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Simple Summary: Aquatic animals are consistently exposed to the threats of environmental deterioration and 
infection outbreaks due to the excessive use of antibiotics and synthetic drugs. This practice leads to the 
accumulation of residues in aquatic systems and the development of antimicrobial resistance among 
pathogens. Nature-based solutions, such as functional feeds containing probiotics, prebiotics, postbiotics, and 
synbiotics, play a crucial role in maintaining a healthy environment and promoting the well-being of animals 
in aquaculture. Drawing upon a thorough literature survey and experimental evidence, these agents have been 
shown beneficial to aquatic animals and its ecosystem. Consequently, these biotic agents emerge as promising 
natural alternatives to traditional synthetic drugs and antibiotics in aquaculture. 

Abstract: Aquaculture is a fast-emerging food-producing sector in which fishery production plays an 
imperative socio-economic role, providing ample resources and tremendous potential worldwide. However, 
aquatic animals are exposed to the deterioration of the ecological environment and infection outbreaks, which 
represent significant issues nowadays. One of the reasons for these threats is the excessive use of antibiotics 
and synthetic drugs that have harmful impacts on the aquatic atmosphere. It is not surprising that functional 
biotic feeds such as probiotics, prebiotics, postbiotics, and synbiotics have been developed as natural 
alternatives to sustain a healthy microbial environment in aquaculture. These functional feed additives possess 
several beneficial characteristics, including gut microbiota modulation, immune response reinforcement, 
resistance to pathogenic organisms, improved growth performance, and enhanced feed utilization in aquatic 
animals. Nevertheless, their mechanisms in modulating the immune system and gut microbiota in aquatic 
animals are largely unclear. This review discusses current research advancements to fill research gaps and 
promote effective and healthy aquaculture production. 
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1. Introduction 

Aquaculture is a fast-emerging food manufacturing sector worldwide, with Asia currently 
contributing to 90% of the total production. This sector involves the culture of tilapia, carp fishes, 
catfishes (non-air breathing and air-breathing), pangasius fishes, and prawns. Tilapia, in particular, 
is one of the main farmed fish globally and has seen a quadrupling in production over the past few 
decades due to its suitability for aquaculture, market demand, and stable market prices [1]. Among 
the major socio-economic sectors in the world, aquaculture generates numerous employment 
opportunities and fulfills a vital need for nutrients [2]. China is one of the largest seafood producing 
country in the world, alongside others like India, Vietnam, Bangladesh, Indonesia, Norway, and 
Egypt. In 2018, China alone produced 62.2 million tons of fish, representing more than 60% of the 
total fish production  [3].  
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from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2023                   doi:10.20944/preprints202311.0408.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202311.0408.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

Aquatic animals, especially fishes, are exposed to adverse conditions due to the deterioration of 
the ecological environment. Disease outbreaks pose a significant challenge for aquaculture, 
impacting both the financial status and the economic development of communities in the Asia-Pacific 
region. Various types of aquatic microbial pathogens (such as Aeromonas hydrophila, Aeromonas 

salmonicida, Vibrio anguillarum, Vibrio vulnificus, Vibrio salmonicida, Streptococcus sp., Yersinia 

ruckeri), viruses (causing diseases like  hematopoietic necrosis, yellow head virus, viral hemorrhagic 
septicemia), and parasites (e.g., Ichthyophthirius multifiliis) can cause different types of diseases in 
aquatic animals, including luminous vibriosis, filamentous bacterial disease, shell disease, larval 
mycosis, protozoan infections white spot, velvet disease, fungal infections, and dropsy [4–6].  

The aquaculture production sector typically relies on traditional methods that involve the use of 
antibiotics (e.g., chloramphenicol, fluoroquinolones, nitrofurans, quinolones, florfenicol, 
sufamerazine, chorionic gonadotropin, oxytetracycline dihydrate, oxytetracycline hydrochloride) 
and synthetic chemicals (e.g., nitrofurans, formalin, malachite green, potassium permanganate, 
copper sulfate, and Neguvon) to control diseases. However, some of these chemotherapeutic 
applications have been widely criticized due to their negative impacts on aquaculture such as marine 
debris gathering, the rise of drug resistance and immunosuppressant activity. The intensive use of 
these traditional practices leads to the buildup of antibiotic and chemical residues, not only in aquatic 
animals but also in consumers, resulting in side effects such as diarrhea, vomiting, and stomach 
problems. Moreover, these traditional methods mainly affecting aquatic productions have been 
reported to be ineffective in controlling diseases in large-scale aquaculture processes [7–12]. 

