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A B S T R A C T
In this paper, we propose a multi-RREH (Remote Renewable Energy Hub) based optimization
framework. This framework allows a valorization of CO2 using carbon capture technologies. This
valorization is grounded on the idea that CO2 gathered from the atmosphere or post combustion
can be combined with hydrogen to produce synthetic methane. The hydrogen is obtained from water
electrolysis using renewable energy (RE). Such renewable energy is generated in RREHs, which are
locations where RE is cheap and abundant (e.g., solar PV in the Sahara Desert, or wind in Greenland).
We instantiate our framework on a case study focusing on Belgium and 2 RREHs, and we conduct
a techno-economic analysis under uncertainty. This analysis highlights, among others, the interest
in capturing CO2 via Post Combustion Carbon Capture (PCCC) rather than only through Direct Air
Capture (DAC) for methane synthesis in RREH. By doing so, a notable reduction of 10% is observed in
the total cost of the system under our reference scenario. In addition, we use our framework to derive
a carbon price threshold above which carbon capture technologies may start playing a pivotal role
in the decarbonation process of our industries. For example, this price threshold may give relevant
information for calibrating the EU Emission Trading System so as to trigger the emergence of the
multi-RREH.

1. Introduction
While the whole world is engaged in a process to de-

crease greenhouse gas emissions, capturing CO2 appears
more and more as a crucial element to limit global warming.
Once it is captured, CO2 may be either stored (CCS - Carbon
Capture and Storage), or valorized (CCU - Carbon Capture
and Utilisation), for instance, through synthetic methane
generation. In this article, we focus on CCU, where CO2 is
seen as a required ingredient in the process of generating
synthetic methane, together with green hydrogen, i.e. hydro-
gen obtained from renewable energy-based electrolysis.

As in our previous work [12] from which this paper is an
extended version, we build on top of the Remote Renewable
Energy Hub (RREH) approach [3] to propose a multi-hub,
multi CO2 sources approach. CO2 is captured using both
Post-Combustion Carbon Capture (PCCC) and Direct Air
Capture (DAC) technologies. Hydrogen is produced from
electrolysis using renewable energy in a RREH, which is
particularly well-suited for producing cheap and abundant
renewable energy (e.g., solar energy in the Sahara desert, or
wind energy in Greenland). The RREH concept also relies
on the following idea: some locations show large amounts
of energy consumption while not having lots of renewable
energy resources (e.g., Belgium). Conversely, some places
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have abundant renewable energy and almost no energy de-
mand. In its original formulation, the RREH concept sug-
gests using DAC technologies to feed the CO2 demand at the
RREH. In this paper, we include PCCC technologies as an
alternative to DAC technologies: in addition or replacement
to being captured in the atmosphere, CO2 emitted in energy-
intensive locations may be transported to the RREH to
be combined with green hydrogen for producing neutral
synthetic methane.

We propose a methodology for assessing the technico-
economic feasibility of exporting CO2 into RREH where
synthetic CO2-neutral methane would be generated using
locally produced green H2. We formalise an optimisation
problem where CO2 sources are in "competition" to provide
CO2 to the methanation units in the RREH. This methodol-
ogy is based on a linear program modelling of Belgium’s en-
ergy system, including gas and electricity demand, and main
CO2 emitters. We rely on previously published approaches
to develop our approach [3], and, in particular, we use the
GBOML language [25] to model the energy system and to
optimize it.

On top of the energy system optimization methodol-
ogy, an uncertainty quantification (UQ) analysis can be per-
formed. Indeed, many technical and economic parameters
of the energy system model can influence the system perfor-
mance, which are often subject to uncertainty due to lack of
knowledge (i.e., epistemic uncertainty) or unknown future
evolution of the parameters (i.e., aleatory uncertainty) [10].

Several methods exist to characterize parametric uncer-
tainties in the context of energy systems [24], including,
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among others, interval analysis, fuzzy set theory and Prob-
ability Density Functions (PDFs) [14]. In the case of PDFs,
the distributions are derived through statistical inference
when a lot of data is available, expert judgment in the
absence of data, or Bayesian inference when the dataset is
limited but expert knowledge is accessible [29].

When input parameters are characterized by distribu-
tions and propagated through the system model, the model
outputs will also be defined by distributions. Therefore anal-
yses of these output distributions can be performed. In this
paper, we used a probabilistic approach technique, called
Polynomial Chaos Expansion (PCE). This technique acts
mainly as a surrogate for Monte Carlo (MC) simulation
allowing to derive statistical moments of output distributions
given known (or assumed) input distributions. Moreover,
this technique offers a distinct advantage over other surro-
gate methods (Kriging [13], support vector machines [7],
Analysis Of Variance (ANOVA) [21]) by enabling the ana-
lytical derivation of global sensitivity indices. These indices
allow a decomposition of the variance of the output distri-
bution with respect to the given input parameters.

PCE has already been applied with success in [32] for
quantifying the uncertainty associated with the total energy
cost of the Belgian energy system, considering 43 uncertain
input parameters related to the investment and operating cost
of the available technologies. Furthermore, their analysis
identified the cost of importing electrofuels as the primary
driver of the variance in the total system cost using the
analytically-derived global sensitivity indices.

