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ABSTRACT 

Within the genus Phaseolus, the common bean, Phaseolus vulgaris L., is the most important species widely distributed in the world and 
occupies more than 90% of production areas sown to Phaseolus species. Interspecific hybridization in the genus Phaseolus, with the aim 
to introgress desired traits to the common bean, leads to the abortion of immature embryos usually at the globular or early heart-shaped 
developmental stages. Plant zygotic embryogenesis is controlled by many genes and malfunction of these genes can disrupt embryo 
formation. In this paper, we reviewed some of these genes i.e. KNOX, BELL1, LEUCINE ZIPPER, PHD-FINGER, GLABRA2, WUSHEL, 
HEAT SHOCK PROTEIN, LIPID TRANSFER PROTEIN, PASTICCINO, LEAFY COTYLEDON and TITAN, from model plants such as 
Arabidopsis thaliana, Zea mays, Oryza sativa, Medicago truncatula, Solanum lycopersicum. This study helps us to identify the genes 
involved in Phaseolus embryogenesis and to verify their expression in ovules at different steps of embryos development. 
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INTRODUCTION 
 

The common bean, Phaseolus vulgaris L., is the most im-
portant species widely distributed in the world and occupies 
more than 90% of production areas sown to Phaseolus spe-
cies (Baudoin et al. 2001). Its dry seeds are a major compo-
nent in the diet of human populations in Latin America, as 
well in Central and East Africa. Legumes usefully comple-
ment cereal seeds in the nutritional value of daily diet, 
mainly because of their protein and amino acid contents. P. 
vulgaris is adapted to several cropping systems, particularly 
in association with other food crops like maize, sorghum or 
pearl millet. In tropical regions, the common bean is charac-
terized by low and unstable seed yield. This is mainly due 
to the susceptibility of this crop to numerous pests and dis-
eases: more than 200 pathogens have been reported attack-
ing beans, some of them causing considerable economic 
losses (Graham and Ranalli 1997; Singh 1999). Another 
constraint limiting yield is the lack of improved varieties 
tolerant to abiotic stresses (poor soil, high temperature, 
drought, etc.). Agronomists and breeders have not found 

sufficient genetic variability within the primary gene pool 
of P. vulgaris. However, the alien gene pools offer very 
good breeding potentialities (Debouck and Smartt 1995; 
Debouck 1999; Baudoin 2001; Broughton et al. 2003). This 
is particularly the case of the two species P. coccineus L. 
and P. polyanthus Greenm., which show interesting traits 
not, or only poorly, expressed in the primary gene pool of P. 
vulgaris, such as resistance to two diseases Ascochyta 
blight and Bean Golden Yellow Mosaic Virus (BGYMV). 
Ascochyta blight is caused by Phoma exigua Desmaz. var. 
diversispora (Bubak) Boerema and prevails in highland 
areas. The symptoms include black or brown concentric 
lesions on leaves and pods, as well as collapsed and black 
nodes, petioles, and stems (Schwartz et al. 1981; Hanson et 
al. 1993). BGYMV is economically important in Latin 
America, and is caused by a geminivirus transmitted by 
whiteflies of the genus Bemisia. Disease symptoms include 
intense yellowing, mosaic, stunting, and distortion of leaves 
and pods (Markham et al. 1994; Bracero et al. 2003). The 
extensive genetic variability of the pathogens requires the 
constant development of new resistant cultivars in common 
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bean. Breeders take benefit of the interspecific hybridiza-
tions between the recurrent species, P. vulgaris, and the two 
donor species: P. coccineus and P. polyanthus, belonging to 
the secondary gene pool of the common bean. Indeed, dif-
ferent sources of resistance to these two diseases have been 
identified among these two donor species (Hanson et al. 
1993; Bianchini 1999; Beaver et al. 2005). In addition, 
other desired traits can be found from these two taxa, such 
as cold tolerance, long multi-nodded inflorescences, and 
thick stems (Camarena 1988; Schmit and Baudoin 1992; 
Baudoin et al. 2001). 

In the interspecific hybridizations between P. vulgaris 
and the two donor species, the use of P. vulgaris as a fe-
male parent increases the percentage of successful hybrids 
but, unfortunately, the presence of P. vulgaris cytoplasm 
provokes a quick reversal to the recurrent species, at the ex-
pense of the donor species (Baudoin 2001). Reciprocal 
crosses, a condition favouring the introgression of desired 
genes to the common bean, avoid the reversal process 
showed above, but are more difficult to succeed. Indeed, 
theses crosses lead to abortion of immature embryos, usu-
ally at the globular or early heart-shaped developmental sta-
ges, with most embryos aborting 3-8 days after pollination, 
79% for the crosses P. polyanthus × P. vulgaris and 84% 
for the crosses P. coccineus × P. vulgaris during trials con-
ducted under greenhouse in Gembloux Agricultural Univer-
sity (Baudoin et al. 2004). Early interspecific embryo abor-
tion is attributed to several factors such as nutritional bar-
riers related to a deficient endosperm or suspensor develop-
ment, endothelium proliferation and, in some extent, hyper-
trophy of the vascular elements (Lecomte 1997; Geerts 
2001; Toussaint et al. 2004). Plant zygotic embryogenesis 
is controlled by many genes and their malfunction can dis-
rupt interspecific embryos formation. Transcripts of these 
genes can be localized in the embryo proper, in endosperm 
or in maternal tissues around the embryo (Raghavan 1997). 

In this paper, we review some of these genes involved 
in model plants embryogenesis, such as KNOX, BELL1 
(BEL), LEUCINE ZIPPER (HD-ZIP), PHD-FINGER, 
GLABRA2 (HD-GL2), WUSHEL (WUS), HEAT SHOCK 
PROTEIN (HSP), LIPID TRANSFER PROTEIN (LTP), 
PASTICCINO (PAS), LEAFY COTYLEDON (LEC) and 
TITAN (TTN) genes. Alignment and comparison of the se-
quences from different species help us to design DNA pri-
mers targeting conserved domains of these genes, to isolate 
related genomic sequences from Phaseolus by PCR, and to 
verify the expression of these genes at different steps of 
Phaseolus embryos development. 
 
PLANT EMBRYOGENESIS AND GENE 
EXPRESSION 
 

Fertilization and embryogenesis are the first stages in the 
development of new life in both animals and plants. In early 
dicot embryogenesis, cell division occurs regularly. The 
first transverse division is asymmetric, which gives rise to 
one smaller apical cell and one larger basal cell. The smaller 
apical cell will form most of the embryo proper, and the 
larger basal cell will develop into the suspensor. The sus-
pensor anchors the embryo to the endosperm and serves as 
a conduit for nutrients and growth factors for the develop-
ing embryo. The smaller apical cell (the embryo proper) 
divides longitudinally twice and transversely once, and re-
sults in an eight-cell embryo (Goldberg et al. 1994; Laux 
and Jürgens 1997; Rademacher and Weijers 2007). Early 
embryogenesis in monocots differs from that of dicots 
mainly in the two following ways: first, cell division occurs 
randomly; and second, the protodermal cell layer is not 
morphologically formed until the embryo size reaches more 
than 100 mm in length (more than 200 cells). This means 
that the period leading up to organ differentiation, including 
protoderm differentiation, is much longer than that in dicots. 
Further cell divisions lead to the globular stage. The three 
basic tissue systems (dermal, ground, and vascular) can be 
recognized at this point based on characteristic cell division 

patterns. The globular shape of the embryo is then lost as 
the cotyledons (embryonic leaves) begin to form. The for-
mation of two cotyledons in dicots gives the embryo a 
heart-shaped appearance, while in monocots only a single 
cotyledon forms. Upright cotyledons can give the embryo a 
torpedo shape, and at this time the suspensor is degenera-
ting while the shoot apical meristem and root apical meri-
stem (SAM and RAM) are established. At this stage, em-
bryogenesis is arrested, the mature seed dessicates and re-
mains dormant until germination. The meristems will give 
rise to the adult structures of the plant upon germination 
(Steeves and Sussex 1989; Harada 1997; Laux and Jürgens 
1997; Weijers and Jürgens 2005). 