In fish, the gastrointestinal tract (GIT) microbiota plays several vital functions. These microbial 
consortia increase digestive action, enhance the immune system, protect against harmful microbes, 
and improve intestine development [13]. In recent years, some gnotobiotic (germ-free) animal models 
have been developed as wonderful tools for studying host-microbe interaction. Moreover, 
gnotobiotic models have been used to investigate the role of gut microbiota in xenobiotic metabolism  
[14,15].  Using zebrafish (Danio rerio) model, researchers observed that the presence of alkaline 
phosphatase in the brush border intestine plays a vital function in gut epithelium division, as well as 
in the modulation of gene expression in bacteria, which possesses various functional properties (e.g., 
epithelial maturation, hormone-secreting endocrine organs and mucous secreting goblet cells in the 
gastrointestinal tract in D. rerio larvae [16,17]. Recently, it was reported that TLR2/MyD88 signaling 
played an essential role in innate immune recognition and activation during the colonization of two 
indigenous bacteria (Chryseobacterium ZOR0023 and Exiguobacterium ZWU0009) in zebrafish [18]. 
Indigenous probiotic microbes have significant functions such as developing the immune system 
(nonspecific and specific immunity) and inducing different types of cytokines, namely TNF-a, 
interleukins (IL-6, IL-10, IL-12), and IFN-c [19]. Indigenous probiotic Bacillus pumilus SE5 activates 
the expression of TLR2 signaling and antibacterial peptides genes in the intestine of grouper 
(Epinephelus coioides) The enhanced TLR2 signaling may result from the interaction of the host with 
the probiotic cell components [20,21]. In addition to enhancing the immune system in fish, the gut 
microbiota also provides important protection against pathogenic organisms [22,23]. 

Functional feed additives of probiotics, prebiotics, and/or synbiotics in diets have been 
extensively recommended to maintain a healthy GIT microbial community, improving infection 
resistance, and consequently promote the health of cultured aquatic organisms [24–26]. These biotic-
based ingredients, consisting in live microorganisms, inert substrates, and the combination of both, 
possess a wide range of multiple functionalities They represent alternative nature-based solutions for 
improving aquatic animal health and production [23,27,28]. This review provides insights into the 
current developments in the utilization of probiotics, prebiotics, postbiotics, and synbiotics in 
aquaculture applications. It  also presents a new way to develop the healthy and modern 
aquaculture industry.  
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2. Probiotics 

2.1. Definition, and characteristic features 

The Food and Agriculture Organization (FAO) of the United Nations and the World Health 
Organization (WHO) defined probiotics as “Live microorganisms that, when administered in 
adequate amounts, confer a health benefit on the host” [29]. Recently, the term probiotics is associated 
with microbial feed additives, when controlled in enough amounts, conferring health and beneficial 
impact on the host of aquatic animals [28]. 

Probiotics act as a defense system for the host against harmful microbes or foreign substances 
[30–33]. They also produce beneficial bioactive molecules such as enzymes, proteins, lipids, organic 
acids, and others. Some of these bioactive molecules improve adherence to probiotics and reduce 
therefore the activity of pathogens in the gut region through the surface competition mechanism [34]. 
Probiotics play a significant responsibility in strengthening the immune system of the host [35]. While 
earlier studies have noted the utilization of probiotics in pigs, poultry, cattle, and humans, their 
application in aquaculture is a relatively new idea [36,37]. Probiotics might be managed in two ways 
in aquaculture. They can be supplemented with feed to modulate the gut microbes, or they can be 
managed by direct addition into the water, thereby inhibiting the growth of pathogens. These modes 
of administration are very critical in the utilization of probiotics in finfish and shrimp aquaculture 
([38,39]. Probiotics could be alive, dead, or microbial cell components, and provide benefits to the 
host when administered via the feed or to the rearing water. This is achieved at least in part via 
improving the microbial balance of the host or ambient environment [39]. Figure 1 summarizes the 
different entryways of probiotics and their benefits in the aquaculture system. 
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Figure 1. Illustration of the use and impact of probiotics in aquaculture systems. 

