International scientific conference “plant germplasm basis of the modern agriculture”
13-14 June 2007, Plovdiv, dedicated to 125 years - Sadovo center of the agricultural science in Bulgaria and 30 years after the establishment of the Institute of Plant Genetic Resources

Established molecular marker in pepper mutants with orange fruit colour and application in crop breeding for high beta-carotene

N. Tomlekov(1), I. Panchev(2), S. Yancheva(3), V. Todorova(1), J.-P. Baudoin(4), Đ. Daskalov(5)

(1) Maritsa Vegetable Crops Research Institute, 32, Brezovsko shosse Str., 4003, Plovdiv, Bulgaria, E-mail: nasia.tomlekov@gmail.com; (2) Faculty of Biology, Sofia University, 8, Dragan Tzankov, 1164 Sofia, Bulgaria; (3) Agricultural University, 12, Mendeleev Str., Plovdiv, Bulgaria; (4) Faculté universitaire des Sciences agronomiques de Gembloux, Gembloux, Belgique; (5) Institute of Genetics, 1 Tzarigradsko shosse Str., 1113, Sofia, Bulgaria

ABSTRACT
Advances of plant molecular biology and mutation technologies allow to utilize better the potentialities of mutation lines. The present study concerns the identification of a suitable molecular marker for early detection of high β-carotene content based on characterization of the advanced sweet pepper mutant lines created through irradiation with X-rays. Initial molecular studies achieved through PCR reactions with different internal gene-specific primers conduct to build a hypothesis for genetic changes occurring in the 3′-terminal region of the gene encoding the β-carotene hydroxylase involved in pepper Capsicum annuum Linn. carotenoid biosynthetic pathway: this change may result in loosing the enzyme activity.

Key words: Capsicum annuum L., molecular breeding, β-carotene hydroxylase, PCR
INTRODUCTION

Carotenoids, the plastid pigments, are among the most important metabolites for fruit quality in pepper being the main non enzymatic antioxidants which improve human health thanks to their multiple functions (Hirschberg, 1998). However the human organism is not able to synthesize them by itself and for this reason the main source of carotenoids are plant foods. Usual doses of carotenoids, varying from 180 to 300 mg/day, can prevent development of certain types of cancer and many severe chronic diseases such as cardiovascular, respiratory, urinary, and intestinal tract diseases (Gilman et al., 1990). Carotenoids affect positively vision, immune function, bone growth, reproduction, cell division and differentiation. Their deficiency is most often associated with protein/calorie malnutrition and affects over 120 million children worldwide (Hirschberg, 2001). Pepper is a traditionally important vegetable crop in Bulgaria, consumed in large quantities, providing human for bioactive substances such as β-carotene. The expanding “healthy food” market justifies strongly breeding new varieties with improved quality and high added food value (Kimura & Rodriguez-Amaya, 2003). Improvement programmes based on induced mutations could generate cultivars with improved phytonutrient level.

The objective of the present study was to assess suitable molecular marker for early detection of high β-carotene content based on characterization of the advanced pepper mutant lines created through induced mutagenesis.

MATERIALS AND METHODS

The research was carried out on 11 red and orange fruited Capsicum annuum Linn. cultivars (cv) and lines. Physical treatment for induction of mutants was performed on pepper seeds of red fruited local Pazardzhishka kapiya 794 cv through X-rays-120 Gy and mutants (M) with orange colour of the fruit were obtained (Daskalov, 1991; Daskalov & Baralieva, 1992). Advanced orange fruited mutant generations were developed through three back crosses with wild type genotypes (WT) near isogenic lines (NILs) followed by self pollination recombinant inbred lines (RILs) till M12-15. The altered character, orange fruit, determining higher β-carotene content, was incorporated into two other genotypes with red fruits. The three wild type lines (WT) and the corresponding mutant lines (M) were used in the present molecular study. Biochemical
evaluation performed preliminarily on WT and M lines demonstrated the higher β-carotene levels in the obtained orange fruited mutants (Tomlekova et al., 2007).

