String attractors of fixed points of *k*-bonacci-like morphisms

France Gheeraert Joint work with Giuseppe Romana and Manon Stipulanti

June 12, 2023

String attractors

Definition

A string attractor for a (finite) word w is a set of positions $\Gamma \subseteq \{1, \ldots, |w|\}$ such that each factor has an occurrence in w crossing one of the positions in Γ .

<u>Outline</u>

We want to find a string attractor for each **prefix** of an infinite word.

- Start from the Fibonacci word...
- extract the ideas...
- and apply them on other words.

 $\boldsymbol{f}=0100101001001\cdots$

 $\mathbf{f} = \underline{\mathbf{0}} 100101001001 \cdots$

 $\mathbf{f} = \underline{\mathbf{01}} \mathbf{00101001001} \cdots$

 $\mathbf{f} = \underline{01}00101001001\cdots$

 $\mathbf{f} = \underline{\mathbf{01}} \underline{\mathbf{00}} \mathbf{101} \mathbf{001} \mathbf{001} \cdots$

 $\mathbf{f} = \underline{010}0101001001\cdots$

Construction of the string attractors: $\label{eq:f} \mathbf{f} = \underbrace{010}_{0101001001} 0101001 \cdots$

 $\mathbf{f} = \mathbf{0}\underline{10}\mathbf{0}\mathbf{10}\mathbf{10}\mathbf{0}\mathbf{10}\mathbf{0}\mathbf{10}\mathbf{0}\mathbf{1}\cdots$

 $\boldsymbol{f} = \boldsymbol{0}\underline{1}\underline{0}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}$

 $\boldsymbol{f}=\boldsymbol{0}\underline{10}\boldsymbol{0}\boldsymbol{10}\boldsymbol{10}\boldsymbol{0}\boldsymbol{1001}\boldsymbol{0}\boldsymbol{1}\cdots$

 $\boldsymbol{f} = \boldsymbol{0}\underline{1}\underline{0}\boldsymbol{0}\underline{1}\boldsymbol{0}\underline{1}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}\boldsymbol{0}\boldsymbol{1}$

 $\boldsymbol{f} = \boldsymbol{0}\underline{1}\underline{0}\boldsymbol{0}\underline{1}\boldsymbol{0}1\boldsymbol{0}01\boldsymbol{0}01\cdots$

Construction of the string attractors: $\label{eq:f} \mathbf{f} = \underbrace{01001}_{01001001} \underbrace{01001001\cdots}_{}$

 $\mathbf{f} = \mathbf{01}\underline{\mathbf{0}}\mathbf{01}\mathbf{01}\mathbf{001}\mathbf{001}\cdots$

 $\mathbf{f} = \mathbf{01} \underline{\mathbf{0}} \mathbf{01} \mathbf{01} \mathbf{001} \mathbf{001} \cdots$

 $\mathbf{f} = \mathbf{01}\underline{\mathbf{0}}\mathbf{01}\mathbf{01}\mathbf{01}\mathbf{01}\mathbf{01}\mathbf{01}\cdots$

Construction of the string attractors: $\mathbf{f} = 01\underline{0}01\underline{0}01001\cdots$

 $\boldsymbol{f} = 0100\underline{1}01\underline{0}01001\cdots$

 $\boldsymbol{f}=0100\underline{1}01\underline{0}01001\cdots$

Three main steps:

- increasing the length of the prefix (no new "small" factor)
- adding a "well-chosen" position
- removing the first position when it becomes redundant

Lemma

Let x be an infinite word. If

- Γ is a string attractor of $\mathbf{x}[1, n]$,
- x[1, n+1] is periodic of period p,
- *p* ∈ Γ,

then Γ is a string attractor of $\mathbf{x}[1, n+1]$.

