loss
evaluated on the training set over and over to get the "best" model parameter values.
For a regression problem, the loss function is the MSE and is given by Equation 2.8.
Thanks to the definition of the neural network, there is an exact evaluation of the
gradient of the loss with respect to each model parameter (∂L/∂wk

ij). The gradient
indicates the direction of the steepest slope to be followed to reach the minimum of
the loss: this optimization algorithm is the gradient descent (GD). The gradient is
evaluated on a subset of the training database for better convergence. This method
is called mini-batch stochastic gradient descent (SGD). Such a method visits the
samples in mini-batches (of size B) and updates the parameters using the following
rule:

Wt+1 = Wt − γgt where gt =
1

B

B∑
b=1

∇L (yb, f(xb;W )) , (2.11)

where γ is the learning rate, a hyperparameter which determines the step size (at
each epoch) in the optimization algorithm. The learning rate can be modified man-
ually or automatically to avoid getting stuck in local minima. However, as the
gradient landscape can be very complicated, convergence to a global minimum is
not guaranteed. The gradient of the loss is computed using backpropagation. The
chain rule is the main idea behind the backpropagation. The gradient is computed
from the output to the input layer in a reverse accumulation approach. This ap-
proach is cheaper than the forward accumulation because the output size is generally
smaller than the input size.
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2.2.1.3 Data splitting

The database is subdivided into three distinct sets: the training, validation, and
test sets. The construction of the database and its deep analysis using space-time
correlation are presented in Chapter 4.

The training set is used to fit the model parameters by backpropagation. Moreover,
the training set is subdivided into mini-batches of size B to apply the mini-batch
SGD defined by Eq. 2.11. The training set contains the data used to fit the learnable
parameters W .

The validation set contains data used to evaluate the performance of the current
parameters. This set is a part of the database that is not seen by the network (i.e.,
not used to fit the model parameters) but is used to monitor the training: (i) to
evaluate the loss and (ii) to check if the model is overfitting. Indeed, a model can
perform well on the training data, but there is no guarantee that it will do as well on
unseen data. In "good" training, the training and validation losses should be close
to each other and decrease with the number of epochs. However, at some point, the
validation loss will start to increase. At that point/epoch, the training is stopped:
this is called early stop. Beyond this point, the neural network overfits the data: the
model starts to get very close to the training data but does not generalize well. This
behavior should be avoided, otherwise, the network is unlikely to work properly in
production. Note that the validation set is also used to tune the hyperparameters.
Hyperparameters are external configuration variables such as the number of hidden
layers, the kernel size, the learning rate, and the activation function, to cite a few.

 (  (

Figure 2.4: Proper evaluation protocol with three sets of data: a training set to fit
the model parameters, a validation set to tune the hyperparameters of the model,
and a test set to evaluate the performance of the model.
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The test set is a completely different set that is neither used to train the model nor
to monitor the training. It is instead used to give an unbiased estimate of the fi-
nal tuned model performances. Figure 2.4 illustrates the proper evaluation protocol.

The a priori test (or offline evaluation) is performed in the same environment as
the training one, but the network is evaluated on the test set. In contrast, the a
posteriori test (or online evaluation) is when the model is actually implemented in
a solver and starts to make predictions and interact with the solver environment.

2.2.1.4 Training process

The entire training process is illustrated in Figure 2.5. The training process requires
a loss function (Eq. 2.8), a model (see Section 2.2.1.1), an optimization procedure
(or rule), and a database (see Section 2.2.1.3). The pseudocode reads as follows.
There are two loops, one over the number of epochs and one over the mini-batches
(of size B). One epoch corresponds to one entire cycle through the training data.
The learnable parameters W are updated on each mini-batch (xb, yb) using the rule
of Equation 2.11, where the predictions, used to evaluate the loss, are computed
based on the forward pass. For example, if the training data consists of 1,000 sam-
ples and that B = 100, then there will be 10 updates of the learnable parameters
for one epoch before moving on to the next.

Neural network
(or model)

Database

Training process
(or optimization)

Loss function

Update rule

Figure 2.5: Schematic of the entire training process, including the network architec-
ture, database, loss function definition, and optimization or training process.
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A few words about regularization The aim of a neural network is to learn how
to map the inputs onto the outputs (i.e., to learn mapping functions). The capacity
of a network corresponds to the range of the types of mapping functions that the
model can approximate/learn. The capacity is controlled by the hyperparameters of
the learning algorithm. For a polynomial fit, the model capacity is directly related
to the interpolant degree. For a neural network, these hyperparameters can be
the number of layers, neurons per layer, training iterations, and the regularization
terms. If the capacity is too small, the model will underfit the data. If the capacity
is too high, the model will overfit the data. To limit the overfitting, regularization
terms can be added to the loss function. The L2 regularization or weight decay is
applied to the learnable parameters W with a given coefficient λ and added to the
loss function. This term is now part of the optimization procedure. Weight decay
is a technique widely employed to regularize parametric machine learning models.

2.2.2 Convolutional Neural Network

Up to now, the only way to deal with rich structures such as two-dimensional im-
ages was to discard the spatial structure of the image by flattening it into a one-
dimensional vector before feeding it to an MLP (discussed in Section 2.2.1), as shown
in Figure 2.6. However, such an approach is unsatisfactory because the knowledge
that nearby pixels are typically related to each other is lost.

Figure 2.6: Images of the digit ’6’, translated vertically and horizontally and then
flattened to obtain the one-dimensional vectors plotted on the right.
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In Figure 2.6, the same digit ’6’ is translated vertically and horizontally and then
flattened to obtain the one-dimensional unstructured vector on the right. Although
the two images contain the same information, their flattened versions are not similar,
and if fed to an MLP, the prediction could change. An MLP is thus not invariant
to translation. Convolutional Neural Networks (CNNs) exploit spatial invariance
to learn useful representations with fewer parameters. Since convolutions can be
easily parallelized across GPUs and require fewer parameters than fully connected
architectures, CNNs are more computationally efficient.

Instead of applying a matrix-vector product, where each input entry is assigned a
different weight, a CNN performs a matrix-matrix dot product, where the coefficients
do not change from one input entry to another. In other words, a convolutional
layer applies the same linear transformation locally everywhere while preserving the
signal structure. For one-dimensional tensors, given an input vector x ∈ RK and a
convolutional kernel u ∈ Rk, the discrete convolution, denoted as x⃝∗ u, is a vector
of size K − k + 1, defined as,

(x⃝∗ u) [i] =
k−1∑
m=0

xm+ium .

Figure 2.7 embodies this operation on a 6× 4 image, using a kernel of size 2× 2.

Figure 2.7: Two-dimensional convolution layer with a kernel size of 2× 2.

Figure 2.8 shows the application of 3×3 convolutional kernels are applied to the dog
image. We can try to interpret what the filter does to the image. The first kernel
detects the edges of the dog while ignoring the background. The second kernel
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seems to detect the dog’s whiskers, which are highlighted in white. The third kernel
creates a negative of the original image. Kernels extract features from the images.
The more complex an image is, the more convolutional layers are required.

Figure 2.8: 3× 3 convolutional kernels are applied to a dog image; the value of the
kernel is specified on the top left.

A convolution layer has three additional hyperparameters.

• The padding specifies the number of extra fill "pixels" (or zeros) to be added
around the input signal edges, thereby increasing the effective size of the signal.

• The stride defines the step size when moving the kernel across the signal.

• The dilation modulates the expansion of the filter without increasing the num-
ber of parameters.

These three hyperparameters are explained, in detail in the PyTorch documenta-
tion (Paszke et al., 2019).

Each pixel is associated with one or multiple numerical values, depending on whether
it is a greyscale or color image. These numerical values are encoded as channels in
a CNN. For a color image, there will be three channels: one for red, one for green,
and one for blue. In the context of wall shear stress models, these input channels
are quantities such as the velocity and pressure fields extracted at the matching
location. The selection of these fields is of high importance. The input and output
need to be highly correlated for the network to detect an existing (non-)linear rela-
tionship. The selection of these inputs is discussed in Chapter 4.

Finally, the training procedure using PyTorch is similar to the one presented in
Section 2.2.1.4, where the parameters to be fitted are the convolutional layers kernels.
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2.3 Feature Selection

Prior to training the selected machine learning model on the collected data, it is
desirable to evaluate the relevance of the input variables with respect to the tar-
get variable. This step, known as feature selection, can reduce the computational
cost of the training and improve the model’s performance. In predictive model-
ing, databases may contain a large number of variables that can slow down the
development of the model and require a larger memory system. Furthermore, the
model’s performance may deteriorate when irrelevant (or redundant) input variables
are included in the training. When developing a predictive model, it is important
to perform feature selection, which aims to reduce the number of input variables.
Feature selection is also useful to improve the model interpretability, and to help in
scenarios with many features but few training examples (i.e., curse of dimensional-
ity).

Feature selection can be decomposed into (i) supervised and (ii) unsupervised meth-
ods. Supervised feature selection techniques make use of the target variable (e.g.,
to identify the irrelevant variable), while the unsupervised ones ignore the target
variables (e.g., methods that remove redundant variables using correlation). The
remainder of this section focuses on supervised methods.

As illustrated in Figure 2.9, the supervised approach can be further divided into the
wrapper, filter, and intrinsic methods.

Wrapper feature selection methods generate multiple models using all possible com-
binations of features and select the features that produce the best-performing model
based on a performance metric. The subsets are formed using greedy approaches:
forward selection or backward elimination. In the former, input features are added
one by one until performance no longer improves. In the latter, input features are
removed one by one until performance begins to deteriorate. One good example
of backward elimination is the Recursive Feature Elimination (RFE). Although the
wrapper method is computationally expensive, it is not concerned about the variable
type (i.e., numerical or categorial).

Filter feature selection methods employ statistical techniques to evaluate the rela-
tionship between the target variable and each input variable. The retained input
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variables are those with the "strongest" relationship. Even though these methods
are effective and fast, the choice of the statistical measures is highly dependent on
the type of input and output variables (e.g., numerical or categorial). The table in
Figure 2.9 lists the different statistical-based methods used to filter/select the input
features. Considering a regression problem with numerical input and output vari-
ables, correlation coefficients are widely employed. Pearson’s correlation coefficient
is used for linear correlations, while rank-based methods are used for non-linear cor-
relations. Since the statistical measures are computed one input at a time with the
target variable, they refer to univariate statistical measures. Therefore, the interac-
tion between input features is not considered.

Finally, intrinsic (or embedded) methods are machine learning algorithms that per-
form feature selection automatically during the learning process of the model. They
combine the qualities of the wrapper and filter methods to produce the best possible
subsets of features. These methods include penalization regression models such as
LASSO and decision trees.

 
 

 

 
 

 

 

 

Figure 2.9: Overview of Feature Selection Techniques.
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2.4 SHapley Additive exPlanations

Machine learning models are often described as “black-box ”, which makes their inter-
pretation difficult. Single metrics, such as accuracy, are insufficient for describing all
the necessary measures for most real-world applications. Therefore, Explainable ML
techniques are necessary to comprehend the main features that affect model output
and why a model makes a particular prediction. Roscher et al. (2020) distinguished
between transparency, interpretability, and explainability in the literature on ex-
plainable ML techniques. Transparency involves understanding the ML approach.
Interpretability is about the ML model together with data. Explainability involves
understanding both the model, the data, and human involvement.

Transparency If the model design and structure can be described and moti-
vated, then it is considered transparent.

Interpretability If we know what features the algorithm bases its decision
on, then the model is considered interpretable.

Explainability If the algorithm’s decision can be made consistent with con-
textual information, then the model is explainable.

Although various methods have been recently suggested (e.g., Saliency Maps, Ac-
tivation Maximization), it remains unclear how these techniques are related and
when to use one over another. Lundberg and Lee (2017) proposed the SHapley Ad-
ditive exPlanations (SHAP) values, rooted in cooperative game theory, as a unified
approach for interpreting model predictions. The SHAP values are the Shapley val-
ues of a conditional expectation function of the original model. The Shapley value
computation involves averaging the marginal contributions of each feature across all
potential feature permutations. This computation has to assess every possible com-
bination of features and determine the effect each feature has on the model prediction
when included in these combinations. A balanced and interpretable evaluation of
the importance of each feature in the model prediction is achieved by averaging the
contributions across all possible feature arrangements. To summarize, the concept
of SHAP values is to assign a specific value to each input feature, indicating its
contribution to a particular prediction. Although SHAP helps to understand how
individual features impact a model output, it does not assess the prediction quality.

The question is what is the average marginal contribution of a feature (AMC) to the
outcome? SHAP estimates Shapley values for single input features. Shapley values
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provide a statistic for the AMC of a feature. Let us assume that we have F features
and train an ML model with a real-valued outcome on every possible subset of those,
we get thus 2F models. To compute the AMC of the feature f , take all (2F − 1)
models trained without f and compute the difference between the outputs of those
models and the corresponding model with f added and average them appropriately.

The main question is, what is the average marginal contribution (AMC) of a feature
to the outcome? The Shapley values provide a statistic for the AMC of a feature,
and SHAP estimates the Shapley values for single input features. Considering F
features, we have to train 2F ML models (i.e., a model with a real-valued outcome),
one for every possible subset of those F features. The AMC of feature f is evaluated
as follows. The difference between the output of the (2F−1) models trained without
f and the corresponding model with f added is computed. These differences are
averaged appropriately.

Let us consider an example of an ML model with three features, denoted U, V, and
W. To evaluate the SHAP values of these three features, one would need to train
8 models with the following sets: ∅, U,V ,W ,UV ,UW , VW, UVW. The 8 models
and their outcomes are summarized in Table 2.1.

Table 2.1: Example of a model with three inputs features U, V, and W.

Models with/out U Models with/out V Models with/out W

In. ∅ V W VW ∅ U W UW ∅ U V UV
Out. 30 35 25 35 30 50 25 60 30 50 35 60

In. U UV UW UVW V UV VW UVW W UW VW UVW
Out. 50 60 60 50 35 60 35 50 25 60 35 50

Diff. 20 25 35 15 5 10 10 −10 −5 10 0 −10

To compute the SHAP value of feature U, the variation of the output while con-
sidering or not this feature as an input of the model is evaluated by computing the
difference between the model with entry U and the one with no entry at all (i.e., ∅).
Averaging is performed in a weighted manner: (i) the sum of all weights is one, and
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(ii) the sum of all weights is constant for models with a fixed number of features.
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From this simple example, one may conclude that the feature U has the largest Shap-
ley value. This result translates as "the AMC of U to the outcome is the largest".
Shapley values are generally only meaningful for the outputs of a single input data
point, i.e., Shapley values are only an instance-based statistic.

Note that the above process becomes very challenging and cost-effective as the num-
ber of features increases. However, Lundberg and Lee (2017) combined insights from
several additive feature attribution methods to get an approximation of the SHAP
values. The most notable algorithms developed to calculate SHAP values are Ker-
nelSHAP, TreeSHAP, and DeepSHAP.

SHAP values have three essential properties: efficiency, symmetry, and additivity.

Efficiency The sum of all SHAP values indicates the collective impact of the
model features on its prediction. SHAP values explain the model output by
quantifying how each feature deviates the prediction from the average.

Symmetry Two features with equal contribution to a prediction will have the
same SHAP values. This property guarantees fairness in assigning importance
to features.

Additivity To understand the combined effect of multiple features on the
model output, the joint contribution of several features to a prediction can be
evaluated by adding the corresponding SHAP values.

The SHAP values will be employed to interpret the data-driven wall shear stress
model trained over a separated flow in Chapter 8 to understand the relative impact
of the averaged pressure gradient compared to the velocity field as input feature.
SHAP values are evaluated using the SHAP package of Python that implements the
KernelSHAP algorithm.
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2.5 A few words about PyTorch

Among the available Deep Learning libraries, PyTorch is selected as the development
platform of our novel data-driven wall models. PyTorch is an open-source software
(machine learning framework), released under the modified BSD license, dedicated
to both research environment and production deployment. It is a GPU-accelerated
Python tensor computation package. It is designed to offer great flexibility and in-
crease the speed of implementation of deep neural networks. It is currently one of the
most popular libraries for AI researchers and practitioners worldwide, in academia
and industry. PyTorch is the popular choice for fast experimentation and prototyp-
ing. It is widely used for image recognition and language processing, for instance.
Its closest competitor is TensorFlow. They both have their pros and cons, but the
major difference between the two is that PyTorch creates a dynamic computational
graph behind the network, which makes it scalable to different dimensional inputs
and easy to debug. For reproducibility, the trainings are performed using PyTorch
version 1.12.1 with Python 3.10.4, numpy version 1.23.1, and CUDA 11.8.



Chapter 3
State of the art in wall modelling

T his chapter reviews both standard wall models (Section 3.2) and new data-
driven wall shear stress (WSS) models that have emerged in the last decades

(Section 3.3). Indeed, the scientific community has already started to investigate the
use of Machine Learning (ML) and Deep Learning (DL) techniques to address various
challenges in fluid dynamics, flow control, and optimization with (experimental and
numerical) data (Brunton et al., 2020; Duraisamy et al., 2019), and more recently,
in the development of wall models. However, before going into the details of the
existing wall models, the basic concepts of boundary layers are briefly reviewed in
Section 3.1. The chapter concludes with the definition of a list of implementation
constraints that will dictate the permissible architecture for the neural networks
(Section 3.5).

37
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3.1 Boundary layer nomenclature

When a flow passes an object at rest, the fluid is disturbed and forced to bypass it.
From a microscopic point of view, boundary layer flow is described by the interac-
tion between free molecules and the surface. The molecules closest to the wall are
subject to diffuse reflections with the solid wall, in which the molecules are reflected
randomly and isotropically. As a result, these molecules lose their momentum. The
molecules above them also lose momentum in their collisions with the molecules
closest to the surface, which then reduce the momentum of the molecules above
them, and so on (see left-hand graph in Figure 3.1). The development of this thin
layer, called the boundary layer, is directly related to the presence of the wall, which
has an impact up to a certain distance in the fluid. This explanation does not hold
for rarefied gas (i.e., the gas is not dense enough to ensure a high collision rate
between molecules).

Figure 3.1: Molecular versus continuum picture of the boundary layer, where y is
the wall-normal direction.

From a continuum point of view, molecules can be grouped into layers of fluid, as
shown in the right-hand diagram in Figure 3.1. As molecules exchange momentum,
the interaction between two layers of fluid is materialized by a force (i.e., the rate
of change of momentum). This force per unit area is called the shear stress and is
directly proportional to the velocity gradient,

τ = µ
∂u

∂y
, (3.1)
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where µ is the fluid dynamic viscosity. Under this continuum perspective, in the
near-wall region, the flow changes from zero (in the case of a no-slip boundary
condition for stationary objects) to the free-stream velocity u∞.

Figure 3.2: Laminar separation transition, extracted from Carlton (2019).

A boundary layer can be characterized by three different states: laminar, transi-
tional, and turbulent. A boundary layer is considered laminar if it is a smooth
and ordered flow that causes less skin friction drag than a turbulent boundary layer
which is viewed as a disordered flow containing chaotic flow features known as ed-
dies. Under certain conditions, the laminar boundary layer transitions to a turbulent
boundary layer, or vice versa, known respectively as a transition and relaminariza-
tion. Transition is a complicated mechanism, and even today, it is not yet fully
understood. The classification of transition is differentiated according to whether
the flows are attached or separated. For attached flows, there exist three main
types of transition. The natural transition occurs at relatively low free-stream
turbulence. The development of two-dimensional Tollmien-Schlichting instabilities
initiates the transition, followed by the rapid development of three-dimensional in-
stabilities leading to characteristic Λ-structures. These structures break down into
smaller vortices, which results in the appearance of turbulent spots. According to
linear stability theory, one or more modes of the system are continuously amplified.
The system is unconditionally unstable. The transient amplification occurs when
the eigenvectors of the system are ill-conditioned, and the system is said to be con-
ditionally unstable. This type of transition requires a certain level of perturbation
to trigger the turbulent boundary layer. Finally, the bypass transition, accord-
ing to Morkovin (1969), is caused by large disturbances in the external flow. This
transition is quite common in gas turbine engines at high Reynolds numbers. For
separated flows, the separated-flow transition or separation-induced tran-
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sition, as shown in Figure 3.2, occurs in the free shear layer above a separation
bubble. The laminar boundary layer, which is more sensitive to adverse pressure
gradients, separates to form a free-shear layer. This free shear layer may transition
and reattach further downstream as a turbulent boundary layer. Transition may
also occur during the reattachment.

As already mentioned in Chapter 1, a turbulent boundary layer can be, according
to the law-of-the-wall, decomposed in four regions: the viscous sublayer, the buffer
layer, the log-law region and the wake region. Figure 1.4 plots the mean velocity
profile in wall units u+ as a function of the wall-normal distance from the solid
surface in wall units y+. This scaling is known as the boundary layer inner scaling.
This scaling will be used throughout the thesis. The friction velocity uτ is one
fundamental parameter for the mathematical treatment of the boundary layer. It
is defined as uτ =

√
|τw|/ρ where τw is the wall shear stress (Eq. 3.1 evaluated at

y = 0, where y is the wall-normal direction) and ρ is the fluid density. Using this
velocity and the kinematic viscosity ν, the viscous length scale ν/uτ is obtained.
These two characteristic scales are the inner scaling of the boundary layer and they
non-dimensionalize the tangential velocity u and the wall distance y as

u+ =
u

uτ

and y+ =
yuτ

ν
. (3.2)

Under these scalings, self-similarity of the inner layer is observed. Another impor-
tant dimensionless number is the friction Reynolds number Reτ , which is also based
on the wall shear stress and is defined as Reτ = uτδ/ν, where δ is the bound-
ary layer thickness. For external flows, both laminar and turbulent boundary layers
grow as they move downstream (i.e., δ is thus a function of the streamwise direction).

The present study is mainly concerned with internal flows. However, the theory
of the boundary layer is comparable to that of external flows, with the exception
that the growth of the boundary layer is restricted in the wall-normal direction.
Additionally, this study concentrates on the separation of turbulent flow, disregard-
ing the concept of transition. The aim is to improve the understanding of how the
pressure gradient affects separation and how it can be integrated into a data-driven
WSS model.
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3.2 Standard wall-models

In essence, wall-modeled LES accurately solves the outer layer solution while mod-
eling the transport of momentum and heat transfer from the inner layer to the outer
layer. In wall shear stress (WSS) models, the streaks, quasi-streamwise vortices,
peaks of production and dissipation, and other dynamics of the inner layer are now
represented by a single vector (value): the (magnitude of the) wall-shear stress. Due
to the coarse mesh in the near-wall region, the standard no-slip boundary condition
cannot be applied. As mentioned earlier, on a coarse mesh, the estimation of the
velocity gradient will be incorrect, leading to an incorrect prediction of the velocity
profile and, hence, the growth dynamics of the boundary layer. Approaching the
wall, the velocity-fluctuation fields are characterized by smaller scales, and a coarse
mesh cannot resolve the fine structures present in this near-wall region. Therefore,
the wall model should act as a driver for boundary conditions on the wall shear stress.
The correct wall shear stress (or total shear) needs to be found directly at the wall
using the information available in the outer layer and the modeling of the inner layer.

The wall models operate under the assumption that applying the correct Neumann
wall boundary condition in the wall-parallel velocity components is necessary to ob-
tain an accurate outer layer solution. This assumption is justified for attached flows,
as a constant-stress layer exists near the wall (De Graaff and Eaton, 2000). This ex-
istence implies that imposing the correct wall stress guarantees the correct transport
of the streamwise momentum in the wall-normal direction. This is essential in the
overall momentum balance in the boundary layer. However, for pressure gradient
flows or separating flows, this argument does not hold as there is no equilibrium or
constant-stress layer.

Deardoff (1970) made the first attempt to implement a wall model by simulating
a channel at an infinite Reynolds number. A few years later, Schumann (1975) as
working on channel flows at finite Reynolds numbers established conditions that
directly link the velocity in the core to the wall shear stress components. In his ap-
proximated boundary condition, the mean stress was set equal to the given pressure
gradient. Grötzbach (1987) rather considered the logarithmic law from which the
mean stress was computed iteratively. He extended Schumann’s boundary condi-
tion to flow configurations where the pressure gradient was not known in advance.
Piomelli et al. (1989) introduced a downstream displacement to its model called
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the shifted boundary conditions, by requiring the wall shear stress to be correlated
with the instantaneous velocity. This enhancement was based on the inclination
of elongated structures near the wall studied by Rajagopalan and Antonia (1979).
Piomelli et al. (1989) also proposed the ejection model based on the observation
that the high-velocity fluid motion towards or away from the wall occurring during
sweep-eject events significantly affects the wall stress.

To overcome the assumption that the logarithmic law-of-the-wall only holds in the
mean, Mason and Callen (1986) focused on enforcing the logarithmic law locally
and instantaneously while imposing the alignment of the wall shear stress with the
outer horizontal velocity. According to their results, the validity of this assump-
tion depends on the size of the averaging volume. Werner and Wengle (1993) used a
power law to compute the local stress while Hoffmann and Benocci (1995) and Wang
(1999) integrated the boundary layer equations with an algebraic turbulence model.
However, Nicoud et al. (2001) noted that most models performed poorly at high
Reynolds numbers, even in channel flows. Instead, they used suboptimal control
theory to force the outer LES towards a desired mean velocity profile. To reduce
the computational cost of this method, tables of correlations between the outer ve-
locity and wall stress that accounted for numerical and SGS errors were generated.
They finally derived a wall model from linear stochastic estimation (LSE) that pro-
duced encouraging results up to Reτ 20,000. With the use of generalized additive
models (GAM) and nonlinear, nonparametric regression, Abel et al. (2006) general-
ized Schumann’s model, Piomelli et al.’s model, the ejection model, and the gradient
model. The authors analyzed the near-wall physics and discovered that the pressure
gradient had a strong influence in the viscous sublayer.

Most of the above methods relying on the law of the wall, which is valid for attached
flow at moderate pressure gradients only, are limited in their ability to handle com-
plex, unsteady and non-equilibrium flow features, including secondary flows and
separation. Moreover, pressure gradients and other effects relevant to separation
are not considered in these models. The Two-Layer Model (TLM) (Balaras et al.,
1996) and Detached Eddy Simulation (DES) (Spalart et al., 1997a) can be consid-
ered as two hybrid RANS/LES approach that attempt to address these issues. The
general feature of DES and its modification, delayed DES (DDES) (Spalart et al.,
2006), is that a large part of the attached boundary layer is treated by RANS, while
the separated flow regions are processed by LES. Nonetheless, the TLM and the
DES still have their own limitations. Although the TLM was used to numerically
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simulate square ducts, rotating channels, and backward-facing steps, to name a few,
the method still suffers from two problems: the log-layer mismatch and the resolved
Reynolds stresses inflow. Furthermore, the TLM still struggles to handle strong
pressure gradients and separation. Breuer et al. (2007) used the approach of artifi-
cial viscosity to build a simple analytical model if an appropriate definition of the
relative thickness of the viscous sublayer is obtained. Their analytical model was
compared to different variations of Werner-Wengle’s model on the two-dimensional
periodic hill at Reb = 10595 and encouraging results were obtained. Cadieux et al.
(2016) addressed the separation problem using an integral wall model for LES with
additional non-equilibrium terms. They obtained an analytically tractable integral
formulation and successfully applied it to a flat plate subjected to an adverse pres-
sure gradient. Krank et al. (2019) used a turbulent boundary layer velocity profile
model to enrich the Discontinuous Galerkin (DG) solution in the near-wall region.
This approach was successfully applied to channel and periodic hill flows. Although
much progress has been achieved in this field, most existing equilibrium wall mod-
els (Piomelli, 2008; Bose and Park, 2018) are still unable to predict flow separations
and reattachments.

All these models, and more generally all wall models, can be split into two categories
according to Larsson et al. (2016): the hybrid LES/RANS and the wall-stress mod-
els. In the first category, the LES is defined above a certain interface, y ≤ yin > 0,
explained in Section 3.2.1. For the second category, LES extends all the way down
to the wall at y = 0 (Section 3.2.2). We can also consider wall models devel-
oped and implemented for high-order methods. Most of the wall models have been
developed for finite volume methods but their transposition from one numerical dis-
cretization to another is not straightforward. Sometimes it is necessary to adapt the
formulation because of the coupling between the physical model of the wall and the
numerical method adopted. In her thesis, Frère (2018) discusses the implementation
in the code Argo-DG of the analytical wall shear stress model based on Reichardt’s
velocity profile and other models, such as the two-layer model (TLM) and the Gen-
eralized law-of-the-wall of Shih et al. (1999). These quasi-analytical wall models are
presented in Section 3.2.2. The WSS model based on Reichardt’s velocity profile is
one of the most commonly used wall models, especially in the industry, because it
is cheap to evaluate. In the same vein, one can mention the work of Krank et al.
(2019), who developed a novel approach to hybrid RANS/LES wall modeling based
on function enrichment. This new model was implemented in a high-order discon-
tinuous Galerkin scheme.
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For a more detailed literature review on wall models, the reader is referred to Piomelli
and Balaras (2002), Piomelli (2008), Larsson et al. (2016), Sagaut (2006), and Heinz
(2020).

3.2.1 Hybrid RANS/LES

The hybrid RANS/LES methods can be seen as a mixture of the equations govern-
ing the Reynolds-averaged (RANS) and spatially-filtered Navier-Stokes equations
(LES). The main idea is to modify the existing Reynolds-averaged closures to pro-
vide a scale-resolving capability in the computational domain where the grid resolu-
tion is sufficient to resolve the turbulent structures. These methods can be classified
into two sub-categories: the zonal methods, which maintain a fixed matching loca-
tion (i.e., hwm) during the grid-refinement to be able to reach a grid-converged state,
and the seamless methods, where the interface location depends on the grid and on
the solution. Both methods suffer from the log-layer mismatch. At the interface,
the mean velocity profile is not correctly maintained. This issue has been treated
by Piomelli et al. (2003), Davidson and Dahlström (2005) who introduced small-
scale forcing. Although the approach gives interesting results, the method presents
robustness issues. Another approach, proposed by Choi et al. (2009), is to adjust
the blending function between the LES and RANS eddy-viscosity.

3.2.1.1 Zonal methods

The two main classes are the non-equilibrium wall model (NEQWM) and its sim-
plified version, the equilibrium wall model (EQWM).

Non-equilibrium wall model (NEQWM) This method solves the unsteady
three-dimensional Navier-Stokes equations with RANS closures on a separated near-
wall mesh to provide the Neumann wall boundary condition (viscous stress and heat
flux) to the coarse LES. The kinematic non-penetration condition, un = 0, is main-
tained in the LES. The LES provides Dirichlet data, such as density, velocity, and
pressure, for the top boundary at the wall model layer. Figure 3.3 illustrates the
dynamics between the primal LES grid and the wall model layer with its own com-
putational domain. The Navier-Stokes equations have the same complexity as in the
primal LES grid but with some RANS parameterization for the turbulence within
the wall model. Due to the large tangential spacing of the inner-layer wall-model
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Figure 3.3: Illustration of the dynamics between the Primal LES Grid and the
unsteady RANS separated near-wall mesh presented by Park and Moin (2016).

grid, we can only consider the average effect of near-wall vortices.

The Two-layer Model of Balaras et al. (1996), which applies to incompressible tur-
bulent boundary layers, is a widely used NEQWM. The full TLM equations are
derived by performing a Reynolds average of the NS equations and assuming that
the boundary layer height is small compared to the characteristic length of the flow.
This latter assumption makes it possible to neglect a few terms and to obtain a
constant pressure through the boundary layer height. It yields to,

∂

∂x2

(
(ν + νt)

∂ui

∂x2

)
=

1

ρ

∂p

∂xi

+
∂ui

∂t
+

∂

∂xj

(uiuj)︸ ︷︷ ︸
=Fi

, for i = 1, 3 and j = 1, 2, 3

(3.3)
where νt is the eddy viscosity (found by using RANS-type models which may vary
among authors), p is the pressure field, t is the time, (x1, x2, x3) are the streamwise,
wall-normal, and spanwise direction, and (u1, u2, u3) are the corresponding velocity
components. Full details of the equations can be found in Kawai and Larsson (2013).

Equilibrium wall model (EQWM) The simplified TLM is obtained by neglect-
ing the time dependence and the convective terms while conserving the pressure
gradient (i.e., Fi =

1
ρ

∂p
∂xi

). However, despite this simplification, solving the problem
remains more complex than analytical laws because of the need to resolve an ODE
on the auxiliary grid. This wall model yields satisfactory results in various cases,
such as channel flow, backward step, and squared duct. However, there are ongoing
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discussions regarding the balance between the convective terms and the pressure
gradient in the inner layer above the viscous sublayer. According to Larsson et al.
(2016), the convective terms can be large and of the same order of magnitude as
the pressure gradient. Therefore, in non-equilibrium cases, it is recommended to use
the TLM under equilibrium conditions (i.e., Fi = 0) instead of solely disregarding
the convective terms. Thus, the EQWM is the simplified version of the NEQWM
obtained by neglecting the unsteady convection and pressure gradient terms. It has
the effect of removing the tangential derivatives, leading to a significant simplifica-
tion. The wall-normal viscous diffusion is not neglected. This model automatically
assumes that the total shear stress is in equilibrium with the wall-shear stress by
assuming the constant-stress layer. This strong assumption raises a concerning ques-
tion: could this model potentially fail catastrophically? In wmLES, the LES domain
covers about 80% of the boundary layer. In this part of the boundary layer, non-
equilibrium effects are captured by the LES. The instantaneous information from
this accurate outer layer is then fed into the wall model, whether or not the wall
model accounts for non-equilibrium effects. It is possible that the wmLES may still
be able to handle some non-equilibrium effects even though it was not originally
intended to do so. The model also assumes that the wall shear force is aligned
with the LES velocity at the matching location. This assumption can completely
break down in many realistic flows, including in turbomachinery, where there is a
misalignment of the velocity with the wall stress direction.

3.2.1.2 Detached Eddy Simulation

Spalart et al. (1997b) introduced a new hybrid RANS/LES approach called De-
tached Eddy Simulation (DES) to address high Reynolds number, massively sep-
arated flows. In DES, a RANS closure is used near solid walls where the flow is
attached, while, for separated flow regions, a grid resolution-dependent SGS closure
is employed. Roughly speaking, DES treats the boundary layers with RANS and the
massively separated regions with LES. DES was originally developed for external
aerodynamic flows (Spalart, 2009). DES encapsulates the general mechanics of wall
modeling where RANS logic is applied close to the wall (i.e., in the region where
the wall distance is much smaller than the boundary layer thickness but very large
in wall units). The first attempt to use DES for wall modeling was made by Nikitin
et al. (2000), who placed the switching location between RANS and LES in the loga-
rithmic region. Nikitin et al. (2000) were the first to report that the DES also suffers
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from the log-layer mismatch (LLM), which is a deviation of the velocity profile that
leads to the underestimation of about 15% of the skin friction.