In summary, our methodology is also evaluated in the
Belgian context: we consider Belgian CO2 emissions and
Belgian gas and electricity demand. CO2 may be captured
using Post Combustion Carbon Capture (PCCC) in Belgium
or DAC in RREH locations. CO2 neutral synthetic methane
will be produced in a remote energy hub from where it would
be shipped back to serve the Belgian gas demand. We derive
a CO2 emission cost in order to have a neutral emission
system. We also determine a value of lost load (i.e. a price
associated with a lack of energy service) in order to serve
the energy demand at all times. Several scenarios are studied
with different prices of CO2 emissions, allocation or not of
unserved energy and forcing of a given RREH. Additionally,
an uncertainty quantification analysis is conducted on the
CO2 infrastructure CAPEX in the first scenario.

2. Related Work
This work is mainly related to the following topics that

may play an important role in the deep decarbonization
of our societies: (i) global grid approaches, (ii) power-to-
X technologies, multi-energy systems and energy hub ap-
proaches, and (iii) CO2 quotas markets.

Global Grid approaches [8], [37], sometimes referred
to as Global Energy Interconnection approaches [23], are
related to the idea of harvesting renewable energy from
abundant and potentially remote renewable energy fields to
feed the electricity demand in high demand centres. These

approaches have mainly been oriented towards solutions
using the electricity vector to repatriate energy from en-
ergy hubs, and have received a growing interest starting
from the DESERTEC concept [34] that focuses on Sahara
solar energy resources from the Sahara desert to serve the
European electricity demand. More recently, wind from
Northern Europe and Greenland has also been identified as
a promising resource to be valued within the Global Grid
context [31]. Resource and demand configurations combin-
ing several types of resources as well as demand time zones
show better results [37].

Multi-energy systems approaches [28, 30] exploit the
benefits of integrating energy demand and generation, as
well as infrastructure. Power-to-X technologies, in particular
power-to-CH4 technologies using hydrolysis and renewable
energy for producing H2 [22], offer a CO2 neutral solution to
serve gas demand, but also a way to store vast quantities of
energy issues from renewable sources [5]. Recently, Berger
et al. have proposed a modelling framework [3] for assessing
the techno-economics viability of carbon-neutral synthetic
fuel production from renewable electricity in remote areas
where high-quality renewable resources are abundant. Let
us mention that the idea of energy hubs was preexisting the
work of Berger et al. [20, 26, 33], however, the contribution
of Berger et al. is the introduction of remote energy produc-
tion, far from the demand. Our contribution is in line with
the latter.

As this work aims to enhance the value of CO2, it is
closely linked to various policy mechanisms that establish
a price on CO2 emissions, such as a carbon tax or a carbon
market like the European Union Emissions Trading System
(EU ETS)1 Indeed, the business model of the proposed
model is strengthened by these mechanisms because we
propose to recycle the CO2 emitted in the atmosphere (or
that could be emitted) rather than paying for it.

3. CO2 Valorisation in a Multi-Remote
Renewable Energy Hubs Approach
The Remote Renewable Energy Hub concept was first in-

troduced in [3], where the authors proposed a hub for synthe-
sizing CH4 based on hydrogen and CO2 captured from the
air thanks to a methanation unit. This concept has emerged
within the context of global grid [8] and multi-energy sys-
tems approaches. These approaches aim at optimising the
generation and utilisation of renewable energy (RE) by both
(i) looking for abundant and cheap RE fields, (ii) taking
advantage of daily/seasonal complementary of RE, and (iii)
using power-to-gas technologies for better addressing RE
generation fluctuations and meet e-fuels demand to act as a
substitute for molecules derived nowadays from fossil fuels.

In the original article [3], the methanation unit was
supplied with CO2 by a Direct Air Capture unit, and the
energy demand was fulfilled by a single RREH located in

1The EU ETS system is described on the European
Commission’s website: https://climate.ec.europa.eu/eu-action/

eu-emissions-trading-system-eu-ets_enand in [6].

V. Dachet, A. Benzerga, D. Coppitters et al.: Preprint submitted to Elsevier Page 2 of 13

https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en
https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en


Towards CO2 valorisation

Algeria. However, in this paper, we propose to investigate
the feasibility of valorizing CO2 captured through Post Com-
bustion Capture techniques at the energy demand center.
Additionally, we deviate from the original paper by intro-
ducing a multi-RREH approach, wherein the energy demand
center serves as a CO2 provider to a set of multiple RREHs,
denoted as 𝑅𝑅𝐸𝐻1,… , 𝑅𝑅𝐸𝐻ℎ. Each hub 𝑅𝑅𝐸𝐻𝑖(1 ≤
𝑖 ≤ ℎ) has its unique characteristics, such as renewable
energy type, potential, distance from the energy demand
center, and means of CO2 transport from the energy demand
center, which can affect its competitiveness.

In order to illustrate the concepts discussed above, we
have developed a model for a multi-RREH system based on
the following assumptions: (i) the energy demand center is
Belgium, encompassing its gas and electricity demands as
well as its CO2 emissions, (ii) there are two RREHs: one
situated in the Sahara desert with access to solar and wind
resources, and another in Greenland benefiting from the
high-quality wind fields in the region. A detailed schematic
of the resulting system is shown in Figure 1.

We note that the model code with two RREHs and one
energy demand center system is available online2 and can be
easily extended to add additional RREH and energy demand
centers.