In higher plants the embryo passes through four deve-
lopmental stages after fertilization (Umehara et al. 2007). 
The globular stage is the pattern formation, in which the 
axis of the plant body is defined, tissue layers organized, 
and earliest organs established. The heart stage is the cell 
diversification and specification phase, in which cell types 
such as the suspensor, provascular tissue, shoot and root 
meristems are defined. The torpedo stage is growth and 
morphogenesis, in which cells become expanded. During 
the last process, the embryo enters into maturation, in which 
cell division is completed, embryo storage reserves as pro-
teins, starch, and lipids accumulate and the embryo acquires 
dormancy and desiccation. The first three stages occur 
concurrently in the developing embryo and are also known 
as early embryogenesis, while maturation is a distinct pro-
cess that begins later in embryogenesis (West and Harada 
1993; Harada 1997; Berleth and Chatfield 2002). The plant 
body is the basis of the future plant, controls the three next 
phases and consists of two superimposed patterns: apical-
basal pattern along the main axis of the plant, and radial 
pattern of concentrically arranged tissue systems. 

Seed development in higher plants such as Arabidopsis 
requires coordinated differentiation of the embryo proper, 
suspensor, endosperm tissue, and seed coat. Plant embryos 
are morphologically simple, but molecularly complex. 
Many genes must be expressed as the zygote divides in a re-
gulated manner, completes morphogenesis, and differenti-
ates into a mature embryo capable of surviving desiccation 
and producing a viable plant (McElver et al. 2001). Interac-
tions between these components have been explored in part 
through the analysis of embryo-defective mutants in Arabi-
dopsis (Meinke 1995). These recessive mutants have been 
recovered either by screening immature siliques for ab-
normal seeds (Meinke 1994) or by screening at the seedling 
stage for defects indicative of a disruption of normal em-
bryogenesis (Jürgens et al. 1994) or through forward gene-
tic screens of T-DNA insertion lines (McElver et al. 2001). 
These genes show temporal as well as spatial patterns of 
gene expression during seed development. The stage-speci-
fic cDNAs have been used as markers of cell differentiation 
and to follow the normal development of the embryos (Jo-
fuku and Goldberg 1989; Elster et al. 2000; Bommert and 
Werr 2001). Gene products identified to date include a wide 
array of metabolic enzymes (Lukowitz et al. 2001), trans-
cription factors (Lotan et al. 1998), chloroplast and mito-
chondrial proteins (Apuya et al. 2001), and proteins re-
quired for vesicle trafficking (Rojo et al. 2001). From the 
frequency at which embryo-lethal mutants appear in Arabi-
dopsis, many genes are required for normal embryogenesis; 
however, only ten percent of them affect pattern formation 
in embryogenesis. A vast number of genes represented by 
embryo-lethal mutants may be required for normal embryo-
genesis, but they may not be master regulators of the pro-
cess (Howell 1998). However Franzmann et al. (1995) and 
McElver et al. (2001) identified and analyzed a large num-
ber of embryo-lethal mutants in Arabidopsis. They esti-
mated that 750 genes can be easily mutated to give an em-
bryo lethal phenotype. On the other side, Tzafrir et al. 
(2004) showed that 250 genes control distinct phenotypes 
and are essential to have a normal phenotype during Arabi-
dopsis seed development. 

In the next sections, some of these genes involved in 
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plant embryogenesis are discussed. Focus is made on their 
characteristics, roles and expression patterns during plant 
embryogenesis, as well on their relationships. 
 
HOMEOBOX GENES 
 

Homeotic genes are important regulatory genes in the speci-
ation of cell fate and body plan at the early stage of em-
bryogenesis in higher organisms (Gehring and Hiromi 
1986; Yang et al. 2002). Initially identified in Drosophilia 
(McGinnis et al. 1984) as a single gene mutation capable of 
altering the identity of complex morphological structures, 
homeotic genes have been isolated and characterized from a 
wide range of animal and plant species (Chasan 1992; Geh-
ring 1992). A common feature of many homeotic genes of 
both plants and animals is a conserved nucleotide sequence 
known as the homeobox which encodes the homeodomain 
(HD). The HD consists of an approximately 60 amino acids 
with a helix-turn-helix structure conferring a specific DNA 
binding function (Kissinger et al. 1990). 

Plant homeoboxes were discovered at the beginning of 
the nineties, and the first family of homeobox genes repor-
ted in plant species was KNOX (KNOTTED1-like homeo-
box), isolated from maize, which is involved in leaf deve-
lopment (Vollbercht et al. 1991). Subsequent to the cloning 
of the KN1 gene from maize, using library screening with 
previously identified gene or degenerate olinucleotides de-
duced from HDs as probes or primers, differential screening, 
mutant based cloning, etc., many plant homeobox genes 
have been isolated from various plant species: Arabidopsis 
(Carabelli et al. 1993; Söderman et al. 1999; Western and 
Haughn 1999; Hanson et al. 2001; Johannesson et al. 2001), 
parsley (Korfhage et al. 1994), rice (Sato et al. 1996; Sato 
et al. 1998; Postma-Haarsma et al. 1999; Sentoku et al. 
1999; Ito et al. 2002; Yang et al. 2002), apple (Watillon et 
al. 1997; Dong et al. 2000), wheat (Takumi et al. 2000), 
soybean (Ma et al. 1994; Moon et al. 1996), tomato (Tor-
nero et al. 1996), tobacco (Nishimura et al. 1999, 2000), 
Norway spruce (Sundas-Larsson et al. 1998; Hjortswang et 
al. 2002; Ingouff et al. 2003), Phaleonopsis (Nadeau et al. 
1996). 

Based on amino acid sequence similarities within the 
homeodomain and the presence of additional distinctive 
domains outside the HD, plant homeobox genes can be 
grouped into several families (Chan et al. 1998; Ito et al. 
2002a): the homeodomain LEUCINE ZIPPER (HD-ZIP) 
family characterized by a leucine zipper dimerization motif 
adjacent to the homeodomain (Söderman et al. 1999; Tang 
et al. 2001), the plant homeodomain FINGER (PHD-FIN-
GER) family distinguished by a conserved cysteine-rich 
motif (Überlacker et al. 1996; Yang et al. 2003), the family 
of Arabidopsis GLABRA2-like (HD-GL2, known as HD-
ZIP IV) proteins (Lu et al. 1996; Ito et al. 2002b), the fa-
mily of maize KNOX proteins (Vollbercht et al. 1991; Bow-
man and Eshed 2000), the family of BELL1 (BEL) HD pro-
tein (Dong et al. 2000; Becker et al. 2002), and the family 
of WUSHEL (WUS) HD protein (Brand et al. 2002; Haec-
ker et al. 2004). Within each family, several defined groups 
can be distinguished, each comprising proteins from differ-
ent species (including monocot and dicot). 