To overcome this deficiency, the improved delayed DES (IDDES) was proposed
by Shur et al. (2008). They proposed to create a unified set of formulas for both
natural DDES and wmLES applications. This would allow for the automatic treat-
ment of different regions within a single simulation over a complex geometry. The
delayed DES (DDES) incorporates molecular and turbulent viscosity information
into the switching mechanism, delaying this switching in boundary layers to handle
ambiguous grids more effectively than the original method. However, IDDES, in its
primal version, did not eliminate LLM as reported by Peterson and Candler (2011),
who used IDDES as a wmLES for supersonic boundary layer flows.

3.2.2 Wall-stress models

These models are all based on the physical principle of momentum conservation in
a nearly parallel shear flow. These wall models can be split into two categories:
mathematics-based models (control, filters, etc.), and physics-based models (gener-
ally RANS-like models). Hybrid RANS/LES can be expensive and complex. The
idea is to come back to simpler models but still take into account the non-equilibrium
effects. With these new models, there are no more ODE or PDE to solve in space,
thus no wall-model grid is required. In this section, three (physics-based) wall-stress
models are presented: the integral wall model, the dynamic wall slip-velocity model,
and the quasi-analytical wall model.

Integral wall models This method comes from the integration in the wall-normal
direction of the x-momentum equation. The wall-shear stress is obtained as a func-
tion of the external pressure gradient and the direction of the streamwise momentum
in the normal direction at the matching location hwm,

τw = (µ+ µt)
∂u
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− ∂Lx
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,

where, p is the pressure, ρ is the density, and Lx =
∫ hwm

0
ρudy and Lxx =

∫ hwm

0
ρu2dy

are two unknown terms because the velocity inside the boundary layer is unknown.
The introduction of modeling assumptions on the inner layer scaling leads to the
definition of the lifted virtual-wall model (Cheng et al., 2015). A temporal ODE
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governing the wall shear stress is derived from the vertically-integrated momentum
equation, by assuming a local-inner-layer scaling based on wall variables. In the
model developed by Yang et al. (2015), the inner layer velocity scaling is approx-
imated, and an analytical expression is assumed for it. They further integrate a
linear perturbation to the log-law to model the advection and the pressure gradient
more accurately. This modeling introduces five unknowns. The model consists of
five non-linear equations to be solved. For more complex flows on a smooth wall, the
number of unknowns rises to nine. Their model was tested over the wall-mounted
three-dimensional cube at Reynolds 3850. The flow over the cube is well predicted,
better than with a standard analytical model.

Dynamic wall slip-velocity model This model developed by Bose and Moin
(2014) is free from the RANS legacy or RANS component that all the other models
have. This model answers the question: what boundary condition do the filtered
scales satisfy at the wall? The key component of their approach is the use of a
specific differential filter of Germano (1986),

ϕ− ∂

∂xk

(
α
∂ϕ

∂xk

)
= ϕ α(x) = 0 for x ∈ ∂Ω, (3.4)

where α is a parameter of the filter. Due to its analytical expression, the evolution
of the raw data ϕ and its filtered version ϕ can be examined when approaching the
boundary. By expanding the expression of the filter (Eq. 3.4) and evaluating it at
the wall, Bose and Moin (2014) obtained a Robin boundary condition,
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In Eq. 3.5, the term ∂α/∂n is strongly related to the filter width. In a wall-resolved
LES where a no-slip velocity is imposed at the wall, the filter width tends to zero
at the wall and we are left with ui|w ≈ ui|w = 0. In a wall-modeled LES, the filter
width is finite and since the term (1) is of order one, we end up with a Robin (or
mixed) boundary condition that an under-resolved LES should satisfy at the wall,

ui|w − C∆w
∂ui

∂n

∣∣∣
w
= ui|w = 0 ,

where C∆w is the slip-length. This constant is dynamically determined using the
Germano identity.
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Quasi analytical wall models Quasi analytical wall models are derived from the
boundary layer equations which are simplified according to the following assump-
tions: incompressible, steady, two-dimensional flows, and no pressure gradient. From
these assumptions, the logarithmic law-of-the-wall valid in the near-wall turbulent
region is obtained. This law can directly predict the wall shear stress given the
velocity at a wall-normal position, called the matching location or the wall-modeled
height (hwm). However, this location is very constrained by the validity of the law
across the boundary layer. A smoothing or blending procedure between the viscous
sublayer and log region is required to remove this constraint and obtained a more
robust numerical implementation. Several authors such as Schlichting and Gersten
(2017) or Spalding (1961), proposed this smoothing. For instance, the Reichardt’s
law-of-the-wall is given by:
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κ
log(1 + κ y+) +D

(
1− exp
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11

)
− y+
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exp

(
−y+

3

))
, (3.6)

where D = C − 1/κ log(κ), κ = 0.38, and C = 4.1, which are the most recent
constant suggested by Österlund et al. (2000) allowing for the best match with
DNS. The advantage of these wall models is that they are easy to implement. The
computational cost associated with their evaluation is low. They are based on
the theory of a boundary layer subjected to a constant edge velocity ue(x). This
hypothesis can be restrictive in the case of pressure gradients. In this case, the
velocity ue(x) is no longer constant. The boundary layer can be accelerated in
a favorable pressure gradient or decelerated in an adverse pressure gradient. The
pressure gradient and the velocity are determined by the outer flow and depend
on the Reynolds number, the blade geometry, and the angle of attack. This quasi-
analytical law was implemented in Argo-DG during the thesis of Frère (2018) and
validated on the channel flow at various friction Reynolds numbers (Frère et al.,
2017) and tested on the NACA4412 configuration (Frère et al., 2018) at Re =1.6×106

where a discrepancy with the wrLES was observed due to the inherent modeling
assumptions cited previously. She highlighted that capturing the adverse pressure
gradient is a significant challenge in wall modeling since the latter required taking
momentum flux into account.
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3.2.3 Summary

Table 3.1 summarizes the different standard wall models presented in the previous
sections.

Table 3.1: Summary of the different wall model classes.

Hybrid RANS/LES Wall-stress models

Two-layer
zonal models

Detached
Eddy Simula-
tion

Integral wall
model

Wall-slip ve-
locity model

Quasi-
analytical
wall models

τw is obtained
from RANS
solved on
a separated
near-wall
mesh (e.g.,
NEQWM and
EQWM)

Major part of
the attached
BL is treated
using RANS,
while LES is
only utilized
in the sepa-
rated flow re-
gions

Use the
vertically
integrated
momentum
equation for
determining
the wall-shear
stress

Robin bound-
ary condition
of the LES
equation us-
ing a differen-
tial filter

Based on al-
gebraic mod-
els
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3.3 Data-driven wall models

With the recent advances in computational power, the emergence of TPUs (Tensor
Process Units), combined with the exponential generation and accumulation of
high-quality data, it is now possible to train more and more deep neural networks
that, for example, help generate new engineering models. Neural Networks (NNs)
of at least three layers are at the core of Deep Learning (DL) techniques, which is
itself a subset of Machine Learning (ML). A NN is mainly a black box composed
of thousands of parameters that can learn complex relations between its inputs and
outputs and automatically detect features through data assimilation. The first neu-
ral network was designed by F. Rosenblatt in 1957. Over time, significant efforts
have been dedicated to train neural networks efficiently and create new architectures
that are tailored to specific tasks. In the last decade, the fluid mechanics community
has progressively used ML and DL techniques for dimensionality reduction, closure
(e.g., RANS closures and wall models) and subgrid-scale (SGS) models, flow con-
trol, uncertainty quantification and optimization with (experimental or numerical)
data (Duraisamy et al., 2019; Brunton et al., 2020; Garnier et al., 2021; Sharma
et al., 2023; Lino et al., 2023). Data-driven wall models have emerged to comple-
ment existing wall shear stress models, reviewed in Section 3.2, by attempting to
address their weaknesses.

Yang et al. (2019) developed a physics-informed data-driven wall model for the chan-
nel flows by training MLPs on filtered DNS data of the channel flow at a friction
Reynolds number of 1000. They inject physical insights into the input data via
a scaling inspired by the vertically integrated thin-boundary-layer equations and
the eddy population density scaling. They argue that their scaling allows a less
aggressive extrapolation to simulate the channel at Reτ = 1010. Radhakrishnan
et al. (2021) focused on a wall-shear stress model for channel flows using Gradient
Boosted decision trees (XGBoost). Two-channel flows composed the database: one
at Reτ = 180 and one at Reτ = 1,000. This database was then supplemented by
a set of synthetically generated data obtained by rescaling the velocity field using
the viscosity ν and the half-height of the channel δ. They tested three sets of fea-
tures (i.e., set of input/output pairs): (i) primitive, (ii) scale-invariant, and (iii)
dimensionless features. Their model does not directly predict the wall shear stress
but the friction velocity instead. This choice may not be the best for separated
flows. For separated flows, the wall shear stress tends to zero and therefore the
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friction velocity uτ tends to infinity or to an undefined value. The set (iii) gives the
best performances, and the obtained model was tested a posteriori on the channel
at Reτ = 2,005 and the flow over a wall-mounted hump. Their model performs
correctly on the channel and is as good as the equilibrium wall model (EQWM).
Regarding the more complex (the wall-mounted hump) case, their ML model and
the EQWM fail to predict the streamwise velocity and stress profiles. Jamaat and
Hattori (2023) a priori assess the performance of convolutional neural networks for
predicting the wall shear stress in channel flows. The database consists of filtered
DNS data at four friction Reynolds numbers. The input data set is selected based on
an analysis of the thin boundary layer equation combined with the evaluation of the
correlation coefficient between the wall shear stress predicted by the CNN and the
one obtained from the filtered DNS data. The model predicted the wall shear stress
with high correlation coefficients but for very small h+

wm values, which makes the
model unsuitable for real configurations. Moreover, this non-local approach cannot
be easily generalized to real geometries. A better idea would be to use local 2D
patches.

These wall shear stress models target the channel flow configuration and attempt
to equal or outperform the standard law-of-the-wall. Recent research also aims to
overcome the existing weaknesses of standard wall models (e.g., strong adverse pres-
sure gradients, separation, ...) using ML and DL techniques. Zhou et al. (2021)
targets the turbulent separation by training a feed-forward neural network on the
DNS of multiple geometries of the periodic hill (i.e., modification of the streamwise
length). Although they obtained satisfactory a priori results, the a posteriori test
fails completely in predicting the mean velocity profile on the nominal geometry at
Reb = 10,595. The work of Lozano-Durán and Bae (2021) is based on the hypothesis
that any complex flow can be decomposed as a non-linear combination of simpler
flows, called building-block flows. They developed a wall-flux-based wall model for
LES using a self-critical machine-learning approach which was successfully trained
on DNS data (e.g., flow over a flat plate, in a channel, in a turbulent duct, or sep-
arated flow at various Reynolds numbers). However, when applied to the NASA
Juncture Flow, the model fails to predict the separation correctly. The lack of sep-
arated flows in the training data may be the source of this failure.

Dupuy et al. (2023a) focuses on data-driven wall models for separated flows by train-
ing a multi-layer perceptron (MLP) on filtered and sampled (to the LES formalism
of Leonard) DNS data of two turbulent channel flows and the three-dimensional
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diffuser of Stanford. They made their model: Mach number invariant, Galilean
invariant, and rotationally invariant. They showed that increasing the spatial infor-
mation (i.e., the size of the input stencil) helps to discriminate between separated
and non-separated flow regions. The model is tested a posteriori on the backward
step, which is a geometry with flow separation from a geometric discontinuity. The
model performs better than the standard law of the wall, but there is still a mispre-
diction in the recirculation bubble. Dupuy et al. (2023b) continued their work on
developing new wall shear stress (WSS) models using DL techniques for separated
flows. They addressed the problem using graph neural networks (GNN) which are
considered efficient tools for encoding unstructured data (e.g., data extracted from
an unstructured mesh). The DNS data of three channel flows, a three-dimensional
diffuser, a backward-facing step, an adverse pressure gradient test case, and a NACA
blade at two angles of incidence were filtered onto coarser meshes, i.e., representative
of LES meshes. In addition to be Mach number invariant, Galilean invariant, and
rotationally invariant (Dupuy et al., 2023a), the model is also orthogonal invariant,
equivariant under reflection, and independent of the coordinate system. The authors
observed that N ≥ 3 message passing steps[1] are necessary in order to correctly pre-
dict wall shear stress and, hence, discriminate among the various flow configurations.
This observation is consistent with the analysis of space-time correlations (Boxho
et al., 2022). The backward-facing step is simulated using their GNN-WSS model.
Although the predictions are improved by increasing the message passing steps, the
reattachment location is still underestimated. Moreover, the assumption used in the
present shear-stress paradigm saying that the wall shear stress vector is aligned with
the tangential velocity is unrealistic at the reattachment location, which may lead
to a significant misprediction of this location. Finally, they applied their model to
the NACA blade at 7◦ angle of incidence. The model shows a clear improvement in
reducing the WSS prediction compared to the standard law-of-the-wall.

Unlike many other papers on data-driven wall models, Lee et al. (2023) took a differ-
ent direction in defining the input data for the model. According to the authors, the
input variable extracted from the law-of-the-wall can lead to poor performance when
the configuration features complex flow physics. To bypass this observation, they
employed the Fukagata-Iwamoto-Kasagi (FIK) identity to predict the skin friction
coefficient coupled with an Artificial Neural Network (ANN). FIK can be employed

1Neural Message Passing is an important concept in Graph Neural Networks that enables in-
formation exchange and aggregation among nodes in a graph. It allows model dependencies and
interactions in graph data to be taken into account.
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to estimate skin friction in complex flows. However, this identity leads to a mis-
prediction of skin friction in wmLES due to the lack of near-wall flow contribution.
The authors used ANN to reconstruct skin friction in the absence of near-wall in-
formation. The generalizability of this technique is questionable because the FIK
identity decomposition depends on the flow physics. A posteriori, the mean velocity
profile agrees well with DNS results at the lowest Reτ . At the higher Reynolds num-
ber, a log-layer mismatch is observed at y+ < 300. This mismatch becomes even
more pronounced when the mesh is coarsened. The model is also applied to the
separated turbulent boundary layer flow in a periodic domain where the upper wall
is subjected to blowing and suction. The model shows relatively good agreement
regarding the separation and reattachment points compared to the DNS reference.

Zhideng et al. (2023) trained an MLP on DNS data of the two-dimensional periodic
hill and synthetic data to predict the two-wall parallel components of the wall shear
stress. The synthetic data are extracted from the law-of-the-wall for a large set
of friction Reynolds numbers and wall-normal heights. The a priori test shows a
clear benefit in the wall shear stress prediction for the periodic hill and synthetic
data compared to the training on the periodic hill data alone. A priori, the model
generalizes to two slight variations of the baseline geometry at Reb = 10,595. The
model captures the rapid change of friction coefficient amplitude on the lower wall,
which is even more significant in the shorter domain. A posteriori, only the channel
flows (Reτ = 103 to 1.2× 108) are simulated with the data-driven wall model. They
showed that as a standard wall model, the behavior of a data-driven wall model is
also influenced by the subgrid scale models.

The above WSS models are developed using decision trees or neural networks (e.g.,
MLP, CNN, and GNN). There is another subset of machine learning: reinforce-
ment learning (RL). It is one of the three basic machine learning paradigms, along
with supervised learning and unsupervised learning. Bae and Koumoutsakos (2022)
adopted RL, initially used for flow control, to develop a wall model for zero-pressure
gradient turbulent boundary layers, mainly channel and flat plates. RL is a different
approach than standard ML and DL techniques. With RL, the neural network is
trained in the wmLES environment (also called the production environment). The
model is, therefore, not just a wall model but also compensates for the numeri-
cal errors. The inputs/outputs are nondimensionalized with the viscosity and the
modeled friction velocity at the previous time step, and the reward is based on the
existence of a log-layer near the wall. The model is then successfully tested on
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multiple channel flows and a flat plate. RL has then been adopted to develop new
wall models for separated flows in Zhou et al. (2022). Instead of directly modeling
the wall shear stress, which appears to have a serious drawback, according to the
authors (i.e., a directional inconsistency between the predicted direction of the wall
shear stress and the direction of velocity at a given height affects the size of the
recirculation bubble), the model predicts the eddy-viscosity as the boundary con-
dition. Their inputs are the instantaneous wall-parallel velocity, the wall-normal
location of the agent[2], and the turbulence strain rate, which are nondimension-
alized with uτ,p proposed by Duprat et al. (2011). Their agents are trained on a
low Reynolds number flow over the two-dimensional periodic hills and then applied
to higher Reynolds numbers. A reasonable agreement with the wrLES results is
observed. There remains the question of the ability of such a model to extrapolate
to other flow configurations, such as a 3D diffuser.

3.4 Positioning of the present research work

The present research aims at exploiting the approximation capabilities of deep neural
networks (DNNs), described first by Hornik (1991), to establish a more general
model for the complex relationship between instantaneous flow fields, geometrical
parameters, and wall shear stress using DNS or wrLES databases. In the data-driven
wall models reviewed, the statistical notion of the turbulent wall shear stress is never
addressed. All these WSS models are treated as a regression problem using the Mean
Square Error (MSE) loss. However, most of the NNs trained with the MSE makes
the hypothesis that the underlying distribution is a Gaussian with a fixed variance.
Consequently, many authors find that the prediction has less variance than the
actual or filtered DNS values. In our work, we aim to account for the statistics of
the wall shear stress by predicting the probability distribution instead of a point
estimate. This statistical notion is even more crucial for separated flows, as stated
by Zhou et al. (2022). In the separation vicinity, the wall shear stress has a large
variance, which is rarely captured by standard neural networks. For this purpose,
a Mixture Density Network (MDN) is trained to predict K Gaussian distributions,
each characterized by a mean and a standard deviation. To the authors’ knowledge,
this work is the first attempt at creating a statistics-based wall shear stress model.

2An agent is the learner and the decision maker of a reinforcement learning model. It intercats
with its environement and takes actions based on a current state and reward.
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3.5 Wall shear stress model requirements

The targeted application is wall shear stress modeling, where the predicted wall shear
stress is imposed as a boundary condition. A wall model aims to model the near-wall
physics to reduce the computational cost of high Reynolds number configurations.
Therefore, the wall model should be inexpensive to evaluate and, at the same time,
easy to implement in a flow solver. The implementation in the flow solver Argo-DG,
developed at Cenaero, is further discussed in Section 5.3.2. The selection of the neu-
ral network and the input features is dictated by the physics and design constraints
(or limitations) prescribed for developing new wall models in high-order flow solvers.

The first constraint is to create an instantaneous model, where the prediction of
the wall shear stress at time t solely relies on the flow quantities extracted in the
computational domain at the exact same time step t. This restriction eliminates the
need for storing flow history, which can be expensive (in high-order flow solvers).
This constraint could be relaxed to a few time steps to allow for time correlation.

The second constraint is to produce a model that is local, meaning it should only
use the immediate surroundings of the prediction point to infer the wall shear stress.
When using neural networks, this constraint is restrictive. Indeed, in a brute force
approach, the network can be fed with all the data available at time t to infer the
wall shear stress. However, this approach would require a large amount of communi-
cation between partitions (i.e., MPI ranks) and large storage in highly scalable flow
solvers. Therefore, there is a balance to find between the implementation constraints
and the model accuracy.

The model should perform local predictions. This third constraint is directly re-
lated to the previous one. One might ask why the wall shear stress is not predicted
globally, i.e., on the entire solid wall. Firstly, this approach is not generalizable to
other configurations. Secondly, it will require many communications to send the
predictions to each quadrature point (see Section 5.3.2). The wall shear stress is
not predicted on a small batch because we will face some discontinuities at the in-
terfaces. Therefore, the wall shear stress is predicted at each position on the surface.

The fourth constraint is related to the wall model robustness. Most wall models
predict the magnitude of the wall shear stress and then align it with the velocity



3.5. Wall shear stress model requirements 57

extracted at the matching location (hwm). To avoid this manipulation, the model
should explicitly predict the two wall-parallel components of the wall shear stress.
This last constraint is of importance for skewed and separated boundary layers.

The fifth constraint is that the model must be independent of the matching lo-
cation or the wall-model height. The wall model should be also invariant to the
coordinate system, rotationally invariant, Mach number invariant, and Galilean in-
variant, as stated in the work of Dupuy et al. (2023a). The Mach number invariance
has not been tested as the test cases have a low Mach number and are nearly in-
compressible.





Chapter 4
Analysis of space-time corre-
lations in representative tur-

bulent flow configurations

T his chapter is based on the paper "Analysis of space-time correlation to sup-
port the development of wall-modeled LES" published in Flow, Turbulence and

Combustion (Boxho et al., 2022).

In this chapter, the generation of databases using a high-order flow solver (Sec-
tion 5.3.1) and its analysis using space-time correlations (Section 4.1.1) for new wall
model development assisted by neural networks are discussed. The preprocessing of
this database, such as cleaning and non-dimensionalization are not presented in the
present chapter. These steps are covered in detail in Chapter 5.

Database generation is critical to correctly train the data-driven WSS model and
will determine its capability to discriminate between different flow physics. The dif-
ficulty is to identify which test cases are the most representative of the complexity
of a fluid flow, which may include a laminar or turbulent boundary layer, transition,
shock, and separation. The long-term goal may be to develop a model that can
discriminate between a wide variety of flow behaviors. As a starting point, this the-
sis focuses on wall models for the fully turbulent separation phenomenon. For this
purpose, the database is composed of two test cases, which include both turbulent
boundary layers (at equilibrium and subjected to moderate adverse pressure gradi-
ent) and separated regions. These test cases are the turbulent channel flow and the
two-dimensional periodic hill. The former is analyzed in Section 4.2, and the latter
is studied in Section 4.3.

In Sections 4.2.3 and 4.3.4, the analytical wall shear stress model based on the
Reichardt’s velocity profile (which is abreviated as AWSSR) is evaluated on the
instantaneous wrLES data of both cases to observe the deviation from the true wall
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shear stress. This study aims to investigate the existing weaknesses of a specific
analytical WSS model and derive guidelines for new wall models. This particular
WSS model (i.e., AWSSR) is selected for comparison because it was implemented
in the high-order flow solver Argo-DG during the thesis of Frère (2018).

4.1 Method and parameters

As mentioned, the wall models for separated flows using deep neural networks should
be instantaneous and local. To enforce locality, feature selection (described in Sec-
tion 2.3) is applied to reduce the problem dimensionality and remove irrelevant and
redundant features from the dataset. In the supervised methods, the filter feature
selection methods are considered. Although they use univariate statistical measures
that do not consider the interaction between the input features, they are fast and
can provide insights into the physical problem under study. The idea is to select in-
put/output pairs that are (highly) correlated to ensure that the model will detect a
possible non-linear relationship during the training process. Therefore, two types of
correlations are considered: Pearson correlation and distance correlation, and eval-
uated on two test cases: a turbulent channel flow and the two-dimensional periodic
hill. It is important to recall that correlation is not causality. This approach may
seem counter-intuitive because, in fluid dynamics, we are sometimes more interested
in causality than in correlation.

The correlations evaluated in the two test cases aim to identify the size of the input
stencil. Although analytical WSS models can account for a streamwise displacement,
most of them extract the velocity at a single wall-modeled height. Therefore, the
extension of this idea to more points in space and time is investigated for other
flow physics (i.e., separated flow). The two correlation formula are presented in
Section 4.1.1, while Section 4.1.2 introduces the parameters of each test case.

4.1.1 Space-time correlations

Although turbulent flows are described by deterministic equations and often have
statistically stationary solutions, they appear to be highly disorganized and unpre-
dictable in their exact behavior, as discussed in Section 2.1. Consequently, any
turbulent flow quantity can be decomposed into a mean and fluctuations that (may)
vary in space and time. The flow behavior can be further characterized by search-
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ing for relationships (i.e., linear and non-linear) between the velocity, the pressure
gradient, and the wall shear stress in space and time. Moreover, this analysis of
space-time correlations will help to define the input of our data-driven wall model.
These correlations are initially examined on a well-known geometry: a turbulent
channel flow. The analysis is then extended to a more complex flow physics involv-
ing separation and reattachment from a curved wall: the two-dimensional periodic
hill. This geometry is divided into the upper and lower solid wall. The lower wall
presents a massive separation that generates a free shear layer that reattaches fur-
ther downstream. This free-shear layer creates a contraction in the domain which
affects the pressure gradient on the upper wall as well as the skin friction.

The standard Pearson correlation (Edelmann et al., 2021) is the most popular cor-
relation coefficient. A correlation coefficient is a single number that condensates
the strength of the dependence. Pearson correlation measures the strength of linear
dependencies between random variables. If two random variables are independent,
the correlation coefficient is zero. However, the reverse implication is false. This
drawback can be avoided by using alternative correlation coefficients, such as the
distance correlation coefficient, proposed by Székely et al. (2007).

Pearson correlation. Pearson correlation is extended to handle space shift δξ (see
Figure 4.13) and time delay δt as follows

R(δt, δξ) =
Et,z [u(x+ (δξ)êξ, t0 + δt)τw(x, t0)]√

Et,z [u2(x, t0)]
√

Et,z [τ 2w(x, t0)]
, (4.1)

where x is the tuple of coordinates (ξ, η, z) (as defined in Figure 4.13) and êξ is
the unit vector in the ξ-direction. The fluctuations of tangential velocity and wall
shear stress taken in the wall parallel direction are u and τw, respectively. In both
cases, the spanwise direction is periodic and homogeneous. Moreover, the data are
extracted once a statistically converged simulation is obtained. Therefore, the cor-
relations can be accumulated along the spanwise direction and in time. Note that
the forcing term used to drive the simulation is extracted from the pressure gradi-
ents. In the remainder of this chapter, the velocity (or pressure gradients) will refer
to the spatial variations of the temporal fluctuations of the velocity (or the spatial
variations of the temporal fluctuations of pressure gradient).

Distance correlation. To account for space displacement and time delay, a similar
exercise is applied to the sample distance correlation. Assuming that X = u(x +
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δξ, t0+δt), Y = τw(x, t0) are two realizations of size n, the sample distance covariance
measured at (δξ, δt) is defined as

dCor(X, Y ) =
dCov(X, Y )√

dVar2(X) dVar2(Y )
, (4.2)

where dCov(X, Y ) is the distance covariance between X and Y computed as

dCov2
n(X, Y ) =

1

n2

n∑
j=1

n∑
k=1

Aj,kBj,k . (4.3)

In this last expression, Aj,k and Bj,k are two matrices of size n×n. The matrix Aj,k

is computed as Aj,k := aj,k − aj. − a.k + a.. where aj. is the jth row mean, a.k is the
kth column mean and a.. is the grand mean of the distance matrix. aj,k = ∥Xj −
Xk∥, j, k = 1, 2, · · · , n is the distance matrix of X, where ∥.∥ denotes the Euclidean
norm. The matrices bj,k and Bj,k are evaluated in the same way by replacing X
with Y in the above definitions. Finally, the sample distance variance is defined as:
dVar2(X) := dCov2

n(X,X) = 1
n2

∑
k,l A

2
k,l. The brute force implementation of the

distance correlation has a quadratic complexity O(n2). Chaudhuri and Hu (2019)
proposed a reduced algorithm complexity of O (n log(n)), which is implemented for
this study.

4.1.2 Parameters

As mentioned above, the main objective is to detect high correlations between the
wall shear stress, which is the output of our novel data-driven WSS model, and
volume fields (e.g., velocity, and pressure gradients). Therefore, Pearson and dis-
tance correlations are evaluated on two distinct test cases: a turbulent channel at
Reτ = 950 and the two solid walls of the periodic hill at Reb = 10, 595. Corre-
lations in the streamwise (or spanwise periodic) wall-parallel direction provide two
parameters for the establishment of a new data-driven wall model: a time delay δt
and a space displacement δξ (or δz). These two parameters are scaled differently,
depending on the test case. For the channel flow (Section 4.2), the scaling is the
known wall unit normalization, assimilated to the subscript +. For the periodic hill
(Section 4.3), the scaling uses a length scale h (i.e., the hill height) and a velocity
scale ub (i.e., the bulk velocity). Table 4.1 lists all the possible correlations. Among
all these correlations, only significant correlations are examined.
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Table 4.1: List of all combinations (and notation used in the present chapter) of
correlations between velocity (or pressure gradients) and wall shear stress, where,
for instance, U0T0 stands for the correlation (distance or Pearson) between the
velocity component uξ and the wall shear stress component τw,ξ.

Wall shear stress Velocity Pressure gradients

uξ uη uz
∂p
∂ξ

∂p
∂η

∂p
∂z

τw,ξ U0T0 U1T0 U2T0 P0T0 P1T0 P2T0

τw,z U0T2 U1T2 U2T2 P0T2 P1T2 P2T2

Unless otherwise stated, contours at 85% are drawn as thin black lines to highlight
the domain of high correlation, noted D, for fair comparison between the channel
and the periodic hill. White dashed lines in correlation maps are drawn to highlight
the presence of anti-correlations. These contours are defined as:

C(f(δt, δξ)) = αmax (|f(δt, δξ)|) where f(δt, δξ) =

{
R(δt, δξ)

dCov(δt, δξ) ,
(4.4)

where α = 0.85, R, and dCov are given by the equations 4.1, and 4.2, respectively.
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4.2 Channel flow configuration

The space-time correlations are first evaluated on a turbulent channel flow at Reτ =
950 (TC950). The geometry and the flow statistics acquired with Argo-DG are
presented in Section 4.2.1. Instantaneous snapshots of velocity, pressure gradi-
ents, and wall shear stress are interpolated at regular time intervals on structured
probes. These data are then used to evaluate Pearson and distance correlations
(Section 4.2.2) for different time delays and space shifts.

Since the boundary layers of a channel flow are fully turbulent, attached, and at
equilibrium, existing wall models work well. In many wall models (Schumann, 1975;
Grötzbach, 1987), the prediction of τw is performed with the velocity extracted
above the prediction point at a given wall modeled height. In the work of Piomelli
et al. (1989), the authors accounted for the correlation by extracting the velocity
downstream along a given structure. Therefore, as a preliminary consideration, the
correlations should have a slight space-time lag, which may depend on the height at
which the correlation is evaluated.

The assumptions about the channel boundary layer (i.e., fully turbulent, attached,
and at equilibrium) are valid on average but may be invalid instantaneously. The
AWSSR is evaluated a priori on the channel at different heights, and the predictions
are compared with the wrLES wall shear stress in Section 4.2.3. The variance of the
wrLES τw is expected to be higher than the variance of the predictions due to local
instability and instantaneous effects.

4.2.1 Flow statistics

A channel flow can be seen as two infinite plates separated by a height 2δ (Hoyas and
Jimenez, 2008), where δ is the half height or the boundary layer thickness. These
infinite plates are numerically encoded as periodic and homogeneous in the stream-
wise and spanwise directions. The domain sizes in these directions are Lx/δ = 2π
and Lz/δ = π, respectively. A uniform pressure gradient (i.e., the forcing term)
drives the flow. For fair comparisons with the incompressible flow references, the
Mach number is set to a low value of M = 0.1. The mesh resolution is compara-
ble to a wrLES: ∆x+ ≃ 90 and ∆z+ ≃ 46, where the superscript + denotes the
wall unit normalization. The effective resolution is ∆x+ ≃ 30 and ∆z+ ≃ 15 for
Lagrange polynomials of order p = 3. The first grid cell has an effective resolution



4.2. Channel flow configuration 65

of ∆y+ ≃ 1 on average. To move forward in time, an implicit integration scheme
is used to overcome the restrictive acoustic-induced CFL condition in the near-wall
region, where a very small y+ is required to get a good wrLES. The convective CFL
is kept at about 0.3 to ensure the proper resolution of the turbulence-related time
structures. The statistics have been accumulated for about 13, 870 t+, after evacuat-
ing the numerical transient, where t+ is defined as t u2

τ/ν. This dimensionless time
corresponds to ∼ 46 flow-through times (tc), defined as t ub/Lx, where ub is the bulk
velocity.

Figure 4.1 shows the mean velocity profile and Reynolds stresses in wall units. The
mean velocity profile is almost perfectly superimposed on the DNS reference of Hoyas
and Jimenez (2008) (in gray), with a good agreement in the near-wall region (Fig-
ure 4.1a). The covariance between u and v (Figure 4.1b) is a straight line, as
expected for wall-bounded flows. However, the two curves diverge slightly for larger
y+ because the two frictional Reynolds numbers are not identical. The profile ob-
tained with Argo-DG (in black) crosses the horizontal axis at y+ ≃ 957. Concerning
the RMS velocity profiles, a fair agreement with the DNS reference of Hoyas and
Jimenez (2008) is obtained in the near-wall region (Figure 4.1d) while in the center
of the channel, the fluctuations u′+ are lower than the reference (Figure 4.1c).

4.2.2 Space-time correlations

The analysis is divided into the streamwise and spanwise directions. First, Pearson
and distance correlations are evaluated along the streamwise direction. Although
this direction is homogeneous and periodic, it is aligned with the convection velocity.
The correlation is expected to be non-symmetric in the (δξ, δt)-frame. Secondly,
the correlations are calculated in the spanwise direction. On average, there is no
convection in this direction. Therefore, the correlation should be symmetric.

4.2.2.1 Pearson and distance correlations in the streamwise direction

The channel at Reτ = 950 has almost no log-layer. According to Marusic et al.
(2013), the log-layer bounds are y+ = 92.5 and y+ = 142.5. Therefore, the correla-
tions are computed at a wall-normal distance of y+ ≃ 100, which is still close enough
to the wall to feel its interaction but large enough to be in the logarithmic layer.
The convergence of the statistics is accelerated by averaging multiple realizations of
the correlations in the streamwise and spanwise directions.
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Figure 4.1: Standard flow statistics of the channel flow at Reτ = 950, compared to
the results of Hoyas and Jimenez (2008).

For a channel flow, the most significant correlations are U0T0 and U1T0 (as defined
in Table 4.1). No correlation has been detected between one of the component of
the velocity field and the spanwise wall-shear stress. Besides, no relation has been
found between the pressure gradients and the wall shear stress at y+ = 100. The
work of Abel et al. (2006) confirms this observation. He only found a correlation
between the pressure gradient and the wall shear stress in the viscous sublayer. This
correlation quickly decreases with the increase of the wall distance. Consequently,
it is mainly the velocity field that triggers the wall shear stress.
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(a) Pearson correlation U0T0. (b) Pearson correlation U1T0.

