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Abstract

The epicontinental fauna of the Iberian Peninsula is strongly influenced by its geographical
history. As the possibilities for dispersion of organisms into and from this region were
(and still are) limited, the local fauna consists almost exclusively of endemic species.
Almost all Iberian freshwater fishes of the families Leuciscidae and Cyprinidae are endemic
and on-going research on these taxa continually uncovers new species. Nevertheless, informa-
tion on their host-specific parasites remains scarce. In this study, we investigate the diversity
and phylogenetic relationships in monogeneans of the genus Dactylogyrus (gill ectoparasites
specific to cyprinoid fish) in the Iberian Peninsula. Twenty-two species were collected and
identified from 19 host species belonging to Cyprinidae and Leuciscidae. A high degree of
endemism was observed, with 21 Dactylogyrus species reported from Iberia only and a single
species, D. borealis, also reported from other European regions. Phylogenetic analysis split
the endemic Iberian Dactylogyrus into two well-supported clades, the first encompassing
Dactylogyrus parasitizing endemic Luciobarbus spp. only, and the second including all
Dactylogyrus species of endemic leuciscids and four species of endemic cyprinids. Species
delimitation analysis suggests a remarkable diversity and existence of a multitude of cryptic
Dactylogyrus species parasitizing endemic leuciscids (Squalius spp. and representatives of
Chondrostoma s.l.). These results suggest a rapid adaptive radiation of Dactylogyrus in this
geographically isolated region, closely associated with their cyprinoid hosts. Moreover, phylo-
genetic analysis supports that Dactylogyrus parasites colonized the Iberian Peninsula through
multiple dispersion events.

Introduction

The Iberian Peninsula has a remarkable biological diversity, harbouring more than 50% of
European animal and plant species (Médail and Quézel, 1997; Martín et al., 2000; Williams
et al., 2000; Araújo et al., 2007; Cardoso, 2008; Rueda et al., 2010; López-López et al., 2011;
Penado et al., 2016) and approximately 31% of all European endemic vertebrate and plant
species (Williams et al., 2000). This high species diversity is linked with several climatic
and geological changes occurring over the region since the Cenozoic period (Hsü et al.,
1973; Rosenbaum et al., 2001), when putative migration routes periodically emerged and dis-
appeared. However, the main factor influencing the degree of endemism is most likely geo-
graphical isolation resulting from the elevation of the Pyrenees in the north-east combined
with the generally mountainous topography of the peninsula, which provided a multitude
of refuges during glacial periods (Gante et al., 2009; Hewitt, 2011).

While the species diversity of Iberian freshwater ichthyofauna is relatively low in compari-
son to other European regions (Kottelat and Freyhof, 2007), the majority of species are
endemic. The Peninsula hosts representatives of just a few native freshwater fish groups,
with most species belonging to the Cyprinidae and Leuciscidae families [order Cyprinoidea;
following the classification proposed by Schönhuth et al. (2018)]. The Leuciscidae (previously
considered as Leuciscinae within Cyprinidae; Ketmaier et al., 2004; Levy et al., 2009; Perea
et al., 2010; Imoto et al., 2013) are represented by the monotypic genus Anaecypris, the genera
Phoxinus, Iberocypris and Squalius, and by four recently erected genera belonging to
Chondrostoma sensu lato: Achondrostoma, Iberochondrostoma, Parachondrostoma and
Pseudochondrostoma (Kottelat and Freyhof, 2007; Robalo et al., 2007; Schönhuth et al.,
2018). In contrast to the leuciscids, cyprinids are represented by just two genera: Barbus
and Luciobarbus (Kottelat and Freyhof, 2007; Gante, 2011; Gante et al., 2015). The distribution
of a given cyprinoid species is usually confined to a specific ichthyogeographic province and
the ranges of different species rarely overlap (Doadrio, 1988; Gante et al., 2015), suggesting
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that speciation is closely linked with the formation of river basins
(Zardoya and Doadrio, 1998; Machordom and Doadrio, 2001;
Doadrio et al., 2002; Mesquita et al., 2007; Casal-López et al.,
2017; Sousa-Santos et al., 2019).

In contrast to the thorough previous and on-going research on
Iberian cyprinoids, data on their helminth parasites are scarce (da
Costa Eiras, 2016). In previous studies focused on freshwater
fishes in different regions of the northern hemisphere (e.g.
Mexico and the Balkans), it has been suggested that the biogeog-
raphy of fish helminth parasites reflects the historical dispersion
and current distribution of their hosts (e.g. Choudhury and
Dick, 2001; Pérez-Ponce de León and Choudhury, 2005;
Benovics et al., 2018). However, very few studies have been carried
out on cyprinoid monogeneans in the Iberian Peninsula, by far
the most thorough being those of El Gharbi et al. (1992) and
Šimková et al. (2017). The former study, describing seven species
of Dactylogyrus from six cyprinid species (relying on morpho-
logical data only) suggested that the pattern of the geographical
distribution of Dactylogyrus spp. follows the distribution of their
cyprinid hosts, for which they are highly host-specific. The
study by Šimková et al. (2017) focused on phylogenetic relation-
ships between endemic Dactylogyrus from cyprinids in Iberia and
Dactylogyrus from Central Europe and north-west Africa. The
authors suggested multiple origins of endemic Dactylogyrus in
the Iberian Peninsula as the presence of Dactylogyrus lineages
in different Luciobarbus lineages was associated with specific dis-
persion events.