The involvement of homeobox genes in plant embryo-
genesis has been reported in several studies (Schena and 
Davis 1992; Ma et al. 1994; Sato et al. 1996; Ito et al. 
2002a, 2002b; Haecker et al. 2004). In order to follow the 
normal development of the embryo proper, such genes are 
often used as molecular markers to study their cellular ex-
pression pattern during embryogenesis in wild-type and mu-
tant embryos, using different techniques such as in situ hyb-
ridization, cDNA libraries screening, southern and northern 
blots analysis, RT-PCR reactions. Plant homeobox genes, 
by analogy of the functional roles of animal homeobox 
genes, have been expected to encode transcriptional regula-
tors that mediate important developmental processes during 
embryogenesis (Sato et al. 1998; Dong et al. 2000; Elster et 
al. 2000; Bommert and Werr 2001; Yang et al. 2002). 

KNOX genes 
 
As specified above, KNOX genes have been the first ho-
meobox gene family identified in plant species and is the 
most extensively characterized gene family. These genes 
have been shown to be involved in meristem formation and 
maintenance in maize, rice and barley among the monocots 
(Kerstetter et al. 1997; Bowman and Eshed 2000). Studies 
revealed that the shoot apical meristem (SAM) is formed 
during embryogenesis, and after seed germination it conti-
nuously generates various organs and tissues, such as leaves, 
stems and flowers, throughout plant life (Steeves and Sus-
sex 1989; Vollbrecht et al. 2000; Hake et al. 2004; Belles-
Boix et al. 2006). Based on comparative analysis of the 
KNOX HD, this family has been subdivided into class 1 and 
class 2 which are 73-89% and 55-58% identical to maize 
KN1 respectively. Fig. 1 shows the alignment of deduced 
amino acid sequences of KNOX genes from maize (Voll-
brecht et al. 1991), pea (Hofer et al. 2001), rice (Matsuoka 
et al. 1993), Medicago truncatula (Koltai et al. 2001), soy-
bean (Ma et al. 1994) and Arabidopsis thaliana (Lincoln et 
al. 1994). The class 1 genes studied are mainly expressed in 
the SAM but not in lateral primordia, and some loss-of-
function mutations affect meristem formation and/or main-
tenance. Two locations of expression patterns of the class 1 
genes in the SAM have been identified: at the center of the 
meristem dome and at the base of leaf primordia (Reiser et 
al. 2000). Furthermore, all class 1 genes analyzed caused 
dramatic alteration of leaf morphology when ectopically ex-
pressed (Hake et al. 1995; Long et al. 1996). These results 
indicate that the class 1 genes play important roles in SAM. 
In contrast, the class 2 genes studied show more diverse ex-
pressions and are found not only in the SAM but also in dif-
ferentiated organs such as roots, leaves and flowers. Ectopic 
expression of class 2 genes does not cause altered morpho-
logy (Serikawa et al. 1996, 1997; Sentoku et al. 1998). 

The first plant homeobox gene shown to be involved in 
embryogenesis was SHOOT MERISTEMLESS (STM) isola-
ted from Arabidopsis thaliana (Long et al. 1996; Groß-
Hardt and Laux 2003). Embryos of stm mutants lack the ca-
pacity to form a shoot meristem, whereas other embryonic 
organs, for example cotyledons, hypocotyl and radicle, de-
velop normally. STM belongs to class 1 of the KNOX gene 
familly and is expressed in the SAM during embryogenesis 
(Tsiantis and Hay 2003; Hay et al. 2004; Belles-Boix et al. 
2006). The KNOX gene SOYBEAN HOMEOBOX1 (SBH1) 
is expressed during soybean somatic embryogenesis (Ma et 
al. 1994). The deduced SBH1 protein shares a high amino 
acid identity with maize KN1 protein (47.00% overall and 
87.50% for the homeodomain). The expression of SBH1 is 
development- and tissue-specific. The transcript of SBH1 
was present in early-stage somatic embryos, increased prior 
to cotyledon formation and decreased thereafter. SBH1 was 
weakly expressed in soybean stems and hypocotyls but was 
not detected in other plant tissues and nonembryogenic ma-
terials. In rice, members of the KNOX gene family are dif-
ferentially expressed during embryogenesis. Sato et al. 
(1996) examined the spatial and temporal expression pat-
terns of rice homeobox gene, OSH1, during rice embryo-
genesis. They showed that OSH1 expression was first detec-
ted in a specific ventral region of globular embryo. This in-
dicates that the cellular differentiation at the gene expres-
sion level has already occurred at this stage and it is plau-
sible that OSH1 may play an important role in the cellular 
differentiation preceeding organ formation. Considering the 
possibility that the putative in vivo function of OSH1 is a 
trans-acting factor, OSH1 may function as a regulator swit-
ching on and off the developmental program of embryonic 
cells located in a specific region. With the advancement of 
embryonic maturation, the expression level of OSH1 is re-
duced. The down-regulation of OSH1 expression at later 
stages suggests that its primary function resides in the early 
embryogenesis. This result also suggests a possibility that 
the main function of OSH1 in embryo is to establish cellular 
identity in the ventral region at the globular stage. Once the 
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ventral identity is established then, the organogenesis is 
started; OSH1 may finish its function early during embryo-
genesis with a decrease in its expression level. Sentoku et al. 
(1999) showed that all or some of the rice OSH homeobox 
genes may be involved in regionalization of the shoot area 
and/or the establishment of the SAM itself before shoot for-
mation occurring early in embryogenesis. After shoot forma-
tion, however, the functions of the homeobox genes appear 
to differ. Some of these genes may maintain SAM activity 
in an indeterminate condition through continuous expres-
sion in the SAM, whereas others may be involved in pattern 
formation of the segmental units of the plant body and/or 
internodes development. Pre-patterning of specific cells by 
the expression of homeobox genes before morphological 
organ formation is the same as in organ formation during 
animal embryogenesis. Even though the body structures of 
plants and animals are quite different, there may be some 
common mechanisms in organ establishment and develop-
ment in terms of homeobox function. Comparing the pattern 
expression of KNOX (KN1) gene in maize wild-type and 
mutant embryos, Bommert & Werr (2001) detected no KN1 
transcripts in emb*-8518 and emb*-8521 embryos between 
15 and 30 DAP. KN1 amplicons are detected in wild-type 
embryos, but are missing in the two mutants. These results 
revealed that both mutants are arrested before establishment 
of a functional SAM. Recently, Belmonte et al. (2007) 
pointed out that HBK3, a KNOX class I gene, improves the 
development of Norway spruce (Picea abies) somatic 
embryos. Indeed, in lines overexpressing HBK3 (HBK3-S), 
somatic immature embryos showed enlarged embryogenic 
heads and were able to produce fully developed cotyledon-
ary embryos at higher frequency. Furthermore, HBK3-S em-

bryos had enlarged shoot apical meristems (SAMs). Lines 
in which HBK3 was down-regulated (HBK3-A) had reduced 
ability to produce immature somatic embryos and were not 
able to complete the whole maturation process. Overall, 
these data confirm the importance of KNOX genes during 
development. 
 