(c) Distance correlation U0T0. (d) Distance correlation U1T0.

Figure 4.2: Space-time correlations in the streamwise direction evaluated on the
channel at Reτ = 950 at a wall-normal distance of y+ = 100, the local averaged
streamwise velocity u+ is drawn in dotted line.

Correlation U0T0. At zero displacement, the correlation shows a time delay of
−30δt+. Due to convection, this delay corresponds to a dimensionless downstream
displacement of about 450. This result is consistent with experiments which give
δξ+ = |y+|cot(13◦) ≃ 433 for large distances from the wall (Piomelli and Balaras,
2002). The correlation aligns with the mean streamwise velocity u+, which corre-
sponds to the local convection (see Figure 4.2a). A similar domain of high correlation
D is obtained with the distance correlation (see Figure 4.2c). Its low amplitude may
indicate a non-linear relation between uξ and τw,ξ. To conclude, if local information
is used, a time delay needs to be considered for uξ. While, if instantaneous infor-
mation is used, a space displacement has to be considered due to the streamwise
convection of the near-wall structures. The correlation has some repetition (or pe-
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riodicity) in time. The spacing between two peaks is approximately 320δt+, which
corresponds to one flow-through time (∼ 1.04tc). This pattern is probably due to
the imposed periodicity in the streamwise direction. This repetition is also visible
for Pearson and distance correlation and the correlation U1T0.

Correlation U1T0. An anti-correlation between τw,ξ and uη is found in Fig-
ure 4.2b. When the wall-normal velocity increases, the wall shear stress decreases
and the friction reduces. This observation is consistent with flow ejections acting on
the wall by reducing the wall shear stress as explained by Piomelli et al. (1989) in
their ejection model. Since the distance correlation is based on a measurement of a
distance in the L2-norm (Eq. 4.2), it does not indicate an anticorrelation. Nonethe-
less, a similar domain of high correlation is obtained. The correlation is also shifted
in time and space and aligns with the local convection velocity. This example shows
how Pearson correlations and distance correlations complement each other. With
these observations, similar wall models’ best practices are drawn.
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Figure 4.3: Evolution of the time correlation (for δξ = 0) as going away from the
solid wall (a) in wall units and (b) in % of the hill height h.

Wall-normal evolution of U0T0. The correlation U0T0 shows a time delay at
y+ = 100 but how this delay is evolving as moving closer to the wall. Figure 4.3a
shows the wall-normal evolution of U0T0 without any streamwise displacement (i.e.,
δξ = 0). Close to the wall (i.e., at the beginning of the buffer layer), the two
variables are highly correlated with almost no time delay δt+ ≃ 0. With increasing
distance from the wall, the correlation decreases in amplitude and the peak is shifted
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in δt < 0. According to Colella and Keith (2003), the time delay increases with
distance from the wall due to the existence of an angle of inclination of structures
convected along the wall. The decay of these convected structures is at the origin of
the amplitude decrease. Figure 4.3b shows the same graph but for the upper wall
of the periodic hill. Although this test case has not yet been presented, a similar
behavior is observed. The correlation U0T0 decreases in amplitude and is shifted in
δt < 0 as moving away from a wall that is subjected to a moderate pressure gradient
(see Section 4.3.2).

4.2.2.2 Pearson correlations in the spanwise direction

In the spanwise direction, the two significant correlations at y+ = 100 are also U0T0
and U1T0. Other correlations such as U2T0, U0T2, and U1T2 are visible at lower
y+ values (not shown here for brevity) and become insignificant at the current wall-
normal height. These cross correlation are symmetric around δz = 0 with two lobes
(one positive and one negative).

(a) Pearson correlation U0T0. (b) Pearson correlation U1T0.

Figure 4.4: Space-time correlations in the spanwise direction evaluated on the chan-
nel at Reτ = 950 for a wall-normal distance of y+ = 100.

Correlations U0T0 and U1T0. The spanwise wall shear stress τw,z is zero on
average since there is neither a skewed boundary layer nor a spanwise pressure gra-
dient in the channel flow. Therefore, the domain D in Figure 4.4a is narrow and
symmetric w.r.t. δ+z = 0. The correlation map U0T0 extends over twenty wall
units in space and shows a time delay equivalent to that observed in the streamwise
correlations. The correlation map U1T0 shown in Figure 4.4b has the same char-
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acteristics as U0T0. However, an anticorrelation is observed as for the streamwise
correlation U1T0.

4.2.2.3 Correlations on the channel: conclusion

Analysis of space-time correlations has revealed that the streamwise velocity has
a strong impact on the wall shear stress, while the wall-normal velocity is anti-
correlated with τw,ξ as explained by ejection/sweep theory. Both the streamwise and
spanwise correlations present a time delay (δt+ < 0) that increases with distance
from the wall. This observation is consistent with the increase in the mean velocity,
when moving away from the wall, that convects structures across the domain. This
phenomenon promotes the inclination of structures as explained by Colella and Keith
(2003) and earlier by Rajagopalan and Antonia (1979). The local mean velocity
links the time delay and the space displacement, as shown in Figure 4.5. According
to this observation, the wall model can remain local if a time delay is taken into
account. This procedure holds if the numerical time step of the wall model δtwmLES

is smaller than the delay measured in these correlations. Otherwise, a downstream
shift can compensate for the delay. This method has already been used in the shifted
boundary condition model of Piomelli et al. (1989).

Figure 4.5: Explanation of the inclination of the correlations and the time delay
experienced when moving away from the wall.

4.2.3 Deviation from the WSS model based on Reichardt’s
velocity profile

In previous sections, the link between potential neural network entries and the wall
shear stress is evaluated in space and time. On the one hand, this analysis gives
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information about the input stencil size: how many points in the streamwise (or
spanwise) direction should be considered? On the other hand, it also provides infor-
mation about which input/output pairs are relevant for the network. As mentioned,
feature selection using filter methods (based on univariate statistical measures) is
performed on a turbulent channel flow. If the distance correlation does not reveal
any relationship, the network will have some difficulties finding one either.

Another interesting analysis is to observe how good the a priori predictions of a
quasi-analytical WSS model are, compared to the exact wrLES wall shear stress.
For this analysis, the WSS model based on Reichardt’s velocity profile (AWSSR)
is considered. This model and its implementation in Argo-DG have been validated
during the thesis of Frère (2018). On average, the model can retrieve the mean
velocity profile and the Reynolds stresses. The quality of the predictions is not only
evaluated based on averages but also on their distribution and statistical moments,
such as variance and skewness.

(a) wrLES. (b) a priori Reichardt wmLES.

Figure 4.6: Distribution of the instantaneous scaled streamwise velocity u+ as a
function of the scaled distance to the wall y+ for TC950.

This section assesses the deviation between the wall shear stress predicted by the
AWSSR and that obtained from a wrLES. Figure 4.6 shows the distribution of the
instantaneous scaled streamwise velocity u+ as a function of the scaled wall-normal
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distance y+ for the turbulent channel at Reτ = 950 (TC950). The instantaneous
wrLES data (Fig. 4.6a) are scattered around Reichardt’s profile indicating that the
equilibrium assumption does not hold instantaneously. Figure 4.6b is obtained by
applying the AWSSR a priori based on the available wrLES data at six wall-normal
heights. The wall shear stress prediction can be seen as the projection of the instan-
taneous data onto Reichardt’s profile. The second (i.e., the standard deviation) and
third (i.e., the skewness) statistical moments are evaluated for the reference data
and the corresponding predictions made at h+

wm = 100, which is within the limits
of the logarithmic layer according to Marusic et al. (2013) for Reτ = 950. The
standard deviation of τw,wrLES is 0.42 while the standard deviation predicted by
Reichardt drops to 0.19. Due to convection along the streamwise direction, τw,wrLES

has a positive skewness of 1.02. However, the predictions exhibit no skewness at
that wall-normal height. By extracting data closer to the wall at h+

wm = 10, the
skewness of the prediction rises to a value of 0.52.

Figure 4.7: Non-dimensional deviation between the wrLES and predicted wall shear
stress using a Reichardt model for TC950, where uτ is the mean friction velocity.

Figure 4.7 shows the deviation between the wrLES wall shear stress and the pre-
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Figure 4.8: Instantaneous a priori prediction of the AWSSR for a velocity field
extracted at h+

wm = 100 compared to the wrLES WSS in the streamwise direction.

diction from the AWSSR. The shaded area indicates the probability of having a
deviation greater than 0.2 and smaller than −0.2. These probabilities are 0.274 and
0.345, respectively. The latter probability is higher because of the non-negligible
skewness of τw,wrLES, which is not present in Reichardt’s predictions. One would
expect the skewness of the velocity field to be transferred to the predicted wall shear
stress via the non-linear relationship. However, the velocity field at y+ = 100 has
a negative skewness of amplitude 0.2. The logarithm reduces the skewness even
further. Such a non-linear transformation is used to reduce the skewness of a given
random variable.

Figure 4.7 shows the distribution of the deviation, but says nothing about the spatial
correlations of the predicted wall shear stress (i.e. the two-dimensional structures
of the wall shear stress). An instantaneous a priori predicted wall shear stress is
shown in Figure 4.8 and compared with the wrLES WSS at a given time step t.
The wrLES WSS structures are long streaks stretched in the streamwise direction,
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whereas they are narrow in the spanwise direction. The predicted structures are
much larger than the wrLES structures. The model transfers the two-dimensional
structures of the velocity field to the predicted wall shear stress.

The AWSSR has proven its ability to retrieve the mean flow behavior for decades
now. Nevertheless, the generated predictions do not have the statistical moments
of the instantaneous wrLES data. This capability of retrieving the variance is even
more important for separated flows as discussed in Section 4.3. As noted by Zhou
et al. (2022), the imposition of the mean is not sufficient, for separated flow. For
this reason, new wall models are developed using networks capable of predicting a
distribution rather than pointwise estimates. These types of neural networks are
called Mixture Density Networks (MDN) and are presented in Section 5.1.1.

4.3 Periodic hill flow configuration

The two-dimensional periodic hill can be divided into the upper wall (Section 4.3.2),
which behaves similarly to a channel wall, except that it is subjected to a moderate
pressure gradient, and the lower wall (Section 4.3.3), which is characterized by a
massive separation from the curved wall followed by a reattachment to the flat
lower part of the wall. Therefore, instead of having a single flow physics to analyze,
two walls with different physics are available. Note, however, that the two walls
are connected. Indeed, if the separation is not properly captured by the simulation,
it will affect the free shear layer and the reattachment location. The former will
modify the pressure gradient and thus, the friction on the upper wall.

Figure 4.9: Two-dimensional periodic hill geometry illustrated as a succession of
hills in the streamwise direction; the periodic length is Lx/h, where h is the hill
height.
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4.3.1 Flow statistics

Figure 4.9 shows the two-dimensional periodic hill geometry. This test case con-
sists of a succession of streamwise constrictions separated by a distance Lx/h = 9.0,
where h is the hill height. The numerical representation of this test case is the part
from one hilltop to the next, marked by the dashed line in Figure 4.9. To numerically
force the infinite number of hills, a periodic condition is imposed in the streamwise
direction. Since the test case is three-dimensional, the spanwise direction is also a
periodic direction, with a size fixed to Lz/h = 4.50. The periodic hill geometry has
been carefully designed to allow the flow to separate from the hill crest, reattach
to the flat lower surface, and reaccelerate before the next hill. The flow presents a
massive recirculation bubble, bounded by the free shear layer generated by the sep-
aration. This test case is part of the ERCOFTAC KB wiki and has been extensively
studied both experimentally by Song and Eaton (2004), and numerically (Gloerfelt
and Cinnella, 2015; Breuer et al., 2009). The reader is referred to Fröhlich et al.
(2005) for a description of the 3D extruded geometry and a detailed discussion of
the flow behavior.

The flow is simulated at a bulk Mach number of Mb = 0.1, and statistical data is
accumulated over more than 38 flow-through times after evacuating the numerical
transient for 45 flow-through times. A constant pressure gradient drives the flow,
and its magnitude is controlled to match the bulk Reynolds number (Reb = ubh

ν
,

where ub is the bulk velocity) using the procedure proposed by Benocci and Pinelli
(1990), with minor modifications introduced by Carton de Wiart et al. (2015) to
account for compressibility effects.

The unstructured mesh shown in Figure 4.10a is composed of 445,005 hexahedra.
A refinement is applied from the hilltop to the average reattachment location to
better capture the separation and resolve the free shear layer. The separation is
very sensitive to the mesh resolution and, as mentioned above, a misprediction of
the separation will affect the entire domain. The near-wall region (representing 10%
of the hill height) on the upper and lower walls is refined with a boundary layer
structured mesh using a geometric progression to impose a first cell size of y+ = 1.
Figure 4.10b shows the averaged grid refinements in the streamwise, wall-normal,
and spanwise directions. The simulation is performed with Lagrangian interpolants
of order p = 3 to give a total of 28 million degrees of freedom.
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Considering the bulk velocity ub, the spatial resolution of the mesh near the sep-
aration, the polynomial order of the DG method, and the imposed time step, the
convective CFL is kept at about 0.3, which ensures that turbulence-related time
structures are properly resolved for the computation of space-time correlations.

(a) Unstructured 3D-extruded mesh, used for the simulation of the two-dimensional peri-
odic hill at Reb = 10, 595.

(b) Averaged grid refinements (∆x+,∆y+,∆z+) in wall units computed from the averaged
wall shear stress.

Figure 4.10: Information relative to the mesh refinement.

The standard statistical data (i.e., mean velocity profile, Reynolds stresses, and fric-
tion coefficient) are compared with Gloerfelt and Cinnella (2015) and Breuer et al.
(2009). The friction coefficient on the lower wall, defined as τw/(0.5ρu

2
b), is shown

in Figure 4.11. The overall behavior is similar to both references. At the hill crest,
a tiny precursory separation is observed just before the main separation. This pre-
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Figure 4.11: Friction coefficient Cf measured on the bottom surface of the periodic
hill at Reb = 10, 595, compared to Gloerfelt and Cinnella (2015), and Temmerman
et al. (2003); the red stars indicates the experimental averaged spearation and reat-
tachment locations.

separation is explained by a high-pressure gradient region that emerges downstream
of a low-pressure region located at x/h ≃ 8.75. Such a region produces eddies of high
kinetic energy that are convected downstream and influence the separation process
on the curved wall (Breuer et al., 2007). No pre-separation is visible for Gloerfelt
and Cinnella (2015) (i.e., the dash-dotted line), and the flow is already separated
at x/h ≃ 0.05, while for Temmerman et al. (2003) (i.e., the dashed line), a large
friction peak is noticed just before the main separation. The average position of the
separation depends on the mesh and the flow solver, but also on the accumulation
period due to the random location of the instantaneous separation point. After the
separation (x/h ≃ 0.2), the friction coefficient is negative until the reattachment.
Around x/h ≃ 2.0, the flow slows down and then accelerates again due to the change
in curvature. The deceleration/acceleration process is slightly shifted for the dash-
dotted Cf curve. Regarding the reattachment location, the three curves reattach at
different locations: x/h ≃ 4.40, x/h ≃ 4.75, and x/h ≃ 4.32 for our wrLES, Breuer
et al. (2009), and Gloerfelt and Cinnella (2015), respectively. It shows how sensi-
tive the reattachment is to the numerical environment (i.e., flow solver, mesh, and
turbulence models, to name but a few). After the reattachment, the flow recovers
and starts to accelerate. At the windward base of the hill, the tree curves indicate
a small separation around x/h = 7.0. Note that Gloerfelt and Cinnella (2015) pre-



78
Chapter 4. Analysis of space-time correlations in representative turbulent flow

configurations

dicts this second separation slightly upstream of the other two. This discrepancy
with Gloerfelt and Cinnella (2015) is probably due to the geometric definition of
the lower wall and, more specifically, the connection between the bottom flat part
and the hill. This second separation is followed by a strong acceleration along the
ascending part of the hill. Our friction peak is slightly shifted downstream compared
to the two references.

When examining the mean velocity profiles and the Reynolds stresses, a good agree-
ment with respect to the DNS references is observed (see Figure 4.12). Due to earlier
reattachment in Breuer et al. (2009), a slight descrepancy is observed between our
mean velocity profile and their at the lower wall between x/h = 4.0 and x/h = 7.0.
In Figure 4.12b, the Reynolds stress component of Gloerfelt and Cinnella (2015)
is slightly different from ours between x/h = 2.0 and x/h = 5.0. The peak of u′

indicates the free shear layer center. Due to the latter reattachment of Gloerfelt
and Cinnella (2015), the free shear layer that drives the reciculation bubble, carries
more energy.

4.3.2 Analysis of space-time correlations on the top wall of
the periodic hill

Although the upper wall of the periodic hill (PHU10595) geometry is similar to a
channel wall in that it has no curvature, the streamwise direction is not homogeneous
due to strong fluctuations in the pressure gradient caused by the complex dynam-
ics occurring at the lower solid wall (i.e., separation, reattachment, unsteady free
shear layer, recirculation bubble, turbulence recycling due to the periodicity assump-
tion). Therefore, the correlations are computed for three regions: the separation,
the reattachment, and the converging region (see blue diamonds in Figure 4.13). All
correlations are computed at a wall-normal distance of 0.1h for the upper and lower
walls. For the upper wall, such a wall-normal height corresponds to values between
50 and 70 in wall units. For the lower wall, it corresponds to values between 20 and
40 for x/h ∈ [0, 8] and 100 along the converging part. Due to the curvature, each
field is projected onto the local reference frame defined by the geometry. Therefore,
for the rest of this chapter, curvilinear coordinates defined in Figure 4.13 are utilized.
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(b) Reynolds stress component.

Figure 4.12: Flow statistics of the periodic hill at Reb = 10, 595, compared to Glo-
erfelt and Cinnella (2015), and Breuer et al. (2009).

4.3.2.1 Streamwise Pearson and distance correlations

The significant correlations between the velocity and τw are U0T0, U1T0, and U2T2.
In this section, correlations with the pressure gradients are also examined. Among
all possible correlations, only P0T0 and P2T2 stand out in our analysis. Even
though the streamwise direction is not homogeneous, these correlations are similar
in shape and amplitude at the three locations (see blue diamonds in Figure 4.13).
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Figure 4.13: Probe positions at a given wall-normal height (η/h ≃ 0.1) (upper and
lower wall) and location of the observation points along the lower wall (red square)
and the upper wall (blue diamond).

Therefore, they are only presented for x/h ≃ 0. However, the amplitude is different
at x/h ≃ 4.20, with a decrease in magnitude of 10 to 20%.

Correlations U0T0, U1T0, and U2T2. Figure 4.14a and 4.14b show the Pear-
son and distance correlations U0T0, U1T0, and U2T2 (from left to right) at x/h ≃ 0.
The amplitude of the three Pearson correlations is around 0.20-0.25. For distance
correlation, U1T0 and U2T2 have approximately the same amplitude of about 0.22-
0.26, whereas U0T0 has a higher amplitude, probably indicating a different prob-
abilistic distribution. The domain of high correlation D is similar for each type of
correlation. At each location, the correlation aligns with the local mean streamwise
velocity u/ub and is shifted by about −0.5δt ub/h. While U0T0 and U1T0 remain
in the left quadrant, U2T2 spreads over 2.5 time units in the upper right quadrant
(Figure 4.14a(c)). This part of the correlation cannot be exploited due to causality.

Correlations P0T0 and P2T2 Pearson and distance correlations for P0T0 and
P2T2 are shown in Figure 4.15 at x/h ≃ 4.20. This location is preferred for il-
lustration as it has the highest correlation value for P0T0. The amplitude of the
P2T2 correlation (Pearson and distance) barely varies from one location to another,
indicating a weak variation of the spanwise pressure gradient. Pearson correlations
of P0T0 and P2T2 indicate an anti-correlation around 15%. This anti-correlation
is not surprising and is consistent with the theory of favorable and adverse pressure
gradients in boundary layers. The magnitude of the two distance correlations is
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(a) Pearson correlation.

(b) Distance correlation.

Figure 4.14: Space-time correlation (a): U0T0, (b): U1T0, and (c): U2T2 in the
streamwise direction evaluated at x/h ≃ 0 on the upper solid wall of the periodic
hill at Reb = 10, 595.

different, indicating distinct distributions, whereas Pearson suggests only a weak
correlation. Compared to correlations with the velocity, the high domain of cor-
relation D is narrower. Nevertheless, it still aligns with the local mean velocity.
Although the domain D is barely shifted in space and time. This observation indi-
cates that the pressure gradient structures are not convected similarly to the velocity
structures when moving away from the wall. The time delay and space displacement
can be neglected. Consequently, instantaneous and local information are enough to
characterize the relation between the pressure gradients and the corresponding shear
stresses. The correlations show some oscillations, but they are only observed in the
streamwise, not in the spanwise direction as shown in Section 4.3.2.2.
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Figure 4.15: Space-time correlations P0T0 and P2T2 in the streamwise direction
evaluated at x/h ≃ 4.2 on the upper wall of the periodic hill at Reb = 10, 595.

4.3.2.2 Spanwise Pearson correlations

Even though the geometry is 2D-extruded, the massive separation at x/h ≃ 0.19 on
the lower solid wall and the reattachment of the free shear layer further downstream
at x/h ≃ 4.21 generate hairpin vortices that are three-dimensional structures. For
this reason, correlations along the spanwise direction are also evaluated to quantify
this three-dimensional phenomenon. In contrast to the channel, where only two
spanwise correlations were significant, on the upper wall, five non-negligible corre-
lations with the velocity are detected: U0T0, U1T0, U0T2, U1T2, and U2T2. The
lower height in wall units for the periodic hill may reveal more correlations than for
the channel since the extraction height is smaller (i.e., closer to the wall). The cor-
relations are similar in shape and amplitude for the three regions (see Figure 4.13),
except at x/h ≃ 4.20 where a drop of 30% and 50% is measured in the amplitude
of the correlation U1T0 and U2T2, respectively. Therefore, for the sake of brevity,
only correlations at x/h ≃ 0 are provided. Moreover, distance correlations with
the velocity field are not shown because they give a similar domain D with rele-
vant magnitudes of 15% to 30%. The correlations U0T0 and U1T0 (Figure 4.16a
and 4.16b) are similar to those detected in the channel, but no anti-correlation is
detected for U1T0. Correlation U2T2 has the same amplitude and time delay as
U0T0 and U1T0 but spreads over more spanwise points. The two cross-correlations
present two lobes, one negative and one positive, of equal amplitude, arranged sym-
metrically around the horizontal axis.

Correlations with pressure gradients are also analyzed in the spanwise direction, and
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Figure 4.16: Space-time correlations U0T0, U1T0, U0T2, U1T2, and U2T2 (from
left to right) in the spanwise direction evaluated at x/h ≃ 9.0 along the upper wall
of the periodic hill at Reb = 10, 595.

only two correlations are relevant: P1T2 and P2T2 (not shown here for the sake of
brevity and clarity). However, their domain D is so narrow that instantaneous and
local information is sufficient to characterize their relationship with the spanwise
wall shear stress.

4.3.2.3 Correlations on the upper wall: conclusion

Although this wall is subject to pressure fluctuations generated by the lower wall,
correlations with the velocity evaluated in the streamwise direction lead to a similar
conclusion as for the channel: the correlation shows a time delay (δt < 0) to com-
pensate for the space displacement where both space and time are coupled to the
local mean velocity. This observation is emphasized in Figure 4.3b, where the time
delay increases with the distance from the wall.

Due to the homogeneity of the spanwise direction, the domain D (for the correla-
tions evaluated in the spanwise direction) is always symmetrical about the horizontal
axis. The correlation U2T2 shows a greater extent of the domain D in the span-
wise direction. This observation suggests an extension of the stencil in the spanwise
direction. This recommendation is even more true for the cross-correlations which
have zero correlation at the origin. This statement is true, if and only if the wall
model discretization (δz)wmLES is smaller than the spanwise displacement measured
with the correlations.
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Due to the blockage effect generated by the massive recirculation bubble, a pressure
gradient acts on the upper wall, and correlations with the pressure gradient are de-
tected. In contrast to correlations with the velocity, these correlations are mostly
origin-centered and narrow. Hence, instantaneous and local information seems suf-
ficient to characterize the relation with the pressure gradient.

4.3.3 Correlations on the bottom wall of the periodic hill

As mentioned above, the geometry of the periodic hill (PHL10595) was carefully
designed to allow the flow to separate from the curved surface and to reattach further
downstream. Each streamwise position along the lower wall sees a different flow
physics. Correlations must, therefore, be sought in different ξ-regions. Three regions
are (i) the vicinity of the separation, (ii) after the reattachment, and (iii) on the
convex windward wall of the next hill. In Figure 4.13, the first two red squares (on
the left side) are located before and after the mean separation location, respectively.
Remember that the instantaneous separation occurs over a large portion of the hill.
The third point is located in the recirculation bubble, while the fourth dot is set just
after the mean reattachment location. Due to the random nature of the separation
position, the reattachment is also affected, and its instantaneous position differs
from the mean position. The last red square is positioned on the convex windward
wall of the next hill, where the flow undergoes a strong acceleration.

4.3.3.1 Streamwise Pearson and distance correlations

Three locations are targeted for the analysis of the correlations in the streamwise
direction: (Sp), (Rt), and (Cwd), for separation, reattachment and convex wind-
ward wall of the next hill, and corresponding to x/h ≃ 0, 4.2, 8.0 in Figure 4.13,
respectively. At these locations, U0T0, U1T0, and U2T2 are detected as significant
correlations.

Correlation U0T0. For the same location (see Figure 4.17), Pearson and distance
correlations have the same domain D, but with slightly different amplitudes which
may indicate a non-linear relationship between uξ and τw,ξ. However, at two loca-
tions, the correlations have nothing in common. Both shapes and amplitudes of D
are different. Near separation, the correlation is split into two lobes; one shifted in
the positive δξ/h with a positive amplitude, and one shifted in space (negative δξ/h)
and time with a negative amplitude (i.e., anti-correlation). There is no instanta-
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(a) Pearson correlation U0T0.

(b) Distance correlation U0T0.

Figure 4.17: Space-time correlation U0T0 in the streamwise direction evaluated at
x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt, and Cwd) along the
lower solid wall of the periodic hill at Reb = 10, 595, white dotted line corresponds
to uξ/ub at a wall-normal distance of 0.1h.

neous and local correlation between uξ and τw,ξ, probably due to the sudden onset
of the free shear layer, which carries energetic structures away from the wall. The
anti-correlation in the lower left quadrant indicates that if the velocity decreases, the
boundary layer is less prone to separation while an increase in the velocity promotes
separation. On the one hand, the amplitude of this anti-correlation (measured by
Pearson correlation) is five times smaller than the amplitude of the other lobe, indi-
cating a weaker relationship. On the other hand, the distance correlation measures
similar amplitude in both domains (i.e., similar joint distribution). To better char-
acterize the separation with a neural network, it is necessary to encode upstream
and downstream information in the inputs. In previous space-time correlations, the
domain D was always aligned with the local mean velocity. However, for correlations
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measured in the separation vicinity, none of the lobes align with the local velocity.
The lobe located at δξ/h = 0.5 is aligned with the horizontal (i.e., zero velocity).
This observation is consistent with the separation phenomenon. The lobe located
at δξ/h = −0.5 is aligned with the mean velocity measured on the convex windward
wall of the next hill. For (Rt) and (Cwd), the alignment of the correlations with
the local mean velocity is recovered. Interestingly, the correlations stretch as the
flow accelerates. Along the convex windward wall of the next hill, the correlation is
shifted in δt ub/h > 0. This shift may be due to curvature effects.

(a) Pearson correlation U1T0.

(b) Distance correlation U1T0.

Figure 4.18: Space-time correlation U1T0 in the streamwise direction evaluated at
x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt, and Cwd) along the
lower solid wall of the periodic hill at Reb = 10, 595, white dotted line corresponds
to uξ/ub at a wall-normal distance of 10% of the hill height.

Correlation U1T0. Although the size of the domain D is much smaller than U0T0
at each location, the positioning of D is quite similar to U0T0 (see Figure 4.18). Near
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the separation, Pearson correlation indicates two lobes as for U0T0, with one posi-
tive and one negative. However, unlike U0T0, the amplitude of the anti-correlation
is here greater than the positive one. As energy is extracted from the boundary
layer, the latter is more likely to separate downstream. The positive lobe again
aligns with the horizontal due to zero convection in the separation vicinity, whereas
the anti-correlation seems to almost align with the local mean velocity. Moving to
the reattachment location, the correlation is shifted upstream δξ/h < 0 for both
Pearson and distance. Pearson correlation also indicates a tiny lobe downstream,
but its amplitude is five times smaller than the anti-correlation magnitude. Hence, it
is neglected in the analysis. For (Cwd), the correlation is also shifted upstream and
an anti-correlation is predicted by Pearson. For both (Rt) and (Cwd), the domain
of high correlation D coincides with the local mean velocity.

Correlation U2T2. As for U0T0 and U1T0, the correlation U2T2 is characterized
by two lobes, one positive, shifted downstream, and one negative, shifted upstream
(see Figure 4.19). Due to causality, the correlation is not exploitable because most
of the domain of high correlation is shifted in the future (i.e., δt Lx/ub > 0). The
domain of the anti-correlation is not captured in the same way, probably due to
a slight statistical convergence issue in capturing this phenomenon. For (Rt) and
(Cwd), the correlations converge better with clean edges and shapes. However, they
do not align with the local mean velocity. They appear to be more tilted, indicating
higher convection of the correlated structures.

Correlation P0T0. Near the separation, in Figure 4.20, the domain D of P0T0
appears fragmented, as already observed in the streamwise correlation for the pres-
sure gradient on the upper wall (see Figure 4.15). While Pearson correlation presents
a weak anti-correlation, the distance correlation has a higher value of 21%, indicat-
ing a non-linear relationship between ∂p/∂ξ and τw,ξ. As the streamwise pressure
gradient increases, τw,ξ decreases, promoting separation, as expected. This observa-
tion holds at each location, as an anti-correlation is detected at Sp, Rt, and Cwd.
Except at separation, the correlations align with the local mean velocity. At the
separation, the correlation is aligned with a lower velocity, illustrating the deceler-
ation induced by the separation. The effect of the pressure gradient on τw,ξ is even
more pronounced when the boundary layer is accelerated on the convex windward
wall of the next hill with a value of 30%.

Correlation P1T0. No clear correlation is observed for P1T0 at the reattachment
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(a) Pearson correlation U2T2.

(b) Distance correlation U2T2.

Figure 4.19: Space-time correlation U2T2 in the streamwise direction, evaluated at
x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt, and Cwd) along the
lower solid wall of the periodic hill at Reb = 10, 595, white dotted line corresponds
to uξ/ub at a wall-normal distance of 10% of the hill height.

location. Therefore, only correlations at Sp, and Cwd are shown in Figure 4.21. Near
separation, the domain D is again fragmented. It is not clear whether this fragmen-
tation is related to an oscillatory behavior of the streamwise pressure gradient or to
a lack of statistical convergence. Distance correlation appears to be less sensitive
to oscillations and provides two lobes of equal amplitude: one located in the upper
right quadrant and one located in the lower left quadrant. This second lobe can
only be captured if a time delay is considered in the input of the wall model. None
of the lobes align with the local mean velocity, but with a reduced velocity due to
the deceleration of the boundary layer while approaching the separation. In the
convex windward wall of the next hill, Pearson correlation detects two lobes, while
distance detects only one. The amplitude of the anti-correlation is twice as small as
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the amplitude of the positive lobe. Since the distance correlation does not detect
this second domain, it can be neglected. Pearson correlation seems to better capture
the alignment with the local mean velocity, while for the distance correlations, the
domain D is aligned with a lower velocity.

(a) Pearson correlation P0T0.

(b) Distance correlation P0T0.

Figure 4.20: Space-time correlation P0T0 along the streamwise direction, evaluated
at x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt and Cwd) along the
lower solid wall of the periodic hill at Reb = 10, 595, white dotted line corresponds
to uξ/ub at a wall-normal distance of 0.1h.

Correlation P2T2. In Figure 4.22, the high correlation region of P2T2 is less
fragmented than P0T0. It is also less spread over time and space. More generally,
at each location, D is mostly centered and aligned with the local mean velocity.
Therefore, there is no need to consider either time delay or space displacement to
correctly capture the non-linear relationship between ∂p/∂z and τw,z. As for P0T0,
an anticorrelation is observed, which is consistent with the separation phenomenon
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Figure 4.21: Space-time correlation P1T0 along the streamwise direction, evaluated
at x/h ≃ 0, 8.4 along the lower solid wall of the periodic hill at Reb = 10, 595, white
dotted line corresponds to uξ/ub at a wall-normal distance of 0.1h.

in the case of a pressure gradient.

4.3.3.2 Spanwise Pearson correlations

As mentioned above, turbulence is three-dimensional. Therefore, correlations are
also sought in the spanwise direction. However, the correlation maps obtained in
this section are not significantly different from those obtained for the channel and
the upper wall. The streamwise direction seems to drive the flow physics in these
three configurations. A few existing wall models using instantaneous and local ve-
locity sometimes account for the spanwise direction by averaging data along that
direction. However, they fail to predict the wall shear stress of the separated flow,
which reinforces the interest in the streamwise rather than the spanwise direction.

Although spanwise correlations behave in the same way as on the upper wall, they
differ in both shape and amplitude in the five regions (see red squares in Figure 4.13).
For the correlations U0T0, U1T0, and U2T2 (where U0T0 is displayed in Fig-
ure 4.23), D is centered around the horizontal axis (i.e., symmetric about the time
axis) due to the absence of convection. The direct consequence is that the cor-
relations are shifted only in time (i.e., δt < 0) and not in space. The amplitude
and shape grow from left to right, from x/h = 0 to x/h = 9. For the correlations
U2T0, U0T2, and U1T2 (where U2T0 is shown in Figure 4.24), the domain D is
split into two lobes, one positive and one negative of equal amplitude. These lobes
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(a) Pearson correlation P2T2.

(b) Distance correlation P2T2.