Gill monogeneans belonging to Dactylogyrus are currently the
most species-diversified group within the Platyhelminthes [more
than 900 nominal Dactylogyrus species, mostly described from
morphology, are presently known according to the latest review
by Gibson et al. (1996)]. Dactylogyrus species are strictly specific
to cyprinoids and many Dactylogyrus species are specific to a sin-
gle host species (Šimková et al., 2006b). However, the degree of
host specificity across Dactylogyrus species differs and, in some
cases, host specificity is likely to reflect the ecology and recent dis-
tribution of their hosts (Benovics et al., 2018). Dactylogyrus spe-
cies with a narrow host range are most common in regions
with a high number of endemic host species. In Europe, such
regions include the Balkan Peninsula, where a multitude of strictly
host-specific endemic Dactylogyrus species has been documented
(Dupont and Lambert, 1986; Benovics et al., 2017, 2018), and the
Iberian Peninsula, where many Dactylogyrus endemic species
have been documented for Luciobarbus (El Gharbi et al., 1992).
It has been suggested that such a high degree of endemism in
Dactylogyrus is the result of co-speciation with their hosts over
long evolutionary periods in geographically isolated regions
(Dupont, 1989). Over time, the Dactylogyrus parasites have devel-
oped an attachment organ (haptor) that is highly specialized
towards their host (Šimková et al., 2000; Jarkovský et al., 2004;
Šimková and Morand, 2008). As such, the shape and size of
monogenean haptoral sclerites are considered to be species spe-
cific and represent suitable morphological characters for species
determination. Nevertheless, some species exhibit haptoral scler-
ites that are very similar in shape and size (see Pugachev et al.,
2009); thus, species identification is often difficult from the obser-
vation of haptoral sclerotized structures only. It has been sug-
gested, therefore, that the shape of the sclerotized parts of
copulatory organs are more suitable for the identification of
monogeneans to species level due to their putative faster evolu-
tionary rate (Pouyaud et al., 2006; Šimková et al., 2006b;
Vignon et al., 2011; Mendlová et al., 2012; Mandeng et al.,
2015; Benovics et al., 2017). Rapid morphological diversification
in the monogenean copulatory organs is hypothesized to be a
mechanism to avoid hybridization (Rohde, 1989), which is espe-
cially likely for Dactylogyrus species living on the same hosts in

overlapping microhabitats (Šimková et al., 2002; Šimková and
Morand, 2008).

Compared with Central Europe, Dactylogyrus communities in
the southern European Peninsulas generally appear to be species
poor. Cyprinoids with a wide European distribution range, such
as Rutilus rutilus and Squalius cephalus, harbour up to nine
Dactylogyrus species (e.g. Šimková et al., 2000; Seifertová et al.,
2008). In contrast, a maximum of five Dactylogyrus species per
cyprinoid species have been reported from the southern
European Peninsulas (Dupont and Lambert, 1986; El Gharbi
et al., 1992; Galli et al., 2002, 2007; Benovics et al., 2018).

In comparison to other European regions, cyprinoid mono-
genean communities have been underexplored in the Iberian
Peninsula. Thus, the main objective of the present study was to
investigate the diversity of Dactylogyrus spp. parasitizing endemic
cyprinoids in this geographical region. A species delimitation
method was applied to assess the species status of Dactylogyrus
identified in this study based on genetic variability within and
among each species, and to compare these results to species
defined from morphology only. Moreover, the present study
investigates the evolutionary history and phylogenetic relation-
ships between endemic Iberian Dactylogyrus and Dactylogyrus
from other Peri-Mediterranean regions, including cyprinoid spe-
cies with a wide European distribution range, in order to (1) shed
new light on cyprinoid phylogeography, (2) infer potential histor-
ical contacts between cyprinoids from different regions, and (3)
evaluate the evolution of Dactylogyrus species diversity (using
both morphology and species delimitation methods).

Material and methods

Parasite collection

Fish were collected over the years 2016 and 2017 from 17 localities
in Portugal and Spain (Fig. 1). In total, 257 specimens represent-
ing 19 fish species were examined for the presence of Dactylogyrus
parasites (Table 1). Fish were dissected following the standard
protocol described by Ergens and Lom (1970). Dactylogyrus spe-
cimens were collected from the gills, mounted on slides and fixed
in a mixture of glycerine and ammonium picrate (Malmberg,
1957) for further identification. Determination to species level
was performed on the basis of the size and shape of the sclerotized
parts of the attachment apparatus (anchor hooks, marginal
hooks and connective bars of the haptor) and the reproductive
organs (male copulatory organ and vaginal armament) following
Pugachev et al. (2009). At least five specimens of each
Dactylogyrus species from each host species examined were
bisected using fine needles. One-half of the body (either the anter-
ior part containing the reproductive organs or the posterior part
with the attachment organ) was mounted on a slide and used for
morphological identification. The other half was individually pre-
served in pure ethanol for subsequent DNA extraction.

DNA extraction, PCR and sequencing

DNA extraction was performed using the DNeasy Blood &
Tissue Kit (Quiagen, Hilden, Germany) based on the standard
protocol provided by the manufacturer. Two DNA regions were
amplified. The partial gene coding 18S rRNA and complete
ITS1 region was amplified using the primers S1 (forward,
5′-ATTCCGATAACGAACGAGACT-3′) and Lig5.8R (reverse,
5′-GATACTCGAGCCGAGTGATCC-3′) (Šimková et al., 2003;
Blasco-Costa et al., 2012). Each amplification reaction was per-
formed in a final volume of 20 μL, the reaction mixture compris-
ing 1.5 U Taq polymerase (Fermentas), 1× buffer, 1.5 mM MgCl2,
0.2 mM of dNTPs, 0.1 mg mL−1 BSA, 0.5 μM of each primer and 2
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μL of pure DNA (20 ng μL−1). PCR was carried out using the fol-
lowing steps: 3 min initial denaturation at 95 °C, followed by 40
cycles of 40 s at 94 °C, 30 s at 52 °C and 45 s at 72 °C, and 4
min of final elongation at 72°C. The second marker, a part of
the gene coding 28S rRNA, was amplified using the primers C1
(forward, 5′-ACCCGCTGAATTTAAGCA-3′) and D2 (reverse,
5′-TGGTCCGTGTTTCAAGAC-3′) (Hassouna et al., 1984), fol-
lowing the PCR protocol described in Šimková et al. (2006a).
The PCR products were purified prior to sequencing using the
ExoSAP-IT kit (Ecoli, Bratislava, Slovakia), following the standard
protocol, and directly sequenced using the PCR primers and the
BigDye Terminator Cycle Sequencing kit (Applied Biosystems,
Foster City, CA, USA). Sequencing was carried out on an ABI
3130 Genetic Analyzer (Applied Biosystems). The newly gener-
ated sequences were deposited in GenBank (see Table 1 for acces-
sion numbers).