4. Modelling
In this section we describe the optimization problem

underlying our techno-economic analysis and we describe
mathematically the UQ quantification and sensitivity analy-
sis..
4.1. Multi-energy system model optimization

This subsection provides insight into the optimization
framework that underlies the multi-energy system model
proposed in this work. The GBOML language, introduced
in [25], a recently developed language dedicated to the mod-
eling of complex systems exhibiting a graph structure, as
multi-energy systems do, will be utilized. GBOML exhibits
several advantages; it is open source, easy to use, and allows
the construction of a sparse matrix representation of the
system.

The optimization problem can be viewed as an optimiza-
tion on graphs, where a multi-energy system is considered as
a set of nodes  that contribute to the (linear) objective and
local constraints, and hyperedges  are used to model the
constraints between nodes, such as those between RREHs
and the energy demand center in our context.

The formalism utilized in this study follows the frame-
work introduced in [3]. The entire system is defined by sets
of nodes  and hyperedges  . The optimization horizon
is denoted by 𝑇 , with time-steps indexed by 𝑡 ∈  , where
 = {1,… , 𝑇 }.

A node 𝑛 ∈  is defined by internal 𝑋𝑛 and external 𝑍𝑛

variables, where internal variables describe the specific char-
acteristics of the unit, such as the nominal power capacity

2https://gitlab.uliege.be/smart_grids/public/gboml/-/tree/master/
examples

installed in the asset. Equality constraints ℎ𝑖(𝑋𝑛, 𝑍𝑛, 𝑡) = 0
with 𝑖 ∈  and inequality constraints 𝑔𝑗(𝑋𝑛, 𝑍𝑛, 𝑡) ≤ 0 with
𝑗 ∈  , are employed for each 𝑡 ∈  to model operational
constraints.

Each node 𝑛 has an associated cost function𝐹 𝑛(𝑋𝑛, 𝑍𝑛) =
𝑓 𝑛(𝑋𝑛, 𝑍𝑛, 0)+

∑𝑇
𝑡=1 𝑓

𝑛(𝑋𝑛, 𝑍𝑛, 𝑡) that typically represents
the capital expenditure and operational expenditure, i.e.,
CAPEX and OPEX, respectively.

Finally, equality and inequality constraints on hyper-
edges can be defined as 𝐻𝑒(𝑍𝑒) = 0 and 𝐺𝑒(𝑍𝑒) ≤ 0 with
𝑒 ∈  to model the laws of conservation and caps on given
commodities.

One can read this type of problem as:

min
𝑁
∑

𝑛=1
𝐹 𝑛(𝑋𝑛, 𝑍𝑛)

s.t. ℎ𝑖(𝑋𝑛, 𝑍𝑛, 𝑡) = 0,∀𝑛 ∈  ,∀𝑡 ∈  ,∀𝑖 ∈ 
𝑔𝑗(𝑋𝑛, 𝑍𝑛, 𝑡) ≤ 0,∀𝑛 ∈  ,∀𝑡 ∈  ,∀𝑗 ∈ 
𝐻𝑒(𝑍𝑒) = 0,∀𝑒 ∈ 
𝐺𝑒(𝑍𝑒) ≤ 0,∀𝑒 ∈  .

(1)

The main assumptions underlying our model are the
following:

• Centralised planning and operation: In this frame-
work, a single entity is responsible for making all
investment and operation decisions.

• Perfect forecast and knowledge: It is assumed that
the demand curves, as well as weather time series,
are available and known in advance for the entire
optimisation horizon, i.e., ∀𝑡 ∈ {1,… , 𝑇 }.

• Permanence of investment decisions: Investment de-
cisions result in the sizing of installation capacities at
the beginning of the time horizon. Capacities remain
fixed throughout the entire optimisation period, i.e.,
∀𝑡 ∈ {1,… , 𝑇 }.

• Linear modelling of technologies: All technologies
and their interactions are modelled using linear equa-
tions within this framework.

• Spatial aggregation: The energy demands and genera-
tion at each node are represented by single points. The
topology of the embedded network required to serve
this demand locally is not modelled in this approach.
This can be viewed as an extension of the copper plate
modelling approach used in electrical power systems.

In our problem, all cost functions and constraints are
affine transformations of the inputs. More details on the
constraints of each technology can be found in [2], [3].
Additionally, the local objective function corresponding to
the CAPEX is modelled with a uniform weighted average
cost of capital (WACC) of 7% for each technology. Let 𝐿𝑛denote the lifetime of technology 𝑛 and 𝑤 the WACC. Then,
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Figure 1: A schematic illustration of the remote energy hub. CO2 being captured, it may be used to synthesize fuel either locally
either in a remote energy hub where renewable energy may be cheaper and more abundant.
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the annual cost 𝑧𝑒𝑡𝑎𝑛 of investing in technology 𝑛 writes:
𝜁𝑛 = CAPEX𝑛 ×

w
(1 − (1 + w)−L𝑛 )

. (2)

Moreover, a cap on the net CO2 emissions (i.e. release in
minus captured from the atmosphere) is added to the model.
This latter is defined as