BELL1 (BEL) genes 
 
The BEL family is another plant homeobox gene family 
that is closely related to the KNOX genes (Bürglin 1997; 
Chan et al. 1998; Becker et al. 2002). BEL transcription 
factors are essential for inflorescence and fruit development 
(Dong et al. 2000; Byrne et al. 2003; Roeder et al. 2003; 
Smith and Hake 2003; Bao et al. 2004; Bhatt et al. 2004; 
Smith et al. 2004). Based on genetic studies, an Arabidopsis 
BEL gene PENNYWISE (PNY) is involved in regulating 
early internode patterning events and is also necessary for 
replum development during fruit maturation (Byrne et al. 
2003; Roeder et al. 2003; Smith and Hake 2003; Bao et al. 
2004; Bhatt et al. 2004; Kanrar et al. 2006). Genetic analy-
sis of BEL in Arabidopsis showed that expression of this 
transcription factor regulated the development of ovule inte-
gument. The loss-of-function phenotype of bel mutant 
ovules indicates that determination of integument initiation 
and organ identity is controlled by expression of the BEL 
homeobox gene. BEL appears to interpret positional infor-
mation and control morphogenesis of the integuments 
through the regulation of genes within the chalazal domain 
(Robinson-Beers et al. 1992). In bel mutant ovules, the in-
ner integument fails to form, the outer integument develops 
abnormally, and the embryo sac arrests at a late stage of 

 
Fig. 1 Alignment of deduced amino acid sequences of KNOX genes of Zea mays (Z_mays, KN1 X61308), Pisum sativum (P_sat, AF080104), Oryza 

sativa (O_sat, D16507), Medicago truncatula (M_trunc, AF308454), Glycine max (G_max, L13663) and Arabidopsis thaliana (A_thal, ATU14174). 
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megagametogenesis. During later stages of ovule develop-
ment, cells of the outer integument of a bel ovule some-
times develop into a carpel-like structure with stigmatic 
papillae and second-order ovules. The frequency of carpel-
like structures was highest when plants were grown under 
conditions that normally induced flowering and was cor-
related with ectopic expression in the ovule of AGAMOUS 
(AG), an organ-identity gene required for carpel formation 
(Modrusan et al. 1994). The BEL gene family was identi-
fied in several plants such as tomato (Ron et al. 2001, 
Direct Submission AF375964), potato (Chen et al. 2003), 
Arabidopsis (Reiser et al. 1995), apple (Dong et al. 2000), 
barley (Muller et al. 2001) and Gnetum gnemon (Becker et 
al. 2002). 
 
LEUCINE ZIPPER (HD-ZIP) genes 
 
HD-ZIP protein can be divided into three classes by their 
sequence similarity of the HD and the presence or absence 
of some motifs outside of the HD. The functions of the HD-
ZIP proteins have been investigated and studies have 
revealed that these proteins do not have a common function, 
even in the same subclass. The class I and class II proteins 
are primarily involved in signal transduction pathways in 
response to various environmental stimuli (Hanson et al. 
2001; Ito et al. 2002). The class III proteins play a role in 
initiation and function of the shoot apical meristem (SAM) 
as well as in initiation of axillary SAMs and their functions 
appear to be critical for the formation of an embryonic 
SAM (Emery et al. 2003; Prigge et al. 2005). In relation 
with their role in SAM establishment, HD-ZIP class III pro-
teins are initially expressed throughout the proembryo but 
their expression later becomes restricted to a central apical 
position (Emery et al. 2003; Prigge et al. 2005; Floyd et al. 
2006). 
 
PHD-FINGER genes 
 
The PHD-FINGER homeobox genes encode proteins with 
the zinc-finger domain, named the PHD-FINGER domain, a 
cysteine-rich region in the N-terminal region of the homeo-
domain. The HD is at C-terminal region, as in the case of 
KNOX genes (Ito et al. 2002; Ito et al. 2004). Some proteins 
of this family have two homeodomains together with the 
PHD-FINGER domain. In maize, PHD-FINGER genes are 
mainly expressed in meristematic cells and are restricted to 
the early developmental stage of embryogenesis (Klinge et 
al. 1996; Ito et al. 2002). Deletion of the PHD-FINGER do-
main from the PHD-FINGER protein of Arabidopsis causes 
severe disturbances in DNA binding (Schindler et al. 1993). 
Overexpression of ZMHOX1, a maize PHD-FINGER gene, 
in tobacco lead to several developmental defects such as 
dwarfism, adventitious shoot formation (due to the loss of 
apical dominance), and homeotic transformations of floral 
organs (Uberlacker et al. 1996). PHD-FINGER proteins are 
thought to function in certain developmental process in 
maize by controlling expression of target genes (Comelli et 
al. 1999; Ito et al. 2004). Ito et al. (2004) showed that 
HAZ1, a rice PHD-FINGER protein isolate from three days 
old embryos, was similar in its entire amino acid sequence 
to ZMHOX1a (52% identity) and ZMHOX1b (50% identity), 
PHD-FINGER proteins of maize. But overexpression of 
HAZ1 does not affect the phenotype either in tobacco or in 
rice (Ito et al. 2004). These authors also demonstrated that 
HAZ1 was expressed at a higher level in the outer layers of 
a developing globular embryo (3 DAP) than in the inner 
parts. At 4 and 5 DAPs, the expression of HAZ1 was con-
centrated at the ventral part of an embryo. Recently, it was 
proved that Arabidopsis contain 14 members of this family 
gene. All members of this family are expressed predomi-
nantly or exclusively in floral tissue, indicating a likely 
regulatory role during floral development (Tan and Irish 
2006). 
 
 

GLABRA2 (HD-GL2) genes 
 
The analysis of the HD-GL2 protein region adjacent to the 
homeodomain reveals the presence of a truncated leucine 
zipper-like segment at the same position as the HD-ZIP pro-
teins. Due to these similarities, GLABRA2-like proteins are 
sometimes included in class IV of the HD-ZIP family (Di 
Cristina et al. 1996), while others have considered it as a 
separate family, since its components have characteristic 
features that differentiate them from the HD-ZIP family (Lu 
et al. 1996; Palena et al. 1997; Chan et al. 1998). This 
homeobox gene family encodes a protein required for nor-
mal trichome and root hair development. From the fertili-
zation to the eight cell stage of embryogenesis, the Arabi-
dopsis ATML1 gene, which is a member of HD-GL2 homeo-
box gene family, is expressed uniformly in the embryo pro-
per. The expression of ATML1 is then restricted to the outer 
cell layer belonging to the protoderm (Lu et al. 1996). 
Based on this expression pattern, ATML1 is considered to 
be a good molecular marker for the protoderm and also for 
radial pattern formations. Since protoderm differentiation 
takes place at a very early stage (16- to 32-cell stage), it ap-
pears that the radial pattern formation, the protoderm differ-
entiation and the protoderm-specific ATML1 mRNA ac-
cumulation occur simultaneously in Arabidopsis embryoge-
nesis. The same observations were shown in rice with 
ROC1, a GL2-type homeobox gene (Rice outermost cell-
specific gene1). ROC1 is specifically expressed in the pro-
toderm (epidermis) and this expression is established 
shortly after fertilization, much earlier than protoderm dif-
ferentiation (Yang et al. 2002). The maize HD-GL2 genes 
ZMOCL1, ZMOCL3, ZMOCL4 and ZMOCL5 essentially 
exhibit the L1/protoderm/epidermis-specific expression pat-
terns during early embryogenesis and in meristematic regi-
ons or young organ primordia at later stages (Ingram et al. 
1999; Ingram et al. 2000). These observations show that the 
transcripts of HD-GL2 genes are restricted to epidermal tis-
sues or their precursor cells (Yang et al. 2002). The GLAB-
RA2 may represent a unique family of homeobox genes that 
specialize in control of lateral patterning in embryos and 
maintaining cell-layer identity in meristematic regions 
(Chan et al. 1998). GLABRA2 gene was also involved in the 
control of seed oil accumulation in Arabidopsis (Shen et al. 
2006). 
 