Figure 4.22: Space-time correlation P2T2 along the streamwise direction evaluated
at x/h ≃ 0, 4.2, 8.0 (from left to right, corresponding to Sp, Rt, and Cwd) along the
lower solid wall of the periodic hill at Reb = 10, 595, white dotted line corresponds
to uξ/ub at a wall-normal distance of 0.1h.

are inverted in the recirculation bubble (second and third images of Figure 4.24).
In contrast to the upper wall, the spanwise extent of D is larger, which means that
larger structures develop on the lower wall (i.e., big roll-up at the reattachment).
All these correlations are, as expected, symmetrical about the horizontal axis. Some
of them are not perfectly symmetrical due probably to a lack of statistical conver-
gence. As for U0T0, the amplitude and shape of U2T0 increases from left to right.
However, instead of being shifted to the left, the domain of high correlation is more
and more shifted to the right (i.e., positive time delay δt Lx/ub > 0).
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Figure 4.23: Pearson space-time correlation U0T0 along the spanwise direction,
measured at five locations (Fig.4.13) along the bottom wall of the periodic hill at
Reb = 10, 595.

Figure 4.24: Pearson correlation U2T0 in the spanwise direction, measured at five
locations (Fig.4.13) along the bottom wall of the periodic hill at Reb = 10, 595.

4.3.3.3 Correlations on the lower wall: conclusion

The main difference with the streamwise correlations obtained on the upper wall is
the dipole detected in the separation vicinity for every correlation with the velocity
field. However, this behavior is not always seen in correlation with the pressure gra-
dient. The correlations are highly dependent on the position along the lower wall,
whereas they are less sensitive to the position on the upper wall due to the minimal
influence of the lower wall. However, for attached flows, correlations are similar to
those observed for the channel flow.
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The way the spanwise correlations behave is similar to that observed for the upper
wall and the channel at lower y+. These correlations also occur in one or two lobes
that are symmetrical about the horizontal axis, reflecting the absence of convection
in the spanwise direction. However, the domain of dependence is more spread out
in the spanwise direction, with significant values reaching up to δz/h ≃ ±1. This
observation suggests that it would be beneficial to extend the range of influence in the
z-direction when using wall models for reattachment phenomena. Additionally, the
fact that there is a 30% correlation between the spanwise velocity and the streamwise
wall shear stress indicates that there are 3D effects and significant coupling in the
wall-parallel direction.

4.3.4 Deviation from the WSS model based on Reichardt’s
velocity profile

As performed in Section 4.2.3, the a priori deviation of the WSS model based on
Reichardt’s profile (AWSSR) from the wrLES data is quantified. The assumptions
on the boundary layer of such a model (i.e., fully turbulent, at equilibrium, and at-
tached) do not allow to use it on separated flows. Even though the model works well
for a turbulent channel flow, a weakness has been identified: the model predictions
have a drastically reduced variance compared to the wrLES wall shear stress. The
boundary layer is not instantaneously at equilibrium. However, the AWSSR forces
the BL to be at equilibrium in a wmLES. Furthermore, it assumes a strict relation-
ship between the streamwise velocity and the wall shear stress, which was shown
from space-time correlations to be incorrect. This observation is even more true
for separated flows, for which correlations with the pressure gradient were found.
Moreover, geometric parameters, such as the curvature, may also affect the wall
shear stress (directly or indirectly).

Figure 4.25 shows the distribution of the instantaneous scaled streamwise velocity
u+ as a function of the scaled wall-normal distance y+ for the lower wall of the
two-dimensional periodic hill at Reb = 10,595 (PHL10595). The (u+, y+) points are
even more scattered than in a channel. The lower part of the graph (in light blue)
with negative velocity represents the recirculation bubble. The long region (in light
green) extending to very high-velocity values indicates the separation region. For
the rest of the graph, points with relatively low y+ values (in light pink) belong to
the reattachment region, while the others (in hatch yellow) belong to the accelerated
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Separation

Acceleration
Recovery
Recirculation

(a) wrLES. (b) a priori Reichardt wmLES.

Figure 4.25: Distribution of the instantaneous scaled streamwise velocity u+ as a
function of the scaled distance to the wall y+ for PHL10595.

region. None of these points seem to fit Reichardt’s profile. Figure 4.25b shows the
a priori predictions of the AWSSR. All points are stacked below Reichardt’s profile,
and none of the four regions (i.e., separation, recirculation, reattachment, and ac-
celerated) can be distinguished. Note that in this a priori evaluation, the feedback
loop between the wall shear stress and the velocity is not quantified. The two plots
have nothing in common.

To further quantify the deviation, the probability density function of the deviation
between the predicted streamwise wall shear stress and the wrLES one is computed
at several locations along the lower wall. Figure 4.26b shows the distribution of the
wrLES wall shear stress (black line) and the distribution of the predicted wall shear
stress (black dashed line). The predicted mean is strictly positive: the AWSSR pre-
dicts no separation. The gap between the two means is highlighted in Figure 4.26a,
which shows the PDF of the deviation near the separation. As the mean wall shear
stress is almost zero at x/h ≃ 0, the relative error is computed with the wrLES wall
shear stress standard deviation at x/h ≃ 0. Most of the predictions have an error
greater than 20%, which makes the model a priori unusable.

Moving to a point in the recirculation bubble, the mean of the prediction using
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(a) Relative deviation distribution.
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(b) Distribution of τw,wrLES and τw,reich.

Figure 4.26: Non-dimensional deviation between the wrLES and predicted wall shear
stress using the AWSSR on PHL10595 at (ξ/h, η/h) ≃ (0, 0.1).

the AWSSR is negative meaning that the model has understood the reverse flow
but with the wrong amplitude (see Figure 4.27b). As observed for the channel, the
variance of the prediction is much smaller which further explains the very low level
of dispersion in Figure 4.25b. The PDF of the relative error based on the standard
deviation indicates that the model generates an error greater than 20% with a non-
negligible probability of about 0.4 (see Figure 4.27a).

Figure 4.28b shows the distributions of the wrLES wall shear stress and the pre-
dictions in the recovery region. This region is located after the reattachment when
the flow stabilizes and starts to reaccelerate on the flat lower surface. Both means
are positive and the distribution of Reichardt’s predictions has a significant skew-
ness. Such a skewness was not observed in the a priori prediction distribution for
a channel (Section 4.2.3). Since the local mean velocity is zero at separation, there
is no convection and no skewness in the prediction. In the recirculation bubble, the
velocity structures evolve at a low speed. Therefore, there is no skewness. A better
overlap of the distribution is observed, and this observation is reflected in the PDF
of the deviation. The model has an error greater than 20% with a probability of 0.3.

The probability of making an error greater than 20% decreases as one approaches
the reaccelerated region. This observation is consistent with the assumption of Re-
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(a) Relative deviation distribution.
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(b) Distribution of τw,wrLES and τw,reich.

Figure 4.27: Non-dimensional deviation between the wrLES and predicted wall shear
stress using the AWSSR for PHL10595 at (ξ/h, η/h) ≃ (2.5, 0.1).

(a) Relative deviation distribution.
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(b) Distribution of τw,wrLES and τw,reich.

Figure 4.28: Non-dimensional deviation between the wrLES and predicted wall shear
stress using the AWSSR for PHL10595 at (ξ/h, η/h) ≃ (6, 0.1).

ichardt’s model. The model should perform better in regions where the boundary
layer is attached and subjected to a low-pressure gradient. However, a priori, the
WSS model based on Reichardt’s profile is not suitable for separated flows, as ex-
pected. This claim is confirmed in Figure 4.29, which shows the instantaneous WSS
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prediction. Compared to the channel predictions, the two-dimensional structures of
the predicted WSS are more coherent with those of wrLES. However, the amplitude
of the predicted WSS is different, as already observed with PDFs.

Figure 4.29: Instantaneous a priori predictions of the streamwise wall shear stress
using the AWSSR for PHL10595, compared with the wrLES wall shear stress at a
given time step t.

The new data-driven wall shear stress will have to overcome the weaknesses of the
quasi-analytical WSS model based on Reichardt’s profile (AWSSR) by increasing the
input stencil, capturing a more complex relationship between instantaneous volume
fields and the WSS, and predicting both the mean and standard deviation of the
wall shear stress.

4.4 Additional databases

Additional datasets generated via other methods are joined to the current database
(i.e., the turbulent channel flow at Reτ = 950 and the two-dimensional periodic hill
at Reb = 10,595). The first additional dataset is a set of synthetic (SYNTH.) data
extracted from the LOTW. The sample generation is described in Section 4.4.1.
This database is used for testing purposes only and will never be used to train the
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neural network. This approach contrasts with the work of Zhideng et al. (2023),
who used synthetic data to train their network along with periodic hill data. The
second and third supplementary datasets are two turbulent channel flows: one at
Reτ = 1,000 and another at Reτ = 5,200. These databases are extracted from the
Johns Hopkins Turbulent Databases website and are presented in Section 4.4.2.

4.4.1 Synthetic data extracted from the law-of-the-wall

In addition to DNS and wrLES data, synthetic data is extracted from the law of the
wall (LOTW):

u+ =
1

κ
ln
(
y+
)
+B , (4.5)

where κ ∼ 0.41 is the von Kármán constant and B = 5.2. The synthetic data
are evaluated from this law for a wide range of friction Reynolds numbers: Reτ =
180, 250, · · · , 104, equispaced for a total of 41 Reτ . For each Reτ , a set of wall-normal
heights is created from y+ = 30 (i.e., at the border of the buffer layer) to y/h = 0.2.
The density and the friction velocity uτ are set to 1. Hence, the kinematic viscosity
is the inverse of Reτ . For each pair (Reτ , h

+), the velocity u is extracted from
Eq. 4.5. The velocity components v and w are set to zero. This synthetic database
is only representative of "2D-extruded geometry" where the spanwise wall shear
stress is zero on average. This database is not used for training but only for testing
purposes, i.e. to evaluate the capability of the neural network to extrapolate to
higher Reynolds number and to assess whether the network has learned the log-law
instrinsically.

4.4.2 Turbulent channel flows extracted from Johns
Hopkins Turbulent Databases

Turbulent channel flow at Reτ = 1,000 (TC1000). This test case is part of
the Johns Hopkins Turbulence Databases (Graham et al., 2016). DNS of turbulent
channel flow was performed in a domain of size 8πh × 2h × 3πh. The incompress-
ible Navier-Stokes equations were solved with a pseudo-spectral method in the two
periodic and homogeneous directions (x and z), while a 7th order B-spline colloca-
tion method was applied in the wall-normal direction. The simulation had required
2048 × 512 × 1536 nodes. The channel flow was firstly equilibrated with a bulk
velocity of 1 and then switched to impose a uniform and constant pressure gradient.
After accumulating the statistics, the friction velocity attained the value of 0.0499.
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It corresponded to a friction Reynolds number of 999.35 with a kinematic viscosity
of 5 × 10−5. From this online database, 16 snapshots of size 112 × 35 × 15 of the
velocity and the wall shear stress are extracted on both the upper and lower wall, for
a total of 1,881,600 pairs of input/output. The number of wall-normal position have
been extended to cover a larger range of y+ values. The streamwise and spanwise
spacing are sufficiently large to obtain uncorrelated pairs. The wall shear stress is
scaled with the kinematic viscosity to get a friction velocity of 1 as follows,

τ †w =
(νnew

ν

)2
τw , (4.6)

where νnew = 1/Reτ . The velocity is scaled accordingly as u† = (νnew/ν)u.

Turbulent channel flow at Reτ = 5,200 (TC5200). This test case is also
part of the Johns Hopkins Turbulence Databases (Moser and Lee, 2015). The same
domain size and the same code as for the test case TC1000 are used for the present
simulation. It had required 10240 × 1536 × 7680 nodes. While our channels are
driven by a uniform (in space and time) pressure gradient, their channel was equili-
brated with a constant bulk velocity (ub = 1). After accumulating the statistics, the
friction velocity uτ had reached a value of 0.0414872, leading to a friction Reynolds
number of Reτ = 5185.897. The kinematic viscosity ν was set to 8 × 10−6. The
database is extracted for five snapshots, each containing of 128× 95× 15 in stream-
wise, wall-normal, and spanwise directions, respectively. Finally, 1,824,000 pairs of
input/output are obtained. The wall shear stress is also scaled with Eq. 4.6 to get
a friction velocity of 1.

4.5 Conclusion

The main part of this chapter investigates the near-wall physics in equilibrium and
non-equilibrium flow conditions using filter feature selection methods. This analysis
employs space-time correlations (i.e., univariate statistical measures) to establish
functional relationships between volume quantities and wall shear stress in a range
of flow configurations, including a simple channel flow and a separating and reat-
taching flow. Throughout our investigation, two types of correlations (Pearson and
distance correlations) are used to gain a more comprehensive understanding of the
physics developing in each flow configuration.
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In a channel flow, the wall shear stress is mostly correlated with the streamwise
velocity component. No clear correlation was found with the pressure gradients in
the logarithmic layer, as also noted by Abel et al. (2006). The correlation maps
exhibit an elongated elliptical shape, extending over approximately 200δt+ units.
To compensate for this delay, a downstream displacement can be considered, as
proposed by Piomelli et al. (1989) in their shifted boundary condition model. Al-
though cross-correlations in the z-direction were noticeable at lower values of y+

(i.e., y+ < 100), they become insignificant at y+ ≥ 100. Only U0T0 and U2T2 were
detected at higher y+ values. Therefore, the three-dimensional effects generated by
the wall reduce as the distance from the wall increases.

The analysis of the periodic hill is divided into the upper and lower walls. The
correlations for the upper wall are similar to those seen for the channel. Despite the
non-homogeneous nature of the streamwise direction, the correlations are mostly in-
dependent of the position in that direction, indicating that the lower wall has minor
effects on the upper wall. Nonetheless, correlations with the pressure gradient are
detected at x/h ≃ 4.20, in the streamwise and spanwise directions. At the lower
wall, correlations are highly dependent on the streamwise position. Three locations
are targeted: the separation, the reattachment, and the convex windward wall of
the next hill. Similarities with the channel are observed in the reattachment and
converging regions. Nevertheless, the correlations are wider at these mentioned lo-
cations. Moreover, the correlations are less spread in time, but this observation is
mainly due to the lower wall-normal height. In separation and reattachment phe-
nomena, the pressure gradient plays an important role, and correlations with it are
detected. In the separation vicinity, the correlation map exhibits oscillations despite
the absence of any natural frequency in the separation. The most interesting corre-
lations are obtained in the vicinity of the separation. At this location, most of the
detected correlations are divided into two sub-domains. One sub-domain is shifted
downstream (i.e., δξ > 0), indicating that the free-shear layer and the wall shear
stress at the separation are highly correlated. The second sub-domain reveals an
anti-correlation between the velocity measured on the convex windward wall of the
next hill and the wall shear stress at the separation point. In the spanwise direction,
correlations look like those obtained for the channel flow at lower y+ values. The
cross-correlations exhibit two symmetrical lobes about the horizontal axis, each with
opposite signs. A change in sign occurs when measuring the correlation within the
recirculation bubble.
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It is important to keep in mind that the findings of this study, which specifically
examine non-equilibrium conditions, may not necessarily be applicable to other flow
configurations. Nevertheless, this research marks a significant first step in devel-
oping data-driven wall models to address the separation phenomenon. As a result,
several recommendations are made to assist in this effort. These correlations pri-
marily serve to guide the selection of the appropriate input stencil size, which may
include a number of streamwise and spanwise positions, and a time delay.

As previously mentioned, current wall models using the instantaneous and local ve-
locity predict correctly the wall shear stress in configuration similar to a turbulent
channel flow and the upper wall of the two-dimensional periodic hill (Frère et al.,
2017, 2018). However, the a priori analysis of the WSS model based on Reichardt’s
velocity profile fails to correctly predict the second and third statistical moments
of the streamwise wall shear stress (i.e., the standard deviation and the skewness).
Furthermore, the two-dimensional wall shear stress structures are incorrect as they
replicate the velocity structures.

A first path for improvement is to use neural networks that predict the wall
shear stress statistical distribution to recover the higher statistical moments, and to
account for structure reconstructions.

A second path for improvement is to account for a space displacement or a time
delay in the input stencil to capture the high correlation between the velocity and
the wall shear stress. The time delay is not considered in the current development
because an instantaneous WSS model is sought as discussed in Section 3.5. The
new WM has to be local (i.e., one or a few points in the surrounding area) to limit
communication between MPI ranks. Because the time delay is ignored, small space
displacements are considered by enlarging the input stencil size in the streamwise di-
rection. This space displacement is closely connected to the local mean velocity and
is, therefore, highly dependent on the wall-normal height. This streamwise extension
of the input stencil is particularly important for separated flows where no instanta-
neous and local correlation was detected in the separation vicinity. Additionally, a
spanwise displacement could be considered to capture the two symmetrical lobes of
cross-correlations. This analysis is perhaps counter-intuitive, but for a neural net-
work, the input/output pair must be (highly) correlated to ensure that the model
will correctly capture the non-linear relationship that may exist between them. This
observation can be reinforced by evaluating SHAP values (see Chapter 8).
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Chapter 5
Development of a new data-

driven wall shear stress model

C hapter 4 covered the limitations of quasi-analytical WSS models, outlined
guidelines for novel WSS models, and generated and analyzed databases. This

chapter focuses on the development of new WSS models using neural networks. More
specifically, this work uses deep neural networks, which are the core element of Deep
Learning (DL). DL includes two categories of supervised learning: regression prob-
lems and classification problems. Our model falls into the regression category as it
predicts a continuous value, namely wall shear stress.

In the initial stages of the thesis, we first looked at regression problems that use the
Mean Square Error (Eq.2.8) as the loss function to measure the fitness of the trained
model. For that, several MLPs (Section 2.2.1) and CNNs (Section 2.2.2) were trained
to predict the wall shear stress. As expected (Eq. 2.6), the predictions were accu-
rate on average, but the higher statistical moments of the wall shear stress were not
captured. Moreover, to obtain the MSE loss, the conditional probability p(y|x, f)
was assumed to be a Gaussian distribution (Eq. 2.7) where the variance σ2 is fixed.
This hypothesis is very strong and appears to be incorrect for the two-dimensional
periodic hill, as shown in Figure 5.1. Furthermore, Zhou et al. (2022) stated that
imposing the mean wall shear stress on the lower wall of the two-dimensional peri-
odic hill is too restrictive and leads to unsatisfactory results. Therefore, our attempt
to predict the instantaneous behaviors of the wall shear stress using ML and DL
techniques was unsuccessful. Regarding the recommendations of Chapter 4 to over-
come the weaknesses of quasi-analytical WSS models, we have decided to predict
the wall shear stress distribution instead of its instantaneous value. The Mixture
Density Network (MDN) was chosen based on the assumption that any distribution
can be represented as a linear combination of Gaussian distributions.
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This chapter is divided into three sections. Section 5.1 presents the Mixture Den-
sity Network (MDN), how they can be combined to an MLP or a CNN, and how
they are trained. Section 5.2 discusses the pre-processing of the generated database:
data cleaning and non-dimensionalization. Section 5.3 presents the development
environment Argo-DG, a high-order flow solver, developed at Cenaero and the im-
plementation of the novel data-driven WSS in Argo-DG using TorchScript.
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5.1 (Deep) Neural Networks for wall modeling

Chapter 2 introduced the principal concept of neural network training, which is
nothing more than an optimization in a high parameter space. Based on the litera-
ture review (Chapter 3), the current wall model will be part of the data-driven wall
shear stress (WSS) model, where the model predicts the wall shear stress, a scalar
or vector, which is then imposed as a boundary condition.

These conventional neural networks predict the conditional average of the ground
truth, conditioned by the input x (Eq. 2.6). The conditional average consists of a
very limited statistic. It is therefore interesting to explore models that predict a
distribution rather than providing a point estimate. The Mixture Density Network
belongs is therefore introduced in Section 5.1.1.

5.1.1 Network for predicting statistics

In "standard" regression, the goal is to estimate the function f(x) that best fits
the data (see Section 2.2). Figure 5.1 illustrates the non-linear relationship between
the streamwise velocity u and the wall shear stress τw,ξ. Due to the separation phe-
nomenon, the conditional probability distribution of τw,ξ for u/ub = 1 has two lobes,
indicating two possible behaviors of the flow: the flow is attached (i.e., positive wall
shear stress) or the flow is detached (i.e., negative wall shear stress). In other words,
the wall shear stress can behave differently for a similar input. Considering "stan-
dard" regression methods, one would obtain the red dashed line: the conditional
mean of τw,ξ. The other two conditional distributions, drawn in Figure 5.1, have a
single peak. The spread of the three conditional distributions is different. Therefore,
the variance differs from one entry to the other. Moreover, as shown in Figure 4.11,
the variance is also location-dependent along the lower wall.

As stated in Section 2.2, inference involves the estimation of the conditional prob-
ability p(Y = y|X = x) for a new (x, y). In the case of a "standard" regression
problem, this conditional probability was modeled by a Gaussian distribution with
a fixed variance (Eq. 2.7). Instead of considering a fixed variance, the variance can
be, as the mean, a function of the input data such that,

p(y|x, µ, σ) = N
(
y|µ(x), σ2(x)

)
, (5.1)
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Figure 5.1: Illustration of the conditional probability of the wall shear stress knowing
the streamwise velocity.

where µ(x) and σ2(x) are parametric functions to be learned. For each input, the
model does not predict a point estimate but a distribution of the output. The
objective is to maximize the likelihood of the data over µ and σ:

argmax
µ,σ

p(d|µ, σ) = argmax
µ,σ

∏
xi,yi∈d

p(yi|xi, µ, σ)

= argmax
µ,σ

∏
xi,yi∈d

N
(
yi|µ(xi), σ

2(xi)
)

= argmax
µ,σ

∏
xi,yi∈d

1√
2πσ(xi)

exp

(
−(yi − µ(xi))

2

2σ2(xi)

)
= argmin

µ,σ

∑
xi,yi∈d

(yi − µ(xi))
2

2σ2(xi)
+ log(σ(xi)) + C

In this last expression, there is a trade-off between the first and the second term.
If µ(xi) is far away from the true value yi, the difference in the numerator is large,
and this term drives the loss. To decrease the loss, the variance, appearing at the
denominator, may increase. The second term is present to avoid an infinite variance
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and to keep it within acceptable bounds. Note that if the variance is fixed to any
positive value, the MSE of Equation 2.8 is retrieved.

Assuming that any general distribution can be approximated by a mixture of simpler
distributions, the conditional distribution p(y|x) can be modeled as a mixture of
K Gaussian components (i.e. multi-modal Gaussian). Generally, any probability
distribution can be used, but the Gaussian distribution is frequently adopted due
to its good mathematical properties and computational performances. Under this
assumption, p(y|x) is written as,

p(y|x, µk, σk) =
K∑
k=1

πkN
(
y|µk(x), σ

2
k(x)

)
, (5.2)

where 0 ≤ πk ≤ 1 for all k and
∑K

k=1 πk = 1. Mixture Density Network (MDN)
is the neural network implementation of the Gaussian Mixture Model. An MDN,
as presented in Figure 5.2, has two components: a network and a mixture model.
The mixture model has one head of K-components, which produces a mean µk, a
standard deviation σk, and a mixture coefficient πk. This head can be connected to
any neural network (denoted as NN).

x

y

θ

NN

µk

σk

πk

N pk Σ p

k = 1, . . . , K

Figure 5.2: Schematic of the architecture of a Mixture Density Network with K
modes, each mode predicting a mean µk, a standard deviation σk, and a mixture
coefficient πk.

To get an expression for the loss, we maximize the likelihood of the data over the
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network parameters θ:

argmax
θ

p(d|θ) = argmax
θ

∏
xi,yi∈d

p(yi|xi, θ)

= argmax
θ

∏
xi,yi∈d

(
K∑
k=1

πkN
(
yi|xi, µk(xi), σ

2
k(xi)

))

= −argmin
θ

log

{ ∏
xi,yi∈d

(
K∑
k=1

πkN
(
yi|xi, µk(xi), σ

2
k(xi)

))}

= −argmin
θ

∑
xi,yi∈d

log

(
K∑
k=1

πk√
2πσk(xi)

exp

(
−(yi − µk(xi))

2

2σ2
k(xi)

))

This last expression cannot be further simplified. Nonetheless, PyTorch implements
the torch.logsumexp that allows to write the following expression,

argmax
θ

p(d|θ) = −argmin
θ

∑
xi,yi∈d

logsumexp
1≤k≤K

[g(πk, µk, σk)]

where g(πk, µk, σk) is defined as,

g(πk, µk, σk) = log(πk)− log (σk(xi))−
1

2
log(2π)− 1

2

(
yi − µk(xi)

σk(xi)

)2

, (5.3)

for k = 1, . . . , K. Finally, the loss function used as the fitness criterion for a Gaussian
Mixture Network is defined as,

L(y, µk, σk) = − 1

N

N∑
i=1

logsumexp
1≤k≤K

[g(πk, µk, σk)] . (5.4)

The whole network is trained end-to-end using backpropagation applied to the Neg-
ative Log Likelihood (Eq. 5.4).

5.1.2 Input stencil size and network architecture

The number of neurons in the input layer depends on the number of input features.
The inputs are the three components of the velocity field (uξ, uη, uz), the three
components of the pressure gradients (∂p/∂ξ, ∂p/∂η, ∂p/∂z) and the curvature K,
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where (ξ, η, z) are the curvilinear coordinates defined in Figure 4.13. These inputs
are further non-dimensionalized. This process is explained in Section 5.2. Moreover,
each input feature is extracted on a given stencil. If the stencil size is 1, the input is
extracted in the wall-normal direction at the matching location hwm. If the stencil
size is greater than 1, then several points are extracted. Figure 5.3 illustrates these
two configurations.

hwm hwm

Figure 5.3: Sketch of two input stencil (with one and five points) on a flat wall.

Other sets of inputs were also tested during the thesis, such as adding the relative
positions and the mean velocity. Moreover, several stencil sizes were considered,
from the largest available to the smallest, with symmetric or asymmetric stencils.
These tests aimed to validate the appropriate stencil size obtained from the feature
selection performed in Chapter 4. Using space-time correlations, three important in-
formation were extracted: the streamwise and spanwise displacement and the time
delay. Because the wall model has to be instantaneous to avoid storing a large
amount of data as mentioned in Section 3.5, only the space displacement is consid-
ered. We cannot simply take one point further downstream, as proposed by Piomelli
et al. (1989) in their shifted boundary condition model, due to the non-convection of
the pressure gradient correlation (see Figure 4.22). As a consequence, more points
were added to the stencil to encompass the non-linear relationship between the in-
put features and the wall shear stress. A larger input stencil helps to discriminate
between the different flow physics (i.e., turbulent, recirculating, separated, and reat-
tached flow).

The optimal stencil is constructed as the union of every space-time correlation to
capture all the domains of high correlation D. Firstly, most of the correlations are
shifted downstream δξ > 0, and thus ten points downstream are added to the stencil
(see Figure 4.17). Secondly, the upright point in the wall-normal direction is always
part of the stencil (see Figure 4.22) to account for correlation with the pressure
gradient. Thirdly, to encapsulate the correlation U1T0, shown in Figure 4.18, five
points upstream are also added to the stencil. We ended up with an asymmetric
stencil of size 16.
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Note that the number of points in the stencil depends on the probe set resolution.
This is one drawback of using multiple points to characterize the relationship with
the wall shear stress. The a posterior tests will need to be performed on a grid of
similar resolution or at least to keep the same spacing between two entries (i.e., if
the resolution is double, then to reconstruct the stencil at a particular location, one
probe over two should be taken). One possible way to deal with this drawback is
to randomly select m points in a stencil of size M + 3 (where M + 3 ≥ m). The
"+3" is because the the most-left, most-right and the current points are fixed, as
illustrated in Figure 5.4. Among the M red points, m are then randomly picked to
construct a stencil of size m+ 3. In addition to reducing the dependency on probe
grid resolution, we also perform data augmentation. Indeed, for one location on the
wall, we can construct M !

m!(M−m)!
stencils.

hwm

Figure 5.4: Sketch of a stencil where the three black points are fixed and the 5 red
circle points are randomly selected among the 13 red points.

For the development of new WSS models, two neural networks were selected: an
MLP and a CNN for the prediction of τw where the output layer is replaced by
Gaussian Mixture Networks or Heads (GMH). One head is selected to predict the
distribution of τw,ξ and another for τw,z (i.e., the wall-parallel components of the wall
shear stress). Each head has its number K of Gaussian distributions. The compo-
nent τw,η is set to zero as in many WSS models (i.e., non-penetration condition).
The subsections 5.1.2.1 and 5.1.2.2 further detail these two architectures employed
to develop new data-driven WSS models.

5.1.2.1 MLP coupled with GMH

As presented in Chapter 2, the MLP is the simplest fully-connected neural network.
In the present work, the output layer is removed and replaced by two Gaussian
Mixture Heads (GMHs): one for the prediction of τw,ξ and one for τw,z. Each head
has its own number K of Gaussian distributions, and the loss function results from
the sum of two Negative Log Likelihood. The tuning of the various hyperparameters
(e.g., number of hidden layers, activation function, and learning rate) are treated in
Section 7.1.
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5.1.2.2 CNN coupled with GMH

When the input stencil is enlarged, a CNN is prefered to an MLP. As discussed in
Section 5.1.2.1, the output layer of the CNN is also removed and replaced by two
GMHs for predicting of the distribution of τw,ξ and τw,z, respectively. The CNN
is not used in its standard version as described in Chapter 2. Residual blocks are
introduced in the architecture to easily train deep neural networks.

Skip connections in Deep Learning By increasing the input stencil and the
number of fields, the relationship between the inputs and the outputs becomes more
complex. Deep neural networks are therefore attractive because they can learn com-
plex functions more efficiently than shallow networks. However, training them is a
complicated and computationally expensive task. Additionally, as the architecture
of the model becomes deeper, its performance decreases, which is known as the
degradation problem. This issue is not caused by overfitting or vanishing gradient
problems, but rather the challenge of optimizing a larger number of parameters.
This problem has been solved by introducing skip connections in the neural net-
work architecture (i.e., ResNet by He et al. (2015)). In this work, a succession of
residual blocks composed of convolutional layers is implemented. The network (see
Figure 5.5) is therefore composed of three convolutional blocks, two residual blocks,
a linear block to switch from the convolutional part to the MDN and two Gaus-
sian Mixture Heads (described in Section 5.1.1). The detailed implementation of
these residual blocks is given in Figure 5.5 (on the right) under the nomenclature
of PyTorch. To ensure that the data coming directly from the block entry and the
two convolution layers (in the pink rounded rectangle in Figure 5.5) are of the same
size, the padding (i.e., an hyperparameter of the convolutional layer presented in
Section 2.2.2) is set to one, which in this case is equal to kernel_size//2. This
padding argument corresponds to the number of zero-padding to be added to the
edges of the data during the computation.
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Figure 5.5: On the left, the architecture of the CNN-skip-GMH composed of residual
and convolutional blocks; on the right, schematics of the individual blocks compos-
ing the CNN architecture: a residual block in light pink (i.e., skip connections), a
convolutional block in light green and a linear block in light blue; architecture de-
fined under the nomenclature of PyTorch; for reproducibility we use Python 3.10.4
with numpy version 1.23.1 and torch version 1.12.1.

5.2 Data manipulation and preprocessing

Manipulating data acquired by Direct Numerical Simulations with Argo-DG (see
Chapter 4) before feeding them into the model is a crucial step. In the present case,
the raw data are the velocity, pressure gradients, and wall shear stress fields extracted
from the high-order solutions on structured probe grids. Database preprocessing
concerns all the necessary steps that make the three-dimensional time-dependent
flow fields ready to be treated by the machine learning process. This step can
encapsulate filtering, cleaning, non-dimensionalization procedure, data structuring
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under an adapted format, and data augmentation. This preprocessing will impact
the capabilities of the trained neural network to generalize to unseen configurations,
and it can bring desired invariance to the model (such as Mach number invariance,
and rotationally invariant, to name but a few).

Filtering is often used in wall models to ensure that the flow field will resemble the
one observed during the wmLES. This step is even more frequent in data-driven
approach (Yang et al., 2019; Zhou et al., 2021; Dupuy et al., 2023a,b). However,
our data are not filtered because the interpolation of the probe grid already acts as
a filter. Even if the filtering is implicitly employed, the non-dimensionalization, on
the other hand, is explicitly applied to both the inputs and outputs and is presented
in Section 5.2.1.

Data cleaning is also a preprocessing step that aims to identify any issues or incorrect
data. A first effective technique is to remove duplicate data. Indeed, duplicates can
skew and confuse the resulting model. Irrelevant data can also be removed as they
may slow down the training process. These irrelevant data are features that are
uncorrelated to the model output. A third effective technique for cleaning data is
to remove unwanted outliers. Outliers are unusual data values. They are induced
by sampling errors, natural variations, and data entry errors. Outliers can alter
statistics. Nevertheless, removing outliers should be carefully analyzed. Therefore,
the Probability Density Functions (PDF) of the two-wall parallel wall shear stress
are studied to detect outliers in Section 5.2.2.

5.2.1 Data non-dimensionalization

Selecting the proper input features is crucial in ML and DL. The non-dimensionaliza-
tion of the input features is especially helpful for training a model on a limited
dataset that will then be able to generalize to flows with different length scales,
velocity scales, and fluid properties. In fluid dynamics, one is used to dealing with
non-dimensional quantities that use relevant flow quantities, such as the boundary
layer height, the freestream velocity, etc. Unfortunately, these quantities may not
be the most relevant for generalization purposes and are not always available during
the computation. The idea is to encode a priori knowledge about the underlying
data distribution using physically based non-dimensionalization. The latter has to
deal with quantities directly available for the the wall model during the wmLES
such as the density ρ [kg/m3], the kinematic viscosity ν [m2/s], and the wall
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model height h [m]. The inner scaling of the boundary layer is a great choice
for the database non-dimensionalization. Nonetheless, the wall shear stress is not
available to scale the input. However, the product y+u+ (i.e., y+u+ = yuτ

ν
u
uτ

= u y
ν

)
is independent of uτ and can be used to scale the input data. Moreover, the rela-
tionship between y+u+ and y+ is nearly linear for a turbulent boundary layer. Frère
(2018) has used a similar trick to tabulate Reichardt’s velocity profile and thus gets
a faster evaluation of the model in the high-order flow solver Argo-DG. The relation
y+u+ is illustrated in Figure 5.6 where u+ is extracted from Eq. 3.6.

Figure 5.6: Reichardt’s velocity profile multiplied by y+ is drawn in red while the
black markers represent the wrLES scaled data of the turbulent channel flow at
Reτ = 950.

