Vers un écosystème unique en Wallonie pour l'innovation dans le secteur aéronautique

Recherche collaborative autour des futures architectures d'aéropropulseurs et opportunités dues à la création de BeCover

Liège Créative, 10 novembre 2023

Koen Hillewaert, Design of Turbomachinery and propulsors - p Sr. Research Engineer @ Cenaero, Associate Professor TU Dept. @ VKI

Loic Salles, Mechanical aspects of turbomachinery and aerospace propulsion

Towards increased efficiency of the propulsion system Important challenges due to increased bypass ratio and stage loading

- Jet engine
 - acceleration of high ingested air flow
 - reaction force -> thrust
- Overall efficiency = thermal x propulsive
 - thermal efficiency: fuel -> kinetic energy
 - propulsive: kinetic energy -> thrust
- propulsive efficiency
 - loss: remaining kinetic energy in the air after aircraft passed
 - more efficient to accelerate little a large mass flow rate, since less loss of kinetic energy
- thermal efficiency
 - increasing pressure ratio of the cycle
 - increasing maximum temperature

South African Airlink Boeing 737-200 (source) Wikimedia commons - gnu free document license 1.2

Boeing 737 max (source), Creative commons Attribution Alike share 2.0 generic license

wChanges in jet engine architecture

Increasing BPR while maintaining high/increasing stage loading

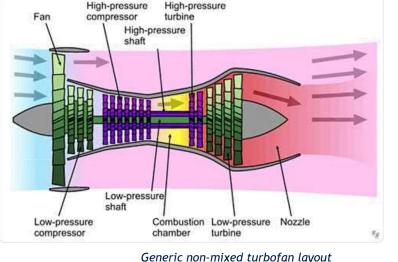
turbofan

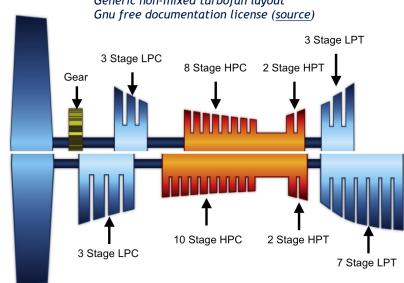
- primary flow = gas turbine -> power, primary acceleration
- secondary flow = high mass flow, small acceleration
- bypass ratio = secondary/primary flow

turbomachinery:

- most compact/light machine ~ high flow rate
- work ~ (blade speed)²
- rotation speed limit: slightly supersonic conditions at tip

weight ~ blade / stage count

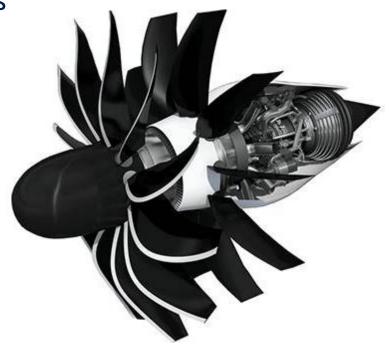

tendencies


- higher bypass ratio
- higher pressures
- higher blade loading
- Geared turbofan

Classical turbofan (CFM Leap)

source: CFM website

Radical changes in engine architecture


Unducted fan "CFM Rise" developed partly @ Safran

New architectures -> challenging aerodynamic regimes for simulations

- LPC & LPT: transonic/supersonic flow density / transitional flows
- transonic propellers (!)
- highly loaded stages
- ever more complex flow paths
- distortion of the flow entering into the engine

Requires improvements in simulation and understanding of flow

- turbulence models
- adaptation of simulation strategies
- robustness, convergence and accuracy
 - in challenging conditions
 - for "bad geometry" during optimisation
- low computational time since used for evaluating many variants at different operating points
- strong validation with respect to experiments and engine tests!