∑

𝑡∈
(
∑

𝑎∈
𝑞𝑎𝑐𝑜2,𝑡 −

∑

𝑐∈
𝑞𝑐𝑐𝑜2,𝑡) ≤ 𝜅𝑐𝑜2𝜈 (3)

with  and  representing the sets of technologies that
release CO2 into the atmosphere and those that capture CO2directly from the atmosphere, respectively, 𝜅𝑐𝑜2 represents
the CO2 cap in kilotons per year, and 𝜈 represents the number
of years covered by the optimization horizon. The shadow
price, or marginal cost, which is the dual variable associated
with Equation 3 allows for the derivation of a CO2 cost in
€/t. Nevertheless, one should be cautious with the derived
shadow prices, as they provide information that is relevant
within the context of the model and the various constraints
taken into account. A detailed explanation of dual variables
as marginal costs in linear programming can be found in [4,
Chapter 4].
4.2. Uncertainty quantification

The optimization problem outlined in subsection 4.1 is
defined by several economic parameters that are subject
to uncertainty, either due to a lack of knowledge or due
to the unknown future evolution of these parameters [10].
The optimization problem  depending on such random
parameters can be defined as a function:

 ∶ ℝ𝑀 → ℝ, (4)
with 𝑀 equal to the number of random parameters consid-
ered. The joint distribution of the random vector 𝑿 of the
random input parameters {𝑋𝑖, 𝑖 = 1,… ,𝑀

} can be defined
as:

𝑃𝑿 (𝒙) =
𝑀
∏

𝑖=1
𝑃𝑋𝑖

(

𝑥𝑖
)

, 𝑥𝑖 ∈ 𝑋𝑖
, (5)

where𝑃𝑿 is the joint distribution,
{

𝑃𝑋𝑖

}𝑀

𝑖=1
are the marginal

uniform distributions on the model input parameters (illus-
trated in Table 1) and 𝑋𝑖

is the support of 𝑋𝑖.As the input parameters are defined by a joint distri-
bution, the output parameter of the model will become a
random variable as well:

𝑌 =  (𝑿) . (6)
In this Uncertainty Quantification (UQ) procedure, the goal
is to define the mean and standard deviation of the model
output, to indicate the expected performance and the vari-
ability of the model output with respect to the random input
parameters.

In addition, we will perform a global sensitivity anal-
ysis to quantify which random input parameters drive the
variability of the model output. As this variability can be
described by the variance of 𝑌 , the task is to allocate Var[𝑌 ]
to each input parameter 𝑋𝑖. To do so, the Sobol’ indices are
adopted, corresponding to:

𝑆𝑖 =
Var

[

𝑖
(

𝑋𝑖
)]

Var [𝑌 ]
(7)

where 𝑖
(

𝑋𝑖
)

= 𝔼
[

 (𝑿) |𝑋𝑖
]

− 𝔼 [ (𝑿)].
To determine the mean, standard deviation and Sobol’

indices on the output of the model, we used PCE. After the
construction of the PCE surrogate model, it allows to derive
the mean, standard deviation and Sobol’ indices analyti-
cally. To facilitate this approach, we utilized the open-source
Python framework Rheia [11]. We refer to Sudret et al. [36]
for the details on the construction of the PCE and the
analytical derivation of the mean, standard deviation and
Sobol’ indices.

Using the methodology described in Sudret et al. [36],
we constructed the PCE using 56 training samples, sam-
pled from the joint input distribution using quasi-random
Sobol sampling, resulting in a Leave-One-Out (LOO) cross-
validation error below 1% [36]. The process of constructing
a PCE has been repeated three times, once for every output
of interest, namely total cost, shadow price, and cost of
methane. Note that, as for each training sample, the model
response for the three outputs of interest is stored, the same
set of training samples was reused for the construction of
each PCE.

5. Case Study: Belgium
This case study is focused on Belgium with two remote

renewable energy hubs: one located in Algeria and an-
other one located in Greenland. We will analyse the techno-
economic feasibility of the system while responding to an
energy demand composed only of electricity and gas in
Belgium.

5.1. Data
The data cover two years: 2015 and 2016 at an hourly

resolution. It is used to characterize energy demand as well
as load factors for renewable energy sources. The data have
been retrieved from different sources [2], [3]. The renew-
able energy profiles for Greenland have been specifically
produced for use in this study.

Renewable generation profiles
In order to determine the generation profiles of variable

energy sources in Belgium we use the data from the trans-
mission system operator (TSO) of Belgium [17]. The profiles
for the RREH located in Algeria are extracted with the same
methodology as in [3]. For the RREH situated in Greenland,
the profiles of renewable energy are extracted thanks to the
MAR model [18] and given a power curve for an offshore
wind turbine MHI Vestas Offshore V164-9.5MW.
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Figure 2: Daily aggregated profiles of electricity and natural gas demand covering the years 2015 and 2016 spanned by the
optimisation.

Energy consumption
The energy consumption data is collected for two en-

ergy vectors: gas ([19]) and electricity ([16]) with the same
methodology as in [2]. In Figure 2, the data corresponding to
the two years is represented, where the signal is aggregated
daily. In some cases, gas usage is shifted towards electricity
needs, as described in [2, section 4.2.2]. This shift is due to
the use of heat pumps, which can help decarbonize heating
in Europe. For both energy vectors, industrial and heating
demands are taken into account.

The peak power demand is equal to 60.13 GWh/h for
both gas and electricity. The energy demand for electricity
ranges from 6.42 to 20.29 GWh/h, while that for gas ranges
from 5.51 to 39.84 GWh/h. The total energy demand is on
average 106.45 TWh/year and 132.65 TWh/year for electric-
ity and gas, respectively.