The product y+u+ is nothing else than a local Reynolds number. Hence, hwm and
ν serve as a velocity scale (i.e., ν/hwm) to scale the velocity field accordingly. The
scaled velocity u∗ is defined as,

u∗ =
uhwm

ν
, (5.5)
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where u is the velocity extracted at hwm, and projected in the curvilinear coordinates
(ξ, η, z). The wall-model height is not used as a model input because it is implicitly
used in the non-dimensional velocity. Regarding the pressure gradient, it is first
defined as the pressure velocity up and then the velocity scale ν/h is applied:

up =

(
ν

ρ
∇p

)1/3

,

then this velocity is scaled as in Eq. 5.5 to get,

u∗
p =

up hwm

ν
. (5.6)

This pressure velocity is used in algebraic wall models that use of the pressure
gradient (see Eq.3.17 in the thesis of Thiry (2017)). This pressure velocity is inspired
by the definition of Clauser’s parameter. Separation can occur on a flat plate due to
an adverse pressure gradient, or on a curved wall where both the curvature and the
pressure gradient affect the boudary layer state. Therefore, the curvature appears to
be an interesting input to be added to the WSS model and it is non-dimensionalized
with the wall model height,

K∗ = Khwm , (5.7)

where K is computed as

K =

(
|d2f
dx2 |

1 +
(
df
dx

)2
)3/2

, (5.8)

where f(x) is the function that describes the wall. Concerning the outputs, the two
wall-parallel components of wall shear stress are scaled as a signed version of h+:

h+
i = sign (τw,i)

hwm

ν

√
|τw,i|
ρ

, (5.9)

where i = {ξ, z}. The interesting fact behind using a square root for the non-
dimensionalization of the wall shear stress is that this variable transformation re-
duces the distribution skewness. Because the skewness is not an explicit output
(or model distribution parameters), the GMN may struggle to predict this third
statistical moment correctly. Therefore, reducing the skewness before training is of
interest. Moreover, Section 5.2.2 indicates how important the skewness is to recover
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the expected mean.

In addition to the non-dimensionalization, the data need to be scaled or standardized
for the training. The scaling will constraint a given feature ϕ to lie between 0 and
1 by using its minimum and maximum values as,

ϕ‡ =
ϕ−min (ϕ)

max (ϕ)−min (ϕ)
. (5.10)

Assuming that the feature ϕ follows a normal distribution, then this feature ϕ can
be standardized using its mean µ and its standard deviation σ to rescale its dis-
tribution with a zero-mean and a unitary-variance. Figure 5.7 illustrates the dif-
ferent steps executed before and after the forward pass, which are dedicated to
non-dimensionalization and scaling processes of the inputs and outputs.

Figure 5.7: Diagram illustrating the non-dimensionalization of the input, its scaling
using the minimum and the maximum, the forward pass, the sampling from the
predicted distribution, the rescaling using the output minimum and maximum and
the dimensionalization of the predicted wall shear stress.

Discussion on the non-dimensionalization. Table 5.1 reviews the nondimen-
sionalized input/output pairs of existing studies on data-driven WSS models from
the literature that are known to the authors. The table includes neither hybrid
RANS/LES models nor the work of Lee et al. (2023), which used the Fukagata-
Iwamoto-Kasagi identity, a decomposition of the skin friction, to predict the wall
shear stress. For the sake of clarity and comparison, the input and output terms are
adapted to our nomenclature. The reader is referred to the original papers for more
information.

Bae and Koumoutsakos (2022) and Zhou et al. (2022) developed new WSS models
with reinforcement learning (RL). The training approach contrasts with standard
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ML and DL because the network parameters are fitted within the production envi-
ronment, allowing the model to predict the WSS while also correcting for numerical
errors. In this setting, the WSS predicted at the previous time step is used to
nondimensionalize the input features. Using the instantaneous friction velocity for
standard ML and DL is not the best choice. Although the neural network can pre-
dict the wall shear stress with a relative error of 1− 2%, the prediction may rapidly
deteriorate in the production environment due to the error being re-injected into the
input. Yang et al. (2019) also used the friction velocity in the definition of y0. In
their paper, it is not clear how the friction velocity is extracted from the wmLES.
They use the mean friction velocity, which is known a priori for turbulent channels.
However, this approach cannot be generalised to other flow configurations where the
WSS depends on the positions or is not known a priori.

Yang et al. (2019), Zhou et al. (2021), and Zhideng et al. (2023) used the logarithm
of the wall distance to improve the generalizability of their models in equilibrium
boundary layers. The input feature was originally proposed by Yang et al. (2019),
where the friction velocity is employed. Zhou et al. (2021), and Zhideng et al. (2023)
instead used an approximation of the friction velocity and extended its definition to
the pressure gradients (i.e., uν,p) to include separated boundary layers. However, in
such a nondimensionalization, the velocity is scaled with itself through the defini-
tion of uν,p. This may lead to numerical sensitivity issues (see discussion below).

Jamaat and Hattori (2023) decided not to nondimensionalize their input feature
because their study focused on the a priori assessment of non-local WSS models for
the turbulent channel flows based on two-dimensional CNNs. Their study was not
aimed at generalising their model to new flow configurations.

Lozano-Durán and Bae (2021) nondimensionalized the input features with flow-
specific scales that are case-dependent. Moreover, the nondimensionalization a pos-
teriori over a complex geometry requires great care and knowledge about the type
of flow physics appearing on each surface. As already mentioned, our nondimension-
alization only uses local and instantaneous flow quantities that are directly available
to the wall models during the wmLES. Moreover, it is common to every flow con-
figuration.

Radhakrishnan et al. (2021) use both dimensional and nondimensional input fea-
ture to feed their network. Similarly to what is done here, they defined a local
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Reynolds number. Their input feature also contained the logarithm of this local
Reynolds number. They used an approximation of the friction velocity by comput-
ing the shear stress τ to non-dimensionalize the velocity. Concerning the output,
their model has to predict the velocity in wall units u+. This output is maybe not
the best choice for separated flow where the friction velocity tends to zero.

Regarding the nondimensionalization of the velocity field, we have the same defini-
tion as Dupuy et al. (2023a), which used the local Reynolds number based on the
viscosity and the wall distance, except that the velocity field is not projected onto
the local frame of reference created by the wall. The authors chose not to explicitly
feed derivatives to the network. They claimed that feeding the model with spatial
information was sufficient for the model to compute these derivatives internally if
required. The Dupuy et al. (2023a) model predicted the sign version of the square
wall distance in wall units (i.e., sign(h+

wm)(h
+
wm)

2), where our model directly predicts
the wall distance in wall units h+

wm. This choice is related to the reduction in the
skewness of the predicted distribution due to the square root.

Before finding the nondimensionalization (·)∗, other nondimensionalizations were
tested for the training of the network MLP-GMH on the turbulent channel flow at
Reτ = 5,200, and the following observations were made.

• If the nondimensionalization depends on the wall-modeled heights, the model
will generalize to other Reynolds numbers as long as the data are extracted
within the training bounds (i.e., [min(hwm),max(hwm)]). This observation is
confirmed even if hwm is not an explicit model input.

• If the nondimensionalization depends on global quantities (such as the bulk
velocity), the model will be able to generalize to new hwm if the Reynolds
number is kept within the training bounds (i.e., [min(Re),max(Re)]).

• If the process of nondimensionalization relies on data that is computed by the
solver during the wmLES, such as the velocity u in the definition of uν,p, the
sensitivity of the model to the polynomial order at which it is trained will
increase. This is especially true if the data used for training the network is
extracted from a wrLES, rather than a pure DNS which should be independent
of the numerical scheme.
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Table 5.1: Review of the non-dimensionalised inputs and outputs in the literature
on data-driven wall models; the notation is adapted to our nomenclature for clarity:
y0 =

ν
uτ

exp(−κB); uτ,p =
√
u2
τ + u2

w,p is a friction velocity based on the wall shear
stress and the pressure gradient at the wall (Duprat et al., 2011) where uw,p =

((ν/ρ)∂pw/∂ξ)
1/3; y∗ = ν/uν,p where uν,p =

√
u2
ν + u2

p and uν =
√

νuξ/hwm; τ is the
shear stress; ũ is the relative velocity w.r.t. the wall; S̃ij is the rate of deformation
tensor; Ω̃ij is the rate of rotation tensor; U∞ is the free-stream velocity; Uk is a
velocity scale that depends on the building blocks considered (e.g., U1 = U2 = uτ ,
and U3 = up); Lk is a length scale that also depends on the building blocks considered
(e.g., L1 = hwm, L2 = U2/∥∇u∥, and L3 = ν/U3); um

τ =
√

τmw (x, z, t)/ρ is the
modeled friction velocity where τmw (x, z, t) is the modeled WSS; |u∥| = (u2

ξ + u2
z)

1/2

is the norm of the wall-parallel velocity.

Authors Inputs Outputs

Bae and Koumout-
sakos (2022)

ux,y,z

um
τ (x, z, t)

τw

Yang et al. (2019)
|u∥|
hwm

,
hwm/y0
|u∥|

|τw,ξ|

Jamaat and Hat-
tori (2023) ux,y,z or ux,

∂ux

∂y
, uxuy, hwm τw,x , τw,z

Lozano-Durán and
Bae (2021)

ũξ,η,z

U∞
,
ũξ,η,z

Uk

,
S̃ijLk

Uk

,
Ω̃ijLk

Uk

,
U∞hwm

ν
,
UkLk

ν
, . . .

τw
ρU2

∞

Zhou et al. (2022) uξ

uτp

,
hwmuτp

ν
,
1

2

(
∂uξ

∂η
+

∂uη

∂ξ

)
hwm

ν
τw

Zhou et al. (2021) ln

(
hwm

y∗

)
,
uξ,η

hwm

,
∂p

∂ξ, ∂η

hwm

h
τw,ξ

Dupuy et al.
(2023a)

ρhwm

µ
ux,y,z ρ

(
hwm

µ

)2

τw

Zhideng et al.
(2023) ln

(
hwm

y∗

)
,
uξ,η,z

hwm

δ

ub

,
∂p

∂ξ, ∂η

hwm

u2
b

(τw,ξ, τw,z)/u
2
b

Radhakrishnan
et al. (2021) ux, hwm, Re∗ =

uxhwm

ν
, ln(Re∗),

ux√
τ

u+

Boxho (2024) u∗, u∗
p, K∗ h+

ξ , h
+
z
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5.2.2 Data cleaning

The process of extracting valid, previously unknown, and ultimately comprehensi-
ble information from large datasets is an important step before making decisions or
predictions. However, this step is fraught with problems such as data redundancy,
incomplete data and outliers. Duplicates are highly unlikely for turbulent flows that
have a chaotic behavior. Nonetheless, highly correlated features in space or time
are possible. Hence, the streamwise, spanwise, and time sampling must be chosen
carefully. Outlier detection therefore remains. An outlier is a data point that differs
from the rest of the data according to a particular measurement. This point may be
noise or it may be an indication of abnormal system behaviour. Outlier detection is
an interesting problem of data mining (Aggarwal and Yu, 2005; Bakar et al., 2006).
In the literature review of Chapter 3, none of the authors have discussed outlier
detection. They have mostly filtered (in space) their database to train their network
with a field compatible with the wmLES one. However, discussing the quality of
the database is just as important as training the neural network correctly. If the
database is not representative of the phenomenon we want to capture, the neural
network will not be capable of recognizing the underlying relationship between the
inputs and outputs. Outlier detection can be divided into three approaches: (i)
statistical approach (Chatterjee et al., 2021), (ii) distance-based approach, and (iii)
deviation-based approach. For one-dimensional samples, the statistical approach is
well-suited. As the dimensionality increases, the distance-based approach is pre-
ferred because it becomes difficult to estimate the multidimensional distributions of
the data points (Ramaswamy et al., 2000).

Table 5.2: Statistical moments of the streamwise wall shear stress extracted on the
turbulent channel at Reτ = 5,200

Data µ σ S Q25% Q75% IQR/k min max

TC5200 1.005 0.444 1.153 0.683 1.241 0.559 -0.849 4.102

Outlier detection is illustrated for the turbulent channel flow at Reτ = 5,200 (see
Table 5.2) on the streamwise wall shear stress. Because it is a one-dimensional
random variable, the statistical method is selected. The conventional standard devi-
ation method cannot be applied because the current distribution is not Gaussian-like.
Therefore, the interquartile range (IQR) method, which is part of the statistics-based
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outlier detection techniques, is selected. These techniques assume that normal data
occur in the high probability regions of a stochastic model, while outliers occur in
the low probability region (Ilyas and Chu, 2019). The IQR method uses quantiles
to detect the low-probability region. The cut-off limit is proportional to a factor k
of the difference between the quantiles at 25 and 75%: IQR = k(Q25%−Q75%). The
lower and upper cutting values are Q25%− IQR and Q75%+ IQR, respectively. The
method gives the results summarized in Table 5.2 for the turbulent channel. For
k = 1.5, data lower than −0.155 or greater than 2.079 are considered outliers. How-
ever, the resulting database mean (µ = 0.969) does not correspond to the expected
mean of 1. By eliminating these supposed outliers, the first moment of the resulting
distribution has changed drastically.

Figure 5.8: Distance-based approach using the Kth Nearest Neighbors on the random
variable τw of the database TC5200.

The distance-based approach is also applied to the two-dimensional random vari-
able (τw,ξ, τw,z), which are the two outputs of our WSS model. A simple distance-
based approach is the K-Nearest Neighbors Distance method (Upadhyaya and Singh,
2012), which measures the distance between a point and its K nearest neighbors.
A threshold distance d is determined based on the maximum distance value. Then,
the outlier score of a point is the number of nearest neighbors that are not more
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than d distance away from the given point in the dataset. This technique is based on
the function NearestNeighbors from sklearn.neighbors of the library sklearn
of Python. The number of nearest neighbors k is fixed to 1000. The distance to the
farthest neighbors is sorted, and all points with a distance greater than d = 0.5 are
considered as outliers. Figure 5.8 shows the outliers in light gray and the retained
points in black. The resulting mean of the streamwise wall shear stress is 0.961.
Again, the mean is modified by removing possible outliers. These data are part of
the physics and cannot be removed.

5.3 Development environment and practical
implementation

This work uses Argo-DG, the in-house flow solver developed at Cenaero, to produce
both wall-resolved and wall-modeled LES. Section 5.3.1 explains the physical mod-
eling and numerical methods employed to simulate the turbulent channel flows and
the two-dimensional periodic hill. Additionally, Section 5.3.2 details the implemen-
tation of wall models in the DG discretization framework. The specific challenges
and constraints of this implementation are reviewed. For a more comprehensive
overview of Argo-DG, please refer to the works of Hillewaert (2013), Carton de
Wiart (2014), Schrooyen (2015), and Frère (2018).

5.3.1 Description of Argo-DG code

Spatial discretization. The compressible Navier-Stokes equations are discretized
using the discontinuous Galerkin method, which is a special class of Galerkin finite
element methods (FEM). In such a method, a linear combination of N shape func-
tions (e.g., Lagrange polynomials of degree p, as in Argo-DG) approximates each
variable of the solution vector. Conversely to standard FEM, these shape functions
are not required to be continuous at the element interfaces. As a result, the global
problem (i.e., over the entire computational domain) can be decomposed into smaller
sub-problems at each element level, and therefore, the global solution is evaluated as
a sum over each of these elements independently. Unfortunately, this particularity
drastically increases the number of degrees of freedom (dofs). In fact, the dofs at the
interface are doubled because they are present in both the current element and its
neighbor. However, this particularity makes the method highly scalable, resulting
in high CPU efficiency. Once the problem has been defined at the element level,
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the Galerkin variational principle is used to solve the elementwise Navier-Stokes
equations. Note that the interface fluxes do not cancel because of the discontinu-
ities between elements. As a result, the equations include four additional terms that
connect elements. To stabilize the formulation, the convective fluxes are treated
using an approximate Riemann solver. For this study, Roe’s flux difference splitting
is used. One of those four additional terms stabilizes the diffusive scheme, while
another provides a symmetric formulation that agrees with the Symmetric Interior
Penalty formulation (Arnold et al., 2002). The formulation is a generalized version
of the boundary penalty method, which effectively enforces weak Dirichlet bound-
ary conditions at interfaces. The variational formulation’s integral terms are treated
using the Gauss-Legendre quadrature rule. By applying a mapping, the problem is
solved in the reference element rather than the global frame element. The moti-
vation behind this method is that high-order methods have really low dissipation
and dispersion errors, which is a very interesting property to accurately capture the
energy spectrum. Moreover, the method is seen to be very robust and can handle
badly-shaped mesh elements without losing accuracy (Carton de Wiart, 2014).

Implicit LES. Large Eddy Simulation (LES) is a mathematical model for turbu-
lence that reduces the computational cost by ignoring the smallest scales. These
scales are particularly computationally expensive to resolve as they necessitate finer
meshing to be explicitly resolved. LES resolves a large part of the energy spectrum
(i.e., energy-contained and inertial ranges) up to a cut-off wave number, defined
by the effective mesh size (i.e., account for the polynomial order p in high-order
flow solver). To achieve this, a low-pass filter is applied to the Navier-Stokes equa-
tions to remove the smallest scales from the numerical solution efficiently. This
low-pass filter can be viewed as a time and space-averaging. To compensate for the
non-resolution of the smallest scales, a sub-grid scale (SGS) model is introduced
to model for the effects of the unresolved small scales on the resolved larger scales.
Argo-DG does not implement any explicit SGS model. Instead, it is the numerical
dissipation of the underlying high-order DG scheme that acts spectrally as an ex-
plicit SGS model (Carton de Wiart et al., 2014) used in traditional LES. Therefore,
Argo-DG relies on the implicit LES (ILES) approach.

Time integration. Multiple time discretizations are implemented in Argo-DG
(e.g., BDF2, Runge-Kutta, Euler implicit, ...). All simulations (i.e., wrLES and
wmLES) performed with Argo-DG in this work use the second-order implicit time-
stepping procedure based on the Backward Differentiation Formula (BDF2). At
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each time step, a non-linear problem resulting from the implicit integration is solved
through a Newton/GMRES method, preconditioned with elementwise block-Jacobi.
Even though the time step can be larger than with explicit time discretization, the
time step is adjusted to obtain a convective CFL lower than one for a good resolu-
tion of the time structures.

Additional information. The code can operate on large cases thanks to the high
scalability of the DG method. It implements a hybrid parallelism based on message
passing interface (MPI) and open multi-processing (OpenMP). It can be shown that
the DG discretization achieves low dispersion and dissipation errors. Moreover, on
unstructured meshes, in the L2-norm, it offers O(hp+1) accuracy. Figure 5.9 shows
the different iterative processes implemented in Argo-DG and how these processes
are coupled with the data-driven wall model presented in Section 5.3.2.

5.3.2 Implementation of a data-driven WSS model in
Argo-DG

Sections 5.1 and 5.2 discussed the type of neural network architecture chosen for the
development of new WSS models and how to preprocess with the acquired databases.
Chapters 7 and 8 present the training of these neural networks and their a priori
and a posteriori tests. While the a priori test does not require any modifications
compared to the training, the a posteriori test involves the implementation of the
neural network in the flow solver. This implementation of the new data-driven WSS
model in Argo-DG required several steps, described in Figure 5.10. It includes,

STEP 1 the interpolation of the input features on the volume probes,
STEP 2 the creation of the input stencil,
STEP 3 the forward pass through the network,
STEP 4 the sampling from the predicted distribution and the rescaling of the

predicted wall shear stress, and
STEP 5 the interpolation of the predictions from the surface probes to the

quadrature points.

The Python programming language is the primary interface of PyTorch. Python
is known to be suitable for many scenarios that require dynamism and ease of it-
eration. However, there are situations where these properties are unfavorable. C++
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Figure 5.9: Summary of the different iterative processes used to resolve the Navier-
Stokes equations in Argo-DG with or without data-driven wall model; the figure in
the data-driven wall model block is further described in Figure 5.10; this diagram
is inspired by the work of Frère (2018).

is often the language of choice for production scenarios. The implementation of a
PyTorch’s model in a C++ environment is made possible by the use of TorchScript.

The very first step to do is to create a trace of your PyTorch’s model. This step
removes any Python dependencies and embeds the forward pass of your model for
inference in the production environment. The resulting model is saved as a binary
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file and kept for future use. In our model, the scaling and non-dimensionalization
procedures of the input stencil are implemented in the trace and are, therefore, in-
visible to the user. This step reduces the amount of code in production and is less
prone to errors.

Implementation of the WSS model in Argo-DG can now be reviewed. As mentioned
in Section 5.3.1, this solver is highly scalable. To avoid any deterioration of the
code’s capabilities, the new WSS model needs to be fast to evaluate and local to
reduce the amount of MPI communication between ranks. Based on space-time cor-
relations (Chapter 4), the input stencil is enlarged to capture the correlation high
peak (see discussion in Section 5.1.2) and help for the discrimination between vari-
ous flows physics as also observed by Dupuy et al. (2023a,b).

Due to this increase in the number of entries, the number of MPI communications
increases too, compared to the model implemented by Frère (2018), which uses the
ghost-cells of the near-wall element to avoid MPI communication. Another differ-
ence to the model (Frère, 2018) is that the wall shear stress is not predicted directly
at the quadrature points. The predictions are first evaluated on probes located on
the target surface. These probes are obtained as the orthogonal projection of vol-
ume probes on the solid wall. There are two sets of probes. The volume probes are
used to interpolate the input fields and create the input stencil. After the forward
pass, the predictions lie on the surface probes and are interpolated to the quadrature
points to evaluate the boundary condition.

Figure 5.10 schematizes the implementation of the new WSS model in Argo-DG.
This implementation is divided into five major steps.

The first step is the interpolation of the required input fields (e.g., velocity, pres-
sure gradients, density, and viscosity) onto the volume probes. These probes are
located at a certain wall-modeled height hwm, specified by the user, and spread on
several partitions.

Once each rank (i.e., mesh partitions) knows its input fields, it communicates with
its neighbors to construct the entire input stencil. This second step is the construc-
tion step. The second insert image of Figure 5.10 shows how the wmLES mesh of the
periodic hill is partitioned. For the prediction of τw at the black dot, the rank knows
only two downstream points and one upstream point. In this simplified example, its
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right neighbor communicates two points while its left neighbor communicates four
points. The amount of communication is directly proportional to the input stencil
size and the number of partitions. Since the mesh does not move, an initialization
procedure constructs and stores a table of communications that associates the probe
index to the rank to send to.

Once each rank has created its input, it can be sent to the model for inference in the
third step. The forward pass produces the distribution of the wall-parallel compo-
nents of the wall shear stress as a sum of K Gaussians distributions (as discussed
in Section 5.1.1).

The fourth step is dedicated to the sampling from the predicted distribution based
on a vector of K means (mu), K standard deviations (stddev) and K coefficients
(weights) as described in the code snippet 5.1. The predictions are then rescaled
according to the inverse of Equation 5.9.

Listing 5.1: Sampling from a mixture of K Gaussian distribution

float sampling(const std::vector <float >& mu ,
const std::vector <float >& stddev ,
const std::vector <float >& weights) {

std:: random_device rd;
std:: mt19937 generator = std:: mt19937(rd());
std:: discrete_distribution <size_t > w(weights.begin (),

weights.end());
std:: size_t index = w(generator);
std:: normal_distribution <float > d(mu[index], stddev[index]);
return d(generator);

}

Finally, in the fifth step, the predictions lying on the surface probes are interpo-
lated onto the quadrature points. This step also requires MPI communications for
quadrature points located at the interface of two partitions. As for the construction
of the input stencil, the initialization procedure also stores these communications.

Remarks Even if the neural network is trained on a GPU, its inference in the code
Argo-DG is performed on a CPU. Such a type of wall model is fully applicable to new
codes developed on GPU partitions. A new implementation of the code Argo-DG
on GPUs is currently under consideration at Cenaero.
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Figure 5.10: Implementation of the data-driven WSS model in Argo-DG; the di-
alogue icon illustrates the need for MPI communication to exchange information
across MPI ranks (i.e., mesh partitions).



Chapter 6
Pathway to the successful network

architectures for wall modeling

T his chapter reviews the history of neural network training, which has led to
the establishment of the most successful networks for the development of wall

shear stress models.

In machine learning, numerous hyperparameters (e.g., number of hidden layers,
learning rate, batch size, kernel size, to cite a few) need to be adjusted to achieve
optimal predictions on the validation set. On top of that, we can also modify (i)
the type of network (e.g., MLP or CNN), (ii) the input features (e.g., add the
curvature or not), (iii) the input stencil size, and (iv) the non-dimensionalization.
Therefore, you can imagine the number of training required to test all these com-
binations. Open-source hyperparameter optimization frameworks, such as Optuna,
can automate the search for neural network hyperparameters. However, finding the
appropriate non-dimensionalization, network architecture, input features, and sten-
cil size for the targeted application still requires attention.

Section 6.1 discusses the first non-dimensionalization tested at the beginning of the
thesis, which was discarded to adopt the one described in Section 5.2.1 because
it was too sensitive to the polynomial order. Section 6.2 discusses the size of the
input stencil for the non-dimensionalization presented in Section 5.2.1. Although
the space-time correlations have indicated the optimal stencil size, we tested several
stencils (e.g., small, long, symmetric, and asymmetric) to validate the conclusion
drawn from the feature selection. When working with inputs that have a spatial
structure, Section 6.3 explains the advantages of considering a CNN instead of an
MLP. Section 6.4 discusses the overfitting and underfitting of the trained network
and how to improve the predictions.

129
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6.1 Discussion about the non-dimensionalization

The first non-dimensionalization of the input/output pairs used to train the net-
work architecture and presented at the conference ECCOMAS 2022 and DLES13 is
inspired by the one proposed by Zhou et al. (2021). The networks were trained with
the velocity u, pressure gradient ∇p, and a length scale hwm.

The non-dimensionalization is based on the length scale yν,p inspired by the near-wall
scaling compatible with separation (Duprat et al., 2011),

yν,p =
ν

uν,p

,

where uν,p is a velocity scale defined as

uν,p =
√

u2
ν + u2

p, where uν =

√
νu∥

hwm

, and up =

∣∣∣∣νρ ∂p

∂x

∣∣∣∣1/3 .
The wall model height is scaled with yν,p, the velocity is scaled with uτ,p, and the
pressure gradient is scaled as the Clauser parameter as

h∗∗ = ln

(
hwm

yν,p

)
, u∗∗ =

u

uτ,p

, and ∇p∗∗ =
hwm

ρu2
ν,p

∇p . (6.1)

The wall shear stress is non-dimensionalized as a friction coefficient,

τ ∗∗
w =

τw
1
2
ρu2

ν,p

. (6.2)

The non-dimensional quantities are denoted with a double ∗ to differentiate them
from those defined in Section 5.2.1.

Using this non-dimensionalization, several convolutional neural networks were trained
with the Mean Square Error (MSE) loss, defined in Section 2.2. In the early stage
of the thesis, standard networks were trained in the hope of recovering the instan-
taneous behavior of the friction before attempting to estimate the PDF of the wall
shear stress. Three main tests were conducted to evaluate the impact of the input
features and the network capability to generalize using the non-dimensionalization
presented in Equations 6.1 and 6.2.



6.1. Discussion about the non-dimensionalization 131

6.1.1 Training a CNN on PHL10595

A convolutional neural network (CNN), introduced in Section 2.2.2, was trained
on the lower wall of the periodic hill (PHL10595) and evaluated on the upper wall
(PHU10595) and the channel (TC950). The architecture and the different hyperpa-
rameters employed to train the CNN are not presented to maintain conciseness.

On average, the neural network recovered the LES wall shear stress. The network
captured the separation and reattachment correctly and underestimated the friction
peak. The standard deviation was under-predicted at every streamwise location.
This under-prediction was even more pronounced near the separation, where there
was not enough richness in the neural network to characterize the instantaneous
behavior, mainly due to the underlying hypothesis of the MSE.

The prediction of τw,ξ on the upper wall of the periodic hill was unsatisfactory. The
mean prediction presented oscillations, and the standard deviation was overesti-
mated, indicating the high uncertainty of the model on this configuration. Regard-
ing the channel, the mean predictions underestimate about 10% the ground truth
and also presented oscillations.

Conclusion We conclude that the oscillations originate from the velocity scale uν,p

and, more precisely, from the pressure gradient. To damp these oscillations, the
spatial-averaged of the velocity scale ⟨uν,p⟩ξ,z was considered to non-dimensionalize
the wall shear stress in the two subsequent tests.

6.1.2 Training a CNN on PHL10595 and TC950

The same CNN as in Section 6.1.1 was trained on the channel (TC950) and lower
wall of the periodic hill (PHL10595) and evaluated on the upper wall (PHU10595).

The predictions on the channel were very satisfactory, and no more oscillations were
present in the averaged prediction. Regarding the lower wall of the periodic hill,
the friction peak was again underestimated. It seems that the network has some
difficulties in discriminating the accelerating part with the rest of the domain. The
prediction for the upper wall (PHU10595) was as inaccurate as the prediction from
Reichardt’s LOTW. The network did not correctly understand the correlation with
the pressure gradient.
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Conclusion To overcome the misprediction in the friction peak, we decided to
introduce the curvature as a new input feature. To improve the understanding
between the wall shear stress on the upper wall and the pressure gradient, the
PHU10595 is added to the training data while the turbulent channel is left as the
validation set.

6.1.3 Training a CNN on PHL10595 and PHU10595

The same CNN as in Section 6.1.1 was trained on the upper (PHU10595) and lower
wall of the periodic hill (PHL10595) and evaluated the channel (TC950).

The prediction matches the ground truth everywhere, even at the friction peak. The
prediction on the upper wall is improved, but the correlation with the pressure gra-
dient is still not perfectly captured.

Due to the integration of the curvature in the input feature, the prediction of the wall
shear stress on the channel deteriorated. The physics that is the most representative
of the turbulent channel, is on the accelerating part of the periodic hill 7.0 ≤ x/h ≤
8.5. However, by adding the curvature, this part of the periodic hill is invisible to
the channel, which has a zero curvature.

Conclusion The mean pressure gradient can be added to the input features to
better characterize the correlation between the pressure gradient and the wall shear
stress. Although the curvature is an important feature to better discriminate among
the different physics on the lower wall of the periodic hill, it diminishes the network
capabilities to generalize to other configurations.

6.1.4 Training a CNN on PHL10595, PHU10595 and TC950

In regard to the previous test, the CNN is trained on both the upper (PHU10595)
and lower wall of the periodic hill (PHL10595), as well as the channel (TC950).
The model was then evaluated on all three databases but at different time steps.
However, this approach may not be the most appropriate for avoiding overfitting.
The a priori tests yielded satisfactory results. The model was thus implemented in
Argo-DG following the procedure presented in Section 5.3.2. The a posteriori test
was first conducted on the channel flow at a polynomial order p = 3. The obtained
results were comparable to those in the literature. To further validate the approach,
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the wmLES was performed at a fourth polynomial order, but the simulation never
stabilized. After multiple tests, it was concluded that the non-dimensionalization
presented above was too sensitive to the polynomial order. As a result, the non-
dimensionalization has been redefined using only the kinematic viscosity ν and the
matching location hwm, instead of using "the velocity itself to scale the velocity".

6.1.5 Conclusion

In conclusion, the curvature and the mean pressure gradient were added as input
features to train the data-driven wall shear stress model.

The curvature helps to discriminate between the different physics on the lower wall,
especially between the accelerated region from x/h = 7.0 to x/h = 8.5 and the sep-
aration region establishing instantaneously over a large part of the hill crest, since
these two regions are both characterized by a high-pressure gradient and velocity.

The mean pressure gradient helps the network capture the correlation between the
wall shear stress and the pressure gradient on the upper wall to avoid reproducing
similar results as Reichardt’s LOTW. The importance of the mean pressure gradient
is further characterized using SHAP values in Section 8.2.4.

New and more physical scaling factors have been defined due to the sensitivity of
non-dimensionalization to the polynomial order. This new non-dimensionalization
is used for the rest of this chapter.

6.2 Discussion about the stencil size

Section 5.1.2 discusses the optimal size for the input stencil. Nonetheless, the op-
timality can be questioned by testing different stencil sizes. In the present section,
the smallest (i.e., 1) and the largest stencil size (i.e., 180) are considered to train an
MLP and a CNN and compared to the optimal stencil size (i.e., 16). In Section 6.1,
the networks were trained with an MSE. For the rest of this chapter, every network
is connected to a GMH and trained with the Negative Log-likelihood loss defined
in Equation 5.4. For the smallest stencil size, an MLP is considered, while for the
larger stencil, a CNN is used. The three neural networks are trained on PHL10595,
PHU10595, and TC1000 using the instantaneous velocity, the instantaneous and
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mean pressure gradient, and the curvature. The hyperparameters summarized in
Table 8.1 are employed for the three neural networks. The major difference between
the three networks is the number of inputs, which directly affects the number of
parameters to be fit during the training.

To evaluate the performances of the different neural networks, two metrics are in-
troduced. The first metric is the Q2-criterion which evaluates the goodness of the
prediction. This metric is also termed predicted variation and is defined as

Q2 = 1− Var(y − ŷ)

Var(y)
, (6.3)

where y is the ground true and ŷ is the corresponding prediction. The second metric
is Pearson coefficient defined as
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Table 6.1: Summary of the experiments conducted on three neural networks, where
Q2 and R are two metrics used to evaluate the performance of the network, results
obtained for the lower and upper wall of the two-dimensional periodic hill are indi-
cated by L and U, respectively.

Network Size Min. Loss Q2 R

L U L U

MLP-1 1 −3.78 0.23 −0.82 0.992 0.856

CNN-16 16 −4.14 0.42 −0.36 0.997 0.954

CNN-180 180 −4.15 0.35 −0.31 0.996 0.969

Table 6.1 summarizes the results obtained on the three neural networks where Q2
is evaluated on the instantaneous prediction and R on the averages. In both cases,
the two metrics are computed for the lower (L) and upper (U) walls of the two-
dimensional periodic hill. The networks trained with a larger stencil size, either 16
or 180, produce better results on both the upper and lower walls. The predictions
of CNN-16 are as good as those of CNN-180. This observation confirms that the
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optimal stencil size obtained with feature selection is sufficient to capture the cor-
relations necessary for the network to perform well.

Figure 6.1 shows the mean and standard deviation of the predictions, on the upper
wall, against the ground truth. The MLP-1 predictions underestimate the target
wall shear stress between 5.0 ≤ x/h ≤ 9.0 while the two CNNs perform well with
Pearson coefficients of 0.954 and 0.969.

Figure 6.1: A priori test on PHU10595 to validate the stencil size: the black plain
line is the wrLES mean wall shear stress, while the gray area represents the wrLES
standard deviation; the MLP-1 predictions are drawn in dark green; the CNN-16
predictions are drawn in turquoise; the CNN-180 predictions are drawn in light blue.

Figure 6.2 shows the mean and standard deviation of the predictions on the upper
wall against the ground truth. MLP-1 struggles to predict the mean wall shear stress
in the separation vicinity where no local and instantaneous correlations were found
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(see Figure 4.17). Moreover, the standard deviation has a larger amplitude in that
region, indicating greater uncertainty.