Lemma

Let x be an infinite word. If

- Γ is a string attractor of $\mathbf{x}[1, n]$,
- x[1, n+1] is periodic of period p,
- *p* ∈ Γ,

then Γ is a string attractor of $\mathbf{x}[1, n+1]$.

$$x_1 \cdots x_p x_{p+1} \cdots x_n x_{n+1}$$

Lemma

Let x be an infinite word. If

- Γ is a string attractor of $\mathbf{x}[1, n]$,
- x[1, n+1] is periodic of period p,
- *p* ∈ Γ,

then Γ is a string attractor of $\mathbf{x}[1, n+1]$.

$$x_1 \cdots x_p x_{p+1} \cdots x_n x_{n+1}$$

Lemma

Let x be an infinite word. If

- Γ is a string attractor of $\mathbf{x}[1, n]$,
- x[1, n+1] is periodic of period p,
- *p* ∈ Γ,

then Γ is a string attractor of $\mathbf{x}[1, n+1]$.

$$x_1 \cdots x_p x_{p+1} \cdots x_n x_{n+1}$$

Lemma

Let x be an infinite word. If

- Γ is a string attractor of $\mathbf{x}[1, n]$,
- x[1, n+1] is periodic of period p,
- *p* ∈ Γ,

then Γ is a string attractor of $\mathbf{x}[1, n+1]$.

$$x_1 \cdots x_p x_{p+1} \cdots x_n x_{n+1}$$

Lemma

Let x be an infinite word. If

- Γ is a string attractor of $\mathbf{x}[1, n]$,
- x[1, n+1] is periodic of period p,
- *p* ∈ Γ,

then Γ is a string attractor of $\mathbf{x}[1, n+1]$.

$$x_1 \cdots \underline{x_p} \underline{x_{p+1}} \cdots \underline{x_n} \underline{x_{n+1}}$$

Lemma

Let x be an infinite word. If

- Γ is a string attractor of $\mathbf{x}[1, n]$,
- x[1, n+1] is periodic of period p,
- *p* ∈ Γ,

then Γ is a string attractor of $\mathbf{x}[1, n+1]$.

$$x_1 \cdots x_p x_{p+1} \cdots x_n x_{n+1}$$

Adding a "well-chosen" position

Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence $(F_0 = 1, F_1 = 2)$.

Adding a "well-chosen" position

Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence $(F_0 = 1, F_1 = 2)$.

Lemma

For all $n \ge 0$, $\mathbf{f}[1, F_{n+1} - 1]$ is periodic of period F_n .

Adding a "well-chosen" position

Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence $(F_0 = 1, F_1 = 2)$.

Lemma

For all $n \ge 0$, $\mathbf{f}[1, F_{n+1} - 1]$ is periodic of period F_n .

Corollary

Every prefix of **f** has a string attractor made of elements of $(F_n)_{n\geq 0}$.

Proof:

It is true for the prefix of length $0 = F_0 - 1$.

Induction:

$$\begin{array}{l} \Gamma \text{ s.a. of } \mathbf{f}[1, F_m - 1] \\ \Rightarrow \Gamma \cup \{F_m\} \text{ s.a. of } \mathbf{f}[1, F_m] \\ \Rightarrow \Gamma \cup \{F_m\} \text{ s.a. of } \mathbf{f}[1, n], \ \forall \, n \in [F_m, F_{m+1} - 1] \end{array}$$

Proposition

Let **x** be an infinite word and let $(U_n)_{n\geq 0}$ be an increasing sequence such that $U_0 = 1$. If, for all $n \geq 0$,

(Per) the word $\mathbf{x}[1, U_{n+1} - 1]$ is periodic of period U_n , then every prefix of \mathbf{x} has a string attractor composed of elements of $(U_n)_{n>0}$.

Proposition

Let **x** be an infinite word and let $(U_n)_{n\geq 0}$ be an increasing sequence such that $U_0 = 1$. If, for all $n \geq 0$,

(Per) the word $\mathbf{x}[1, U_{n+1} - 1]$ is periodic of period U_n , then every prefix of \mathbf{x} has a string attractor composed of elements of $(U_n)_{n\geq 0}$.

But the size of the string attractors might not be bounded...