CFM Rise unducted fan - LPC/MPC at SAB Source: Safran corporate web site

A promising ecosystem for turbomachinery research

Industry

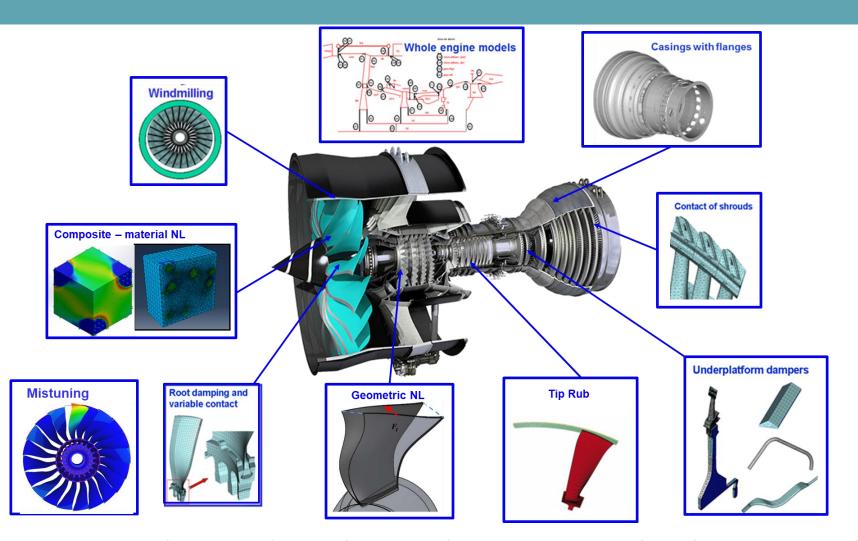
- Safran Aero Boosters: design and manufacturing of low pressure compressors for aircraft engines
- Becover: testing for complete compressor/fan modules at full scale including altitude effects
- Pôle Skywin

Complementary fundamental research competences and facilities, education

- ULiège: numerical research, education
 - development of high accuracy numerical techniques
 - fundamental analysis of turbulent flows in turbomachinery and measurement devices
 - simulation of turbomachinery vibrations including non-linear mechanical effects
 - MSc Aerospace engineering, PhD
- Cenaero: industrialisation of simulation techniques and optimisation
 - optimisation techniques using numerical simulation
 - industrialisation of accurate numerical techniques for DNS and LES
 - reference data for turbulence model validation
- von Karman institute: experimental and numerical research, education
 - detailed experimental studies of turbomachinery flows in exceptional turbomachinery rigs
 - probe development and calibration
 - model development, correlations
 - Research master in Turbomachinery, PhD

Computational resources:

- tier-1 lucia @ cenaero, available for academia via CéCi; lupi
- tier-O lumi @ CSC Finland, available through open calls via Belgian participation in lumi consortium
- open calls for computational resources in EU: EuroHPC, PRACE


Lucia tier-1 supercomputer @ cenaero source: Cenaero institutional web site

Lumi tier-0 supercomputer @ CSC source: CSC institutional web site

Mechanical aspects of turbomachinery and aerospace propulsion Computational vibration

- A&M: Space structures and systems (G. Kerschen), Non-linear computational mechanics (J-P. Ponthot)
- 2024 Digital twin of the rotating part of the rig with BeCover, Cenaero & V2i
- Formation continue : vibration

A&M: Design of turbomachinery group

Research activities

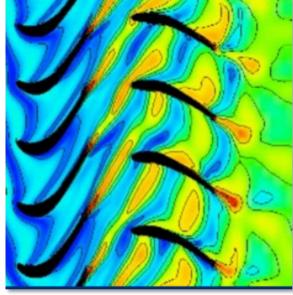
- development of high accuracy numerical simulation tools w/ Cenaero
- development of turbulence models and wall models with Safran, Cenaero and UCLouvain
- detailed study of flows in turbomachinery passages w/ experiments at VKI
- quantitative analysis of turbulent flows and budget equations w/ Cenaero
- development of meridional flow strategies with MTFC team of Prof. Terrapon and SAB
- development of novel strategies for simulating inlet distortion with SAB, Cenaero

Education in collaboration w/ industry

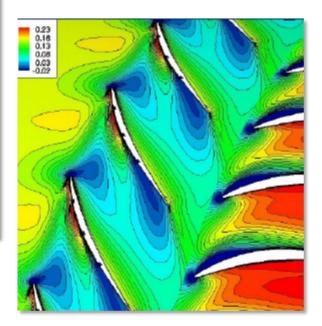
- MSc aerospace engineering -> propulsion, turbomachinery operation, design & cfd techniques
- formation continue: simulation of turbomachinery flows

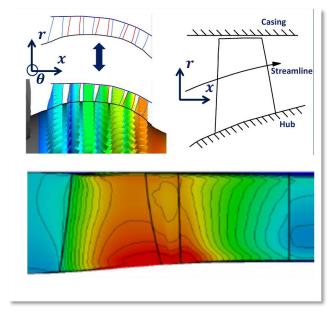
Close collaboration with Multiphysics and Turbulent Flow Computation (Prof. Terrapon)