Uncertainty characterization
The CAPEX are influenced by various uncertainties,

such as the evolving and maturing of technologies, the time

gap between feasibility study and investment, and unex-
pected costs [24]. These uncertainties can significantly im-
pact the CAPEX assumptions during the optimization, lead-
ing to notable disparities between a deterministic assessment
(based on the best estimate) and the real-world results. Con-
sequently, we introduced uncertainty in the CAPEX for CO2processing technologies, with more substantial variations for
emerging technologies (±30%) and narrower variations for
mature technologies (±10%), following the approach pro-
posed by Moret et al. [27]. The specific uncertain parameters
are detailed in Table 1.

5.2. Model Configuration
Our model consists of three main components (see Fig-

ure 1): the energy demand centre located in Belgium and
two Remote Renewable Energy Hubs (RREHs) situated in
Algeria and Greenland. The RREH in Algeria is modelled
as described in [3] with the same techno-economic parame-
ters. The distinction is made with the inclusion of the CO2connection between Belgium and Algeria. The RREH in
Greenland is similarly modelled, with the exception of the
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Parameters of the uniform distributions on the CO2 capex costs
name variation min max unit

CAPEXPCCC ±30% 2205 4095 M€/kt/h
CAPEXCO2 , liq ±10% 50.2 61.4 M€/kt/h

CAPEXCO2 , regas ±10% 22.6 27.6 M€/kt/h
CAPEXCO2 , carrier ±10% 4.5 5.5 M€/kt

CAPEXDAC ±30% 3361 6242 M€/kt/h
CAPEXCO2 , liq storage ±10% 2.1 2.5 M€/kt

Table 1
The selected uncertain parameters are all the CAPEX related to the CO2 infrastructure. A uniform distribution has been assumed
for each parameter, with a ±30% variation for emerging technologies and a ±10% variation for mature technologies.

removal of the photovoltaic potential and the modification
of the high-voltage direct current (HVDC) line to a length
of 100 km rather than 1000 km.

The transportation of CO2 is achieved through the use
of boats, which have a CAPEX of 5M€/kt, a lifespan of 40
years, and an average daily energy consumption of 0.0150
GWh/day. CO2 transport data was obtained from [1]. The
loading and traveling time for these boats are assumed
identical to those for liquefied methane carriers [3], i.e. 24
and 116 hours, respectively. In order to fill the tank of CO2carriers with fuel (liquefied methane), these tanks are loaded
when unloading the CO2 at the RREH. Indeed, at the RREH,
synthetic CH4 is available without having undergone any
additional transport-related losses.

A CO2 liquefaction plant has been added in Belgium as
well as in Algeria with a CAPEX of 55.8 M€/kt/h, a FOM of
2.79 M€/year, and a lifetime of 30 years. This plant requires
0.014 GWh of electricity to process a kiloton (kt) of CO2. A
CO2 regasification plant has been established in Algeria with
a CAPEX, FOM, and lifetime of 25.1 M€/kt, 1.25 M€/year,
and 30 years, respectively. Storage of liquefied CO2 has been
done with the same assumptions as in [3].

Belgium is modelled with an electricity and gas demand
as depicted in Figure 2, with various means of production,
including wind power, solar power, and a combined cycle
gas turbine. The solar potential is limited to 40GW. The wind
potential equals 8.4 GW and 8 GW for onshore and offshore
capacities, respectively. The techno-economic parameters of
each technology deployed in Belgium follow those in [2].

We have also added a CO2 source that is equivalent to
40Mt CO2/year, which corresponds to the energy sectors and
industrial processes greenhouse gases in Belgium in 2019 [9,
Table 4.1.1 (pp. 165- 166)]. We assume that we can install
post-carbon capture technologies (PCCC) in these sectors.

In terms of carbon capture technologies, the model has
access to direct air capture installed at the RREHs, as well
as a PCCC in Belgium on the 40Mt of CO2 per year and a
PCCC installation on the CCGT.

As stated in [2], the cost of PCCC is 3150M€/kt/h
of CAPEX. The variable operating and maintenance costs
(VOM and FOM) have been neglected in this analysis.
However, a demand of 0.4125𝐺𝑊 ℎ𝑒𝑙∕𝑘𝑡𝐶𝑂2 of electricity
is required. The expected lifetime is assumed to be 20 years.

Similarly, according to [3], the cost of DAC is equal to
4801.4 M€/kt/h of CAPEX. Similar to PCCC, VOM and
FOM are ignored. The operational requirements for DAC
are 0.1091𝐺𝑊 ℎ𝑒𝑙∕𝑘𝑡𝐶𝑂2 of electricity, 0.0438𝑘𝑡𝐻2∕𝑘𝑡𝐶𝑂2of di-hydrogen, and 5.0𝑘𝑡𝐻20∕𝑘𝑡𝐶𝑂2 of water. The expected
lifetime is assumed to be 30 years.

5.3. Results
In this section, we explore several scenarios. We describe

the variables that are used to differentiate the scenarios
1. Cost or Cap on CO2: either a cap is set of 0 t/year or a

price at 80€/t or 0€/t
2. Cost of energy not served (ENS): either energy not

served is not allowed or a penalty of 3000€/MWh is
imposed for each unit of unproduced energy.

3. Forcing or not the use of a given RREH.
The results are generated with 5 scenarios:
Scenario 1: This scenario seeks to avoid energy scarcity,

whatever the cost. Therefore, no ENS is allowed. In addition,
a hard constraint is set on CO2 emissions: a cap on CO2 is
set.