 $\mathbf{f} = \mathbf{01} \mathbf{\underline{001}} \mathbf{01} \mathbf{\underline{00}} \mathbf{1001} \cdots$

 $\mathbf{f} = \mathbf{01} \underline{\mathbf{0}} \mathbf{01} \mathbf{01} \mathbf{01} \mathbf{01} \mathbf{01} \mathbf{01} \cdots$

Lemma For all $n \ge 0$, (Suff) $\mathbf{f}[1, F_n]$ is a suffix of $\mathbf{f}[1, F_{n+2}]$;

 $\boldsymbol{f} = \boldsymbol{0} \boldsymbol{1} \underline{\boldsymbol{0}} \boldsymbol{0} \underline{\boldsymbol{1}} \boldsymbol{0} \boldsymbol{1} \underline{\boldsymbol{0}} \boldsymbol{0} \boldsymbol{1} \boldsymbol{0} \boldsymbol{0} \boldsymbol{1} \cdots$

Lemma For all $n \ge 0$, (Suff) $\mathbf{f}[1, F_n]$ is a suffix of $\mathbf{f}[1, F_{n+2}]$; • $\mathbf{f}[1, F_{n+2}]$ is followed by $\mathbf{f}[F_n + 1, F_{n+1} - 1]$ in \mathbf{f} ;

 $\mathbf{f} = \underbrace{\mathbf{01}}_{\underline{\mathbf{0}}} \underbrace{\mathbf{$

Lemma For all $n \ge 0$, (Suff) $\mathbf{f}[1, F_n]$ is a suffix of $\mathbf{f}[1, F_{n+2}]$; • $\mathbf{f}[1, F_{n+2}]$ is followed by $\mathbf{f}[F_n + 1, F_{n+1} - 1]$ in \mathbf{f} ; (Per) $\mathbf{x}[1, F_{n+1} - 1]$ is periodic of period F_n ;

$$\mathbf{f} = \mathbf{01} \underline{001} \underline{0100} \mathbf{1001} \cdots$$

Lemma For all $n \ge 0$, (Suff) $\mathbf{f}[1, F_n]$ is a suffix of $\mathbf{f}[1, F_{n+2}]$; • $\mathbf{f}[1, F_{n+2}]$ is followed by $\mathbf{f}[F_n + 1, F_{n+1} - 1]$ in \mathbf{f} ; (Per) $\mathbf{x}[1, F_{n+1} - 1]$ is periodic of period F_n ; (Len) $F_{n+3} - F_{n+2} \ge F_{n+1} - F_n$;

 $f = 0100101001001\cdots$

Lemma For all $n \ge 0$, (Suff) $\mathbf{f}[1, F_n]$ is a suffix of $\mathbf{f}[1, F_{n+2}]$; • $\mathbf{f}[1, F_{n+2}]$ is followed by $\mathbf{f}[F_n + 1, F_{n+1} - 1]$ in \mathbf{f} ; (Per) $\mathbf{x}[1, F_{n+1} - 1]$ is periodic of period F_n ; (Len) $F_{n+3} - F_{n+2} \ge F_{n+1} - F_n$;

 $\mathbf{f} = \mathbf{01} \underline{\mathbf{0}} \mathbf{01} \mathbf{01} \mathbf{01} \mathbf{01} \mathbf{01} \mathbf{01} \cdots$

Lemma For all $n \ge 0$, (Suff) $\mathbf{f}[1, F_n]$ is a suffix of $\mathbf{f}[1, F_{n+2}]$; • $\mathbf{f}[1, F_{n+2}]$ is followed by $\mathbf{f}[F_n + 1, F_{n+1} - 1]$ in \mathbf{f} ; (Per) $\mathbf{x}[1, F_{n+1} - 1]$ is periodic of period F_n ; (Len) $F_{n+3} - F_{n+2} \ge F_{n+1} - F_n$;

 $\mathbf{f} = \mathbf{01} \underline{\mathbf{0}} \mathbf{01} \mathbf{01} \mathbf{001} \mathbf{001} \cdots$

Lemma For all $n \ge 0$, (Suff) $\mathbf{f}[1, F_n]$ is a suffix of $\mathbf{f}[1, F_{n+2}]$; • $\mathbf{f}[1, F_{n+2}]$ is followed by $\mathbf{f}[F_n + 1, F_{n+1} - 1]$ in \mathbf{f} ; (Per) $\mathbf{x}[1, F_{n+1} - 1]$ is periodic of period F_n ; (Len) $F_{n+3} - F_{n+2} \ge F_{n+1} - F_n$; (Per2) $\mathbf{f}[1, F_{n+2} + F_{n+1} - F_n - 2]$ is periodic of period F_{n+1} .