WUSHEL (WUS) protein 
 
A WUS gene was first characterized in Arabidopsis by Laux 
et al. (1996). The homeodomain of WUS gene has two and 
four additional amino acids in the loop between helix I and 
helix II and the turn between helix II and helix III, respec-
tively. WUS proteins were initially considered to play im-
portant roles in the speciation of the stem cells in the shoot 
apical meristem of developing embryos (Laux et al. 1996; 
Hamada et al. 2000; Kieffer et al. 2006). In the mature 
embryo of Arabidopsis wus mutant, shoot apical meristem 
organization is aberrant with only a few vacuolated cells. 
After germination, the shoot apical meristem is terminated 
prematurely as a flat enlarged apex. In the shoot apical 
meristem of the wus mutant, the stem cells appear to under-
go differentiation, instead of maintaining a pluripotant state 
in the functional shoot apical meristem (Laux et al. 1996). 
Further studies showed also that these genes were involved 
in the specification and the maintenance of the stem cells in 
the root apical meristem, by a mechanism similar to that in 
the shoot apical meristem (Kamiya et al. 2003; Haecker et 
al. 2004). The rice WUS gene was found to be specifically 
expressed in the central cells of the root. During embryoge-
nesis and crown root formation, rice WUS gene expression 
is observed prior to the morphological differentiation of the 
root. This expression pattern was different between radicle 
and crown root formation during the process of the root api-
cal meristem development (Kamiya et al. 2003). 
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HEAT SHOCK PROTEIN GENES 
 
The HEAT SHOCK RESPONSE (HSR) is an evolutionarily 
conserved reaction to elevated temperatures (heat shock or 
heat stress) that is essential to the survival of eukaryotic 
cells and organisms. Indeed severe heat stress induces alter-
ations in the conformation of cellular proteins, and leads to 
protein denaturation or aggregation and cell death. In res-
ponse to increased temperature, the transcription and trans-
lation of many cellular proteins are repressed or arrested, 
whereas the expression of a small subset of specialized 
HEAT SHOCK PROTEINS (HSPs) is increased preferenti-
ally. The HSPs are molecular chaperonins that regulate pro-
tein homeostasis and membrane fluidity and ultimately pre-
vent or delay cell death during heat stress. Most plant tis-
sues and cells are competent to induce the HSR during ther-
mal stress. However, two stages in the plant life cycle, pol-
len germination and early embryogenesis (i.e. before cotyle-
don formation), are notable for their inability to invoke the 
full HSR. As a result, these tissues are especially sensitive 
to thermal stress (Schöffl et al. 1998; Fu et al. 2002). The 
HSPs are usually divided into high-molecular-mass (HMM) 
proteins of more than 30 kDa and low-molecular-mass 
(LMM) protein of about 17 to 30 kDa (Lindquist and Craig 
1988; Vierling 1991). In contrast to animal systems, plants 
synthesize more LMM HSPs than HMM HSPs. The plant 
LMM HSPs superfamily is unusually complex, consisting 
of at least six gene families based on DNA sequence analy-
sis, immunological cross-reactivity, and intracellular locali-
zation; proteins encoded by the different LMM HSPs gene 
families are targeted to different cellular compartments, in-
cluding the cytosol, chloroplasts, mitochondria, and endo-
plasmic reticulum (ER) (Waters et al. 1996). Plants LMM 
HSPs are represented by over 45 complete protein coding 
sequences including sequences from many different angio-
sperms, and a gymnosperm, Pseudotsuga menziesii (Tran-
barger and Misra 1995). These sequences comprise four 
gene families encoding proteins localized in the cytosol 
(classes I and II), the chloroplast and the ER. A fifth class of 
smHSPs gene encoding a protein localized in mitochondria 
has been identified from Pisum sativum (Lenne and Douce 
1994). A potential sixth class of LMM HSPs is represented 
by a single cDNA from Glycine max (LaFayette et al. 1996; 
Waters et al. 1996). 

In addition to being part of the heat shock response, 
some plant LMM HSPs genes have been shown to be ex-
pressed at normal growth temperatures during zygotic em-
bryogenesis. Expression of heat-shock genes occurs during 
embryogenesis from somatic cells, microspores, and deve-
loping pollen in alfalfa and tobacco (Gyôrgyey et al. 1991; 
Zarsky et al. 1995). Changes in concentrations of artificial 
phytohormones, heat shock, and starvation are known to 
induce somatic or microspore embryogenesis. Despite these 
largely different conditions, microspore-derived embryos 
from tobacco and somatic embryos from alfalfa express 
LMM HSPs during the globular and heart stages but not 
during the following torpedo stage. These data raise the 
question of whether heat-shock gene expression during 
early somatic embryogenesis is a general phenomenon that 
is also relevant to zygotic embryogenesis. In zygotic em-
bryos, expression of HEAT-SHOCK genes occurs during the 
maturation stage of the seed, when cell division has ceased 
and seeds become tolerant to dessication. In sunflower, ex-
pression of class II LMM HSPS seems to parallel roughly 
storage protein and lipid accumulation, whereas expression 
of class I coincides with seed desiccation (Coca et al. 1994). 
It has been proposed that HSPS are important for desicca-
tion tolerance of the embryo or are required for germination 
upon rehydration. Similar to other plants, Arabidopsis thali-
ana accumulates a specific set of HSPS (ATHSP17.4 and 
ATHSP17.6) during seed maturation, whereas ATHSP18.2 
is not expressed (Wehmeyer et al. 1996). The expression of 
subsets of HEAT-SHOCK genes during gametogenesis and 
embryogenesis suggests that the developmentally expressed 
HSPs play certain functions that may differ to some extent 

from those required for coping with environmentally 
stressed vegetative tissue. Furthermore, these findings may 
indicate differences in the signal transduction pathway 
(Schöffl et al. 1998). Helm and Abernethy (1990) showed 
the presence of LMM HSPs mRNAs during wheat embryos 
development in normal condition. They concluded that the 
expression of these LMM HSPs is a normal part of wheat 
embryo development, and is not a consequence of heat 
stress experienced by the parental plants during embryoge-
nesis. Fu et al. (2002) studied the expression of HSPs 
during a maize mutant embryo development. A recessive 
mutation at the locus EMPTY PERICARP2 (EMP2) led to 
dramatically increased expression of heat shock genes, 
retarded embryo development, and early-stage abortion of 
embryogenesis. The developmental timing of emp2 mutant 
embryo lethality was correlated with the initial ability of 
maize kernels to invoke the HSR. The developmental retar-
dation of emp2 mutant kernels before the HSR suggests an 
additional role for EMP2 during embryo development dis-
tinct from the HSR. 
 