Phylogenetic and species delimitation analysis

Partial sequences coding 18S rRNA and 28S rRNA, and complete
sequences of the ITS1 region were concatenated and aligned using
the fast Fourier transform algorithm implemented in MAFFT
(Katoh et al., 2002) using the G-INS-i refinement method. Out
of 71 DNA sequences used in the alignment, 35 were newly
sequenced in this study. Sequences from 35 other Dactylogyrus
species, used as representative species from different European
regions, and sequences of Ancyrocephalus percae, used as an out-
group [phylogenetically closely related to Dactylogyrus according
to Mendoza-Palmero et al. (2015)], were obtained from GenBank
(see online Supplementary Table S1 for accession numbers).
Gaps, hypervariable regions and ambiguously aligned regions
were removed from the alignment using GBlocks v. 0.91
(Talavera and Castresana, 2007). The optimal DNA evolutionary
model was selected separately for each part of the alignment

corresponding to one of the three markers analysed (18S, ITS1,
28S) using the Bayesian information criterion in jModelTest
v. 2.1.10 (Guindon and Gascuel, 2003; Darriba et al., 2012).

Maximum likelihood (ML) analysis was conducted in RAxML
v. 8.2.11 (Stamatakis, 2006, 2014), applying the general time-
reversible model (GTR; Lanave et al., 1984) of nucleotide substi-
tution. Internal node support was assessed by running 1000
bootstrap pseudoreplicates. Bayesian inference (BI) analysis was
performed in MrBayes v. 3.2.6 (Ronquist et al., 2012) using two
parallel runs, each with four Markov chains (one cold and three
heated) of 107 generations with trees sampled every 102 genera-
tions. The first 30% of trees were discarded as initial burn-in.
Convergence was indicated by an average standard deviation of
split frequencies per parallel run of <0.01, subsequently checked
using Tracer v. 1.7.1 (Rambaut et al., 2018). Posterior probabilities
were calculated as the frequency of samples recovering particular
clades.

To investigate genetic diversity in the commonly used genetic
markers between well-defined endemic Dactylogyrus species,
uncorrected pairwise genetic distances ( p-distances) were com-
puted for 12 selected taxa in MEGA X (Kumar et al., 2018).
Three sequence alignments were used: the partial gene coding
18S rRNA, the complete ITS1 region and the partial gene coding
28S rRNA. All positions containing gaps and missing data were
removed from the final computations.

The Bayesian-implemented Poisson Tree Processes model
(bPTP; Zhang et al., 2013) was applied to the phylogram resulting
from BI in order to infer putative species of Iberian Dactylogyrus.
The bPTP method only requires a phylogenetic tree as its input
and uses branch lengths to estimate the mean expected a number
of substitutions per site between two branching events. Within
species, branching events will be frequent whereas they will be
rarer between species. The model implements two independent
classes of the Poisson process (one describing speciation and

Fig. 1. Map of collection localities in the Iberian Peninsula. Collection localities are marked as yellow circles. The greatest Iberian rivers are highlighted in blue. The
same codes for localities are used in Table 1 as locality IDs.
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Table 1. List of cyprinoid species including localities of their collection and list of collected Dactylogyrus species from respective hosts

Host species N ID Locality Dactylogyrus species 18S 28S

Achondrostoma arcasii 15 S1 Chico River, flow of Palancia D. polylepidis MN365664 MN338198

10 S2 Tera River D. polylepidis MN365665 MN338199

Achondrostoma occidentale 13 P1 Alcabrichel Dactylogyrus sp. 2 MN365666 MN338200

Dactylogyrus sp. 10 MN365667 MN338201

Barbus haasi 4 S3 Beceite, Uldemo River D. lenkoranoïdes MN365668 MN338202

Iberochondrostoma almacai 19 P2 Torgal River, Mira basin Dactylogyrus sp. 3 MN365669 MN338203

Iberocypris alburnoides 12 S4 Near Llera, Retin River Dactylogyrus sp. 5 MN365670 MN338204

Luciobarbus bocagei 6 P3 Colares (Portugal) D. balistae KY629344 MN338205

D. bocageii MN365671 KY629347

10 S5 Ucero River (Spain) D. mascomai no seq MN338206

Luciobarbus comizo 5 S6 Peraleda de Zancejo, Zujar River D. andalousiensis MN365672 MN338207

D. bocageii MN365673 MN338208

D. guadianensis MN365674 MN338209

Luciobarbus graellsii 1 S3 Beceite, Uldemo River D. legionensis MN365678 MN338210

D. lenkoranoïdes MN365676 MN338211

5 S7 upstream Maella, tributary of Materraña D. bocageii MN365675 MN338212

D. lenkoranoïdes MN365677 MN338213

D. legionensis MN365679 MN338214

D. mascomai MN365680 MN338215

Luciobarbus guiraonis 6 S8 Magro River D. bocageii MN365681 MN338216

D. legionensis KY629330 KY629350

D. doadrioi MN365682 KY629346

4 S9 Turia River D. linstowoïdes KY629329 KY629349

D. mascomai – KY629348*

Luciobarbus sclateri 5 P2 Torgal River, Mira basin D. andalousiensis KY629331 KY629351

D. bocageii MN365684 MN338218

10 S10 Benehavis, Guadalmina River D. andalousiensis MN365683 MN338217

D. guadianensis MN365685 MN338219

Parachondrostoma miegii 12 S3 Beceite, Uldemo River Dactylogyrus sp. 8 MN365686 MN338220

Parachondrostoma turiense 18 S9 Turia River Dactylogyrus sp. 8 MN365687 MN338221

Phoxinus bigerri 12 S5 Ucero River D. borealis MN365688 MN338222

Pseudochondrostoma duriense 9 S5 Ucero River Dactylogyrus sp. 9 MN365689 MN338223