Figure 6.2: A priori test on PHL10595 to validate the stencil size: similar legend as
in Figure 6.1.

The preceding discussion mentions the size of the stencil. However, we can also
debate the location of the points: whether they should be extracted only upstream,
downstream, or a balance between upstream and downstream points. To evaluate
which point influences the wall shear stress the most, SHAP values are computed for
a network trained over a symmetric stencil of size 21 where 10 points are extracted
upstream and 10 points are extracted downstream. In this case, the network is only
trained on the upper wall of the two-dimensional periodic hill. To ensure traceability
of the SHAP values, the output is evaluated as

∑
k πkµk instead of sampling from

the predicted distribution.

The averaged marginal contribution of the non-dimensionalized and scaled stream-
wise velocity component u∗ (ranging from 0 to 1) on the outcome is shown in Fig-
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ure 6.3a. The vertical axis represents the different positions along the stencil. Nega-
tive indexes represent upstream points, while positive indexes represent downstream
points. The streamwise velocity extracted downstream contributes more to a modifi-
cation of the outcome than points extracted upstream. This observation is consistent
with the space-time correlation U0T0 in Figure 4.14. Each point is colored by the
value of the input (i.e., u∗). Light values correspond to a high velocity, while dark
values correspond to low values. A positive velocity contributes to an augmentation
of the wall shear stress, while a negative velocity tends to decrease the wall shear
stress. Figure 6.3a confirms that the wall model correctly learns the relationship
between u and τw,ξ.

(a) Shapley values of the feature u∗ on the
outcome τw,ξ.

(b) Shapley values of the feature u∗p on the
outcome τw,ξ.

Figure 6.3: SHAP summary plot on the upper wall of the two-dimensional periodic;
on the left, the SHAP values related to the streamwise velocity, and on the right,
those related to the pressure gradients.

The averaged marginal contribution of the non-dimensionalized and scaled stream-
wise pressure velocity u∗

p (ranging from 0 to 1) on the outcome is shown in Fig-
ure 6.3b. Similar conclusions to those drawn for the Shapley values of u are made.
Downstream points contribute more to the outcome. Moreover, points with index
0, 1, 2 contribute more to the outcome as highlighted by the space-time correlation
of Figure 4.15 where the region of high correlation is centered at (δt, δξ) = (0, 0).
The anti-correlation detected in Figure 4.15 is also confirmed by the SHAP values.

Conclusion The four experiments conducted in the present section suggest that a
larger stencil (i.e., greater than one) is more effective in predicting the wall shear
stress in the separation vicinity and on the upper wall. The computation of SHAP
values indicates that the downstream points have a greater averaged marginal con-
tribution to the outcome. Therefore, an asymmetric stencil is recommended. The
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optimal stencil size deduced from the analysis of space-time correlation is thus con-
firmed by the present analysis.

6.3 Discussion about the architecture

At this point, the input features (i.e., the instantaneous velocity, the instantaneous
and mean pressure gradient, and the curvature) and the stencil size (i.e., 16 points
with 5 taken upstream, 10 taken downstream, and the current point) are fixed by
the previously mentioned experiments. In the present section, we discuss which
architecture between the MLP and the CNN is better for the targeted application.
In the experiments, a CNN with two-dimensional convolution layers is also tested
to see if an extension in the spanwise direction could be beneficial. The stencil was
taken symmetrically because the correlations in the spanwise direction were mostly
symmetrical because this direction is homogeneous and periodic. This hypothesis
cannot be generalized to more complex geometries with inhomogeneous directions.

Table 6.2: Summary of the experiments conducted on three neural networks, where
Q2 and R are defined by Equations 6.3 and 6.4, results obtained for the lower and
upper wall of the two-dimensional periodic hill are indicated by L and U, respectively.

Network Size # param. Min. Loss Q2 R

L U L U

MLP-16 16 83,772 −4.17 0.42 −0.39 0.997 0.956

CNN1d-16 16 10,212 −4.14 0.42 −0.36 0.997 0.954

CNN2d-16x16 16× 16 20,162 −4.39 0.51 −0.15 0.996 0.968

Table 6.2 summarized the three architectures with their performances (Q2 and R)
on both the lower and upper walls of the two-dimensional periodic hill. MLP-16
performs as well as CNN1d-16 but with eight times more parameters. The exten-
sion in the spanwise direction is beneficial, as demonstrated by the performance of
CNN2d-16x16. CNN2d-16x16 has a higher Q2 criterion, and the predictions on the
upper wall are improved, as confirmed by the Pearson coefficient.

Figure 6.4 shows the mean and standard deviation of the predictions on the upper
wall of the two-dimensional periodic hill against the ground truth. All three networks
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correctly predict both the mean and the standard deviation, demonstrating their
ability to comprehend the correlation between τw and the pressure gradients.

Figure 6.4: A priori test on PHU10595 to validate the architecture: the black plain
line is the wrLES mean wall shear stress, while the gray area represents the wrLES
standard deviation; the MLP-16 predictions are drawn in dark green; the CNN1d-16
predictions are drawn in turquoise; the CNN2d-16x16 predictions are drawn in light
blue.

The mean and standard deviation of the predictions on the lower wall of the two-
dimensional periodic hill are shown in Figure 6.5 against the ground truth. All three
networks distinguish between the separation, reattachment, and accelerating region,
and recover the friction peak.

SHAP values The optimal size in the spanwise direction has not yet been dis-
cussed. As observed in Figure 4.24, the cross-correlation U0T2 covers a significant
space area. However, for all other correlations, the domain of high correlation re-
mains concentrated around the time axis and does not spread much in space. It



140 Chapter 6. Pathway to the successful network architectures for wall modeling

Figure 6.5: A priori test on PHL10595 to validate the architecture: similar legend
as in Figure 6.4.

is therefore interesting to examine which points along the spanwise direction con-
tribute more to the outcome after training the CNN2d-16x16 on a 16 × 16 input
stencil. The averaged marginal contribution of the non-dimensionalized and scaled
streamwise velocity component u∗ (ranging from 0 to 1) on the outcomes τw,ξ and
τw,z is shown on Figure 6.6b. The index indicates the spanwise positions, spanning
from −7 to +8. The streamwise position in the 2D-stencil is fixed and corresponds
to the current point, as illustrated in Figure 6.6a. In both graphs, the central points
{−3, . . . , 3} contribute more to the outcome. This observation is consistent with
Figure 4.16. The SHAP values point out the anti-correlation for δz > 0 and the
correlation for δz < 0, as observed for the cross-correlation U0T2. Furthermore,
the averaged marginal contribution of u∗ on τw,ξ is weaker than the AMC of u∗ on
τw,z because the correlation U0T0 is weaker than U0T2 when no time delay was
considered (δt = 0).
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(a) Sketch of two-dimensional input stencil
used to train CNN2d-16x16 (with 16 points
along the streamwise and spanwise direc-
tion), where the red point corresponds to the
current point.

(b) SHAP summary plot of Shapley values
of the feature u∗ on the outcome τw,ξ (top)
and τw,z (bottom) evaluated for the network
CNN2d-16x16 for PHU10595.

Figure 6.6: The gray circles on the left indicate the spanwise positions used to plot
the SHAP summary on the right.

Conclusion The aim of these experiments was to determine the most suitable neu-
ral network architecture between an MLP and a CNN based on the number of input
features. Although MLP-16 and CNN1d-16 produce comparable results, CNN1d-
16 is preferred due to its smaller number of parameters and translation invariance.
Additionally, the spanwise extension improves the prediction accuracy on the upper
wall. Therefore, it is recommended to choose a CNN as the appropriate architecture
for the targeted application. If two-dimensional inputs are considered, the number
of points used in the spanwise direction could be reduced to 11, as revealed by the
SHAP values.

6.4 Discussion about overfitting and underfitting

The present section discusses the bias-variance trade-off in machine learning. The
goal is to obtain a model that balances underfitting and overfitting. Overfitting
means that the network is too specialized on the training data, i.e., it is mainly
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trained to exactly fit the data. Underfitting means that the network is enable to
capture the underlying relationship between the input and output variables. Ulti-
mately, the goal is to develop a model that is rich enough to capture the underlying
structure in the data but simple enough to generalize on unseen configurations and
avoid fitting spurious patterns.

Although this bias-variance trade-off may seem inconsistent with the behavior of
modern machine-learning methods, overfitting remains a risk in "classical" regime
with under-parameterized neural networks that stay below the interpolation thresh-
old (Belkin et al., 2019). Because we have a limited number of test cases and our
neural networks are relatively small compared to modern machine learning stan-
dards, overfitting remains a significant concern and can impact the model’s ability
to generalize.

Overfitting can be monitored by evaluating the currently trained network on an ap-
propriated validation set (see Section 2.2.1.3). In the above training, the validation
set was constructed as data from the same test case but at different time steps,
and the training was stopped at the minimum of the validation loss curve, which
is called early stop. However, because the data are extracted from the statistically
converged state, they are not very different from each other. Therefore, it is more
difficult to really evaluate the network capability to generalize. In the present sec-
tion, we perform a leave-one-out approach where two datasets are employed to train
the network, and the third one is left for validation purposes. Three combinations
are possible.

• TC1000-PHU10595

The generalizability of PHL10595 cannot be attributed to the neural net-
work’s ability to capture the underlying structure in the data. Rather,
it is just because the database is not enough rich to extrapolate on the
lower wall, which features separation and reattachment.

• TC1000-PHL10595

There is potential for generalization on the upper wall, and it is important
to ensure that the model does not overfit the two other databases.

• PHU10595-PHL10595
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Generalizability is possible if the training data includes a sufficient range
of y+ values to capture the logarithmic layer of the TC1000 test case.

A CNN1d-16 was trained on the turbulent channel flow at Reτ = 1,000 and the lower
wall of the two-dimensional periodic hill. To monitor overfitting, the validation loss
was evaluated on the upper wall of the two-dimensional periodic hill. Figure 6.7
shows the evolution of the two losses (training and validation). The training loss
continues to decrease, but at epoch 82, the validation loss begins to increase. After
epoch 82, the model starts to overfit the training data.
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Figure 6.7: Evolution of the training and validation losses.

The mean and standard deviation of the prediction on PHU1059 are shown in Fig-
ure 6.8. Although the predictions are not perfect, they are already better than those
produced by Reichardt’s LOTW. The data-driven wall model predictions follow the
trend of those produced by Reichardt’s LOTW between 0 ≤ x/h ≤ 5, which indi-
cates a stronger relationship with the velocity field than with the pressure gradient.
Therefore, the model imposed on the upper wall a similar relationship as on a tur-
bulent channel. However, between 5 ≤ x/h ≤ 9, the predictions align with the
ground truth. The network is partially capable of transferring its knowledge from
the TC1000 and PHL1059 to the upper wall of the periodic hill.

Conclusion A network trained on TC1000 and PHL10595 is partially capable of
predicting the wall shear stress on the upper wall of the periodic hill. Although
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Figure 6.8: A priori predictions of the streamwise wall shear stress on the upper wall
of the two-dimensional periodic hill generated by a CNN1d-16 trained on TC1000
and PHL10595.

the predictions obtained by the data-driven wall model present some errors, there is
an improvement compared to those produced by Reichardt’s LOTW. The reduced
capacity of the network to generalize may be attributed to the limited number of
test cases. Better generalization is more likely when the database contains a wider
range of physics.

6.5 Conclusion

This chapter provides a brief summary of the experiments conducted during the
thesis that led to the definition of the final architecture used to develop new data-
driven wall models presented in Chapters 7 and 8.

Experiments conducted in Section 6.1 aid in redefining the non-dimensionalization
and adding two additional input features: mean pressure gradient and curvature. In
Section 6.2, the optimal stencil size, deduced from the space-time correlations, has
been confirmed. Knowing the number of inputs, two network architectures (MLP
and CNN) are tested in Section 6.3. The CNN1d-16 produced similar results to
the MLP-16 but with eight times fewer parameters. Moreover, the CNN performed
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even better when applied to two-dimensional inputs. Therefore, with a view of ex-
tending the input stencil in the spanwise direction, the CNN is preferred over the
MLP. Finally, in Section 6.4, a CNN1d-16 was trained over the turbulent channel at
Reτ = 1,000 and the lower wall of the two-dimensional periodic hill at Reb = 10,595
and evaluated on the upper wall of the periodic hill. The training was stopped before
the network overfitted the training data. The obtained network partially recovered
the wall shear stress on the upper wall. This observation confirms that the database
does not contain enough physics to generalize.

To summarize, the most successful network is a convolutional neural network trained
with a stencil of size 16 where 5 points are taken upstream, 10 points are taken down-
stream, and the current point. The input features are the three components of the
instantaneous velocity, the three components of the mean and instantaneous pres-
sure gradient, and the curvature. If the stencil is extended in the spanwise direction,
a two-dimensional convolutional neural network should be employed with 2D stencils
of size 16 and 11 in steam and span, respectively. The spanwise stencil is symmetric
about the current point (i.e., 5 points upstream and 5 points downstream).





Chapter 7
Fully developed turbulent

flow in channel configuration

T his chapter discusses the development of a data-driven WSS model applied to
the turbulent channel flow only. Wall-modeled LES of the channel flow has

been successful for a long time, and we do not aim to invent a new WSS model that
will outperform other approaches. The main objective is to develop the methodology
for training, validating, and testing the stochastic-based wall model on a canonical
and well-known geometry. The training and validation parameters are presented
in Section 7.1, while a priori tests are performed in Section 7.2 by analyzing the
capabilities of the trained neural network to generalize.

To predict the distribution of the wall shear stress on a channel wall, a simple
MLP combined with a GMH is chosen. As discussed in Section 5.1.1, the instanta-
neous predictions are sampled from a probability density function. This sampling is
evaluated at each surface probe without considering time or space correlations. In
a channel, the streamwise and spanwise directions are homogeneous and periodic.
Therefore, the correlation length scale is similar at each (x, z) location, and the same
is true for the correlation time scale. This observation simplifies the reconstruction
of the space-time correlations for a turbulent channel flow. This reconstruction is
treated in Section 7.3.

Once the neural network has been thoroughly verified a priori, it can be implemented
in Argo-DG (i.e., in a production environment) to be tested a posteriori. The
fact that the network performs well a priori does not mean that it will perform
well a posteriori. Indeed, the production environment is different from the training
environment. Firstly, the network will be confronted with the initial numerical
transient not seen during the training. Secondly, because the input fields are not
filtered according to the size of the wmLES mesh, the input fields will be different

147
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in terms of the structures carried in the fluid from those seen during the training.
Thirdly, the prediction will affect the velocity, which in turn will affect the wall shear
stress. There is a feedback loop between the velocity and wall shear stress that was
not present during the training. All these points may affect the network behavior.

7.1 Training

Table 7.1 lists the trained networks with their corresponding non-dimensional in-
put/output pairs, described in Section 5.2.1. The prediction of the wall shear stress
distribution for turbulent channel flows is carried out by a simple MLP combined
with one GMH for τw,ξ and one GMH for τw,z. Because the solid wall is flat, the
streamwise direction x corresponds to ξ.

Table 7.1: List of the neural networks trained with their corresponding database,
pairs of input/outputs, the size of the input stencil along the streamwise direction,
and the number of wall model heights; each test case was described in Chapter 4.

Architecture MLP-GMH CNN-skip-GMH

Train database TC5200 PHU10595, PHL10595, TC1000
Test database TC950, TC1000, SYNTH. TC950

Inputs u∗ , v∗ , w∗, u∗ u∗ , v∗ , w∗ , u∗
p , v

∗
p , w

∗
p , u

∗
p , v

∗
p , w

∗
p ,K∗

Input size [0] [−5 : 10]

Nb. of hwm 95 5, 5, 35
Outputs τ ∗w,ξ , τ

∗
w,z τ ∗w,ξ , τ

∗
w,z

As a reminder, the MLP architecture consists of an input layer, several hidden
layers, and an output layer. The number of neurons in the input layer is four: three
corresponding to the components of the velocity field and one for the mean of the
streamwise velocity. The output layer is replaced here by two GMHs composed of
K Gaussians. A neural network has many hyperparameters to tune: the number of
hidden layers, the number of neurons per layer, the type of initialization, the batch
size, and the learning rate, to name a few. A common approach to determining the
optimal set of hyperparameters for a dataset is through trial and error, which is
the principle of hyperparameter optimization. Two popular techniques exist: grid
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search and random search. While grid search exhaustively explores every possible
hyperparameter combination to determine the best model, random search only picks
out and tests a random combination of hyperparameters. To reduce the training
effort and to make the task a little easier, the number of neurons in each hidden
layer is kept identical. To evaluate the optimal number of hidden layers H and
neurons per layer N of the MLP-GMH, a random search is applied with H and N
uniformly distributed on the interval [h0, h1] and [n0, n1], respectively,

H ∼ U (h0, h1) and N ∼ U (n0, n1) ,

where h0 = 3, h1 = 5 (a too deep network is not useful here), n0 = 5 and n1 = 50.
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Figure 7.1: Random Search leading to 15 pairs of hidden layers (H) and neurons (N).

A total of fifteen networks were trained on the database TC5200. The best net-
work is selected based on seven metrics: the averaged relative error on the predicted
mean, variance, and skewness for both τw,ξ and τw,z and the loss function evaluated
on the validation set. Since the mean wall shear stress in the spanwise direction is
zero, the relative error is replaced by an MSE. Each network is evaluated using these
metrics. For instance, the network with the lowest validation loss received 15 points,
the network with the second-lowest loss received 14 points, and so on. Finally, the
network with the highest score is considered the "best" network. Figure 7.1 shows
the number of points received by each network for each metric. The best network
is H3_N10. It has three hidden layers with ten neurons in each layer. The second
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best network is H5_N10, and the third best is H5_N8. The podium consists of net-
works with a small number of neurons per layer, i.e., networks with a few parameters.

From this Random Search, the network with three hidden layers and 10 neurons in
each layer is retained for future training. Now that the optimal H and N have been
evaluated, other hyperparameters: (i) the number K of Gaussians in each GMH,
(ii) the learning rate, and (iii) the weight regularization are discussed. By doing
multiple training with K from 1 to 5, we found that more Gaussians did not really
help to capture the skewness better. Chapter 5.2 highlighted how important the
skewness is in predicting τw,ξ and how it affects its mean. By reducing the skewness
with the non-dimensionalization, it turned out that it was possible to obtain a good
agreement with the ground truth by using a single Gaussian. The learning rate is
also an important hyperparameter. It directly affects the search for the minimum. A
too-high learning rate will generate oscillations in the loss, while a too-low learning
rate will slow down the training and may lead to getting stuck in a local minimum.
Since our batch size is 16 times larger than LeCun’s recommended value of 32, the
learning rate can be increased to compensate for the larger batch size. Lower learn-
ing rates have been tested, but the training was slowed down. Regarding the weight
regularization, after several tests, the value of 10−5 seems to give proper results.

The hyperparameters used to train the MLP-GMH (Table 7.1) are summarized
in Table 7.2 with the size of the training and validation datasets. The model is
trained on the turbulent channel flow at Reτ = 5,200 and validated on the one at
Reτ = 1,000. The training is stopped at the minimum of the validation loss. The
loss is the sum of the negative log-likelihood on τw,ξ and τw,z. No coefficients are
used to amplify any of the terms in the loss because the outputs are also scaled
between 0 and 1 using the min/max equation (Eq. 5.10).
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Table 7.2: List of the hyperparameters used to train the MLP-GMH on turbulent
channel flows composed of 336 parameters.

Hyperparameters Values

Batch size 512

Learning rate 10−3

Weight regularization 10−5

Number of epochs 103

Training size ≃ 4 · 105

Validation size ≃ 9 · 104

Optimizer torch.optim.Adam()

Nb. Gaussian/head 1

Activation fct. Sigmoid

7.2 A priori testing

The model is first tested using the turbulent channel flows at Reτ = 950 and 1,000
(Section 7.2.1). A discussion on the model’s capabilities to generalize is done in
Section 7.2.2 on synthetic data extracted from the log-law (Eq. 4.5).

7.2.1 A priori testing on TC1000

The results for TC950 are similar to those for TC1000, and are, therefore, not pre-
sented here. One of the model constraints is to have the same behavior of the model
at each wall model height. Figure 7.2 shows the predicted mean wall shear stress
τw,ξ for heights y+ ranging from 30 to 200. At each height, the predicted mean and
variance are in good agreement with the ground truth (i.e., mean and variance).
The relative error is less than 1% at each height. The model constraint mentioned
above is therefore satisfied. As Dupuy et al. (2023a), the instantaneous predictions
are compared to the analytical profile of Reichardt (Eq. 3.6). The wall model pre-
dictions are reported in Figure 7.3 and compared against the ground truth in a
(u+, y+) graph. The model accurately captures the LOTW and effectively estimates
the variance caused by the velocity fluctuations.
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Figure 7.2: A priori test on TC1000: the black dashed line is the wrLES mean
wall shear stress, while the gray area represents the wrLES standard deviation;
the predictions are illustrated in blue, with the error bar indicating the predicted
standard deviation.



7.2. A priori testing 153

Figure 7.3: A priori test on TC1000: Distribution of the instantaneous scaled
streamwise velocity u+ as a function of the scaled distance to the wall y+, using
the target wall shear stress (black circle) and the predictions (blue plus symbol) to
evaluate the wall unit scaling; Reichardt’s profile is drawn in red.

7.2.2 A priori testing on synthetic data

The model is further tested on synthetic data. The benefit of such a database is
that the model is assessed at higher friction Reynolds numbers, allowing for a better
understanding of its generalizability. The generalization of the model is analyzed on
the basis of three functional levels :

• the model can maintain its accuracy within the training limits (i.e., 30 ≤ y+ ≤
500) when applied to higher friction Reynolds numbers (i.e., Reτ > 5200);

• the model is applied beyond its training limits (i.e., y+ > 500) for the same
friction Reynolds number (i.e., Reτ = 5200);

• the model is applied outside of its training boundaries (i.e., y+ > 500) for
higher Reynolds numbers (i.e., Reτ > 5200).
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Figure 7.4 is the key to answering the above questions. Every Reynolds number
overlaps each other and draws a unique curve that aligns with the LOTW for 90 ≤
y+ ≤ 400. For 250 < y+ < 400, the prediction slightly overestimates the LOTW
(with a maximum relative error of 1.5%) due to an underestimation of the wall
shear stress. For y+ > 400, the curve quickly overestimates the LOTW, and no
generalization above the upper training bounds is possible. To conclude, the model
can generalize to higher Reynolds numbers as long as the input fields are extracted
between the training bounds (i.e., 30 ≤ y+ ≤ 500).

5× 1023× 101

Figure 7.4: MLP-GMH averaged predictions on synthetic data extracted from the
LOTW (Eq. 4.5); each gray-scale symbol represents a different friction Reynolds
number from 180 to 104; the red line is the LOTW; the dash blue line and the green
dotted line represents the lower (y+ = 30) and upper (y+ = 500) training bounds.
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7.3 Reconstruction of the wall shear stress
time-space correlations

The network is designed to predict a PDF rather than a pointwise estimate. This
PDF is local and does not take into account any space or time correlations between
neighboring surface probes. Although the predicted wall shear stress field at time
t has the correct mean and variance, the time and space correlations are not re-
covered. As shown in Figure 7.5, the wall shear stress structures are incorrect, and
too much energy is injected into the small scales, while for a channel the wall shear
stress presents elongated structures in the streamwise direction due to the strong
convection along that direction.

Figure 7.5: Instantaneous a priori predictions of the streamwise wall shear stress
using the trained MLP-GMH for the channel flow at Reτ = 950, compared with the
wrLES wall shear stress at a given time step t.

A statistical reconstruction of the space-time correlations is envisioned to improve
the instantaneous prediction of the data-driven wall shear stress. The present section
is thus dedicated to the a priori reconstruction (i.e., only theoretical considerations)
of the space-time correlations of the predicted wall shear stress for a turbulent chan-
nel flow. The development presented has not been implemented in Argo-DG, except
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for the time reconstruction, because of two major drawbacks. Firstly, the recon-
struction of the space-time correlation necessitates knowing a priori or being able
to estimate at each (t, ξ, z) two integral length scales and the integral time scale.
Therefore, it seems that reconstructing the instantaneous structures is a problem as
complicated as the prediction of the wall shear stress on its own. Secondly, such a
reconstruction can be computationally expensive and memory-intensive. Please note
that the data-driven wall shear stress is implemented in a high-order flow solver (re-
fer to Section 5.3), which already has many functionalities where memory can be the
limiting factor. Wall-modeled LES has been introduced to reduce the computational
time and make high Reynolds number geometry simulations feasible. Therefore, the
wall model should be as efficient as possible to accelerate the computation.

You may be wondering why we predict the wall shear stress locally instead of pre-
dicting it on the entire solid wall. Predicting globally would have solved the issue
with space and time correlations. However, doing a global prediction would have
posed generalizability issues. Indeed, the periodic hill geometry is completely dif-
ferent from a channel wall. Therefore, it would be challenging to pass from one
geometry to another. Additionally, the global prediction would require more com-
munications in a highly scalable flow solver and therefore will not meet the design
constraints stated in Section 3.5.

The reconstruction of the space-time correlation of the streamwise wall shear stress
can be subdivided in different steps: (i) the reconstruction of the time correlation
only, (ii) the reconstruction of the space correlation only, and (iii) ultimately the
reconstruction of both space and time correlation.

7.3.1 Reconstruction of the time correlation

The reconstruction of the time correlation for the streamwise wall shear stress is
local. This technique only requires the current and previous time steps to ensure
correlation and communications are not necessary for its implementation. However,
this method is a little more expensive in terms of storage because it requires the
storage of the previous prediction at time step t− dt in an adequate container. The
reconstruction of the time correlation uses conditional sampling, the theory behind
Gaussian Processes (GP). The new prediction is conditionally sampled from the
predicted distribution (i.e., the distribution predicted by the network as a linear
combination of Gaussian distributions), knowing the previous wall shear stress and
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assuming a given kernel (e.g., exponential, square-exponential, or Matérn).

To use the formula of the conditional distribution of a multivariate normal distri-
bution, we made the strong assumption that the marginal distribution is Gaussian.
The MLP-GMH described in Table 7.2 uses one Gaussian distribution, and the as-
sumption is thus true. However, a more general MDN predicts a mixture of K
Gaussians, which renders the present reconstruction no longer possible. The condi-
tional distribution of a multivariate normal distribution is defined here below.

Conditional distribution of a multivariate normal distribution

Let x follow a multivariate normal distribution

x ∼ N (µ,Σ)

Then, the conditional distribution of any subset vector x1, given the comple-
ment vector x2, is also a multivariate normal distribution

x1|x2 ∼ N (µ1|2,Σ1|2)

where the conditional mean and covariance are

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2) (7.1)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 (7.2)

with the block-wise mean and covariance defined as

µ =

[
µ1

µ2

]
(7.3)

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(7.4)

Due to the periodicity and homogeneity of the streamwise and spanwise directions
in a channel, the correlation time scale T is identical at each (x, z) position on the
solid walls. A strong assumption is made about the correlation kernel, which ensures
the smoothest of the reconstructed field. The γ-exponential kernel is a well-known
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kernel in GP, and it is defined as

f(r; l, γ) = σ2
0 exp

{
−
(r
l

)γ}
, (7.5)

where l is the integral time (then noted as lt) or length scale (then noted as lξ or lz),
γ an exponent to be fixed, and r a time or a distance. For the accurate reconstruc-
tion of the time correlation, lt needs to be a priori set. In a new flow configuration,
this time scale is not known a priori. One solution is to train a neural network to
predict the integral time scale, lt. This topic will be further explored in the thesis
perspective.
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Figure 7.6: Local time correlation reconstruction: Average time correlations for
the streamwise wall shear stress at x/h = 0 on the channel solid wall of the raw
predictions in the blue circle line, the wrLES wall shear stress in the black dashed
line, and the reconstructed predictions using the conditional sampling in the plain
green line.

Assuming lt and the kernel, the new predicted mean and variance are evaluated with
Eq. 7.1 and 7.2 respectively with the block-wise covariance terms computed as,

Σ22 = σ2
t−1 , Σ11 = σ2

t , Σ21 = σt−1σt exp

(
−dt2

2l2t

)
,

where dt is the time step, σt and σt−1 are the standard deviation at time t and t−dt
predicted by the neural network. Figure 7.6 shows the average time correlation R(rt)
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of the raw predictions, the reconstructed prediction using conditional sampling, and
the wrLES τw,x at x/h = 0 on the channel solid wall. The average is computed
along the spanwise direction. The raw predictions do not account for the previously
predicted wall shear stress, and therefore, no time correlation is detected compared
to the wrLES data, which shows a non-negligible time correlation. Since the time
correlation is known a priori, an optimization procedure is set up to evaluate the
parameter l of the γ-exponential kernel. The γ exponent is fixed at 1.1 because the
slope of the time correlation is steep at the origin, but it can also be optimized.
After about 100 iterations of the gradient descent, the optimal integral time scale
l(ν/h2) =1.3526 × 10−5 is obtained. As already mentioned, the present method is
only applicable if the data-driven WSS model can predict the time scale itself or if
such information is available a priori. The reconstructed time correlation is in good
agreement with that of the wrLES, validating conditional sampling as a technique
for reconstructing the time correlation of wall shear stress in turbulent channel flow.

7.3.2 Reconstruction of the space correlation

Whereas the reconstruction of time was relatively straightforward in case the marginal
distributions are Gaussian, the reconstruction of the two-dimensional wall shear
stress structures raises certain implementation complexities. There are two ways to
reconstruct the space correlation of τw: global and local reconstruction.

Global reconstruction (Section 7.3.2.1) is based on sampling the wall shear stress
from a multivariate normal distribution, which requires the evaluation of a huge
covariance matrix. For instance, to generate 192 × 192 samples on the surface, a
1924 container would be required to store the covariance matrix, corresponding to
a memory storage of 5GB. A similar matrix is also evaluated for the spanwise wall
shear stress. In a channel, the upper and lower walls are equivalent, but in other ge-
ometry, such as the two-dimensional periodic hill, the storage is double. Moreover,
the serial implementation of the Cholesky decomposition has a cubic complexity.
This approach is computationally expensive and requires high memory storage. Re-
ducing memory storage is possible with compression methods (Humphreys et al.,
2015; Heavens et al., 2017).

The second approach is local reconstruction (Section 7.3.2.2), where the current
prediction is reconstruced using a small set of neighbours while considering the
correlation length scales in wall-parallel directions (lξ and lz). This approach is
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computationally more efficient for MPI communication and memory storage.

7.3.2.1 Global reconstruction approach

The method is based on the construction of the covariance matrix. This covariance
matrix is not known a priori, therefore, its construction is also based on kernels,
as in GP. The selected kernel is also the γ-exponential (Eq. 7.5) in both directions
(i.e., the wall-parallel directions). This technique requires the access (or the knowl-
edge) of the integral length scales: lξ and lz. If direct access to the streamwise and
spanwise correlations is possible, then the parameter l of Eq. 7.5 can be fitted by a
quick optimization procedure as performed in Section 7.3.1. This optimization leads
to lξ/h = 0.15185 with γ = 1.1 in the streamwise direction and lz/h = 0.026832
with γ = 1 in the spanwise direction. The γ exponent is chosen to be close to one
because of the steep slope of the space correlation at the origin. Since lξ and lz are
constant for each (x, z) position on the wall, the covariance matrix Σ ∈ Rnξnz×nξnz

is easily evaluated using blocks of size nξ × nz.

Although the memory storage for this matrix is high, it is symmetric, and there-
fore, the memory storage is divided by two. Furthermore, this matrix is usually
sparse. In this example, with the optimal integral length scales obtained through
the optimization procedure, only 4.7% of the matrix entries are non-zero, with a
threshold defined at 10−12. As a result, the memory storage is reduced from 5GB to
only 250MB. Once the covariance matrix has been evaluated, its Cholesky decom-
position is computed. Then, to generate the wall shear stress, the lower triangular
Cholesky factor is multiplied by a white Gaussian noise of size nξnz (i.e., samples
extracted from a normal distribution with zero mean and unit variance). The re-
sulting vector is subsequently resized to nξ ×nz and rescaled through the use of the
predicted mean µ ∈ Rnξ×nz and standard deviation σ ∈ Rnξ×nz . Figure 7.7 shows
the instantaneous reconstructed and the wrLES wall shear stress. Comparing the
reconstructed field with the raw prediction in Figure 7.5 for the same time step, the
long narrow streaks aligned with the streamwise direction are observed. However,
in the spanwise direction, the structures are not as large as in the wrLES field.

Figure 7.8 shows the averaged space correlations for the streamwise wall shear stress,
where the reconstructed correlations (in the solid green line) are in good agreement
with the wrLES correlations (in the dashed black line). Notice that the proposed
kernel in the spanwise direction does not allow negative correlation. This point
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Figure 7.7: Global space correlation reconstruction: Instantaneous a priori predic-
tions reconstructed in space of τw,ξ using a global method requiring the evaluation
of the covariance matrix for the channel flow at Reτ = 950, compared to the wrLES
wall shear stress.

should be improved. Figure 7.8 validates the global approach to reconstructing the
space correlations.

7.3.2.2 Local reconstruction approach

For the local reconstruction of the two-dimensional wall shear stress structures,
three alternative methods are considered: (1) two-dimensional autoregressive (AR)
processes, (2) conditional sampling, and (3) linear reconstruction using blending
coefficients. The methods (1) and (2) require communications between MPI ranks
to pass information from one side of the surface to the other side. The prediction
is thus propagated over the surface because the evaluation of the new prediction
requires knowledge of its neighbors or a subset of its neighbors. In a brute-force
algorithm, this evaluation is purely sequential. However, part of the evaluation
can be parallelized, but this depends on the shape of the neighbors needed to re-
construct the space correlation. One might be interested in a purely local method
where the prediction can be made simultaneously at each position with a limited
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Figure 7.8: Global space correlation reconstruction: Averaged space correlations
of τw,ξ at a given time step t on the channel solid wall of the raw predictions in
the blue circle line, the wrLES wall shear stress in the black dashed line, and the
reconstructed predictions using the conditional sampling in the plain green line; on
the left the streamwise space correlation averaged in the spanwise direction; on the
right the spanwise space correlation averaged in the streamwise direction.

amount of communication. Method (3), which uses blending coefficients, answers
the requirement for simultaneous predictions. Unlike methods (1) and (2), which
have some difficulties at the boundary, method (3) could probably deal better with
boundary conditions. Methods (1) and (3) are discussed below, while conditional
sampling is not presented because it has already been presented in Section 7.3.1 for
the reconstruction of time correlations. The method has proven successful in the
reconstruction of time correlations, but it encounters problems with the boundary
conditions when applied to the reconstruction of two-dimensional space structures.