PCR analyses were performed with different combinations of specific primers (Table 1) corresponding to the structural gene with GenBank accession number Y09225: this gene encodes the enzyme β-carotene hydroxylase (CrtZ), responsible for the conversion of metabolite β-carotene into product β-cryptoxanthin in the carotenoid biosynthetic pathway (Bouvier et al., 1998). Genomic DNA was isolated from first true leaf using PhytoPure Kit (Amersham) and CTAB protocol of FAO/IAEA (2001). PCR primers were designed by using GenBank cDNA sequences in The National Center for Biotechnology Information (NCBI). BLAST and protein structure analysis were performed using the web site http://www.ncbi.nlm.nih.gov/.

RESULTS AND DISCUSSIONS

The entire CrtZ gene was successfully amplified by fragments that pertained to the 5’- terminal, 3’- terminal and internal regions with all the rest of primer sequences shown in Table 1.

Table 1. PCR amplification with specific primers for the gene CrtZ in pepper

*A - amplification; M - monomorphism; P - polymorphism; the start codon - localized from the 25th nd at the 5’-chain of CrtZ; the stop codon - localized from the 972nd bp of the published CrtZ sequence.
The *CrtZ*-E and *CrtZ*-E/A primer combinations were chosen to amplify a fragment from the 5'-terminal region of the gene, including the start codon with expected fragment lengths 847 and 911 bp, respectively. Electrophoretic comparison showed monomorphism in the amplified fragments (1500 bp and 2000 bp) of the WT and in most of the M. In few of the M a DNA fragment was not amplified and a polymorphism was observed.

No amplification was achieved with primers designed to include the stop codon on pepper genomic DNA of the WT and M (data not shown in Table 1). Lack of amplification or no reliable amplifications were noticed with some of the primer combinations after the performed PCR (*CrtZ*-A, *CrtZ*-D/A, *CrtZ*-B and *CrtZ*-E/B). We suggest that differences between the studied genomic sequences of WT and M, and the published genotype sequence used for the primer design, obstructed the right primer design.

The *CrtZ*-C combination was selected to amplify a fragment from the internal part of the gene. Polymorphism was shown between each WT and M included in the investigation. Two bands were amplified in the WT genotypes: the first one corresponded to 800 bp and the second was made up of 700 bp. The 800 bp was amplified in all studied WT and M genotypes while the 700 bp band was amplified in all WT but not amplified in the M genotypes (Figure 1).

<table>
<thead>
<tr>
<th>Gene fragments</th>
<th>Minimal length expected according to known cDNA, bp</th>
<th>Primer sequences</th>
<th>NILs (WT/M)</th>
<th>Obtained length in genomic DNA, bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrtZ-A</td>
<td>913 - 18-930</td>
<td>F TGG CAT GTA CCG ACG ACT TTA R TTC CAA CTC TTT AAC TAC CCC</td>
<td>no A</td>
<td>-</td>
</tr>
<tr>
<td>CrtZ-B</td>
<td>516 - 15-530</td>
<td>F GCA TGG CAT GTA CCG ACG A R CA CTC GCC CAG TAC TCC AT</td>
<td>no specific A</td>
<td></td>
</tr>
<tr>
<td>CrtZ-C</td>
<td>279 - 607-885</td>
<td>R TAG GAA CAA GCC ATA TGG GA R TAG GAA CAA GCC ATA TGG GA</td>
<td>P in all M</td>
<td>700</td>
</tr>
<tr>
<td>CrtZ-D/C</td>
<td>359 - 526-885</td>
<td>F TCT ACC CGC GTA TCT CGT GAT R ACC CCA TCA AAT TGG GCC AT</td>
<td>P in all M</td>
<td>800</td>
</tr>
<tr>
<td>CrtZ-D</td>
<td>341 - 526-866</td>
<td>F TCT ACC CGC GTA TCT CGT GAT R ACC CCA TCA AAT TGG GCC AT</td>
<td>M & P in some of the mutants</td>
<td>750</td>
</tr>
<tr>
<td>CrtZ-E</td>
<td>847 - 20-866</td>
<td>F GCA TGT ACC GAC GAC TTT AA R CAT CTC GCC CAG TAC TCC AT</td>
<td>M & P in some of the mutants</td>
<td>1500</td>
</tr>
<tr>
<td>CrtZ-E/A</td>
<td>911 - 20-930</td>
<td>R TCC TTA CCA CTC TTT AAC TAC CCC</td>
<td>M & P</td>
<td>2000</td>
</tr>
<tr>
<td>CrtZ-E/B</td>
<td>511 - 20-530</td>
<td>F GCA TGT ACC GAC GAC TTT AA R CAT CTC GCC CAG TAC TCC AT</td>
<td>no specific A</td>
<td></td>
</tr>
<tr>
<td>CrtZ-C/D</td>
<td>259 - 607-866</td>
<td>F TCT GAC TTA TAA AAA CCG CAG TAC TCC AT</td>
<td>M & P in some of the mutants</td>
<td>580</td>
</tr>
<tr>
<td>CrtZ-D/A</td>
<td>404 - 526-930</td>
<td>F TCT ACC CGC GTA TCT CGT GAT R TCC CCA CTC TTT AAC TAC CCC</td>
<td>no A</td>
<td>-</td>
</tr>
</tbody>
</table>
In all mutant fragments amplified with reverse primer C, started from the position 885 nd to 866
nd (combinations C, D/C), amplification of a 700 bp fragment for C combination and of a 800 bp
fragment for D/C combination, was not observed.