D. polylepidis no seq no seq

Pseudochondrostoma polylepis 10 P4 Alcoa, Fervenca Dactylogyrus sp. 6 MN365690 MN338224

15 P3 Colares – – –

Squalius aradensis 5 P5 Seixe Dactylogyrus sp. 1 MN365691 MN338225

6 P6 tributary of Seixe – – –

Squalius carolitertii 15 P7 Arunca, Mondego basin (Vermoil) Dactylogyrus sp. 7 MN365692 MN338226

Dactylogyrus sp. 11 MN365693 MN338227

D. polylepidis – –

Squalius pyrenaicus 5 P3 Colares Dactylogyrus sp. 7 MN365694 MN338228

5 S6 Peraleda de Zancejo, Zujar River Dactylogyrus sp. 7 MN365695 MN338229

Squalius torgalensis 10 P2 Torgal River, Mira basin Dactylogyrus sp. 1 MN365696 MN338230

Dactylogyrus sp. 4 MN365697 MN338231

N = number of processed fish individuals from the respective locality, ID = code corresponding with localities marked in Fig. 1 and codes in following tables, numbers in columns 18S and
28S correspond to sequence accession numbers for the respective genetic markers in GenBank; 18S = sequences of partial gene coding 18S rRNA combined with complete ITS1 region,
28S = sequences or partial gene coding 28S rRNA. Sequence not used in the present study is marked by asterisk (*) Dashes represent localities where no Dactylogyrus parasites were collected
and/or missing sequences.
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the other describing coalescent processes) and searches for tran-
sition points between interspecific and intraspecific branching
events. Potential species clusters are then determined by identify-
ing the clades or single lineages that originate after these transi-
tion points. The computation was run for 5 × 105 generations
with the first 30% of trees discarded as initial burn-in. The distant
outgroup taxon was removed from the final analysis to improve
delimitation in the results.

Results

Twenty-two Dactylogyrus species (identified using morphological
characters, i.e. sclerotized parts of the haptor and reproductive
organs) were collected from endemic Iberian cyprinoid species
(Table 1). From one to five Dactylogyrus species were recorded
per host species, with highest species richness found on
Luciobarbus spp. (five species on L. guiraonis, four species on
L. graellsii and four species on L. sclateri). Both Parachondrostoma
species, Barbus haasi, Iberochondrostoma almacai and Phoxinus
bigerri were parasitized by a single Dactylogyrus species. Overall,
Dactylogyrus bocageii exhibited the widest host range across the
Iberian Peninsula, parasitizing four Luciobarbus species. Minor gen-
etic variation was observed between D. bocageii collected from dif-
ferent hosts ( p-distance⩽ 0.002 in the partial gene for 28S rRNA,
p-distance⩽ 0.020 in the ITS1 region; Tables 2 and 3).

The final concatenated alignment of partial genes for 18S
rRNA, 28S rRNA and the ITS1 region included 71 sequences
and contained 1533 unambiguous nucleotide positions. The
most suitable evolutionary models were TrNef + I + G, TPM2uf
+ G and GTR + I + G for the partial genes coding 18S rRNA,
the ITS1 region and part of the gene for 28S rRNA, respectively.
Both ML and BI analyses produced trees with congruent topolo-
gies varying only in some support values for individual nodes
(Fig. 2). Phylogenetic analysis divided all taxa into three strongly
supported clades.

The first group (Clade A; Fig. 2) included the majority of
Dactylogyrus species from Europe, and especially the species para-
sitizing Leuciscidae. In addition, several Dactylogyrus species from
Barbus and Luciobarbus (Cyprinidae) were also placed in this
clade (i.e. Dactylogyrus of Barbus spp. and Luciobarbus spp.
from Central Europe and the Balkans, and D. balistae, D. legio-
nensis, D. linstowoïdes and D. andalousiensis of Iberian
Luciobarbus spp.). Dactylogyrus from Iberian cyprinoids were
divided into seven lineages within Clade A. Dactylogyrus polylepi-
dis of Achondrostoma arcasii was in a well-supported sister pos-
ition to the morphologically similar D. vistulae. Dactylogyrus
from European cyprinids formed three well-supported groups
within Clade A. Dactylogyrus legionensis, D. balistae and D.
linstowoïdes were grouped in a sister position to common
Dactylogyrus species from Central European Barbus spp. (D. mal-
leus, D. prespensis and D. petenyi). The second group contained D.
andalousiensis from two Iberian Luciobarbus species, and D.
omenti from Aulopyge huegelii (Balkan endemic species). The
third group contained D. carpathicus and D. crivellius (two com-
mon species of Barbus spp.) and two yet undescribed endemic
Dactylogyrus species of endemic Balkan Luciobarbus species (L.
albanicus and L. graecus). The phylogenetic position of
Dactylogyrus sp. 1 from S. aradensis and S. torgalensis (morpho-
logically identical but genetically slightly different; p-distance =
0.010) was not fully resolved and its sister position to D. folkma-
novae was only supported by BI. The majority of Iberian
Dactylogyrus species (Dactylogyrus sp. 2 to Dactylogyrus sp. 10)
formed a well-defined phylogenetic lineage that also included D.
caucasicus, D. ergensi and D. tissensis. The three latter species
and the Iberian Dactylogyrus in this lineage all have the same
or very similarly shaped male copulatory organs commonly Ta
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classified as ‘ergensi’ of the ‘chondrostomi’ type (see Pugachev
et al., 2009). Generalist Dactylogyrus species within Clade A (i.e.
D. legionensis, D. polylepidis, Dactylogyrus sp. 1, Dactylogyrus
sp. 7 and Dactylogyrus sp. 8) exhibited intraspecific genetic
variability. The second major group (Clade B) comprised five
Dactylogyrus species specific to Iberian Luciobarbus. Where intra-
specific genetic variability was documented, all genetic variants
formed well-supported clades (i.e. D. bocageii, D. guadianensis
and D. lenkoranoïdes). The last strongly supported group (Clade
C) encompassed Dactylogyrus species host specific to Carassius
spp. and/or Cyprinus carpio distributed across the Europe and Asia.