LIPID TRANSFER PROTEIN GENES 
 
LIPID-TRANSFER PROTEINS (LTPS) facilitate the trans-
fer of lipids between membranes. The binding of lipids to 
LTPS can be both specific and nonspecific. The nonspecific 
lipid transfer proteins (nsLTPs; Rueckert and Schmidt 
1990) have an affinity for a variety of hydrophobic mole-
cules, such as monoacylated and diacylated lipid molecules 
including fatty acids (Han et al. 2001), fatty acyl CoA (Ler-
che et al. 1997), lyso-phosphatidylcholine (Charvolin et al. 
1999), and phosphatidylglycerol (Sodano et al. 1997). They 
have been isolated from a diverse range of organisms, from 
bacteria and yeast to higher plants and animals (Rueckert 
and Schmidt 1990; Smolenaars et al. 2007). Plant nonspeci-
fic LIPID TRANSFER PROTEINS (nsLTPs) were first iso-
lated from spinach leaves (Kader et al. 1984) and then have 
been isolated from rice, wheat, barley, maize, peaches, and 
apricots (Hollenbach et al. 1997; Poznanski et al. 1999; 
Han et al. 2001; Pons et al. 2003). nsLTPs are widely dis-
tributed and form a superfamily of related proteins subdivi-
ded into two families: nsLTP1 (~9 kDa) and nsLTP2 (~7 
kDa; Kader 1996). Both families are multigenic, and more 
than 150 sequences of plant nsLTPs are listed in data bases. 
The presence of multiple members of the nsLTP family may 
be a consequence of gene duplications and subsequent se-
quence variation, while those residues crucial to function 
are conserved (Vignols et al. 1997; Clark and Bohnert 1999). 
Although the nucleotide and amino acid sequences have 
considerable divergences, several features are highly con-
served in the encoded nsLTPs, including eight cysteine resi-
dues to form four disulphide bonds (Kader 1996). 

nsLTPs were originally assumed to participate in phos-
pholipid transfer between membranes, membrane biogene-
sis, modification of the lipid composition of a membrane, 
and in the function of membrane-bound enzymes using 
lipids as substrates (Kader et al. 1982; Arondel and Kader 
1990; Wirtz 1991; Kader 1996). However, observations de-
monstrated that LTPs are extracellularly located and secre-
ted (Sterk et al. 1991; Tsuboi et al. 1992; Coutos et al. 
1993; Thoma et al. 1993). These findings suggest LTPs in-
volvement in other roles such as cutin formation (Meijer et 
al. 1993; Hendriks et al. 1994; Pyee and Kolattukudy 1995), 
embryogenesis (Sterk et al. 1991; Thoma et al. 1994; Kader 
1997), defense reactions against pathogens (Molina et al. 
1993; Garcia-Olmedo et al. 1995), and adaptation of plants 
to environmental and abiotic changes (Jung et al. 2003; Wu 
et al. 2004). In addition, several members of the nsLTP 
family have been identified as relevant allergens in plant 
foods and pollens. Their high resistance to heat treatment, 
chemical denaturation and enzymatic digestion has been 
related with the induction by these allergens of severe 
symptoms in many patients (De Oliveira and Gomes 2007; 
Salcedo et al. 2007). 

The expression pattern of nsLTPs is complex, character-
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ized by strong developmental and tissue specificity with 
distinct patterns of expression for the different genes. For 
example, strong cell specificity, mainly in epidermal cells, 
has been observed in both maize seedlings (Sossountzov et 
al. 1991) and carrot embryos (Sterk et al. 1991). However, 
in rape seedlings, a nsLTP gene was found to be expressed 
in the entire cotyledon (Soufleri et al. 1996). In contrast, 
another nsLTP gene is specifically expressed in the tapetal 
cell layer in rape seed (Foster et al. 1992) and Lilium henryi 
(Crossley et al. 1995). Recent studies on embryogenesis 
were based on the position-specific expression of an nsLTP 
gene from Arabidopsis named ATLTP1. This gene is highly 
expressed in embryo protoderm, which is the precursor of 
the plant epidermis. The expression of the gene was studied 
in several Arabidopsis mutant embryos (knolle, keule and 
gnom) in which the mutation affects the formation of the 
apical-basal and radial axes. Using in situ hybridization, as 
well as by following ATLTP1 promoter- -glucuronidase 
transgene expression, it was observed that pattern formation 
in the embryo is reflected in the position-specific expres-
sion of this LTP gene (Vroemen et al. 1996). It was also 
found that ATLTP1 is expressed in the outer cell layer of 
Arabidopsis raspberry embryos, which are morphologically 
arrested at the first stage (globular) of their formation 
(Yadegari et al. 1994). Together, these observations suggest 
that cell differentiation is uncoupled from morphogenesis 
during embryo development. The studies also show the 
utility of nsLTP genes as tissue-specific markers in mutant 
embryos. 

In P. vulgaris, nsLTP (PVLTP) gene was induced by 
water deficit and ABA treatment. The deduced protein pre-
sents similarity with LTPs from different plants, showing 
the highest identity (57%) with maize nsLTP, MZEPLTP 
(Colmenero-Flores et al. 1997). Under water deficit condi-
tions, the experiments showed that the PVLTP transcript 
accumulates mainly in the aerial regions of the plant (stems 
and leaves) while its accumulation is very low in stressed 
roots. This organ-specific expression can also be observed 
in well irrigated plants where mRNA can be detected in 
stems and leaves but not in roots. Such specific expression 
can be that of a gene whose product responds to the need 
for a higher impermeabilization of the plant surface (epider-
mal regions) in order to decrease water loss, particularly 
under water-limiting conditions. 
 
PASTICCINO (PAS) GENES 
 
The growth and differentiation of higher plants is also 
greatly dependent on environmental stimuli, such as light 
and temperature, and on endogenous factors, such as phyto-
hormones. For instance, cell division and proliferation, con-
trols of which are essential for proper plant development, 
are tightly regulated by cytokinin and auxin. Cytokinins 
(CKs) were originally identified by their ability to stimulate 
division and sustained tobacco pith cell growth when added 
in combination with auxin (Davies 1995). Cytokinins have 
an important role in various physiological processes and 
were one of the first plant hormones to be isolated. Since 
their discovery, numerous reports have demonstrated that 
cytokinins are implicated in a wide variety of plant growth 
and development processes including cell division, organ 
formation and regeneration, apical dominance, vascular 
development, nutrient mobility, and senescence (Noodén 
1988; Estruch et al. 1991; Mok 1994; Schmulling 2002). 