 $\mathbf{f} = \mathbf{01} \underline{\mathbf{0}} \mathbf{01} \mathbf{01} \mathbf{001} \mathbf{001} \cdots$

Lemma For all $n \ge 0$, (Suff) $\mathbf{f}[1, F_n]$ is a suffix of $\mathbf{f}[1, F_{n+2}]$; • $\mathbf{f}[1, F_{n+2}]$ is followed by $\mathbf{f}[F_n + 1, F_{n+1} - 1]$ in \mathbf{f} ; (Per) $\mathbf{x}[1, F_{n+1} - 1]$ is periodic of period F_n ; (Len) $F_{n+3} - F_{n+2} \ge F_{n+1} - F_n$; (Per2) $\mathbf{f}[1, F_{n+2} + F_{n+1} - F_n - 2]$ is periodic of period F_{n+1} .

Proposition

Every prefix of **f** has a string attractor of size (at most) 2 made of consecutive elements of $(F_n)_{n\geq 0}$.

Removing the first position: general case

Proposition

Let **x** be an infinite word, let $(U_n)_{n\geq 0}$ be an increasing sequence such that $U_0 = 1$. If there exists $k \geq 2$ such that, for all $n \geq 0$, (Per) $\mathbf{x}[1, U_{n+1} - 1]$ is periodic of period U_n , (Suff) $\mathbf{x}[1, U_n]$ is a suffix of $\mathbf{x}[1, U_{n+k}]$, (Len) $U_{n+k+1} - U_{n+k} \geq U_{n+1} - U_n$,

then every prefix of **x** has a string attractor of size at most k + 1 made of consecutive elements of $(U_n)_{n\geq 0}$.

Removing the first position: general case

Proposition

Let **x** be an infinite word, let $(U_n)_{n\geq 0}$ be an increasing sequence such that $U_0 = 1$. If there exists $k \geq 2$ such that, for all $n \geq 0$, (Per) $\mathbf{x}[1, U_{n+1} - 1]$ is periodic of period U_n , (Suff) $\mathbf{x}[1, U_n]$ is a suffix of $\mathbf{x}[1, U_{n+k}]$, (Len) $U_{n+k+1} - U_{n+k} \geq U_{n+1} - U_n$,

then every prefix of **x** has a string attractor of size at most k + 1 made of consecutive elements of $(U_n)_{n\geq 0}$.

Moreover, if for all $n \ge k$,

(Per2) $\mathbf{x}[1, U_{n+1} + U_{n-k+1} - U_{n-k} - 2]$ is periodic of period U_n ,

then that string attractor can be chosen of size at most k.

k-bonacci-like morphisms

For $k \geq 2$ and for $c_1, \ldots, c_k \geq 0$ with $c_1, c_k \geq 1$, we define

$$\mu_{c}: \begin{cases} 0 \mapsto 0^{c_{1}}1 \\ 1 \mapsto 0^{c_{2}}2 \\ \cdots & \text{and} \quad \mathbf{x}_{c} = \mu_{c}^{\omega}(0) \\ k - 2 \mapsto 0^{c_{k-1}}(k-1) \\ k - 1 \mapsto 0^{c_{k}} \end{cases}$$

If $c_1 = c_2 = \cdots = c_k = 1$, we obtain the k-bonacci word.

k-bonacci-like morphisms

For $k \geq 2$ and for $c_1, \ldots, c_k \geq 0$ with $c_1, c_k \geq 1$, we define

$$\mu_{c}:\begin{cases} 0\mapsto 0^{c_{1}}1\\ 1\mapsto 0^{c_{2}}2\\ \cdots & \text{and} \quad \mathbf{x}_{c}=\mu_{c}^{\omega}(0)\\ k-2\mapsto 0^{c_{k-1}}(k-1)\\ k-1\mapsto 0^{c_{k}} \end{cases}$$

If $c_1 = c_2 = \cdots = c_k = 1$, we obtain the *k*-bonacci word.

Question

Can we use our techniques to find a string attractor for every prefix of \mathbf{x}_c ?