BLAST analysis of primer C with the available pepper sequences in the GenBank showed that
the tested primer pair amplified a fragment from the hydroxylase-1 (CrtZ) (Y09225), responsible
for the conversion of the β-carotene into β-cryptoxanthin but also a fragment from the
hydroxylase-2 gene (CrtZ-2) (Y09722), responsible for the conversion of the β-cryptoxanthin
into zeaxanthin. In testing the segregation in F$_2$ population of the hybrid C. annuum x C.
chinense, Thorup et al. (2000) found identical polymorphism in genes CrtZ and CrtZ-2 and a
high similarity of the sequences. Electrophoretic pattern in WT revealed two fragments while in
M only one fragment was observed. Therefore, we suggest that in M a fragment was amplified
only from hydroxylase-2, while in WT the fragments were amplified from both hydroxylase
genes CrtZ and CrtZ-2. A sequence analysis of isolated CrtZ-C fragments from WT and M
confirmed this result. The amplified fragment in the mutants corresponded to the CrtZ-2 gene. On
the basis of the DNA sequences, analysis of the protein structure demonstrated that the revealed
fragment CrtZ-C belonged to the conservative domain of the protein. Therefore an explanation
for β-carotene accumulation and the impossibility of this pigment to be converted into the next
product of the metabolic chain could be the result of a probable sequence change of the mutant
gene that affected the enzyme active center.

Figure 1. PCR fragments of sweet pepper CrtZ with gene specific primer combinations: 1-4 -
CrtZ-A (WT$_1$, M, WT$_2$, WT$_3$); 5-8 - CrtZ-B – (WT$_1$, M, WT$_2$, WT$_3$); 9-12 - CrtZ-C – (WT$_1$, M,
WT, WT, WT); 13–100 bp DNA Ladder; 14-17 - CrtZ-D - (WT, M, WT, WT); 18-20 - E-WT, M, WT)

When the reverse primer in CrtZ-D and CrtZ-E started from the position 866 nd of the known pepper cDNA in NCBI, a fragment was amplified in some of the M, while in other M no fragment was amplified. This result demonstrated that the breeding material containing high β-carotene levels in which the same mutant character incorporated was not homogeneous. Similarity of hydroxylases sequences was observed in pepper and tomatoes (Thorup et al., 2000), in Arabidopsis and in Lycopersicon (Hirschberg et al., 1998, 2001), despite of the different loci and number of copies determined for the genes.

CONCLUSIONS
PCR investigation with internal gene-specific primers allowed us to suggest changes occurring in the 3'-terminal region of the mutant CrtZ gene involved in pepper carotenoid biosynthesis, which may result in loosing the hydroxylase enzyme activity. The polymorphism in CrtZ revealed through the C and D/C combinations could be used as a marker for high beta-carotene. The presence of a fragment from CrtZ-2 amplified in the mutant genotypes by primer combination C is very useful as an internal standard (i.e. multiplex) codominant allele-specific marker (null). Our initial molecular studies are with direct application in pepper breeding.

ACKNOWLEDGMENTS
This research was carried out with the support of the IAEA: under Research Contract No 12227.

REFERENCES