The PASTICCINO (PAS) genes, which are involved in 
the control of cell division, proliferation and differentiation, 
are required for normal organization of the apical region in 
the embryo. Pasticcino mutants, which belong to three 
complementation groups (pas1, pas2, pas3), were isolated 
in the progeny of independent ethyl methane sulfonate and 
T-DNA mutagenized A. thaliana plants. These mutants 
show a range of severe developmental defects throughout 
the growth stages: embryo formation is altered at the heart 
stage when cotyledon primordia are initiated; cotyledons do 
not form correctly, leading to a flat apex; seedlings possess 

short, thick hypocotyls and misshaped cotyledons; and ma-
ture plants are characterized by abnormal compact rosettes 
with multiple shoots. Irregular root development is also 
observed and consists of short primary root and no or very 
rare secondary root formation. pas mutants show altered 
response to exogenous cytokinin but are not affected in cy-
tokinin biosynthesis (Faure et al. 1998; Bellec et al. 2002). 

The A. thaliana pas1 mutants were identified due to 
their abnormal seedling phenotypes. The mutants have more 
cell layers in the cotyledons and hypocotyls than wild type, 
a characteristic which is exaggerated by hyper proliferation 
when the seedlings are grown in the presence of exogenous 
cytokinins. The pas1 phenotype is complex; these mutants 
have altered embryo development, shorter primary roots 
and reduced elongation of lateral roots compared to wild 
type, short bushy compact rosettes, and infertile flowers. 
The predicted protein sequence encoded by the PAS1 gene 
is similar to those of the FK506-binding protein (FKBP) 
class of immunophilins (Faure et al. 1998; Vittorioso et al. 
1998). The cytokinin induction of primary cytokinin res-
ponse markers ARR1 and ARR6 is enhanced and prolonged 
in pas mutants, suggesting that PAS functions to repress the 
cytokinin response. Finally, down-regulation of the primary 
auxin response genes IAA4 and IAA1 in pas mutants sug-
gests an alteration in auxin response (Harrar et al. 2003). 
Mutants of the Arabidopsis gene PAS2 develop abnormal 
shoot phenotypes from slow tumor-like cell proliferation. In 
absence of cytokinins, pas2 mutant development is severely 
altered with an abnormal embryo development leading to 
embryos with short and large hypocotyl and very reduced 
round cotyledons (Faure et al. 1998). After germination, 
both hypocotyl and cotyledons failed to develop normally, 
leading to seedlings with short and wide hypocotyl and 
reduced finger-shaped cotyledons. pas2 cotyledons showed 
a complete loss of bilateral symmetry. Drastic pas2 defects 
are detectable in embryogenesis at the heart stage for the 
first time and are later manifested mainly in shoot while 
root is only retarded in its growth (Haberer et al. 2002). A 
striking feature of pas2 adult plants was the occurrence of 
spontaneous fusion between organs such as leaves, stems, 
flowers, or siliques (Bellec et al. 2002). pas3 like pas1 mu-
tant displayed variable phenotypes such as one or no cotyle-
dons. Seven days after germination, this mutant has shorter 
primary root than in the wild type and the other pas mutants, 
and also show rare secondary roots (Faure et al. 1998). 
 
LEAFY COTYLEDON (LEC) GENES 
 
Arabidopsis Leafy Cotyledon (LEC) genes are central regu-
lators of embryogenesis that play key roles in processes that 
occur during both the morphogenesis and maturation phases. 
LEC genes are defined by mutations at three loci: LEC1, 
LEC2, and FUSCA3 (FUS3) that have major effects on 
embryo development. All three mRNA have been found to 
be expressed only in embryos (Lotan et al. 1998; Nambara 
et al. 2000; Baumbusch et al. 2004; Baumbusch 2006). 
LEC1 and LEC2 were shown to regulate the expression 
level of the third one, FUS3 during seed filling (Wang et al. 
2007). On the other hand, LEC genes are regulator factors 
involved in oil accumulation during seed maturation (Baud 
et al. 2007; Wang et al. 2007). During the morphogenesis 
phase, the LEC genes are required to maintain suspensor 
cell identity. In lec mutants, the suspensor which in Arabi-
dopsis normally consists of a single file of cells, undergoes 
abnormal cell divisions, resulting in a structure that is seve-
ral cell layers wide. In some genotypes, the abnormal sus-
pensor continues to proliferate and gives rise to a secondary 
embryo. Another early function of the LEC genes is the spe-
cification of cotyledon identity. The adaxial surfaces of lec 
mutant cotyledons have trichomes, a leaf trait in Arabidop-
sis, and the anatomy of some lec mutant cotyledons is inter-
mediate between cotyledons and leaves. These observations 
suggest that in the absence of LEC gene activity cotyledons 
are incompletely specified and revert partially to leaf-like 
organ (Lotan et al. 1998; West et al. 1994; Harada 2001; 
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Kwong et al. 2003; Lee et al. 2003; Kagaya et al. 2005). 
The LEC1 gene encodes a transcription factor. mRNA ac-
cumulation resulting from this gene starts from preglobular 
to cotyledon stage, is limited to seed development, and is 
high during seed maturation. FUS3 transcripts accumulation 
was observed during mid-embryogenesis (West et al. 1994; 
Lotan et al. 1998; Baumbusch et al. 2004; Baumbusch 
2006). LEC2 quickly and directly activates the expression 
of seed specific genes such as S3 OLEOSIN (S3) and AT2S3 
ALBUMIN. In a second phase, it triggers the accumulation 
of the three regulatory genes leading to another increase of 
the level of S3 and AT2S3 mRNAs. Interestingly, this induc-
tion led to the accumulation of seed specific triacylglycerols 
in leaves (Mendoza et al. 2005). 

lec mutants of Arabidopsis are unable to distinguish bet-
ween embryonic and vegetative patterns of plant develop-
ment. lec mutations exhibit morphological characteristics 
such as altered cotyledon morphology, desiccation intoler-
ance and occasional vivipary. The fus3 mutation in Arabi-
dopsis affects several aspects of embryogenesis, provoking 
a lec-like phenotype with ectopic trichomes, dessication in-
tolerance and precocious germination (Meinke 1992; West 
et al. 1994; Nambara et al. 2000). 
 
TITAN (TTN) GENES 
 
The TITAN (TTN) genes encode chromosome scaffold pro-
teins of the condensing and cohesion classes named STRUC-
TURAL MAINTENANCE OF CHROMOSOME (SMC) pro-
teins (condensins and cohesins) required for chromosome 
function at mitosis. They are conserved in most prokaryotes 
and all eukaryotes examined and play essential roles in 
networks that are responsible for sister chromatid cohesion, 
chromosome condensation, dosage compensation and re-
combination repair (Michaelis et al. 1997; Lieb et al. 1998; 
Liu et al. 2002; Tzafrir et al. 2002; Liu and Makaroff 2006). 
SMC proteins perform essential functions during embryo 
and endosperm development. At least nine different genes 
controlling titan phenotype have been identified; TTN genes 
played a direct role in either cell cycle control or the struc-
tural mechanics of mitosis (Liu and Meinke 1998; Liu et al. 
2002; Tzafrir et al. 2002). 