Aerodynamic simulation tools Physics of flow in turbomachinery

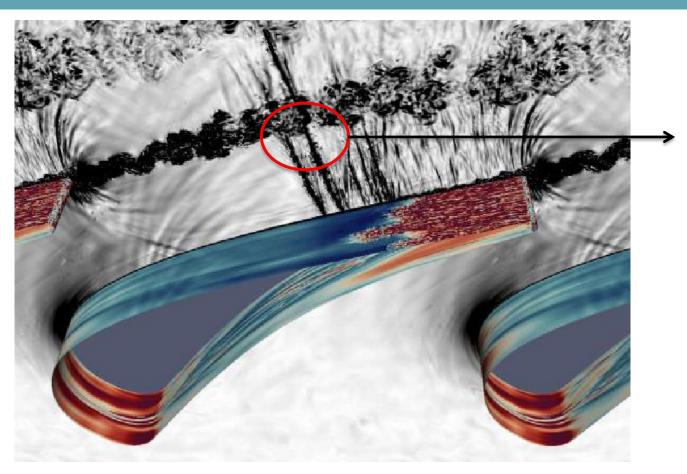

Wall-modeled Large Eddy simulation of the Create Ilbis compressor at ECLyon using ArgoDG; Courtesy Cenaero

Cenaero

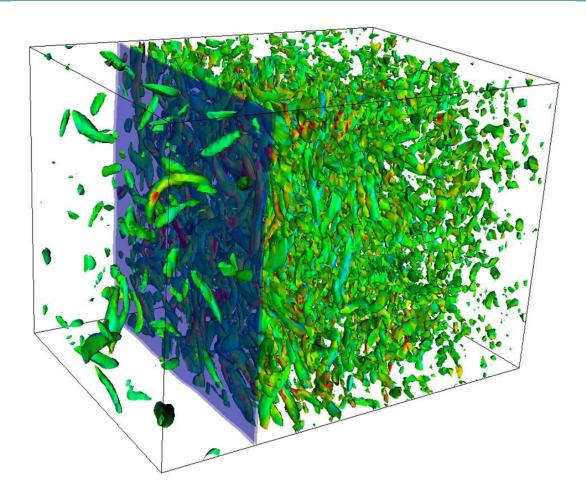

Hierachy of simulation strategies inspired by Adamczyk's cascade

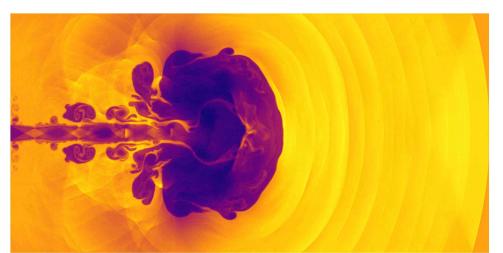

Scale resolving simulations DNS, LES and Wall modeled LES Months on O(10k)-(100k) processors No or little modeling

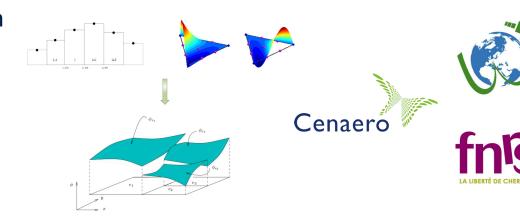
Unsteady ensemble averaged flow URANS (time or harmonic) Weeks simulation on O(100) processors Turbulence modeling


Ensemble averaged flow RANS hours simulation on O(10) processors Rotor-stator interface

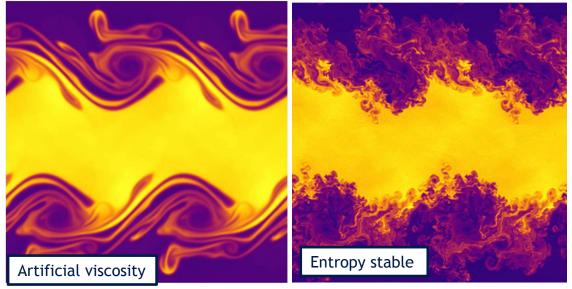
Pitchwise averaged flow Meridional / Throughflow computations minutes on O(1) processors Blade force modeling


Complexity of flow in turbomachinery passages - supersonic flows, shocks and turbulence