In general, no pattern was observed in phylogenetic relatedness
of individual Dactylogyrus species reflecting their geographic
distribution. However, the phylogenetic relationships between
genetic variants of single Dactylogyrus species (e.g. three genetic
variants for D. legionensis, or Dactylogyrus sp. 7) were in congru-
ence with the geographic distribution of their respective hosts
(i.e. two genetic variants collected from hosts belonging to differ-
ent species, but collected from geographically proximal localities,
or the same river basin, were phylogenetically closer to each other,
rather than to other genetic variants of the same Dactylogyrus
species).

Genetic distances were computed between morphologically
similar species from Clade B (Fig. 2). Three alignments of 12
sequences representing five Dactylogyrus species of group B were
analysed to compare intra- and interspecific genetic variability cal-
culated using genetic markers commonly used in monogeneans.
The alignments comprised 486 nucleotide positions for the partial
gene coding 18S rRNA combined, 716 nucleotide positions for the
ITS1 segment and 807 nucleotide positions for the partial gene
coding 28S rRNA. The lowest genetic variability was observed
for the partial gene coding 18S rRNA. No intraspecific/inter-
population genetic variability was observed ( p-distance = 0.000)
and interspecific pairwise nucleotide diversity varied from 0.002
to 0.010 (Table 4). Low pairwise interspecific diversity was also
observed for the partial gene coding 28S rRNA (0.006–0.020);
however, minor intraspecific genetic variability was observed in
this gene ( p-distance ⩽0.002). Slight genetic distance in part of
the gene for 28S rRNAwas observed between different populations
of D. bocageii (0.001–0.002) and between individuals from differ-
ent populations of D. guadianensis ( p-distance = 0.001). The high-
est genetic diversity was observed in the ITS1 region, in which
intraspecific distances varied from 0.000 (D. lenkoranoïdes) to
0.020 (D. bocageii). The pairwise interspecific diversity in the
ITS1 region varied from 0.031 between D. doadrioi and D. guadia-
nensis to 0.135 between D. doadrioi and D. mascomai.

The species status of Dactylogyrus collected from endemic
Iberian cyprinoids was investigated using the bPTP method,
with the addition of Dactylogyrus species parasitizing cyprinoids
in other parts of Europe used as a reference of previously
delimited species (Benovics et al., 2018). The results of the
bPTP analysis were largely consistent with the species previously
described on the basis of morphology (Fig. 3), though the ML
solution suggested a higher species diversity. Based on ML results,
D. legionensis encompasses two species, each being host-specific
(one to L. graellsii and the other to L. guiraonis), as well as
Dactylogyrus sp. 1 (S. aradensis and S. torgalensis). Both BI-
and ML-supported solutions, obtained from bPTP analysis, sug-
gested a generalist status for D. andalousiensis, D. bocageii, D.
lenkoranoïdes and D. guadianensis (i.e. there were no host-specific
parasites within these delimited species). A potentially new spe-
cies, Dactylogyrus sp. 7, was also supported by the species delimi-
tation analysis as a generalist, parasitizing both S. carolitertii and
S. pyrenaicus. This analysis also suggested that D. borealis, deter-
mined using morphological characters, is a common parasite of
Phoxinus spp. in other parts of Europe and is also found onTa
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P. bigerri in the Iberian Peninsula. bPTP analysis also suggested
that Parachondrostoma miegi and P. turiense are both parasitized
by a single Dactylogyrus species (Dactylogyrus sp. 8) that is mor-
phologically similar and phylogenetically close to Dactylogyrus
sp. 9, parasitizing P. duriense. Finally, species delimitation analysis
supported the discovery of at least 11 unknown Dactylogyrus spe-
cies in the Iberian Peninsula, as all other Iberian genetic variants
were identified as individual host-specific species.

Discussion

Parasite diversity and distribution

The Iberian Peninsula harbours a high diversity of cyprinoids that
have been the subject of extensive research; nevertheless, the spe-
cies diversity of their host-specific parasites is still underexplored,
especially in areas with a high diversity of endemic cyprinoids.

Following previous research on the Dactylogyrus (or Monogenea
in general) of Iberian cyprinids (El Gharbi et al., 1992;
Lacasa-Millán and Gutiérrez-Galindo, 1995; Gutiérrez-Galindo
and Lacasa-Millán, 2001), this study is the first to investigate
the overall diversity of Iberian Dactylogyrus, including molecular
data for both cyprinoid fish and their host-specific Dactylogyrus.

The present study revealed the presence of several potentially
new Dactylogyrus species to science, all of which were well sup-
ported by the bPTP species delimitation method. This strongly
suggests that endemic Iberian cyprinoid species harbour an
endemic Dactylogyrus fauna, as previously suggested for Iberian
Luciobarbus species by El Gharbi et al. (1992). In contrast to
the Balkan and Apennine Peninsulas (Dupont and Lambert,
1986; Dupont and Crivelli, 1988; Dupont, 1989; Galli et al.,
2002, 2007; Benovics et al., 2018), Iberian Dactylogyrus spp.
appear to exhibit a higher degree of host specificity as the majority
of Dactylogyrus species from Leuciscidae were restricted to a

Fig. 2. Phylogenetic tree of 70 Dactylogyrus haplotypes reconstructed by Bayesian inference (BI). The tree is based on combined parts of genes coding 18S and 28S
rRNA, and the complete ITS1 region. Values between branches indicate posterior probabilities from BI and bootstrap values from ML analysis. Values below 0.80 (BI)
and 50 (ML) are shown as dashes (–). The letters A–C represent specific well-supported lineages, as described in the Results section.
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single host species. Benovics et al. (2018) proposed that southern
European endemic cyprinoids harbour species-poor Dactylogyrus
communities compared with European cyprinoids with a wide
distribution range (e.g. R. rutilus, S. cephalus). The same pattern
was also observed in the Iberian Peninsula, where one to five
Dactylogyrus species were found on a single cyprinoid host
species. It should be noted, however, that parasite community
composition may be strongly influenced by seasonal abiotic fac-
tors (e.g. González-Lanza and Alvarez-Pellitero, 1982; Lux,
1990; Appleby and Mo, 1997; Šimková et al., 2001b; Poulin and
Morand, 2004; Zhang et al., 2015; Sinaré et al., 2016). Until
now, knowledge of Dactylogyrus diversity in southern European
Mediterranean Peninsulas has been based on studies taking
place in summer only (Benovics et al., 2018, this study) as the
Dactylogyrus diversity is expected to be highest during this period
(Šimková et al., 2001b).