Associated sequence U_n

Proposition

For all $n \ge 0$, we have

$$\mu^{n}(0) = \begin{cases} \mu^{n-1}(0)^{c_{1}} \cdot \mu^{n-2}(0)^{c_{2}} \cdots \mu^{0}(0)^{c_{n}} \cdot n & \text{if } n \leq k-1; \\ \mu^{n-1}(0)^{c_{1}} \cdot \mu^{n-2}(0)^{c_{2}} \cdots \mu^{n-k}(0)^{c_{k}} & \text{if } n \geq k. \end{cases}$$

Associated sequence U_n

Proposition

For all $n \ge 0$, we have

$$\mu^{n}(0) = \begin{cases} \mu^{n-1}(0)^{c_{1}} \cdot \mu^{n-2}(0)^{c_{2}} \cdots \mu^{0}(0)^{c_{n}} \cdot n & \text{if } n \leq k-1; \\ \mu^{n-1}(0)^{c_{1}} \cdot \mu^{n-2}(0)^{c_{2}} \cdots \mu^{n-k}(0)^{c_{k}} & \text{if } n \geq k. \end{cases}$$

In particular, if $U_n = |\mu^n(0)|$,

$$U_n = \begin{cases} c_1 U_{n-1} + c_2 U_{n-2} + \dots + c_n U_0 + 1 & \text{if } n \le k-1; \\ c_1 U_{n-1} + c_2 U_{n-2} + \dots + c_k U_{n-k} & \text{if } n \ge k. \end{cases}$$

Associated sequence U_n

Proposition

For all $n \ge 0$, we have

$$\mu^{n}(0) = \begin{cases} \mu^{n-1}(0)^{c_{1}} \cdot \mu^{n-2}(0)^{c_{2}} \cdots \mu^{0}(0)^{c_{n}} \cdot n & \text{if } n \leq k-1; \\ \mu^{n-1}(0)^{c_{1}} \cdot \mu^{n-2}(0)^{c_{2}} \cdots \mu^{n-k}(0)^{c_{k}} & \text{if } n \geq k. \end{cases}$$

In particular, if $U_n = |\mu^n(0)|$,

$$U_n = \begin{cases} c_1 U_{n-1} + c_2 U_{n-2} + \dots + c_n U_0 + 1 & \text{if } n \le k-1; \\ c_1 U_{n-1} + c_2 U_{n-2} + \dots + c_k U_{n-k} & \text{if } n \ge k. \end{cases}$$

Remark

F

For all
$$n \ge 0$$
, we have
(Suff) $\mathbf{x}_c[1, U_n]$ is a suffix of $\mathbf{x}_c[1, U_{n+k}]$
(Len) $U_{n+k+1} - U_{n+k} \ge U_{n+1} - U_n$.

France Gheeraert

String attractors of fixed points of k-bonacci-like morphisms

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

For c = 1012, we have $c_1 \cdots c_{k-1} = 101$

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

For c = 1012, we have $c_1 \cdots c_{k-1} = 101$

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

n	$\mu^n(0)$	q _n
0	0	
1	01	
2	012	
3	01203	
4	012030100	

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

$$\begin{array}{c|ccc} n & \mu^n(0) & q_n \\ \hline 0 & 0 & 01 \\ 1 & 01 & \\ 2 & 012 & \\ 3 & 01203 & \\ 4 & 012030100 & \\ \end{array}$$

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

п	$\mu^n(0)$	q _n
0	0	0
1	01	012
2	012	
3	01203	
4	012030100	

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

п	$\mu^n(0)$	q _n
0	0	0
1	01	01
2	012	01203
3	01203	
4	012030100	

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

п	$\mu^n(0)$	q _n
0	0	0
1	01	01
2	012	012 · 0
3	01203	
4	012030100	

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

п	$\mu^n(0)$	q _n
0	0	0
1	01	01
2	012	012 · 0
3	01203	01203010
4	012030100	

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

п	$\mu^n(0)$	<i>q</i> _n
0	0	0
1	01	01
2	012	012 · 0
3	01203	01203 · 01
4	012030100	

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

п	$\mu^n(0)$	q _n
0	0	0
1	01	01
2	012	012 · 0
3	01203	01203 · 01
4	012030100	01203010001201

Proposition

For all n, the longest prefix of \boldsymbol{x}_c which is periodic of period U_n is given by

$$q_n = \mu^n(0)^{a_1} \cdot \mu^{n-1}(0)^{a_2} \cdots \mu^1(0)^{a_n} \cdot \mu^0(0)^{a_{n+1}}$$

where $a_1a_2\cdots$ is the infinite concatenation of the longest prefix of $c_1\cdots c_{k-1}$ maximal among its conjugates.