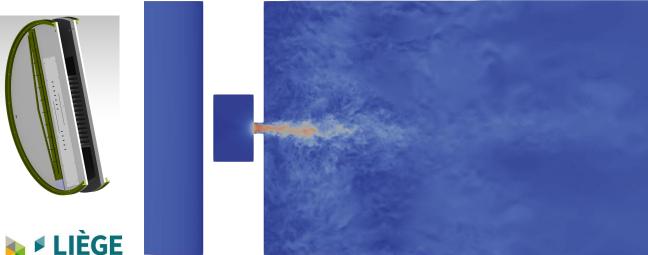


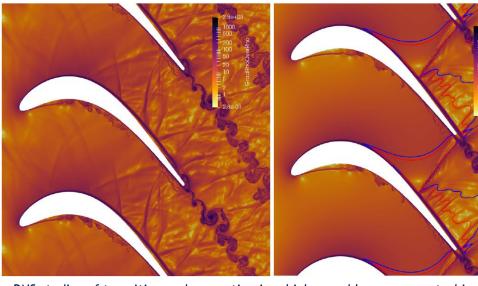

Development of high-resolution simulation strategies (ForDGe/ArgoDG)

- Shock capturing for high order finite element fluid simulation
 - three way strategy for all Mach numbers -> hypersonics
 - quantify / minimise impact on turbulent budgets
 - fundamental development in ForDGe (A. Bilocq)
 - industrialisation in ArgoDG (M. Borbouse)
- Turbomachinery: using very precise DNS & LES
 - understand flow physics
 - improve turbulence models using reference data
- Collaboration MTFC, Cenaero

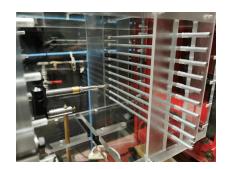

BeCover: validate improved turbulence models for transonic

conditions




Impact of shock capturing strategies and improvement of methods - PhD Amaury Bilocq & PhD Maxime Borbouse (ULiège) Supersonic jet (left) & Comparison of classical AV (middle) vs entropy stable (right) on compressible shear layer

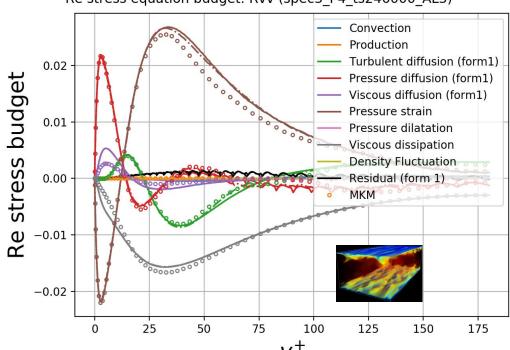
Simulation of (almost) all flow structures: DNS & LES (collab. Cenaero/VKI)

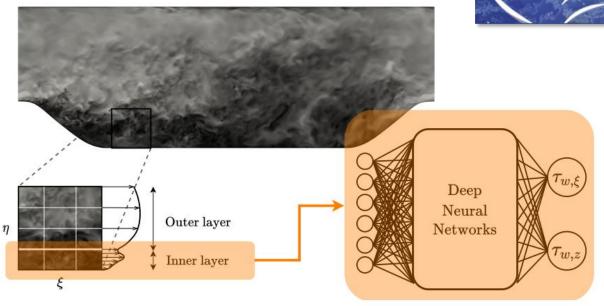

- DNS / LES for fundamental flows
 - resolve (almost) all flow structures
 - average over large time span to find average flow
 - first principle models
- Research using Cenaero's ArgoDG code
 - understanding turbulent flows in complement to experiments
 - developing/evaluating/calibrating turbulence models
 - improving precision of numerical techniques
- BeCover : probe development w/ VKI

Preliminary studies on flow mechanisms around active turbulence grid Collaboration ULiège PhD F. Bertelli (VKI/ULiège), Prof. S. Lavagnoli (VKI) & Cenaero

Ongoing DNS studies of transition and separation in a high-speed low-pressure turbine Collab. PhDs M. Borbouse (ULiège) & G. Lopes (VKI/ULiège), Prof. S. Lavagnoli (VKI), Cenaero; Data made available by Spleen CleanSky II project

Active turbulence grid experimental setup @ VKI Collab. ULiège - PhD. F.Bertelli (VKI/ULiège)

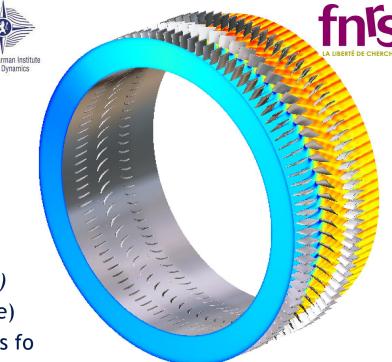


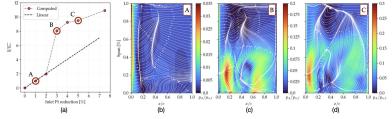

Development of numerical techniques for turbulence modeling (collab Cenaero)