Two-dimensional autoregressive model for space correlation reconstruc-
tion 2D-AR models are used for texture reconstruction and analysis (Vaishali et al.,
2014; Kashyap and Eomm, 1988), and image filtering (Britos and Ojeda, 2018; Bus-
tos et al., 2009). Different real-world scenarios can be described by 2D-AR models
with only a few parameters. For example, the first-order 2D-AR model can represent
a wide range of textures with only two parameters. Considering a two-dimensional
field τw of size nξ × nz, each position in the field is characterized by its location i, j
and can be represented as τw[i, j] = τw,i,j, where 0 ≤ i ≤ nξ − 1 and 0 ≤ j ≤ nz − 1.
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A two-dimensional (2D) autoregressive (AR) model is defined as,

τw,i,j =

p1−1∑
m=0

p2−1∑
n=0

αm,nτw,i−m,j−n + wi,j , (7.6)

where [m,n] ̸= [0, 0], αm,n is the AR coefficient, wi,j is a 2D white noise process with
standard deviation σw > 0, and p1×p2 is the order of the model. The AR coefficient
model α0,0 is assumed to be 1 for scaling purposes, therefore [p1 × p2 − 1] unknown
coefficients have to be found. The conventional Yule-Walker equations are given by,

p1−1∑
m=0

p2−1∑
n=0

αm,nrm−k,n−l = r−k,−l , (7.7)

for k = 0, . . . , p1 − 1 and l = 0, . . . , p2 − 1, where [k, l] ̸= [0, 0], [m,n] ̸= [0, 0], and,
rm,n = E[τw,i,jτw,i+m,j+n]. An example of region of support (ROS) is depicted in
Figure 7.9a.Note that the ROS could have been chosen symmetrically in the span-
wise direction due to the homogeneity and periodicity of this direction. However,
the present method is developed for an arbitrary flow that may not be extruded in
the spanwise direction. If a transverse pressure gradient is imposed in the channel,
a symmetrical reconstruction is no longer possible. Therefore, the regions of Fig-
ure 7.9a allow to get a causal autoregressive process.

(a) Region of Support (ROS) of a two-dimensional AR
model; the two left are first order with p1 = p2 = 2 and
the two right are second order with p1 = p2 = 3; the hatch
areas are the ghost points initialized to zero; the ROS can
takes multiples shapes: cross, quarter, or diamond.

(b) For a surface of size nξ×nz,
nξ + nz +1 ghost terms are ini-
tialized to zero and each num-
ber corresponds to one of the
nξ + nz − 1 sequential steps.

Figure 7.9: ROSs of 2D-AR models and the parallel implementation of the first-order
2D-AR model with a cross ROS.
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The simplest 2D-AR model is the first order AR model based on a cross ROS (see
Figure 7.9a, 1st from the left). There are only two coefficients to find. Using the
Yule-Walker system of equations, a system of two linear equations is obtained:[

r0,0 r1,−1

r−1,1 r0,0

][
α0,1

α1,0

]
=

[
r0,−1

r−1,0

]
. (7.8)

The correlations are also approximated by a kernel. The optimization of lξ and lz
are already done in Section 7.3.2.1 and the same optimal parameters are used to
evaluate the terms r−k,−l using the γ-exponential kernel. The variance of the WGN
is adjusted to obtain a field with a zero mean and a unit variance. The predicted
field is then rescaled with its local mean and variance. This instantaneous prediction
is compared with the wrLES wall shear stress in Figure 7.10. Although the recon-
structed field presents elongated structures aligned with the streamwise direction,
these structures appear slightly skewed, probably due to the selected ROS.

Figure 7.10: Local space correlation reconstruction: Instantaneous a priori predic-
tions reconstructed in space of τw,ξ using a local method based on a first-order 2D-AR
model (with α0,1 = 0.211 and α1,0 = 0.736) for the channel flow at Reτ = 950, com-
pared to the wrLES wall shear stress.



7.3. Reconstruction of the wall shear stress time-space correlations 165

Figure 7.11 shows the averaged space correlations for the streamwise wall shear
stress, where the reconstructed correlations (in the solid green line) are also in good
agreement with the wrLES correlations (in the dashed black line). The predictions
are as good as those obtained with the global method, and they are obtained with
only two parameters. However, this reconstruction involves more communication
and introduces a latency between the evaluation of the lower left corner and the
upper left corner. This latency can be reduced by grouping positions that can be
evaluated simultaneously rather than sequentially, as in a brute-force algorithm.
Figure 7.9b illustrates the partial parallelization that can be implemented to speed
up the predictions. The example counts (nξ×nz) = (8×4) positions. In a sequential
algorithm, the evaluation requires 32 steps, while the improved approach counts
only 11 sequential steps. The number of sequential steps is evaluated as the number
of diagonals in the matrix, which is nξ + nz − 1. Regarding the example used
in Section 7.3.2.1 with the 192 × 192 positions, the clever implementation of the
reconstruction using 2D-AR models will require only 383 steps instead of 36864 in
the brute-force implementation, leading to a reduction of about 100.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
rξ/lξ

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

R(
r ξ

)

0 10 20 30 40 50 60
rz/lz

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

R(
r z

)

Raw prediction  (MLP-GMH)
wrLES WSS
Reconstructed predictions (MLP-GMH)

Figure 7.11: Local space correlation reconstruction: Averaged space correlations of
τw,ξ at a given time step t obtained with a first-order 2D-AR model (with α0,1 =
0.211 and α1,0 = 0.736) on the channel solid wall: the raw predictions are drawn
in the blue circle line, the wrLES wall shear stress in the black dashed line, and
the reconstructed predictions in the plain green line; on the left the streamwise
space correlation averaged in the spanwise direction; on the right the spanwise space
correlation averaged in the streamwise direction.
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Linear reconstruction using blending coefficients This technique is based on
the modeling of the new predictions as a linear combination of their nearest neigh-
bours for a simultaneous evaluation of the entire surface. For the streamwise and
spanwise reconstruction, the linear combination is written as

τw,i,j =
∑
q,r

βq,rϵi+q,j+r + wi,j , (7.9)

where q, r can be both positive and negative (i.e., up and downstream information
and symmetrical stencil in the spanwise direction if needed), ϵi,j are the "raw pre-
dictions" sampled from the predicted distribution and wi,j is a white Gaussian noise
of variance σ2

w as defined in the AR process. The unknowns are the βq,r coefficients
as well as the variance of the WGN. To write the system of equations, we first have
to ensure the mean and the variance of the new predictions. The second step is to
ensure the space correlations with the neighbours implied in the linear combinations.
To evaluate the correlations, kernels and a priori estimates of lξ and lz are again
used. To simplify the nonlinear system of equations, a hypothesis is drawn. The ϵi,j
are independent: Cov(ϵi,j, ϵk,l) = δi,j,k,l. In the end, the system is overdetermined.
If the equation of the variance is removed, the new predicted field has the wrong
variance. If the mean equation is removed, the system has no real solution. To
conclude, blending random predictions inevitably reduces the variance of the recon-
structed field. Although the method was promising, the reduction of the variance is
not a viable solution.

Conclusion Two methods for reconstructing the two-dimensional structures of the
streamwise wall shear stress have been proposed: a global and a local reconstruction
with their respective advantages and disadvantages. The global method involves a
computationally expensive Cholesky decomposition of the covariance matrix, but
its storage can be reduced due to symmetry and sparsity. The local method uses
a first-order 2D-AR with a compact stencil and potential for parallelization, but it
can not handle boundary conditions. The slight skew of the reconstructed field can
be corrected by using a different ROS.

7.3.3 Reconstruction of the time and space correlation

Ultimately, an effective reconstruction should account for both time and space cor-
relations. The time reconstruction is always based on a local method while the space
reconstruction can be global or local as discussed in Section 7.3.2. Based on results
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obtained in the previous section, the global method, based on the computation of
the covariance matrix, is selected to reconstruct the two-dimensional structures of
the wall shear stress and this method is combined to a first-order AR model in time.
This AR(1) model is written as,

τ tw = ατ t−1
w + wt , (7.10)

where |α| < 1 and wt ∼ N (0, σw).The α coefficient is computed using the Yule-
Walker equations, where the time correlation is approximated by a γ-exponential
with l∗t = 0.01185 and γ = 1.1 as in Section 7.3.1. To ensure a unit variance of
τ tw, the variance of the WGN σ2

w is set to 0.3514, knowing that the variance of a
first-order AR model is given by Var (τ tw) = σ2

w/ (1− α2). At each position (i, j) on
the surface, the AR model (Eq. 7.10) generates a time sequence with a zero-mean
and unit-variance. At each time step t, the surface of size nξ × nz is extracted
from the time sequence and multiplied by the lower-triangular Cholesky factor in
Section 7.3.2.1. For a statistically stationary flow, the covariance matrix is assumed
to remain unchanged from one-time step to the next, allowing the evaluation of the
covariance matrix and its Cholesky decomposition only once at the beginning of
the simulation. This assumption significantly reduces the computational time. The
result of the matrix-vector multiplication is rescaled using the predicted mean and
variance at each (i, j) position on the surface. The wall shear stress to be imposed
as a boundary condition is finally obtained by dimensionalizing the reconstructed
predictions according to Eq. 5.9.

Figure 7.12 shows the averaged time and space correlations. The time correlation
is evaluated over 400 time steps and averaged along the streamwise and spanwise
directions. The streamwise (spanwise) correlation is averaged in time and along the
spanwise (streamwise) direction. The time and space correlations are accurately re-
constructed, except for the streamwise correlation, which appears to have a smaller
integral length scale when compared to the wrLES. Nevertheless, the method is a
priori easily implemented, but a clever implementation in the Argo-DG flow solver
is required to avoid a severe deterioration of the computational time. This im-
plementation was not addressed during the thesis since no method to acquire a
posteriori the integral time and length scales (lt, lξ, lz) at each (i, j)-position has
been developed.
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Figure 7.12: Local time and local space reconstruction: Averaged time and space
correlations of τw,ξ on the channel solid wall at a given time step t obtained with an
AR(1) model in time and a global reconstruction: the legend is similar as Figure 7.11;
from left to right the time R(rt), streamwise R(rξ) and spanwise R(rz) correlations.

7.4 A posteriori testing

The novel Mixture Density Network wall model is assessed a posteriori on two tur-
bulent channel flows: Reτ = 950 (Section 7.4.1), and Reτ = 2,000 (Section 7.4.2).
Both simulations are performed at a polynomial order p = 4, as suggested in the
thesis of Frère (2018). The influence of the polynomial order has not been investi-
gated. Both simulations are initialized by a randomly perturbed Reichardt profile
and driven by a constant pressure gradient. Starting from this disturbed profile,
the simulation experiences a numerical transient, which is case-dependent, mesh-
dependent, and code-dependent, before reaching a statistically converged state.

Remember that the data used to train the neural network was acquired solely from
the statistical converged state because data extracted from the numerical transient
is unsuitable for the reasons mentioned. In the early stage of the a posteriori test
on the channel flow, the data-driven WSS model was directly turned on even in
the initial transient. Unfortunately, because the network was not trained on this
very specific state, the flow behavior was incorrect. The flow was able to reach a
statistically converged state but with a too-low bulk velocity.

To overcome this situation, the wmLES is initiated with a WSS model based on
Reichardt’s velocity profile (i.e., the analytical WSS model implemented by Frère
(2018)) to evacuate this initial transient (after ∼ 50tc). A constant pressure gradient
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drives the flow for this part of the wmLES. Once a statistically converged state is
obtained, the WSS model is switched to our novel data-driven WSS, and the source
term is switched to a constant mass flow rate. Due to a switch in WSS models, a
small transient is observed but does not affect the overall flow behavior. Once the
flow has converged, the statistics are accumulated for about 50tc.

Note the change from a constant pressure gradient to a constant mass flow rate.
Multiple tests were conducted with a constant pressure gradient or mass flow rate.
It was noticed that the data-driven WSS model was quite sensitive to the con-
stant pressure gradient. In the case of a constant pressure gradient, the predicted
wall shear stress must exactly match the source term to stabilize the simulation.
Although the neural network was trained with an acceptable error of 1%, the sim-
ulations did not converge: either the model under-predicted the wall shear stress
(i.e., τw = 0.99) and the flow constantly accelerated or the model over-predicted the
wall shear stress (i.e., τw = 1.01) and the flow constantly decelerated.

7.4.1 Turbulent channel flow at Reτ = 950

The effectiveness of the data-driven wall model is initially evaluated on the channel
flow at Reτ = 950. This case had been used before to a priori evaluate the wall
model and is now adopted for the a posteriori test to determine if the model behaves
similarly in the simulation environment. The results (i.e., mean and Reynolds stress
profiles) are compared against the DNS of Hoyas and Jimenez (2008), the wrLES of
the same test case with Argo-DG, and the wmLES of Dupuy et al. (2023b).

The domain size is 2πh×2h×πh, where h is the half-height of the channel. Follow-
ing the recommendation of Frère (2018), the simulation is performed at a fourth
polynomial order (p = 4). In contrast to the wrLES mesh, no geometric pro-
gression is applied in the near-wall region. Therefore, the first mesh cell has a
wall unit size of 95. The wmLES mesh is regular and uniform and composed of
(Nx, Ny, Nz) = (20, 20, 10) cells which corresponds to an effective mesh resolution of
(∆x+,∆y+,∆z+) ≃ (75, 25, 75). The instantaneous data are extracted at y+ = 100,
which approximately corresponds to the first rake of interpolation points in the sec-
ond grid cell.

The time integration is performed with an implicit method. The time step is fixed
at dt(uτ/h) =1× 10−3 to match a convective CFL number of 0.25. The simulation
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Table 7.3: wmLES parameters for the turbulent channel flow at Reτ = 950.

Parameters Values

Time step dt(uτ/h) =1× 10−3

Polynomial order p = 4

Initial condition Randomly perturbed Reichardt’s velocity profile
Source term Mixed: ([ν

ρ
∂p
∂x
]1/3)+ =1.0172× 10−1 and u+

b = 19.775

Mesh size (Nx, Ny, Nz) = (20, 20, 10)

Efficive mesh size (∆x+,∆y+,∆z+) = (75, 24, 75)

Wall-modeled height h+
wm = 100

Wall models AWSSR (initial transient) and MLP-GMH (statistics)

is run and equilibrated using prescribed bulk velocity ub. The wmLES is performed
with the MLP-GMH network, which has been trained on the TC5200 test case (see
Table 7.1). After evacuating the initial transient, the statistics are accumulated over
approximately 60 flow through time (i.e., tc = Lx/ub, where Lx is the streamwise
domain length). Figure 7.13 shows the mean velocity profiles where a good agree-
ment with the references is observed. The wmLES profile overlaps with the DNS
one (Hoyas and Jimenez, 2008) and our wrLES. The mean profile obtained by Dupuy
et al. (2023b) with the Graph Neural Network (GNN) using far input to correct for
the log-layer mismatch (Kawai and Larsson, 2012) overestimates the DNS for ev-
ery wall-normal coordinates. In their case, the input velocity is extracted at three
cells away from the wall, which corresponds approximately to h+

wm ≃ 110 for their
original mesh. As expected, the mean profile matches Reichardt’s velocity profile at
that specific point (i.e., hwm). Our wmLES (Argo-DG and MLP-GMH) aligns well
with the LOTW within the logarithmic range from 93 to 140, which is very small at
this friction Reynolds number. The mean velocity profile obtained with our novel
WSS model oscillates in the first cell (i.e., the gray area in Figure 7.13) because the
solution is not a physical solution of the flow in this first DG cell.

Examining the Reynolds stresses profiles in Figures 7.14a, 7.14b, and 7.14c, small
discrepancies with the references are noticeable for u′ and w′, only. The profile of
u′ is already underestimated in the wrLES of the same test case. The wmLES is
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Figure 7.13: Mean streamwise velocity profile in wall units for a channel at Reτ =
950 simulated with a data-driven wall model; all profiles are compared with the
DNS of Hoyas and Jimenez (2008) and with the wrLES of the same test case using
Argo-DG; the gray area indicates the size of the first grid cell.

in good agreement with the wrLES curve (dotted gray), except that a mismatch is
observed at the interface between the first and second cells. This discrepancy is also
visible in the covariance between u and v. Oscillations occur in the second cell. The
RMS profile u′+ obtained in Dupuy et al. (2023b) presents a larger discrepancy with
the DNS between y/h = 0.1 and y/h = 0.3 (i.e., close to the wall). This observation
suggests that such a discrepancy is common in wmLES. Most of the wmLES of the
channel flows are performed on uniform meshes. The size of the second grid cell
may be too large to accurately capture the second statistical moment of the veloc-
ity. Increasing the resolution of this cell could potentially resolve this issue.
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Figure 7.14: Reynolds stresses profils in wall units for a channel at Reτ = 950
simulated with a data-driven wall model; all profiles are compared with the DNS
of Hoyas and Jimenez (2008); the gray area indicates the size of the first grid cell.

The Reynolds stress profile v′+ is in good agreement with the DNS in the second grid
cell. At the channel center, v′+ and w′ are slightly underestimated. Nonetheless,
these discrepancies with the DNS were already observed by Frère (2018). Therefore,
they are not specific to the data-driven wall model but to the DG method for wrLES
and wmLES.
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7.4.2 Turbulent channel flow at Reτ = 2,000

This friction Reynolds number is selected because it has a logarithmic layer included
in the training y+ values. According to Marusic et al. (2013), the extension of the
logarithmic region varies with the friction Reynolds number as follows,

3

√
δuτ

ν
≤ y+ ≤ 0.15

δuτ

ν
.

For a friction Reynolds number of Reτ = 2,000, the logarithmic region extends
from y+ = 135 to y+ = 300, which is included in the training bounds. The do-
main size is the same in Section 7.4.1. The mesh is also regular and uniform and
composed of (Nx, Ny, Nz) = (20, 16, 16) cells which corresponds to an effective res-
olution of (∆x+,∆y+,∆z+) ≃ (160, 62, 100). The instantaneous data are extracted
at y+ = 280 which is located in the second grid cell. The time step is fixed at
dt(uτ/h) = 10−3 to match a CFL number of 0.28. All the parameters of the wmLES
are summarized in Table 7.4.

Table 7.4: wmLES parameters for the turbulent channel flow at Reτ = 2,000.

Parameters Values

Time step dt(uτ/h) = 10−3

Polynomial order p = 4

Initial condition Randomly perturbed Reichardt’s velocity profile
Source term Mixed: ([ν

ρ
∂p
∂x
]1/3)+ =7.937× 10−2 and u+

b = 21.66

Mesh size (Nx, Ny, Nz) = (20, 16, 16)

Efficive mesh size (∆x+,∆y+,∆z+) = (160, 62, 100)

Wall-modeled height h+
wm = 280

Wall model AWSSR (initial transient) and MLP-GMH (statistics)

After evacuating the initial transient, statistical data is collected over approximately
∼ 50tc. The mean and Reynolds stress profiles are shown in Figures 7.15 and 7.16,
respectively. They are compared with the DNS data of Hoyas and Jimenez (2008)
and to the wmLES of Dupuy et al. (2023b) and of Radhakrishnan et al. (2021). The
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former used a Graph Neural Network to predict the wall shear stress, and the latter
used Gradient Boosted Decision Tree. Dupuy et al. (2023b) used the same wall unit
mesh refinement as for Reτ = 950. Therefore, the input velocity is extracted at
h+
wm ≃ 110. Our results are compared with the finer mesh of Radhakrishnan et al.

(2021) with a wall-normal height of h+
wm = 31. In both cases, this matching location

is visible in the mean velocity profile.

The mean profile agrees well with the DNS results, although a relative error of 1% is
detected in the wake region. The mean profile of Radhakrishnan et al. (2021) is over-
estimated near the wall and underestimates the wake. The mean profile of Dupuy
et al. (2023b) overestimates the DNS at every wall-normal coordinate. Our novel
WSS model outperforms the existing data-driven WSS model in the literature. The
oscillations of the mean velocity profile in the first cell (i.e., the under-resolved re-
gion) are directly linked to the DG method, as discussed in the thesis of Frère (2018).

The Reynolds stress profiles show a bigger offset in comparison to the turbulent
channel at lower Reτ . This offset is constant over the entire domain. Although the
u′+ profile of Dupuy et al. (2023b) underestimates the DNS, their offset is smaller.
Firstly, their wmLES grid is finer than ours. Secondly, their input velocity is ex-
tracted closer to the wall. Therefore, their boundary layer is better resolved, result-
ing in a better fit of u′+ close to the wall.

The Reynolds stresses v′+ and w′+ are underestimated at the center of the channel.
Small oscillations are still observed in the second grid cell. Resolution issues are
highlighted in Figure 7.16d where the covariance between u and v in wall units is
shown. The curve presents oscillations between y+ = 250 and y+ = 500, correspond-
ing to the second grid cell. Nevertheless, for y+ > 500, there is a good agreement
with the DNS. The small discrepancy between the two curves is due to the slightly
different friction Reynolds numbers.
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Figure 7.15: Mean streamwise velocity profile in wall units for a channel at Reτ =
2,000 simulated with a data-driven wall model; all profiles are compared with the
DNS of Hoyas and Jimenez (2008) and with the wrLES of the same test case using
Argo-DG; the gray area indicates the size of the first grid cell.
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Figure 7.16: Reynolds stresses profils in wall units for a channel at Reτ = 2,000
simulated with a data-driven wall model; all profiles are compared with the DNS
of Hoyas and Jimenez (2008); the gray area indicates the size of the first grid cell.
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7.5 Conclusion

This chapter focuses on the training, a priori and a posteriori tests of our novel
data-driven WSS model (MLP-GMH) on turbulent channel flows. The MLP-GMH
was trained on the Channel5200 test case extracted from the JHTDB website.
The data were collected at 95 wall-normal locations, which allowed, with the non-
dimensionalization .∗, to extrapolate to higher friction Reynolds numbers if and only
if the wall-modeled height remained within the training bounds (i.e., 30 ≤ h+

wm ≤
500). The a priori test was satisfactory in terms of the mean and the standard
deviation of the predicted wall shear stress compared to the analytical WSS model
based on Reichardt’s velocity profile. The a posteriori tests were conducted at two
friction Reynolds numbers: Reτ = 950 and Reτ = 2,000. The turbulent statistics
were in good agreement with the DNS of Hoyas and Jimenez (2008) for both fric-
tion Reynolds numbers. Moreover, our novel WSS model outperforms the existing
data-driven WSS models in the literature when comparing the mean velocity profile
in wall units. Concerning the Reynolds stresses, our predictions are quite good as
compared to the DNS data, and are similar to those obtained when using algebraic
wall models as in Frère (2018).





Chapter 8
Separated flow in the
two-dimensional peri-
odic hill configuration

T he two-dimensional periodic hill, presented in Chapter 4, is a benchmark to
validate new wall models (Krank et al., 2019; Zhou et al., 2021, 2022). This

test case is simple regarding the simulation setup and the boundary conditions.
However, it is sufficiently complex in terms of the turbulence phenomena (i.e., sep-
aration and reattachment). This test case has been selected to provide insight into
the performance of our novel data-driven WSS model in separated turbulent bound-
ary layers. Therefore, this chapter discusses the development of a data-driven WSS
model applied to the two-dimensional periodic hill. A similar methodology as in
Chapter 7 is used to train, validate, and test the novel WSS model assisted by neu-
ral networks. The training and validation parameters are presented in Section 8.1,
while the a priori tests are performed in Section 8.2.

Based on the recommendations of Section 5.1.2, the input stencil is increased in
the streamwise direction to better capture the correlation maps. A CNN is now
considered to model the non-linear relationship between volume fields and the wall
shear stress in separated turbulent boundary layers, as discussed in Chapter 6. This
CNN is also connected to two GMHs: one for the prediction of τw,ξ and one for
τw,z. In this chapter, the reconstruction of the wall shear stress structures is not
discussed. It appears that the instantaneous prediction of the wall shear stress on
the lower wall shows better space correlations, except that too much energy is still
injected into the small structures. This better reconstruction is probably due to the
variation of the mean along the streamwise direction, which was not the case for the
turbulent channel.

Upon successful a priori examination of the neural network, it can subsequently
be implemented in Argo-DG and tested a posteriori. As previously discussed in
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Chapter 7, a neural network that successfully performs when assessed a priori is
not guaranteed to perform well when evaluated a posteriori. The production en-
vironment differs from the training environment, with several factors affecting the
prediction, such as the feedback loop between the prediction and volume fields and
the SGS model’s impact. Additionally, the accurate resolution of the free shear layer
is vital in predicting the reattachment location for the two-dimensional periodic hill.
It is as essential as accurately capturing the separation location. These points are
further treated in Section 8.3.

8.1 Training

To predict the distribution of wall shear stress (i.e., τw,ξ and τw,z) for the two-
dimensional periodic hill flow, a combination of a CNN and GMHs. The CNN
architecture is not limited to convolution layers alone but consists of a series of con-
volutional and residual blocks. The interest for skip connections were discussed in
Section 5.1.2.2. The design of the architecture is similar to a ResNet, but to avoid
confusion, it is labeled as CNN-skip-GMH (see Table 7.1). The model is made up
of 10,212 parameters due to the increase in the depth of the network and the size
of the input stencil. The hyperparameters chosen for training are summarized in
Table 8.1 and discussed in Section 8.1.1.

Figure 8.1 shows the training and validation losses for the CNN-skip-GMH network.
The loss is negative because the network is trained on the negative log-likelihood,
unlike networks that are trained on minimizing the mean square error. During the
first 100 epochs, the loss undergoes a rapid decay. The training and validation losses
mostly follow a straight line, indicating an appropriate learning rate. No fluctua-
tions are detected in the losses, which is probably due to the smooth loss landscape
provided by the skip connections. At around 90 epochs, the loss experiences a small
drop. From this epoch, the losses continue to decrease but at a slower rate. It
suggests that the training has reached a plateau, and reducing the learning rate
might have been beneficial. Usually, the training is stopped before the validation
loss increases again to avoid overfitting. Nonetheless, such behavior is not observed
in Figure 8.1. The validation loss follows the training loss closely but exhibits small
oscillations. The model is therefore saved at the epoch where the validation loss is
minimal. One possible explanation is that the model is not enough trained, imply-
ing that a better minimum has not yet been reached. Another hypothesis is that
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the validation set does not differ sufficiently from the training set. It would have
required a larger database with more test cases, including separation. This perspec-
tive will be addressed within the conclusion of the thesis.
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Figure 8.1: Evolution of the training and validation losses during the training of the
network CNN-skip-GMH

8.1.1 Discussion on the hyperparameters

In Chapter 7, a random search was used to select the best number of hidden layers
and neurons per layer. However, in a CNN, there are many more hyperparameters
to fit. A convolutional layer consists of a kernel size, a padding, a stride, a dilation,
and the output channel size. The dilation, the stride, and the padding are set to
their default values (i.e., 1, 1 and 0, respectively), except in the residual block, where
the padding is set to 1. A common value for the kernel size in image recognition is
3. The output channel is set at twice the size of the input channel. The aim is to
maintain the number of parameters at a reasonable level to keep the training time
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around one day.

Table 8.1: List of the hyperparameters used to train the CNN-skip-GMH composed
of 10,212 parameters.

Hyperparameters Values

Batch size 512

Learning rate 10−3

Weight regularization 10−5

Number of epochs 103

Training size ≃ 3.7 · 106

Validation size ≃ 3.7 · 105

Optimizer torch.optim.Adam()

Nb. Gaussian/head 2

Activation fct. Sigmoid

These five hyperparameters are not the only ones: one may cite the learning rate,
the weight regularization, the number of Gaussians K, the activation functions, and
the batch size. As already mentioned in Section 7.1, the optimal batch size is 32, as
stated by LeCun. A smaller batch size helps to better investigate the loss landscape
and avoid getting stuck in local minima. However, the batch size is increased to
512, and to compensate for this higher batch size, a higher learning rate is used.
The weight regularization is kept at 10−5, as for the training of MLP-GMH. Two
activation functions are evaluated: sigmoid and ReLU. Even if the Sigmoid is prone
to the vanishing gradient problem, this activation function gives better predictions
of our wall shear stress components. The number of Gaussians K was modified from
1 to 5. No significant improvement in the predictions is noticed by increasing the
number of Gaussian. Moreover, the non-dimensionalization proposed in Section 5.2.1
reduces the skewness of the target distributions. Therefore, these distributions are
more Gaussian-like, and fewer Gaussians are required in the Mixture. Finally, two
Gaussians appear to be a good trade-off between the prediction accuracy and the
number of parameters to fit.
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8.2 A priori testing

The trained model is tested a priori on the periodic hill upper and lower walls.
Note that the network is trained on these test cases, but the data used to evaluate
the performance of the network are taken at different time steps. The model is
also assessed on the turbulent channel flow at Reτ = 950 to see if a more advanced
model can still predict the dynamic of a zero-pressure gradient attached turbulent
flow. In Chapter 7, the model MLP-GMH was assessed on synthetic data. However,
due to the increase in the stencil size and the addition of the pressure gradient, the
extension of these synthetic data in this case is no longer very representative and is
unlikely to produce reliable results.

8.2.1 A priori test on PHL10595

Although the lower wall has the most complex physics due to the separation from
a curved wall and the reattachment of the free shear on the flat lower surface, the
neural network predictions are in good agreement with the wrLES wall shear stress.
Increasing the size of the input really helps the network to discriminate among the
various flow physics. This behavior was also mentioned by Dupuy et al. (2023a,b).
Moreover, the addition of the curvature further assists the network in this discrimi-
nation task.

Figure 8.2 shows the mean and the standard deviation of the predictions τ̂w,ξ ob-
tained from fields extracted at y/h = 0.115 and compared to the ground truth τw,ξ.
The mean wrLES (black dashed line) and the predicted τw,ξ (blue circle line) has a
Pearson correlation coefficient of 0.997. The high variance in the separation vicinity
highlights how the separation point moves instantaneously over a large portion of
the hill crest. The variance is mostly independent of the position on the flat surface
(2.0 < x/h < 7.0). It reduces drastically as the flow accelerates on the windward of
the next hill (x/h ≃ 8.0). This graph indicates that the friction from x/h ≃ 3 to
x/h ≃ 5 has a very small slope. Therefore, even a small mistake in the prediction of
the wall shear stress can cause a significant error in the reattachment point’s posi-
tion. Bear in mind that the reattachment point is highly sensitive to mispredictions,
and any errors will impact the entire physics on the lower wall.

The distribution of the instantaneous scaled streamwise velocity u+ as a function of
the scaled distance to the wall y+ was already shown in Section 4.3.4 for compari-
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Figure 8.2: A priori test on PHL10595: the black dashed line is the wrLES mean
wall shear stress, while the gray area represents the wrLES standard deviation; the
CNN-skip-GMH predictions are drawn in blue: the blue circle line is the mean while
the blue dashed line is the standard deviation.

son with the prediction of a WSS model based on Reichardt’s velocity profile. As
anticipated, the quasi-analytical WSS model was not able to accurately predict the
separation, and the predictions had significantly less variance than the wrLES wall
shear stress. However, the CNN-skip-GMH is able to overcome this limitation by
correctly predicting the distribution of the wall shear stress at each (ξ, z)/h-position
on the surface. Figure 8.4a confirms this observation, as the model predictions show
the same variability as the wrLES data.

8.2.2 A priori test on PHU10595

At first sight, predicting the wall shear stress on the upper wall of the two-dimensional
periodic hill is of the same complexity as predicting the wall shear stress on the chan-
nel wall. However, this is not the case. Although a streamwise correlation was found
between τw,ξ and the velocity, the mean streamwise velocity is anti-correlated with
the pressure gradient: where the mean pressure gradient has a peak, the friction
presents a valley at the exact same location. As the derivative of the pressure gradi-
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ent presents oscillations, the network has a hard time detecting such a correlation.
Therefore, a window average of the pressure gradient is also used as an entry to help
the network to detect the existing correlation between the wall shear stress and the
pressure gradient, otherwise the network will only base its prediction on the velocity
field as an AWSSR will do, leading to an incorrect wall shear stress.

Figure 8.3: A priori test on PHU10595: the black dashed line is the wrLES mean
wall shear stress, while the gray area represents the wrLES standard deviation; the
CNN-skip-GMH predictions are drawn in blue: the blue circle line is the mean while
the blue dashed line is the standard deviation.

Figure 8.3 shows the predicted streamwise wall shear stress on the upper wall. The
mean prediction (blue circle line) follows the wrLES (black dashed line) well. The
Pearson correlation coefficient between the mean prediction and the ground truth
is 0.954. The standard deviation is also well predicted by the network. Unlike the
lower wall, the variance is independent of position.

In Figure 8.4b, the predictions are compared to the ground truth on a (u+, y+)
graph. The model predictions and wrLES data overlap, but the overall shape is
different from that observed in a channel. In turbulent channel flow, the effects
of the Reynolds shear stress are less significant at lower y+ values, resulting in a
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smaller variance and a more condensed shape around Reichardt’s profile. However,
for similar y+ values on the upper wall, the pressure gradient affects the overall
shape by elongating it vertically.

(a) On the lower wall (b) On the upper wall

Figure 8.4: A priori test on two-dimensional periodic hill: Distribution of the in-
stantaneous scaled streamwise velocity u+ as a function of the scaled distance to the
wall y+, using the target wall shear stress (black circle) and the predictions (blue
plus symbol) to evaluate the wall unit scaling; Reichardt’s profile is drawn in red.

8.2.3 A priori test on TC950

The model was trained on the test case TC1000 extracted from the JHTDB website
and is now evaluated on TC950 obtained with Argo-DG at three heights: 100, 150,
and 200 in wall units. The channel is not a separated flow, but it is important to
evaluate the capability of the network to discriminate between different flow physics:
separated, moderate pressure gradient, and attached flows. Figure 8.5 shows the
predicted distributions of the two components of the wall shear stress. These pre-
dicted distributions (blue circle line) are compared with the wrLES distributions
(black histogram). Examining the distributions, the model performs well for both
the streamwise and spanwise wall shear stress. The mean and standard deviation
appear to be properly predicted.
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Figure 8.5: wrLES and predicted distributions of τw,ξ (left) and τw,z (right) on the
turbulent channel flow at Reτ = 950; the predictions are obtained from the model
CNN-skip-GMH.