The titan mutants of Arabidopsis exhibit striking de-
fects in seed development. These mutants are defective in 
karyokinesis and the defining feature is the presence of ab-
normal endosperm with giant polyploid nuclei which is up 
to 100 times larger than the wild-type, during early stages 
of seed development. Embryo development is arrested 
shortly after fertilization in most ttn mutants and in some 
cases is accompanied by dramatic cell enlargement. Mutant 
embryos differ in cell size, morphology and viability, de-
pending on the locus involved (Liu and Meinke 1998; 
McElver et al. 2000; Liu et al. 2002; Tzafrir et al. 2002). 

Liu and Meinke (1998) discussed three titan mutants 

with related but distinct phenotypes in Arabidopsis. Chro-
mosome condensation has been observed in all titan mu-
tants, while mitotic figures have only been seen in titan3. 
Development of titan1 and titan2 embryos is arrested at the 
1-2 cell stage, whereas titan3 can produce fertile homozy-
gous mutant plants. The ttn1 phenotype includes extraordi-
nary enlargement of nuclei in the embryo and endosperm, 
similar enlargement of cells in the arrested embryo, and a 
disruption of endosperm nuclear migration to the chalazal 
end of the seed. Defects in ttn2 are limited to early embry-
onic lethality and enlargement of endosperm nuclei. Em-
bryo development in ttn3 is surprisingly normal but is ac-
companied by the formation of giant endosperm nuclei 
early in development and the appearance of aberrant mitotic 
figures with numerous condensed chromosomes. Another 
unique feature of the ttn3 phenotype is cellularization of the 
mutant endosperm late in development. 

The ttn4 mutant identified by Wu (1999) resembles ttn2 
in phenotype and appears to encode plant-specific proteins 
of unknown function. The ttn5 mutant is most similar to 
ttn1 except that migration of endosperm nuclei is not dis-
rupted (McElver et al. 2000). The ttn6 (Tzafrir et al. 2002) 
embryo cells often appeared rounded and disorganized. En-
dosperm cellularization was also disrupted. Defects visible 
at the heart stage of normal development included: in-
creased size and reduced number of endosperm nuclei and 
nucleoli; and developmental arrest of the embryo proper. 
Endosperm nuclear enlargement was similar to that ob-
served with other titans (Liu and Meinke 1998; McElver et 
al. 2000). Embryo proper and endosperm nucleolus size in-
creases after the heart stage. A number of small nucleoli 
with a diameter of 5 to 6 µm were also found in the mutant 
endosperm, and their size remained constant between the 
heart and cotyledon stages. This variability in nuclear size 
within a single seed is a common feature of titan mutants. 
Most ttn6 seeds at the heart stage contained between 20 and 
50 endosperm nuclei. This number did not increase later in 
development and remained far below the number found in 
wild-type seeds. Therefore, endosperm nuclear division is 
completed at about the same time in mutant and wild-type 
seeds (Tzafrir et al. 2002). TTN9 with a titan endosperm 
phenotype encodes a novel plant-specific protein of un-
known function. The 

ttn9 embryo, which contained at most 
four small cells, was typical of this class and resembled the 
cohesin (ttn7 and ttn8) knockouts. TTN9 appears to be a 
single copy gene that is expressed in siliques based on EST 
data (Liu et al. 2002; Tzafrir et al. 2002). The Table 1 
summarizes some distinguishing features observed in titan 
mutant seeds. 
 
 
 
 
 

Table 1 Phenotypic variation observed in Arabidopsis titan mutant seeds. 
 Endosperm phenotype Embryo phenotype 
Mutant Nuclear size Nuclear 

migration 
Nuclear size Cell morphology Embryo viability 

References 

titan1 Giant (~ 60µm, observed in 
72.5% of seeds) 

Absent Giant Giant Inviable small embryos with 
only one or few large cells 

titan2 Giant Present Normal Aborted Inviable embryos composed 
of several small cells 

titan3 Giant Present Normal Normal Viable 

Liu and Meinke1998; 
Tzafrir et al. 2002 

titan4 Giant, observed in 75% of seeds 
of seeds observed 

    Tzafrir et al. 2002 

titan5 Giant (~ 23.5µm) Present  Giant, can exceed 
150 µm in diameter

 McElver et al. 2000 

titan6 Giant, (~ 21µm, observed in 
77.20% of seeds) 

  (~ 56.5µm) Arrested at the 
preglobular/globular stage 

Tzafrir et al. 2002 

titan7 Giant, observed in 77% of seeds     
titan8 Giant, observed in 88% of seeds     

Liu et al. 2002 

titan9 Giant, observed in 73% of seeds     Tzafrir et al. 2002 
Wild-type seeds have 150 to 300 endosperm nuclei at the developmental heart stage. Normal nucleolus size is 4 µm in diameter. Normal embryo cell diameter is 8 µm. 
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CONCLUSION AND PROSPECTS 
 
Some major genes playing an important role in plant em-
bryogenesis were described. Mutations in these genes affect 
normal development of plant embryos. After alignment of 
mRNA coding sequences from each gene family in the 
model plant, DNA primers were designed to target con-
served domains of these genes and to identify related geno-
mic sequences in Phaseolus (results not shown). Expression 
of the genes involved in embryogenesis was studied from 
mRNA extracted from Phaseolus ovules. RT-PCR reactions 
revealed several bands from all the described genes, with 
the exception of KNOX genes; and also showed different 
accumulation levels of LTP gene during Phaseolus embryo 
development. 

In the following steps of our investigation, Phaseolus 
amplified fragments from RT-PCR will be extracted from 
agarose and inserted into the pCR2.1 vector plasmid. Liga-
ted fragments will be sequenced with LICOR System (IR2, 
DNA Analyzer). BLASTN sequence homology analyses 
will be performed by using the BLAST network. Gene se-
quences with high homologies and unknown in Phaseolus 
will be submitted to NCBI for registration. 

On the other side, mutants deficient in seed develop-
ment were isolated from an ethyl methane sulphonate 
(EMS)-induced mutant collection of common bean (Phase-
olus vulgaris cv. ‘BAT93’) from the University of Geneva 
(Switzerland) (Pankhurst et al. 2004). Seeds of these mu-
tants aborted within 15 to 25 days after anthesis. These mu-
tants will be used to study the expression of embryogenesis 
genes described above by RT-PCR and to isolate major 
genes involved in seed development by Suppression Sub-
tractive Hybridization (SSH) technique (Diatchenko et al. 
1996; Marenda et al. 2004). This method is based on the 
construction of subtracted cDNA libraries that allow the 
identification and isolation of differentially expressed trans-
cript. SSH will allow isolating different cDNAs between 
degenerated seeds of mutants and normal seeds of wild type. 
Isolated cDNAs will be sequenced and analysed with 
BLAST network service. 

We mentioned that immature embryos from the crosses 
P. polyanthus (as female) x P. vulgaris and P. coccineus (as 
female) x P. vulgaris aborted usually at the globular or ear-
ly heart-shaped developmental stages. SSH technique will 
be used to isolate specific genes involved in embryo abor-
tion, and to analyze allele sequences of these genes in the 
different collections of P. vulgaris, P. polyanthus and P. 
coccineus genotypes. This type of analysis will allow to 
understand better some gene disruption occurring during 
Phaseolus hybrid embryo development and device the most 
efficient ways to overcome post-zygotic barriers in this 
genus. 
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