Scenario 2: This scenario follows the same assumptions
as scenario 1 except that it does not consider the constraint
on energy not served. The cost associated with electricity not
served equals 3000€/MWh, which is a standard value in the
electricity context [35].

Scenario 3: This scenario leverages the constraint on
CO2 emissions, and does not force the avoidance of energy
not served but is penalized by 3000€/MWh not served. A
penalty is associated with any CO2 emission in the atmo-
sphere in the form of a fee equal to 80€/t - a value that reflects
the current price of CO2 in the EU-ETS trading system [15].

Scenario 4: This scenario follows the same assumptions
as scenario 3, with the difference that the cost of CO2 is equal
to 0€/t. The aim is to showcase the system’s configuration
without any considerations for CO2 emissions.

Scenario 5: This scenario follows the same assumptions
as scenario 1, with the difference that the only available
RREH is in Greenland.

These scenarios summarized in Table 2 vary in their
degree of constraint. Scenario 1 is the most restrictive,
with a cap on CO2 emissions and no allowance for energy
not served. Scenario 2 allows for energy not served, while
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Scenario Cap on CO2 Cost of CO2 ENS Cost ENS Objective
(kt) (€/t) (k€/MWh) (M€)

1 0.0 0 No - 80004.82
2 0.0 0 Yes 3.0 77990.20
3 No 80 Yes 3.0 75437.39
4 No 0 Yes 3.0 72511.43
5 0.0 0 No - 109441.54

Table 2
Parameters and objective for a 2 years optimization horizon for each scenario.
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Figure 3: (a): Breakdown of costs per scenario and per cluster (Belgium (BE), Algeria (DZ), and Greenland (GL)). (b): Breakdown
of costs per scenario per asset function. Flexibility covers storage capacities, CO2 infra covers CO2 capture, storage, and transport,
power covers means of electricity production, conversion covers all assets that convert one commodity into another and transport
HVDC lines and CH4 carriers.

scenarios 3 and 4 remove the cap and replace it with CO2prices of 80€ and 0€ per ton, respectively. Finally, scenario 5
requires the use of the RREH in Greenland, with parameters
identical to those of scenario 1.
5.4. Analyses and Discussion

In this section, we introduce and discuss the results in
detail. We choose to present a cross-scenario analysis in light
of key indicators and statistics extracted from the model.

Total cost.
The results indicate that the costs associated with en-

abling the hub in Algeria are substantially lower than those in
Greenland, as depicted in Figure 3 (a) where nothing is built
in the Greenland hub from scenarios 1 to 4, despite it being
available for use. This disparity in costs can be attributed
to the over-dimensioning of flexibility assets, particularly
the storage capacities, as illustrated in Figure 3 (b). This is
primarily applicable to electricity generated solely through
wind in Greenland, whereas both solar and wind electricity
are generated in Algeria. This implies that the flexibility as-
sets have to play a leading role in maintaining the minimum
required electricity delivery in the electrolysis power plant.

Furthermore, a reduction in total costs is observed in the
first four scenarios with respect to the objective. This is ex-
plained with the order of the scenarios based on their degree
of constraint, with scenario 1 being the most constrained and
scenario 4 being the least.

Power installation capacities.
All power capacities installations are displayed in Ta-

ble 3.
The potential in Belgium for solar energy is never

reached, while for both wind offshore and onshore, the
potential is reached in all scenarios.

From scenario 1 to scenario 2, the only difference being
the allowance of ENS, there is an increase in the installation
of controllable energy production assets. Indeed, there is a
shift in capacity from CCGT to solar energy in Belgium
between the first scenario and the second.

Regarding scenarios 1 and 5—similar except for the
extent of Greenland’s usage in scenario 5—solar energy in
Belgium is less developed in scenario 1 than in scenario
5. This emphasizes the system trade-off between importing
more or less methane from the RREH when it is cheaper.
Importing from Greenland is more expensive and leads to an
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Scenario Wind onshore Wind offshore Solar CCGT Wind Wind Solar
BE BE BE BE GL DZ DZ

1 8.40 8.00 13.42 19.58 0.00 98.16 95.21
2 8.40 8.00 17.43 15.72 0.00 94.67 91.85
3 8.40 8.00 16.77 15.86 0.00 87.69 84.90
4 8.40 8.00 17.23 15.57 0.00 86.81 84.05
5 8.40 8.00 16.90 19.58 126.48 0.00 0.00

Table 3
Total Power installation in GW per scenario.

Scenario PCCC PCCC CCGT DAC DZ DAC GL Carrier DZ Carrier GL
1 4.11 2.34 1.40 0.00 7.443 0.000
2 4.11 2.00 1.64 0.00 6.552 0.000
3 4.11 1.83 0.00 0.00 9.359 0.000
4 5.00 1.62 0.00 0.00 9.255 0.000
5 4.11 2.98 0.00 1.14 0.000 7.905

Table 4
Capacity, in kt/h, of CO2 capture technology and transport by hub and per scenario.

increase in power capacity installation in Belgium for solar,
but it does not reach its maximum potential.