Examining the first three statistical moments in Table 8.2, the predicted streamwise
wall shear stress is in good agreement with the wrLES one, except for the mean
where a relative error of 3% is detected. Even the skewness is recovered although
the model is not explicitly trained to match this third moment of the distribution.
The network seems to have more difficulty in predicting the wall shear stress in the
spanwise direction. As observed in Figure 8.2, the standard deviation and skewness
are slightly overestimated.

Table 8.2: First three statistical moments of the wrLES and predicted wall shear
stress (denoted with a hat symbol).

Statistics τw,ξ τ̂w,ξ τw,z τ̂w,z

µ 1.008 0.965 -0.002 0.013
σ 0.424 0.423 0.284 0.352
S 1.008 0.936 -0.067 0.285
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8.2.4 SHAP values

SHAP (SHapley Additive exPlanations), introduced in Section 2.4, are evaluated for
several entries of the data-driven wall model. To track the average marginal contri-
bution of a feature to the outcome, the outcome is not sampled from the predicted
distribution, but is evaluated as the linear combination of the mean as

∑
k πkµk.

Figure 8.6 shows the SHAP values for two features (i.e., inputs) of the CNN-skip-
GMH on the periodic hill upper and lower wall. The graph combines feature location
(vertical axis) with feature importance (color map) and feature effect (horizontal
axis). The vertical axis corresponds to the streamwise coordinates, defined as an
index in the figure. A positive index indicates downstream position ξ/h > 0 while
a negative index indicates upstream position ξ/h < 0. The horizontal axis corre-
sponds to the SHAP values. The color map corresponds to the value of the feature
from low (in black) to high (in white).

The figures 8.6a and 8.6c are images of the effect of u∗ on τw,ξ. In both cases the
velocity is the feature with the most important effect on the wall shear stress. For
the lower wall, the indices −2,−1, 0, 1, 2, 3 are those that most affect the wall shear
stress, with a visible anti-correlation at index 0. For downstream positions, a higher
velocity affects the wall shear stress, while a lower velocity seems to have no effect
(i.e. the SHAP value is mostly zero). On the upper wall, downstream points affect
the wall shear stress more than upstream points. This observation is consistent with
the analysis of the space-time correlation in Chapter 4. The positive correlation be-
tween velocity and wall shear stress is clear, except at index −1 and −0 where an
anticorrelation is found. The enlargement of the input stencil is justified on these
graphs.

Figures 8.6b and 8.6d show the SHAP values obtained for the mean pressure gra-
dients (∇p) where ∇p is independent of the forcing term. On the lower wall, the
pressure gradient is highly position dependent. Downstream points indicate an anti-
correlation with the pressure gradients, while upstream points indicate a positive
correlation. Indices around 0 are those that contribute the most information to the
network. The observation of anti-correlation is consistent with the space-time cor-
relation found in chapter 4. On the upper wall the SHAP values are less affected
by the positions. An anticorrelation is observed at every position. Although the
SHAP values are about two times smaller than those for velocity, the addition of
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the mean pressure gradient helps the network to improve the prediction of the wall
shear stress on the upper wall.

(a) On the lower wall (b) On the lower wall

(c) On the upper wall (d) On the upper wall

Figure 8.6: SHAP summary plot on the two-dimensional periodic walls; on the left,
the SHAP values related to the streamwise velocity and on the right, those related
to the mean pressure gradients.

The SHAP values are a tool for interpreting the network outputs, and this in-
terpretation partially reflects the analysis of space-time correlations carried out in
chapter 4.

8.3 A posteriori testing

The network has been a priori evaluated in Section 8.2, and the model predictions
were in good agreement with the wrLES wall shear stress. Therefore, the model is a
posteriori assessed on the two-dimensional periodic hill at the same bulk Reynolds
number (Reb = 10,595). At first sight, this task is simple because the model has
been trained on this specific test case. However, the production environment is
different from the training environment because the wall model will interact with
the resolved volume data. Moreover, the reattachment location is very sensitive to
small errors, as observed in Figure 8.2. Accurate resolution of the free shear layer
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is of high importance. The non-equilibrium boundary layer within the recirculation
bubble necessitates the accurate resolution of all terms in the Navier-Stokes equa-
tions to yield correct results. For these reasons, the wmLES mesh is very similar to
the wrLES one, except that the cells within 0 ≤ η/h ≤ 0.1 are removed on both the
upper and lower walls. The mesh is shown in Figure 8.7. The lower half of the mesh
is refined to accurately capture the free shear layer. The objective is to accurately
resolve the fine structures resulting from the separation and the free shear layer
which is a region of high gradients.

Figure 8.7: wmLES mesh for the two-dimensional periodic hill at Reb = 10,595 with
the first cell height of size ∆η/h = 0.1

Several experiments have been conducted and are summarized in Table 8.3. The
parameters changed from one experiment to another are:

• WSS model

The data-driven wall model is compared to the analytical WSS model
based on Reichardt’s velocity profile (AWSSR).

• the alignment of the predicted wall shear stress to the velocity

The AWSSR predicts the magnitude of the wall shear stress and aligns it
with the velocity extracted at hwm. In our approach, the neural networt
predicts the wall-parallel components of the wall shear stress (i.e., τw,ξ
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and τw,z). Therefore, there is no explicit alignment of the predicted wall
shear stress. For the test DD-A-512-p4, τw,ξ and τw,z are sampled from
their respective distributions, the magnitude is evaluated, and then the
wall shear stress is aligned with the velocity projected in the local frame
of reference made by the solid wall.

• the polynomial order p

According to Frère (2018), the WSS model in Argo-DG gives better re-
sults at an even order polynomial degree. Because the model was trained
on data aquired at p = 3, the two polynomial orders are tested. There-
fore, the data-driven wmLES is run at p = 4, not on the mesh presented in
Figure 8.7, but on a slightly coarser mesh allowing an equivalent number
of degrees of freedom (see Table 8.3).

• the wall model height (hwm).

As the model is not trained to capture the numerical transient, the simulation
is restarted from a coarse wrLES of the same test case. This point needs to be
improved and will be discussed in the perspectives (Chapter 9). The simulation
Rcht-A-512-p4 is also restarted from the same coarse wrLES for a fair comparison.
For each wmLES, the time step is fixed at dt(ub/h) =5×10−3. The Mach number is
fixed at the low value of 0.1, and a pressure gradient is imposed to ensure the bulk
Reynolds number as already mentioned in Section 4.3.

Table 8.3: Summary of the numerical experiments conducted on the two-dimensional
periodic hill at Reb = 10,595, where NA, and A stands for No Alignment, and
Alignment; tc corresponds to the number of flow through time.

WSS model Align. p DOF hwm/h Accum.

DD-NA-512-p3 CNN-skip-GMH ✗ 3 25,473,600 0.1 ∼ 36 tc

DD-NA-512-p4 CNN-skip-GMH ✗ 4 28,788,750 0.08 ∼ 25 tc

DD-A-512-p4 CNN-skip-GMH ✓ 4 28,788,750 0.1 ∼ 19 tc

Rcht-A-512-p4 AWSSR ✓ 4 28,788,750 0.1 ∼ 15 tc
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Mean friction coefficient The four wmLES are compared to one reference: the
wrLES used to train the data-driven wall model. The accuracy of the wrLES was
assessed in Section 4.3. Figure 8.9 shows the wall shear stress obtained on the
lower wall for the different wmLES. The data-driven wmLES without alignment
(i.e., DD-NA-512-p3 and DD-NA-512-p4) correctly predict the mean separation lo-
cation (see Table 8.4). The friction is overestimated in the separation vicinity, as
also observed in the work of Krank et al. (2019) and Zhou et al. (2022). The tiny
separation before the windward foot of the next hill is well captured, as is the
friction peak. These two simulations show a good agreement with the reference,
except at the reattachment. The two wmLES that align the wall shear stress to the
velocity (i.e., DD-A-512-p4 and Rcht-A-512-p4) miss the mean separation line. In-
deed, in the separation vicinity, the wall shear stress does not align with the velocity.

Figure 8.8 illustrates this misalignment phenomenon. On the left, the mean veloc-
ity profile at the top of the hill is plotted, while on the right, the mean wall shear
stress predicted by the AWSSR model is compared to the same references as in Fig-
ure 4.11. At the matching location, the velocity is highly positive, and the AWSSR
model predicts a positive wall shear stress while the flow is already separated near
the wall. The AWSSR model only recognizes flow separation when the velocity field
at the corresponding location becomes negative downstream. Therefore, the sep-
aration is delayed and appears at x/h = 0.5. DD-A-512-p4 correctly predicts the
friction peak while Rcht-A-512-p4 completely misses the strong acceleration on the
hill and underpredicts the peak.

None of the four wmLES matches the mean reattachment location. Such a reattach-
ment issue was also observed by Dupuy et al. (2023a,b) on the backward-facing step.
All wmLES predict a faster reattachment (see Table 8.4), probably due to energy
loss in the free shear layer. This faster reattachment allows the flow to recover over
a larger part of the flat bottom surface, creating higher friction between x/h = 4
and x/h = 7, at least for DD-NA-512-p3 and DD-NA-512-p4. This overestimation of
the friction on the flat bottom surface is reduced for DD-A-512-p4, which has the
closest reattachment point compared to the reference. According to the best prac-
tices section of URF 3-30[1], the flow physics is very sensitive to the grid resolution
and quality, as well as the numerical scheme, which should not be too dissipative to
ensure appropriate resolution of the scales and not to damp them.

1https://kbwiki.ercoftac.org/w/index.php/UFR_3-30_Best_Practice_Advice

https://kbwiki.ercoftac.org/w/index.php/UFR_3-30_Best_Practice_Advice
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Figure 8.8: Illustration of the mean velocity profile at x/h ≃ 0 in the two-
dimensional periodic hill geometry with its corresponding predicted wall shear stress
using the WSS model based on Reichardt’s velocity profile.

Table 8.4: Mean position of the separation and reattachment lines

DD-NA-512-p3 DD-NA-512-p4 DD-A-512-p4 Rcht-A-512-p4 Expe.

xsep/h 0.217 0.216 0.573 0.538 0.19

xreatt/h 3.690 3.589 3.935 3.652 4.21

In Figure 8.10, the friction on the upper wall of the periodic hill is shown. It
can be observed that the friction on this wall is more correlated with the pres-
sure gradient than with the velocity, which explains why the friction imposed by
Rcht-A-512-p4 does not match the reference. On the other hand, the predicted fric-
tion of DD-NA-512-p3 and DD-NA-512-p4 agrees well with the reference. However,
DD-A-512-p4 overestimates the friction on the upper wall. The curve is shifted by a
constant value of approximately 10−3. It is noteworthy that the mean friction value
from DD-A-512-p4 matches the mean friction value predicted by Rcht-A-512-p4.
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Figure 8.9: Mean streamwise wall shear stress measured on the lower solid wall of
the periodic hill at Reb = 10,595.

This overestimation is likely due to the alignment of the wall shear stress.
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Figure 8.10: Mean streamwise wall shear stress measured on the lower solid wall of
the periodic hill at Reb = 10,595, compared to our wrLES of the same test case.

Mean pressure coefficient The mean pressure coefficient Cp on the upper and
lower walls is shown in Figure 8.11. This coefficient is defined as Cp = (pw −
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pref )/(ρu
2
b/2), where pw is the mean pressure on the wall and pref is the reference

pressure extracted at x/h = 0 on the top wall. The wmLES captures the qualitative
trend of the mean Cp on the lower wall, including the adverse pressure gradient
(APG) and favorable pressure gradient (FPG) regimes. A deviation is visible at the
top of the hill, where a sudden change in pressure from strong FPG to strong APG
is observed, corresponding to the separation emergence. The models that align the
wall shear stress are in good agreement with the reference except in the separation
vicinity 0 ≤ x/h ≤ 2, while the models that do not align observe a deviation
in the Cp curve on the flat bottom surface 3 ≤ x/h ≤ 6. Although the friction
peak is correctly captured by DD-NA-512-p3 and DD-NA-512-p4, these two wmLES
overestimate the APG on the top of the hill. On the upper wall (Figure 8.11b),
although none of the wmLES exactly matches the Cp curve, the qualitative shape
is recovered. The maximum relative error measured is 5%.
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Figure 8.11: Pressure coefficient on both walls of the two-dimensional periodic hill
at Reb = 10,595 evaluated with the wmLES and compared with the wrLES using
Argo-DG.

Mean velocity profiles Figure 8.12 shows the mean velocity profiles at ten stations
(x/h = 0.05, 0.5, 1, 2, 3, 4, 5, 6, 7, 8). Overall, good agreement with the reference
is observed. DD-NA-512-p3 and DD-NA-512-p4 accurately predict the mean velocity
profile at the separation, even in the first cell (the grey area in Figure 8.12), compared
to DD-A-512-p4 and Rcht-A-512-p4 which underestimate the strong acceleration at
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the top of the hill. There is a discrepancy due to the early reattachment of the free
shear layer for DD-NA-512-p3 and DD-NA-512-p4. The faster reattachment allows
the flow to recover over a larger part of the flat bottom surface, as shown by the
slight overestimation of the velocity for 3 ≤ x/h ≤ 7. Conversely, DD-A-512-p4
and Rcht-A-512-p4 better capture the velocity profile near the reattachment but
overestimate u on the upper wall, which is consistent with the overestimation of the
friction coefficient in Figure 8.10.
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Figure 8.12: Mean velocity profiles (see legend of Figure 8.9).

Streamlines Figure 8.13 shows the streamlines for Rcht-A-512-p4 and DD-NA-
512-p4. Although DD-NA-512-p4 predicts the separation better, this is not reflected
in the starting point (i.e., the averaged location of the separation τw = 0) of the
recirculation bubble compared to Rcht-A-512-p4, for which the bubble rises much
higher up the hill. The size of the recirculation bubble, not only its length but also
its height, affects the channel obstruction (i.e., the bubble somehow locally modifies
the geometry), and, therefore, the imposed forcing term. The source term must
be modified to ensure the same mass flow at each time step despite the change
in the separation and reattachment lines. The recirculation bubble predicted by
Rcht-A-512-p4 is very similar to the DNS bubble, and, therefore, the source term
is unchanged. However, due to the reduction in height of the recirculation bubble
predicted by DD-NA-512-p4, the flow is subjected to less constriction, and, therefore,
the source term is reduced compared to the DNS one.
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(a) Rcht-A-512-p4

(b) DD-NA-512-p4

Figure 8.13: Streamlines obtained from two wmLES on the two-dimensional periodic
hill at Reb = 10,595.

Mean Reynolds stresses The most important discrepancy in the Reynolds stress
u′u′ profiles (Figure 8.14) is inside the recirculation bubble (1 ≤ x/h ≤ 4). DD-NA-
512-p3 and DD-NA-512-p4 overestimate u′u′ while DD-A-512-p4 underestimates this
component of the Reynold stress. Although Rcht-A-512-p4 mispredicts the friction
on both the lower and upper walls, it matches very well u′u′ throughout the domain
except in the near wall region on the lower wall where it tends to overpredict this
component. Similar observations are made on v′v′ (see Figure 8.15), except that the
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deviation is smaller. Regarding the covariance u′v′ in Figure 8.16, all simulations
show a good agreement with the reference, except inside the recirculation bubble
where a slight deviation is observed.
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Figure 8.14: Reynolds stress u′u′ profiles (see legend of Figure 8.9).
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Figure 8.15: Reynolds stress v′v′ profiles (see legend of Figure 8.9).

Summary It is difficult to determine the source of the misprediction of the reattach-
ment location in this particular configuration. It is also unclear why Rcht-A-512-p4
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Figure 8.16: Covariance between u and v (see legend of Figure 8.9).

produces better results for the mean velocity profiles and Reynolds stresses, although
this analytical WSS model mispredicts the wall shear stress. In addition, its inherent
modeling assumptions do not hold for separated flows. There may be compensation
errors between different terms that allow for such results, but we have not quantified
them. Nevertheless, the main difference between (DD-NA-512-p3, DD-NA-512-p4)
and (DD-A-512-p4, Rcht-A-512-p4) is the imposition of the alignment with the
velocity. Many standard WSS models in the literature naturally align the wall shear
stress with the velocity extracted at the matching location. At the separation, there
is a strong misalignment between τw and u as already mentioned and illustrated in
Figure 8.8. We hypothesize that the data-driven WSS model is too dissipative at
the separation due to this misalignment. Indeed, the velocity in the volume is highly
positive due to the strong acceleration on the windward foot of the hill. The data-
driven WSS model forces the wall shear stress to be mostly opposite to the velocity.
The flow is perturbed by the rapid change in direction, leading to high fluctuations in
the turbulent kinetic energy and a reduction in the total kinetic energy. The model
creates an energy sink in the separation vicinity. Moreover, the sampling from the
predicted distribution without accounting for space-time correlations creates small
structures at the wall that are quickly dissipated creating another energy sink. The
lack of energy forces the free shear layer to reattach to the flat bottom surface early.
Therefore, the amplitude of the wall shear stress is not the only important element
in a wall model and misalignment issues should be treated differently.
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8.4 Conclusion

A convolutional neural network was trained on three databases: the lower and upper
walls of the two-dimensional periodic hill at Reb = 10,595, and the channel flow at
Reτ = 950 to predict the distribution of the wall-parallel components of the wall
shear stress based on the theory of Gaussian Mixture Network. A priori, the model
accurately predicts the mean and the variance of τw,ξ and τw,z on both the upper
and lower walls. On the lower wall, the curvature input has a great effect on the
prediction of the peak of friction. On the upper wall, the introduction of the mean
pressure gradient as a model input helps to recover the proper friction.

A posteriori, four wmLES were run on the same configuration as the training config-
uration: the two-dimensional periodic hill at Reb = 10,595. As already mentioned,
the production environment is different from the training one. In the production
environment, the model will actually make predictions, which in turn will interact
with the volume fields in a feedback loop. Such a feedback is not part of the training
and can affect the accuracy of the model. Different parameters are tested in the four
wmLES, such as the polynomial order, the wall model height, the WSS model, and
the alignment of the predicted wall shear stress. Firstly, the numerical experiments
show that the data-driven WSS model is independent of the matching location and
that the polynomial order does not affect the network. Secondly, the alignment of
the wall shear stress helps improving the prediction of the mean reattachment line
by reducing the energy sink introduced via misalignment in the separation vicinity.
Nonetheless, the alignment delays the mean separation line.

The new data-driven WSS model improves the prediction of the wall shear stress
on both the lower and upper walls compared to the analytical WSS model based
on Reichardt’s velocity profile. Nonetheless, the new model is too dissipative in the
separation vicinity, forcing the free shear layer to reattach earlier. The analytical
WSS model, on the other hand, is energy conservative (i.e., there is neither injection
nor extraction of energy in the near wall region), which allows to obtain the correct
recirculation bubble size, although the prediction of the mean wall shear stress is
wrong. This observation leads to the question of whether a WSS model is the best
approach to tackle separated flows?



Chapter 9
Conclusions and perspectives

T he main objective of this PhD thesis was to exploit the approximation capabili-
ties of deep neural networks to establish a more general wall shear stress model

to capture the complex relationship between instantaneous flow quantities, geomet-
ric parameters, and wall shear stress using DNS or wrLES databases. This new
WSS model has overcome the weaknesses of the standard models to be applicable to
the problem of separate flows in that no prior knowledge about the law-of-the-wall
is imposed on the network. This main objective is subdivided into four parts: (i)
to define the appropriate test cases to address the improvement of WSS models for
the separation phenomenon, (ii) to select the relevant features for the training of
the data-driven model, (iii) to identify the most suitable neural network architec-
ture that will embed the appropriate invariant and satisfy to the implementation
constraints, and (iv) finally to validate the novel data-driven WSS model on a test
case that features separation and reattachment.

201
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9.1 Conclusion

The path to a novel data-driven wall shear stress model started with the definition
of suitable test cases that are computationally affordable on modern clusters and
easy to set up. For this purpose, the two-dimensional periodic hill was selected for
the present study. This test case is used to validate new wall models, as the geom-
etry was carefully designed to provide a massive separation from the hill crest and
a reattachment, followed by a recovery of the flow on the flat lower surface. Fur-
thermore, this test case offers two walls with different physics. The lower solid wall
experiences, as mentioned, a separation and reattachment, while the upper wall has
an attached fully turbulent boundary layer subjected to a moderate pressure gradi-
ent. Even though standard wall models can correctly predict the wall shear stress
on the upper wall, it is of interest to include such physics in the neural network. A
wrLES of this test case was successfully performed with the high-order flow solver
Argo-DG, which produced mean velocity and Reynolds stress profiles that were in
good agreement with the existing literature, reinforcing confidence in the use of this
test case as a reliable labeled database.

Directly feeding the raw databases to the network is not ideal if a universal model is
sought. The preprocessing of the databases and their in-depth analysis was a crucial
step towards a new data-driven WSS model. The periodic hill flow was deeply ana-
lyzed in Chapter 4 using space-time correlations and preprocessed in Chapter 5. The
analysis of space-time correlations acted as a feature selection for the neural network
and provided insight into the underlying physics. The correlation of the wall shear
stress with several flow quantities (i.e., velocity and pressure gradient) is evaluated
in the streamwise and spanwise directions. Such an analysis was also carried out on
the turbulent channel flow for comparison with a fully turbulent, attached, and equi-
librium boundary layer. The correlations observed in the channel and on the upper
wall were quite similar, which was not surprising as the physics is very similar. The
correlations took the form of an inclined ellipse, aligned with the local mean velocity.
The domain of high correlation indicated a time delay, and to compensate for the
delay the correlation was also shifted downstream. This observation suggested that
there was a strong relation between the local mean velocity, time delay, and spatial
displacement at the height at which the correlation is extracted. The inclination
of the correlation is supported by other studies indicating that convection of the
near-wall structures across the domain promotes the inclination of these structures.
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The periodic hill upper wall differs from the channel in that correlations with the
pressure gradient are detected, suggesting that the pressure gradient is an important
entry to the neural network. The most interesting correlations were observed in the
separation vicinity. At this location, the domain of high correlations of the detected
correlations was split into two lobes. One lobe was shifted downstream, indicating
that the free-shear layer and the WSS at the separation were highly correlated. The
second lobe indicated an anti-correlation between the velocity developing on the
convex windward wall of the next hill and the WSS at the separation point. In
other words, the more the velocity is accelerated on the hill, the more the flow gains
in inertia and will separate at the hilltop. As the model must be instantaneous, the
input stencil was enlarged in the streamwise direction to encompass the domain of
high correlation. The main conclusion of the space-time correlation analysis was to
consider the pressure gradient as a potential input to model the wall shear stress
of a boundary layer subjected to moderate and high-pressure gradients and to in-
crease the size of the input stencil. The discussion of the input stencil was found in
most studies on data-driven wall models but is rarely based on the use of space-time
correlation. Only two articles (Dupuy et al., 2023a,b), to the authors’ knowledge,
discussed the size of the input data, but in relation to the predictions of the neural
network. They found that the model was able to better discriminate between the
different physics. This observation was consistent with our findings on correlations.

After generating the databases and identifying the need to incorporate spatial in-
formation into the neural network, a network that satisfies the design constraints
stated in Section 3.5 was selected. The appropriate network for handling one or
two-dimensional inputs is the convolutional neural network. However, this network
on its own was not sufficient. As mentioned by Zhou et al. (2022), predicting the
mean wall shear stress is not adequate for separated flows. Traditional neural net-
works, trained with (for example) the MSE loss to perform regression, predict the
conditional average of the ground truth, conditioned on the input. In the reviewed
data-driven wall models, the turbulent wall shear stress statistics are often ignored,
and most wall shear stress models are trained using the MSE. Consequently, many
authors have found that the predicted values have less variance than the actual or
filtered DNS values. In our work, we accounted for the statistics of the wall shear
stress by predicting the probability distribution instead of a point estimate. For this
purpose, the CNN was connected to a Mixture Density Network to predict the WSS
distribution as a linear combination of K Gaussians, where the output of the overall
model is a specific realization based on the predicted distribution at a given time
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t. To the authors’ knowledge, this work is the first attempt to create a statistically
based wall shear stress model. Such a model was trained on the channel flow and the
two-dimensional periodic hill. The model is able to generalize to higher Reynolds
numbers thanks to the physics-based non-dimensionalization process if and only if
the wall model height stays within the training bounds.

After selecting the neural network and training it on the pre-processed database, the
model was implemented in the Argo-DG flow solver and used to perform wmLES
on several test cases. The a posteriori testing of the model is the most important
step to evaluate the performance and robustness of the model in the production
environment. Once the model is in production, it will produce values that interact
with the simulation environment. The wall model was applied to two turbulent
channel flows, one at the low Reynolds number of 950 and one at the high Reynolds
number of 2,000. The model outperforms the existing data-driven wall models in
predicting accurately the mean velocity profile. However, the Reynolds stress u′u′

was underestimated in both cases. This observation was already made by Frère
(2018) in her PhD thesis. The covariance u′v′ showed oscillations in the second
grid cell, which can be damped by reducing this cell size. The results for the two-
dimensional periodic hill are promising. There is a clear improvement over the
analytical WSS model based on Reichardt’s velocity profile in the prediction of the
wall shear stress on the upper and lower walls. However, an underestimation of the
recirculation bubble size is observed, which affects the physics in the whole domain.
Although the separation point was accurately predicted, the reattachment location
is shifted upward compared to the DNS predictions. This observation suggests that
the free shear layer is not correctly captured and that the structures that compose
it dissipate more quickly. The main hypothesis is that the data-driven WSS model
is too dissipative in the separation vicinity, forcing the free shear layer to reattach
earlier. This underestimation is also visible in other studies applying data-driven
wall models to separated flow (Zhou et al., 2021; Lozano-Durán and Bae, 2021;
Dupuy et al., 2023a,b).

9.2 Perspectives

Three major perspectives have been identified: short, medium, and long-term. The
short-term perspective involves operational tasks that can be quickly implemented
and tested using the tools developed during the thesis. The medium-term perspec-
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tive focuses on extending the study to other non-equilibrium configurations. Finally,
the long-term perspective looks at the future of data-driven wall models and their
development within the scientific community.

Short-term perspective The first operational perspective concerns the coupling
between the streamwise and spanwise wall shear stress. The neural network ar-
chitectures used in the present work have two independent heads, one dedicated
to predicting the distribution of τw,ξ and another for τw,z. Such a configuration
assumes that the two wall-parallel components of the wall shear stress are indepen-
dent. This assumption is no longer valid for real three-dimensional geometries. A
possible solution is to predict the joint distribution using a mixture of multivariate
Gaussian distributions. The network will then predict the mean vector [µξ, µz]

T and
the covariance matrix: [

Var[τw,ξ] Cov[τw,ξ, τw,z]

Cov[τw,z, τw,ξ] Var[τw,z]

]

Moreover, this covariance matrix is the transformation that projects the two wall-
parallel components of the wall shear stress into a space where they are uncorrelated.

The current wall model utilizes volume probes to interpolate the input fields and
surface probes to predict the wall shear stress. The second operational perspective
is to eliminate these probes to remove intermediate steps and speed up the overall
procedure. A possible solution is to encode the input with Graph Neural Networks
(GNNs) by using the mesh connectivity directly. In addition to removing the inter-
polation steps, GNNs are better than traditional convolutional neural networks for
working on non-Euclidean manifolds and for dealing with unstructured data. They
are more appropriate for encoding stencils on curved walls. Such work has already
been done by Dupuy et al. (2023b), but the idea is to connect the GNN to a Mixture
Density Network.

The Mixture Density Network is not the only network that performs density estima-
tion. Normalizing flows, introduced by Rezende and Mohamed (2015), are generative
models that provide a mechanism for transforming simple distributions into more
complex ones. Therefore, they can produce tractable distributions where both sam-
pling and density evaluation are exact and efficient (Kobyzev et al., 2020). Although
the primary use of normalizing flows is to perform density estimation, modifications
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to the original architecture are necessary to condition the outcome on a set of input
features. A migration to conditional Normalizing Flows is attractive, but will re-
quire a deeper understanding of their capabilities and applicability to wall modeling.

A third operational perspective is the treatment of the numerical transient. This
transient is not physical and is case and mesh-dependent. Therefore, the initial
transient cannot be added to the database for training. The first approach to treat
this numerical transient is to use the analytical WSS model based on Reichardt’s
velocity profile. This technique has already been used for the channel flow, but not
for the periodic hill. The analytical WSS model has been proved to perform well on
the two-dimensional periodic hill when restarting from a coarse wrLES of the same
test case. The question is: does this approach work on more complex test cases?

Medium-term perspective The first midterm perspective is the implementation
of the reconstruction of the space-time correlations as discussed in Chapter 7 in
Argo-DG. The implementation could be firstly validated on several turbulent chan-
nel flows where the integral time and length scales are known a priori. For more
complex cases, these scales should be predicted by the neural network directly. The
reconstruction of wall shear stress structures from distribution is an innovative ap-
proach, as it involves statistics and image reconstruction. According to Balasubra-
manian et al. (2021); Güemes et al. (2021); Guastoni et al. (2021), the wall shear
stress structures are difficult to reconstruct, which makes this perspective even more
challenging.

Generating high-fidelity databases is an heavy procedure. It is not just about run-
ning test cases, but also setting up appropriate test cases that add valuable infor-
mation to the database. For these reasons, the present work does not explore many
different test cases. Therefore, the database can be extended, as a second midterm
perspective, to other non-equilibrium configurations such as the Backward Facing
Step, where the flow separates due to a discontinuity in the geometry and moreover,
to more complex three-dimensional configurations (with or without skewed bound-
ary layers) and wall-parallel directions that do not necessarily coincide with the
streamwise and spanwise directions. In this context, the Smooth Backward Facing
Step (SBFS), sketched in Figure 9.1a, is an interesting test case featuring a turbu-
lent separation induced by an adverse pressure gradient. It is in line with the recent
EuroHPC submission, where three variations of this configuration are considered:
an incipient, a moderate, and a strong separation.
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A potential test case, which is less or not documented, is an half-blade connected to a
flat plate. Figure 9.1 sketches a half NACA 4412 blade with flat plate extension. As
for the SBFS, a turbulent boundary layer (TBL) can grow in front of the blade, the
boundary layer will ramp up and depending on the set of conditions, the TBL may
separate from the rear part of the blade, mainly due to an adverse pressure gradient.
The curvature and the pressure gradient could be adjusted to be representative of
compressor blades, but with a well-controlled turbulent inflow. This test case can
also be used to the study of turbulent separation at higher Reynolds numbers.

(a) Smooth Backward Facing Step

(b) NACA 4412 airfoil with flat plate extending from its trailing and leading edges

Figure 9.1: Potential configurations to study the turbulent separation at higher
Reynolds numbers.

In line with the generation of more complex configurations, the application of the
new data-driven WSS model to a turbomachinery test case would be of great in-
terest. The low-pressure compressor blade cascade SOLIDITY is targeted because
it features a turbulent separation near the trailing edge. The laminar boundary
layer developing on the suction side becomes turbulent near the leading edge via a
separation-induced transition. The turbulent boundary layer then develops on the
suction side until it separates near the trailing edge, depending on the operating
conditions. This test case is more advanced because it involves dealing with a lam-
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inar boundary layer on the pressure side and a laminar separation bubble on the
suction side near the leading edge.

Long-term perspective Over the last decade, we have seen a important emergence
of Machine Learning and Deep Learning techniques to model physical phenomena.
Specifically, in the field of wmLES, researchers aim to develop a universal wall
model by using deep neural networks that have been trained on a large and diverse
database. However, this requires high-quality, well-labeled databases. Although the
computational resources have improved, allowing the DNS of high-Reynolds num-
bers that were previously unfeasible, generating a huge database is not feasible for
a single researcher group because the physics depends on many different parameters.

The work of Lozano-Durán and Bae (2021) is a promising approach to simplifying
the physics by assuming that a complex flow is nothing more than a non-linear
combination of simpler flows, called building-blocks. This approach focuses on well-
defined test cases that represent only one type of physics. In contrast, other authors
focus on a specific physics, such as the separation phenomenon (Dupuy et al., 2023a;
Zhou et al., 2022) or the rotating turbulent channels (Kunz, 2019). However, to de-
velop a universal wall model, the network needs access to a considerable amount
of meaningful data. Advances in image segmentation, reconstruction, and classifi-
cation are the result of large labeled databases that are now shared globally. To
build universal databases, the scientific community must collaborate to make their
databases available. Data sharing has already started to improve RANS turbulence
models by using averaged data, which requires less memory. However, the devel-
opment of new wall models requires access to instantaneous data, which is more
challenging to share due to storage limitations.

At some point, it may be necessary to consider a different perspective when at-
tempting to solve the storage issue. One approach exploited to model RANS is to
identify regions within a computational domain where one model performs better
than another and use ML and DL techniques to create a unified model that can
switch between models during a simulation, and adjust predictions at the region in-
terfaces. A similar approach could be considered for building new wall models based
on existing ones. This method would require segmentation to detect and classify
the different regions within a computational domain (e.g., separation, transition,
laminar or turbulent boundary layer, corner flows, and recirculation bubble, to cite
a few). The unified model could be constructed using standard wall models and
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possibly new ones trained on specific configurations that standard models cannot
accurately predict. The challenge lies in switching between models at the region
interfaces without introducing discontinuities that could lead to instabilities and
robustness issues. A balance must be found between data-driven and standard wall
models, without disregarding years of hard work in wall modeling. While neural
networks are not a universal solution, they can be used judiciously to achieve the
desired outcome.

One aspect not yet addressed in this perspective is the impact of feedback loops in
the a posteriori tests and how to integrate them into the training loop to create
more robust data-driven wall models. In the a posteriori tests, feedback loops may
lead the neural network to make incorrect prediction. Specifically, in the flow solver,
the predicted wall shear stress can influence the velocity field and other flow quanti-
ties, which in turn can affect the prediction of the wall shear stress at the next time
step. This retroaction was not considered during the offline training. A potential
approach to incorporate this feedback into the training loop is to train the neural
network online while simultaneously backpropagating the gradient through the flow
solver. This approach represents a long-term perspective as it includes a significant
engineering challenge: evaluating the gradient of the flow solver. Furthermore, this
raises questions about generalizability: how can the network be trained on various
test cases? Is transfer learning feasible?

Undoubtedly, the introduction of machine learning and deep learning techniques
into the field of fluid dynamics opens up a whole new world of network models
(e.g., Graph Neural Networks, Normalizing Flows, Generative Adversarial Neural
Networks, Variational Auto-encoders, Physics Informed Neural Networks, Neural
Operator, to only cite a few). This thesis represents a first step towards integrating
data-driven wall models into high-order flow solvers. However, this is just the be-
ginning, and the scientific community is creative enough to develop new models to
overcome the current limitations.
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