n	$\mu^n(0)$	q _n
0	0	0
1	01	01
2	012	012 · 0
3	01203	01203 · 01
4	012030100	$012030100 \cdot 012 \cdot 0$

Proposition

The following are equivalent:

• for all
$$n \ge 0$$
, $U_{n+1} - 1 \le \sum_{i=1}^{n} a_i U_{n-i}$;

Proposition

The following are equivalent:

- for all $n \ge 0$, $U_{n+1} 1 \le \sum_{i=1}^{n} a_i U_{n-i}$;
- for all $n \ge 0$, $(c_1 \cdots c_{k-1}(c_k 1))^{\omega}[1, n] \le a_1 \cdots a_n;$

Proposition

The following are equivalent:

• for all
$$n \ge 0$$
, $U_{n+1} - 1 \le \sum_{i=1}^{n} a_i U_{n-i}$;

- for all $n \geq 0$, $(c_1 \cdots c_{k-1}(c_k-1))^{\omega}[1,n] \leq a_1 \cdots a_n;$
- $c_1 \cdots c_{k-1}(c_k 1)$ is maximal among its conjugates;

Proposition

The following are equivalent:

• for all
$$n \ge 0$$
, $U_{n+1} - 1 \le \sum_{i=1}^{n} a_i U_{n-i}$;

- for all $n\geq 0$, $(c_1\cdots c_{k-1}(c_k-1))^\omega [1,n]\leq a_1\cdots a_n;$
- $c_1 \cdots c_{k-1}(c_k 1)$ is maximal among its conjugates;
- for all $m \ge 1$, if $\operatorname{rep}_{U_n}(m) = b_\ell \cdots b_1 b_0$, then $\mathbf{x}_c[1,m] = \mu^\ell(0)^{b_\ell} \cdots \mu^1(0)^{b_1} \mu^0(0)^{b_0}$.

Proposition

The following are equivalent:

(Per) for all $n \ge 0$, $\mathbf{x}_c[1, U_{n+1} - 1]$ is periodic of period U_n ;

• for all
$$n \ge 0$$
, $U_{n+1} - 1 \le \sum_{i=1}^{n} a_i U_{n-i}$;

- for all $n\geq 0$, $(c_1\cdots c_{k-1}(c_k-1))^\omega [1,n]\leq a_1\cdots a_n;$
- $c_1 \cdots c_{k-1}(c_k 1)$ is maximal among its conjugates;
- for all $m \ge 1$, if $\operatorname{rep}_{U_n}(m) = b_\ell \cdots b_1 b_0$, then $\mathbf{x}_c[1,m] = \mu^\ell(0)^{b_\ell} \cdots \mu^1(0)^{b_1} \mu^0(0)^{b_0}$.

Theorem

If $c_1 \cdots c_{k-1}(c_k - 1)$ is maximal among its conjugates, then every prefix of \mathbf{x}_c has a string attractor of size $\leq k + 1$ made of elements of $(|\mu^n(0)|)_{n\geq 0}$.

Otherwise, there is a prefix which has no string attractor made of elements of $(|\mu^n(0)|)_{n\geq 0}$.

Proposition

If $c_1 \cdots c_{k-1}$ is maximal among its conjugates, and $c_k = 1$, then every prefix of \mathbf{x}_c has a string attractor of size $\leq k$ made of consecutive elements of $(|\mu^n(0)|)_{n\geq 0}$.

Proposition (Bernat, Masáková, Pelantová)

The word \mathbf{x}_c has complexity $p_{\mathbf{x}_c}(n) = (k-1)n+1$ if and only if $c_1 \cdots c_{k-1}$ is maximal among its conjugates and $c_k = 1$.

Open questions

- Can we apply this for other words?
- Given a sequence (U_n)_{n≥0}, can we find an infinite word x whose prefixes have string attractors (of bounded size) made of U_n's?
- Given a infinite word **x**, can we find a numeration system S such that **x** is S-automatic and string attractors of **x**'s prefixes can be easily described using S?

Open questions

- Can we apply this for other words?
- Given a sequence (U_n)_{n≥0}, can we find an infinite word x whose prefixes have string attractors (of bounded size) made of U_n's?
- Given a infinite word **x**, can we find a numeration system S such that **x** is S-automatic and string attractors of **x**'s prefixes can be easily described using S?

Thank you for your attention!