Another comparison can be made with the work of [3],
where the capacity installation in the hub for the refer-
ence scenario is 4.3GW of solar and 4.4GW of wind. In
our case, the reference scenario 1 displays 98.16GW and
95.21GW, respectively. The power installation capacity is
multiplied by approximately 22 while providing, on average,
282TWh/year of gas (HHV) to serve the gas demand and
part of the electricity demand in Belgium, which is 28.2
times the gas production in the original paper. Therefore,
thanks to import of CO2 power requirements within the hub
are less important.

CO2 installations (transport, capture).
In Table 4, the capacities of the CO2 capture units and the

installations of transport capacity per scenario are displayed.
Each time PCCC is activated, we recall that capturing CO2is the only means to create gas in our system, and thus a
minimum installation is required to support the demand. On
the other hand, the DAC is only activated when a CO2 cap is
set (scenario 1, 2 and 5). PCCC has an efficiency of CO2capture set to 90%, which means that a direct air capture
technology asset is necessary to recover the remaining 10%
of emissions in the atmosphere. This leads to a direct conse-
quence, which is that when the DAC is available, the capacity
of transport decreases because CO2 is locally available in the
hub. However, the cost of CO2 capture by PCCC added to
transport, liquefaction/regasification of CO2 is cheaper than
the cost of DAC in the RREH. The only way to put PCCC
out of business would be to have a distance between the hub
and the energy demand centre so long that the transport cost
would increase too much.

Cost of CO2 derived and Cap of CO2.
From the first, second, and fifth scenarios, we are able

to derive shadow prices thanks to the CO2 cap constraint.
These correspond to approximately 177€/tCO2 for the first
and second scenarios and 258€/tCO2 for the fifth scenario.

This shows that given the system considered, i.e., Belgium
and RREH, putting a price of CO2 equal to 177€ would
avoid these emissions in the atmosphere and activate the
export of CO2 to Norway for storage purposes. In scenario
3, where a price of 80€/tCO2 is set, there is no export
of CO2 to Norway. Therefore, a net balance of CO2 in
the atmosphere of approximately 17Mt/year is observed. In
scenario 4, where no price is fixed, similar to scenario 3 there
is no export of CO2 to Norway, and there is a net balance of
CO2 in the atmosphere which is equivalent to 24.5Mt/year.

We would like to emphasize that the CO2 cap in our
model only considers the emissions from the industrial and
energy sectors, which are fully modeled. It does not account
for a part of the emissions resulting from the gas demand
served. Of this demand, 32% is attributed to industrial needs,
which are included in the statistics of the 40 Mt of CO2emitted per year (see subsection 5.2), while the remaining
68% is due to heating and is not covered by our cap. This
heating gas demand translates to approximately 12.3 Mt of
CO2 emitted per year.

Cost of CH4 derived
To estimate the cost of CH4 production, we first subtract

from the optimal objective function the cost of the means
of electricity production in Belgium (PV, on/offshore wind,
CCGT), the cost of unserved energy (when applicable), and
the cost related to the export of CO2 for sequestration. All of
these costs are subtracted because they do not refer directly
to the cost of producing synthetic methane but rather for
meeting the electricity demand in the Belgium cluster (cfr
Figure 1). Then, we divide the obtained cost by the total
energy content (HHV) in CH4 produced at the output of the
regasification power plant in Belgium.

These methane costs, listed in Table 5, are compared to
the price of 147.9€/MWh of methane (HHV) obtained by
[3]. Our scenarios achieve a lower cost for gas production
(except for Greenland). This demonstrates that PCCC, which
uses smoke with a high concentration of CO2 combined with
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Scenario 1 2 3 4 5
[€/MWh] 134.86 136.67 132.92 128.14 187.94

Table 5
Estimation of methane price by retrieving the costs of power
installations in Belgium, costs of unserved energy, and costs of
exporting CO2 for storage purposes.

transport, is more cost-effective than having only access to a
DAC unit, as previously mentioned.

In our system, no fossil gas is available for import to
Belgium; only synthetic gas produced from CO2 capture is
used. If fossil gas were still available for import, our model
would seek to minimize costs and import as much cheap gas
as possible while staying within our carbon budget.
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Figure 4: Evening of January 18th leading to the maximum
shadow price associated with the hard constraint on energy
not served in scenarios 1 and 5.

ENS cost discussion
The cost of unserved energy is a fixed parameter in

scenarios 2, 3, and 4, but not in scenarios 1 and 5. Instead, a
hard constraint is imposed to ensure that electricity demand
is always met, resulting in a shadow price associated with the
constraint. The maximum shadow price values for scenarios
1 and 5 are 736,139€/MWh and 1,040,501€/MWh, respec-
tively. The significantly higher costs of ENS, in comparison
with the 3000€/MWh set for scenarios 2, 3, and 4, are
attributed to the peak in electricity and gas demand observed
on January 18th at 18:00 (as shown in Figure 4), where
renewable energy load factors were low. Thus, all energy
demand had to be supplied by the Combined Cycle Gas
Turbine (CCGT) and gas resources.

Impact of uncertainty in CO2-related technologies on
costs

In this analysis, we replaced the deterministic values for
the CAPEX of CO2-related processes with uniform distri-
butions, as outlined in Table 1. These distributions are then
propagated through the multi-energy system optimization
model using PCE (subsection 4.2) to determine the statistical

moments and global sensitivity indices on the total cost,
shadow price and cost of methane.