Ongoing research

- developing wall models for large Eddy Simulations
- analysing turbulent transport terms resulting from averaging in RANS
- analysing impact of numerical technique on closure of the budget
- providing reference data for turbulence model

Re stress equation budget: Rvv (spec3_P4_ts246000_AL3)


Unsteady RANS of off-design operation (collab. VKI)

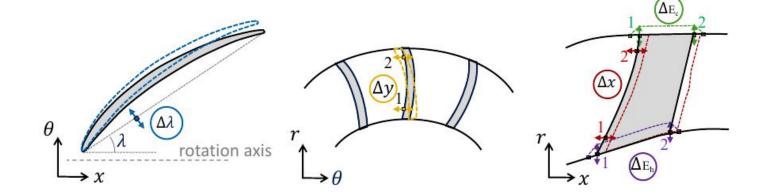

Approach

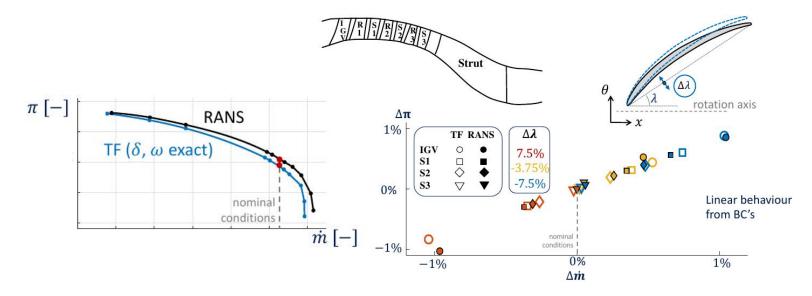
- solve for ensemble averaged flow
- impact of turbulence is modeled
- unsteady flow fields
- Industrial work horse
 - steady/frequential used for aerodynamic/structural optimisation
 - study of instabilities, distortion of given geometry
- Collaborative research on distortion
 - Cenaero/VKI: Generation of tailored distortion in wind tunnel (Astoria project)
 - Impact of distortion on stability and performance (PhD R. Toracchio, VKI/ULiège)
 - Collaborative research (ULiège/Cenaero/VKI/BeCover) on simplified approaches fo integrating distortion in optimisation
 - mono-passage simulation w/ fluctuating boundary conditions
 - frequency domain approaches

Becover

- validation data for models (turbulence modeling, simplified)
- support BeCover customers in analysing unexpected flow regimes

Study of the impact of distortion on performance, stability and risk of flutter for a LP compressor PhD R. Toracchio (VKI/ULiège), F. Fontaneto (VKI)




Aerodynamic design techniques

Throughflow design and analysis methods (MTFC ULiège & Safran)

Throughflow approach

- average around axis
- solve for tangentially averaged flow
- fast estimation of operating curve
- Current (A. Budo, ULiège) w SAB
 - improvement of (geometrical) formulation
 - correlation data for profile performance?
 - geometrical inaccuracy issues
- Future research axes
 - supersonic flows and shocks
 - distortion & mistuning
 - complex flow paths
 - integration in design loop
- BeCover : model validation

Concluding remarks

- Design of LPC @ SAB, requires improvement of design tools, approaches and ultimately better understanding of turbomachinery flows
 - radical changes in engine architecture -> new flow regimes
 - high loading -> simulation tools used further away from "comfort zone"
 - high loading, inlet distortion -> increased risk of unstable operation
- Favorable situation in RW/Be for creation of a true pole of competence
 - High competence in turbomachinery design, development of numerical and experimental techniques
 - Complementarity research institutes, universities and industry with collaborations in place locally and internationally
 - Access to top facilities in experimental (VKI, BeCover) and numerical research (Lucia supercomputer)
 - High level education: VKI (Research Master, PhD) and ULiège (Aerospace Engg, PhD, FC) involving industry
 - Favorable position of the government: RW projects, Skywin, Wings, ...
 - ULiège involved in the fundamental development of numerical techniques and study of turbulence w. Cenaero/VKI
- Creation of a unique test facility in BeCover -> cover the entire spectrum of research activities
 - competitive advantage for walloon aeronautic industry
 - credibility to partake in tenders for high level research grants
 - momentum for increased collaboration in RW