In this study, a higher number of Dactylogyrus species was
observed on Luciobarbus species. While the overall species rich-
ness on these fish was in accordance with the observations of El
Gharbi et al. (1992), the species composition in the present
study differed slightly from their data. In line with the study of
El Gharbi et al. (1992), D. bocageii was the most common species
(occurring on five Luciobarbus species), though its distribution
range was wider, as proposed by Lambert and El Gharbi (1995),
stretching via Zujar and Torgal rivers to the south-western part
of the peninsula (south-west Iberian province; Filipe et al.,
2009). Interestingly, unlike other European regions, the only
endemic representative of the genus Barbus in Iberia, B. haasi,
harbours Dactylogyrus species typical of Luciobarbus spp. In the
Balkans, endemic Barbus spp. are parasitized by common
Dactylogyrus species for this fish genus (e.g. D. dyki and D. crivel-
lius), while Luciobarbus spp. are parasitized by different, strictly
host-specific species (Benovics et al., 2017, 2018). In accordance
with our own findings, El Gharbi et al. (1992) showed that
B. haasi is a common host of D. bocageii, D. mascomai and
D. lenkoranoïdes, while D. dyki and D. carpathicus (commonly
distributed on European Barbus spp.) were only found in previous
studies on B. haasi × B. meridionalis hybrids in the north-eastern
part of the Peninsula. Nevertheless, Gutiérrez-Galindo and
Lacasa-Millán (1999) also reported the latter two Dactylogyrus
species from B. haasi in the River Llobregat (north-east Spain).
However, the fish hosts from this study could potentially also
be hybrids, as the presence of the B. haasi × B. meridionalis
hybrids was previously documented in Llobregat basin
(Machordom et al., 1990). In contrast to the aforementioned stud-
ies, only D. lenkoranoïdes was collected from B. haasi in this study
(Uldemo River; Ebro basin). This low parasite diversity may be
linked with the seasonal fluctuation in parasite communities
previously documented among Iberian Dactylogyrus [e.g. D. legio-
nensis (González-Lanza and Alvarez-Pellitero, 1982) or D. balistae
(Simón-Vicente, 1981)]. In addition to the common parasitiza-
tion of Iberian Barbus by Dactylogyrus parasites typically recog-
nized as specific to Luciobarbus, several cases of infection by
Dactylogyrus species common for Barbus were also reported in
Iberian Luciobarbus species. Gutiérrez-Galindo and Lacasa-
Millán (2001) also reported that L. graellsii was parasitized by
D. dyki and D. extensus (host-specific parasites of Barbus spp.
and C. carpio, respectively). However, the presence of D. dyki
on Luciobarbus spp. may result from non-detected instances of
hybridization, as hybrids of cyprinoid species are usually parasi-
tized by Dactylogyrus specific for each of the parental species
(Šimková et al., 2013; Krasnovyd et al., 2017). Hybridization
between Iberian Luciobarbus spp. (potentially also between
Luciobarbus and Barbus; Gante et al., 2015) appears to be quite
common, especially between congeners living in sympatry (e.g.
Luciobarbus spp.; Almodóvar et al., 2008; Sousa-Santos et al.,Ta
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2018). Thus, host-switching is possible, most likely occurring
between species from phylogenetically close genera (i.e. Barbus
and Luciobarbus; Yang et al., 2015) in north-eastern Iberian drai-
nages where the distribution ranges of Central European barbels
[e.g. B. meridionalis; see Kottelat and Freyhof (2007) for its distri-
bution range] and Iberian barbels overlap.

Despite the presence of high numbers of endemic Dactylogyrus
species in Iberia, P. bigerri was parasitized by D. borealis, a
common species on European Phoxinus spp. (Moravec, 2001;
Šimková et al., 2004; Benovics et al., 2018). The presence of this
common European Dactylogyrus species is in contrast to the
expected high degree of endemism in south European peninsulas
(Williams et al., 2000; Hewitt, 2011). Other common European
Dactylogyrus species are absent from Iberia; for example, D. vistu-
lae, which parasitizes the highest number of cyprinoid species
across Europe, is absent from Iberia, and only the closely related
D. polylepidis is found on Iberian cyprinoids. These findings sug-
gest that either (1) D. borealis was only recently introduced into