The distribution of the total cost in scenario 1 is char-
acterized by a mean of 79989 M€ and a standard deviation
of 699 M€, resulting in a Coefficient of Variation (CoV),
ratio between the standard deviation and the mean, of 0.9%.
Notably, the mean cost is marginally lower than the deter-
ministic response of 80004 M€. Consequently, there exists
a 51% likelihood of realizing a total cost that is equal to
or less than this value in practice. It is worth highlighting
that this uncertainty in total cost is primarily driven by the
probabilistic CAPEX related to the PCCC, as indicated by a
global sensitivity index of 0.92 related to this parameter. Ad-
ditionally, there is a marginal influence from the probabilistic
CAPEX associated with the DAC, with a global sensitivity
index of 0.07. Therefore, while the overall variance in total
cost remains modest, focusing on the bulk manufacturing
of PCCC units emerges as the most effective strategy for
uncertainty mitigation.

cumulative
probability

total cost [M€]

probability
density

Figure 5: The probability density function (top) and cumulative
distribution function (bottom) of the total cost for scenario 1.

The shadow price in scenario 1 follows a distribution
characterized by a mean of 177.38 €/tCO2 and a standard
deviation of 7.69 €/tCO2, resulting in a CoV of 4.3%. An-
other observation is that this uncertainty is almost entirely
attributable to the distribution of the CAPEX of the DAC,
as evidenced by a global sensitivity index of 0.99. The
mean value of 177.38 €/tCO2 is marginally lower than the
deterministic model response of 177.44 €/tCO2, resulting
in a 51% likelihood of observing a value lower than the
deterministic response (Figure 6).

Consistent with the distributions on total cost and shadow
price, the variance on the cost of methane is relatively
limited: A standard deviation of 1.55 €/MWh and a CoV
of 1.2% when measured against a mean of 134.68 €/MWh
(Figure 7, top). This variance is predominantly driven by
the distribution of the CAPEX of the PCCC, as indicated
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cumulative
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Figure 6: The probability density function (top) and cumulative
distribution function (bottom) of the shadow price for scenario
1.

by a substantial global sensitivity index of 0.97. The non-
linear response of the energy system optimization model to
the range of CAPEX for the PCCC results in a mean methane
price below the deterministic value of 134.86 €/MWh. As a
result, there is a 53% likelihood of attaining a methane price
equal to or below this deterministic value (Figure 7, bottom).

cumulative
probability

methane price [€/MWh]

probability
density

Figure 7: The probability density function (top) and cumula-
tive distribution function (bottom) of the methane price for
scenario 1.

6. Conclusion
In this work, we present our framework of multi-remote

energy hubs with capture of CO2 enabled in an energy
demand center and its valorization by synthesizing methane
in remote renewable energy hubs. We demonstrate the fea-
sibility of serving the energy demand in 2050 of an entire
country with only renewable energy and gas power plant
fueled by synthetic methane while decarbonizing the energy
and industry sectors on a case study implying Belgium
as an energy demand center and two RREHs: Greenland
and Algeria. Our reference scenario exhibits a gas price
of 135 €/MWh instead of 150 €/MWh in [3] where only
direct air capture was available in the RREH in order to feed
CO2 into the methanation process. The methane price in the
reference scenario, ranging from 131 to 138 €/MWh due to
the uncertain CAPEX associated with emerging and mature
CO2 processing technologies, exhibits a 53% likelihood of
remaining below the deterministic reference scenario value
of 135 €/MWh. This shows the potential of Post Combus-
tion Carbon Capture installations in the context of remote
renewable energy hubs supply chains. We also derive a cost
of CO2 of 177€ per ton in order to avoid any emission in
the industrial and energy sector in Belgium. Finally, our
model effectively captures the "competition" between differ-
ent RREHs and is able to select exactly in which investments
should be prioritized. In our simulations, the investments
were made only for the RREH located in Algeria. In this
respect, it would be interesting to study further how the
different devices structuring the RREH in Greenland should
be modified to become competitive with the RREH located
in Algeria. This could be done, for example, by modifying
the wind turbines selected for the Greenland hub so that they
can operate with higher nominal wind speeds and higher cut-
off speeds in order to better exploit the strong winds in this
area.
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B. Glossary
BE Belgium
CAPEX Capital Expenditure
CCGT Combined Cycle Gas Turbine
DAC Direct Air Capture
DZ Algeria
EDC Energy Demand Center
ENS Energy Not Served
ETS Emission Trading System
GBOML Graph Based Optimzation Modeling Language
GL Greenland
HHV Higher Heating Value
OPEX Operational Expenditure
PCCC Post Combustion Carbon Capture
PV Photovoltaic
RE Renewable Energy
RREH Remote Renewable Energy Hub
RES Renewable Energy Sources

Nomenclature
Sets and indices

 , 𝑒 set of hyperedges and hyperedge index
 hypergraph with node set  and hyperedge set 
𝑛, 𝑖 set of external variables at node 𝑛, and variable index
 , 𝑛 set of nodes and node index
 , 𝑡 set of time periods and time index

Parameters

𝜈 ∈ ℕ number of years spanned by optimisation horizon
𝜅𝑖 ∈ ℝ+ maximum flow capacity of commodity 𝑖

𝜁𝑛 ∈ ℝ+ annualised CAPEX of node 𝑛 (flow component)
Variables

𝑞𝑛𝑖𝑡 ∈ ℝ+ flow variable 𝑖 of node 𝑛 at time 𝑡
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