the Iberian Peninsula with another Phoxinus species coming
from different European areas (see Corral-Lou et al., 2019), or
(2) D. borealis represent an extremely slowly evolving species,
meaning that the Iberian lineage would be morphologically and
genetically similar to D. borealis from other European areas. In
the present study, D. polylepidis, originally described from
Pseudochondrostoma polylepis (Alvarez-Pellitero et al., 1981),
was found for the first time on three host species (all members
of the Leuciscidae). The wider host range recorded for D. polyle-
pidis indicates that this species represents a true generalist
parasite, probably endemic to this region. In contrast to D. poly-
lepidis, the morphologically similar and phylogenetically closely
related D. vistulae is a typical generalist in Europe (except
Iberia) and Asia, parasitizing a multitude of cyprinoid species
and genera (Moravec, 2001; Benovics et al., 2018). Dactylogyrus
polylepidis and D. vistulae share remarkably similar morpho-
logical traits, including an enlarged seventh pair of marginal
hooks, large anchor hooks and a similar size and shape of the
copulatory organs (see Pugachev et al., 2009). It has previously
been hypothesized that large attachment structures (or structures
with variable size and shape) in monogeneans increases the prob-
ability of switching to fish species of different body sizes, which is
in accordance with the low degree of host specificity observed in
D. vistulae (e.g. Šimková et al., 2001a; Benovics et al., 2018) and
D. polylepidis (this study). Compared to endemic cyprinids,
endemic leuciscids harbour species-poor Dactylogyrus communi-
ties, though leuciscid Dactylogyrus species exhibit a higher degree
of host specificity, with most species harbouring at least one spe-
cific Dactylogyrus species. The majority of new species recorded
are morphologically similar, with Dactylogyrus sp. 2 and
Dactylogyrus sp. 10, for example, sharing the ‘ergensi’ type of
male copulatory organ but differing in the shape and size of the
haptoral hard parts. Phylogenetic analyses and species delimita-
tion analyses supported their species identities, i.e. nine new spe-
cies were recognized. Species delimitation has received much
attention recently, and numerous methods have now been devel-
oped that help identify species by using molecular data in a rigor-
ous framework alongside morphological examination (Carstens
et al., 2013; Zhang et al., 2013; Grummer et al., 2014).
DNA-based delimitation methods have also been used to confirm
or invalidate morphologically determined species, to identify
cryptic species or highlight significant intraspecific genetic vari-
ability. The aforementioned diversity in haptoral part shape and
size appears to be common in Dactylogyrus spp. and was previ-
ously hypothesized to be the result of adaptations to specific
microhabitats (i.e. specific positions on fish gills; Šimková et al.,
2001a; Jarkovský et al., 2004). Thus, minor morphological vari-
abilities in the attachment organs may be observed in species
with ongoing speciation parasitizing phylogenetically distant
hosts, as is the case in the Iberian Peninsula.

Phylogeny of endemic Dactylogyrus

Phylogenetic reconstruction of Dactylogyrus parasitizing Iberian
cyprinoids suggests that Iberian Dactylogyrus belong to two well-
supported phylogenetic lineages (Clade A and Clade B; Fig. 2).
One of these clades contains Dactylogyrus from endemic
Cyprinidae only (representatives of five Luciobarbus species and
B. haasi), while the second includes Dactylogyrus endemic to
Iberian cyprinoids (both Cyprinidae and Leuciscidae) and
Dactylogyrus parasitizing cyprinoids from other parts of Europe.
This was previously reported by Šimková et al. (2017) following
the analysis of phylogenetic relationships between Dactylogyrus
from north-west Africa and those from the Iberian Peninsula,
the authors suggesting multiple origins for Dactylogyrus from
both Mediterranean areas in association with the historical

Fig. 3. Results of species bPTP delimitation analysis applied to clades comprising
endemic Dactylogyrus. Brackets at the terminal branches indicate different species,
as suggested by BI and ML analyses.
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biogeography of their cyprinid hosts. Clade B comprises
Dactylogyrus species described by El Gharbi et al. (1992), using
morphological characteristics of the haptor and reproductive
organs. According to their study (also supported by our own mor-
phometric data), all these species achieve a small body size and
display remarkably similar morphological features (i.e. sclerotized
parts of attachment and copulatory organs), in accordance with
their phylogenetic proximity. Previously, their description was
based on small differences in the shape and size of sclerotized
parts only (e.g. spiralization of the male copulatory organ and
the size of haptoral sclerites). However, as has been previously
documented, such variability may be present within single species
and is common in the different monogenean taxa (e.g. Rohde and
Watson, 1985; Boeger and Kritsky, 1988; Vignon and Sasal, 2010),
including Dactylogyrus (Rahmouni et al., 2017). Nonetheless, the
species status of each taxon in Clade B was supported by phylo-
genetic and species delimitation analyses, which was in concord-
ance with their morphological determination. According to
Šimková et al. (2017), Iberian Dactylogyrus species of this lineage
are phylogenetically close to Dactylogyrus from north-west
African Carasobarbus fritschii, suggesting different historical ori-
gins of Dactylogyrus in Clade B and Clade A. According to previ-
ous reports and the data presented here, each Dactylogyrus species
within Clade B parasitizes several endemic Luciobarbus species.
Considering the monophyletic origin of Iberian Luciobarbus
(Yang et al., 2015), its probable historical dispersion via northern
Africa (Bianco, 1990; Doadrio, 1990; Zardoya and Doadrio,
1998), and the phylogenetic relatedness of Dactylogyrus from
Clade B with north-west African Dactylogyrus (Šimková et al.,
2017), we may postulate that these species originated on the
Luciobarbus ancestor, and may have host-switched in the past
to endemic north-west African Carasobarbus, subsequently dis-
persing to the Iberian Peninsula during its historical connection
with North Africa. The high number of morphologically similar
species exhibiting a low molecular divergence (e.g. D. bocageii,
D. mascomai, D. guadianensis, D. lenkoranoïdes and D. doadrioi)
suggests subsequent rapid speciation, most likely linked with the
radiation of Luciobarbus across individual river basins within
the Iberian Peninsula (Doadrio, 1988; Zardoya and Doadrio,
1998; Doadrio et al., 2002; Mesquita et al., 2007; Gante et al.,
2015; Casal-López et al., 2017). Addition of Dactylogyrus species
from Asian Capoeta (phylogenetically sister group to Iberian
Luciobarbus; Yang et al., 2015) to phylogenetic reconstruction
and assessing coevolutionary scenarios involving these parasites
and their hosts may shed more light into the origin of the
Dactylogyrus of Iberian Luciobarbus and finally resolve the phylo-
genetic relationships within this group of Dactylogyrus.

In contrast to Dactylogyrus from Clade B, the phylogenetic
proximity of Iberian Dactylogyrus within Clade A to Central
European and Balkan Dactylogyrus species supports their
European origin. In accordance with the phylogeny proposed by
Šimková et al. (2017), Dactylogyrus species from Iberian
Luciobarbus form two well-supported lineages within Clade A,
and cluster with Dactylogyrus from European Barbus. Two species
within Clade A, D. balistae and D. legionensis, have a large body
size, large haptoral sclerites and are missing the haptoral connect-
ive ventral bar (see El Gharbi et al., 1992). These species form a
well-supported clade in sister position with another Iberian spe-
cies, D. linstowoïdes. This clade is closely related to D. malleus,
D. prespensis and D. petenyi, all host-specific parasites to
European Barbus. In contrast to D. legionensis and D. balistae,
these three species have a small body size, similarly shaped small
haptoral elements and a ventricular ventral bar (see Pugachev
et al., 2009). Based on the morphology, D. linstowoïdes represents
the transient form between these two lineages, with the haptoral
sclerites resembling Dactylogyrus of European Barbus and

copulatory organs morphologically similar to Iberian species.
Our results support a common origin for these species, with D.
balistae, D. legionensis and D. linstowoïdes possibly evolving in
Iberia from a common ancestor and thereafter switching to
Luciobarbus, following which D. balistae and D. legionensis sec-
ondarily lost their haptoral connective ventral bar.

In this study, Leuciscids generally harboured poorer
Dactylogyrus species communities than cyprinids. However, due
to the higher species richness of this fish family in the Iberian
Peninsula, a remarkably high species diversity was observed
among their Dactylogyrus parasites, and specifically among
Dactylogyrus parasitizing Squalius spp. and the genera erected
from Chondrostoma s.l.. Almost each genetic variant was sup-
ported as a species by the species delimitation analysis.
Dactylogyrus from Iberian leuciscids formed three major phylo-
genetic lineages. The first comprised Dactylogyrus sp. 1 only, col-
lected from two endemic Squalius species, S. torgalensis and S.
aradensis. Previous molecular phylogenetic studies suggested
that these sister species have a basal position to other representa-
tives of Squalius in Iberia (Sanjur et al., 2003; Waap et al., 2011;
Perea et al., 2016; Sousa-Santos et al., 2019). The distribution of S.
torgalensis and S. aradensis is limited to the south-western
extremity of the Iberian Peninsula, and the same distribution
range was found for Dactylogyrus sp. 1. Extrapolating from the
phylogenetic reconstruction, Dactylogyrus sp. 1 is phylogenetically
close to common Dactylogyrus species from European Squalius
spp., i.e. D. folkmanovae and D. nanoides [hypothesized to be
genus specific according to Šimková et al. (2004) and Benovics
et al. (2018)], and probably represents an ancestral Dactylogyrus
lineage that has coevolved in Iberia with its endemic Squalius
hosts.

The majority of endemic leuciscid Dactylogyrus formed a well-
supported clade, with D. caucasicus from Alburnoides spp. and D.
ergensi from Chondrostoma spp. in sister position. Benovics et al.
(2018) have previously suggested that D. caucasicus originated
from the ancestor of D. ergensi by host-switching to
Alburnoides. The species delimitation analysis suggested the exist-
ence of nine potentially new species (Dactylogyrus sp. 2 to
Dactylogyrus sp. 10) phylogenetically related to D. ergensi (the
species with the widest distribution range across Europe), which
may indicate that endemic Dactylogyrus sp. 2 to Dactylogyrus
sp. 10 also share a common ancestor with D. ergensi. As suggested
by Robalo et al. (2007), the ancestor of Chondrostoma s.l. could
have dispersed into Iberia prior to the Messinian period, when
the host-specific ancestral Dactylogyrus species associated with
these hosts most likely colonized Iberia. Our data suggest that
the rapid radiation of Chondrostoma-related species promoted
the speciation of their host-specific Dactylogyrus. Even if parasite
phylogeny is not fully congruent with that of their hosts, all
Iberian Dactylogyrus species, excluding Dactylogyrus sp. 8 [col-
lected from Parachondrostoma species only distributed in rivers
of the Mediterranean slope (Kottelat and Freyhof, 2007)], parasit-
ize leuciscids in river basins of the Atlantic slope [distribution
according to Kottelat and Freyhof (2007); Robalo et al. (2007);
Sousa-Santos et al. (2019)]. Considering that the distribution of
cyprinoid species in Iberia is almost non-overlapping, the incon-
gruence between host and parasite phylogenies could be the result
of secondary contacts between fish host species, as recently docu-
mented in some Iberian rivers (e.g. Doadrio, 2001; Sousa-Santos
et al., 2019). Dactylogyrus sp. 7, for example, was collected from
two separate species, S. pyrenaicus and S. carolitertii.
Sousa-Santos et al. (2019) and Waap et al. (2011) suggested
that S. pyrenaicus consists of two different species, each associated
with different river basins. Previous multilocus phylogenetic ana-
lyses (Sousa-Santos et al., 2019) have supported that S. pyrenaicus
is paraphyletic, as genetic variants of this species from the Tagus
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and Colares basins were both grouped with S. carolitertii. Exactly
the same pattern was observed among genetic variants of
Dactylogyrus sp. 7, with individuals collected from S. pyrenaicus
being in paraphyly and individuals from the River Colares
grouped with individuals from S. carolitertii. A similar situation
has also been observed in Dactylogyrus spp. from the Balkans,
where the phylogenetic positions of two populations of D. vistulae
within the D. vistulae clade (i.e. paraphyly) and molecular dis-
similarity between the two populations (Benovics et al., 2018)
supported the existence of two different Alburnoides species, as
previously proposed by Stierandová et al. (2016).

In general, Dactylogyrus species diversity within the Iberian
Peninsula appears to be associated with the historical dispersion
of their cyprinoid hosts, with subsequent adaptive radiation fol-
lowing the peninsula’s geographical isolation due to the elevation
of the Pyrenees (Muñoz et al., 1986; Puigdefàbregas et al., 1992;
Stange et al., 2016). At least two historical origins can be inferred
for Iberian Dactylogyrus, each associated with the different disper-
sion routes proposed for cyprinoids (Banarescu, 1989, 1992;
Doadrio, 1990; Doadrio and Carmona, 2003; Perea et al., 2010).
Despite well-supported delineation between a multitude of
endemic Dactylogyrus species, the phylogenetic relationships
between Dactylogyrus species do not fully correspond to the phyl-
ogeny of their hosts, suggesting secondary contacts and
host-switching between endemic Iberian cyprinoids.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182020000050
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