Probiotics appear a new element agent for the development of aquaculture systems by exerting 
several favorable effects on growth activity, immune system, digestion, water quality, inhibition of 
pathogens, and regulation of gut microbes of aquatic animals. The utilization of probiotics in 
aquaculture is a modern trend, although its effectiveness in the aquatic ecosystem has not been 
considered comprehensively. Probiotics are ubiquitous, commonly present in aquatic animals, and 
play an important protective role throughout the digestive system [40,41]. Mainly represented by 
Lactobacilli, these beneficial microorganisms are vital to prevent illnesses and improve the aquatic 
animal GIT functions by excreting secondary metabolites such as lactic acid and other bioactive 
compounds [42,43]. These biomolecules synthesized by probiotics protect against the inhibitory 
molecules from predators [44]. They also can be extracted from probiotics in terrestrial plants and 
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marine life forms, and then utilized to enhance disease resistance, develop the immune system, 
reduce environmental stress, and increase feed quality levels [45,46]. Advanced studies in this field 
have reported microbial by-product biomolecules such as enzymes, lipids, proteins, and immune 
toxins [47]. Nowadays, there exist some probiotic products commercially available, which are already 
used in aquaculture as feed additives [48]. These microbial by-products are beneficial and are mainly 
helpful in enhancing the health status of aquatic animals.  

The characterization and identification of potential probiotics are based on various criteria such 
as acid and bile tolerance, no hemolytic activity, inhibition of pathogens, no pathogenicity, survivable 
in storage and field, cultivable on a big scale, competent to adhere to the epithelial liner of the gut, 
free of plasmid-encoded antibiotic resistance genes, safe for use as a feed additive, acting as a growth 
promoter, anti-inflammatory, antimutagenic, immunostimulatory, and beneficial effects on host 
animals. Every new strain used for probiotic expansion should contain all the aforesaid features 
[27,49,50]. 

2.2. Possible modes of action of probiotics in aquaculture 

Significant effects of probiotic, e.g. Bacillus sp. as feed supplements, include the improvement of 
growth performance, digestive enzyme activity, infection resistance, and immune response in aquatic 
animals [51,52]. 

2.2.1. Probiotics act as a growth enhancer in aquaculture 

One of the mechanisms, which regulates the metabolism of amino and fatty acids, is the capacity 
of various probiotic strains in producing vitamin B12, as revealed by a study on carp gut [53,54]. In 
addition, this is helpful to enhance fish growth and eradicate vitamin B12 deficiency in fish [55]. Also, 
essential macronutrients are usually supplied through feeds. Various micronutrients such as amino 
acids, vitamins, and fatty acids are very important for physiological functions as nutrients in aquatic 
animals [56–58]. For instance, diverse fish species such as carp (Cyprinus carpio), rainbow trout 
(Oncorhynchus mykiss), channel catfish (Ictalurus punctatus), and tilapia (Oreochromis niloticus) are 
identified to synthesize vitamin B12 [59–61]. The growth and survival rates of juvenile black tiger 
shrimp (Penaeus monodon) were enhanced when these were fed for 100 days with a combination 
of Lactobacillus sp., previously isolated from the GIT of chicken [62]. In fact, probiotics improve the 
digestive function of aquatic animals by producing or inducing the secretion of different kinds of 
extracellular enzymes such as proteases, amylases, and lipases. They also provide various growth 
nutrients such as vitamins, fatty acids, and amino acids [63]. The function of probiotics results in 
abridged feed cost, which accounts for 60-70% of the contribution cost of fish production [64,65]. Both 
the maximum growth performances and most excellent feed conversion ratio were detected when O. 

niloticus was fed with probiotic Micrococcus luteus [66,67]. Bacillus subtilis improved feed digestibility, 
enhanced weight gain, feed conversion, and significantly increased the survival rate of 
Bullfrog (Lithobates catesbeianus) fed with different doses (2.5, 5.0, and 10.0 g/kg) [68,69]. Bacillus 
species aid in the digestion of aquatic animals by supplying exoenzymes (proteases, lipases, and 
amylases) that enhance digestive enzymatic  [70]. It was observed that Streptococcus faecium and 
Lactic acid bacteria (LAB) improved the growth and feed competence of Israeli carp and juvenile 
carp, respectively [71]. 

2.2.2. Biocontrol of bacterial diseases in aquaculture 

In the past decades, numerous studies have stated that probiotics synthesize different types of 
inhibitory substances responsible for the antagonistic activity against pathogens. Two probiotic 
strains of LAB (Lactococcus lactis MM1 and Enterococcus faecium MM4) isolated from the intestine of 
orange-spotted grouper (E. coioides) can secrete several inhibitory substances such as hydrogen 
peroxide and bacteriocin-like substances. These can be utilized to induce antimicrobial activity 
against different pathogens such as Staphylococcus aureus, V. harveyi, and V. metschnikovi that affect 
grouper (E. coioides) [72,73]. Probiotic B. pumilus H2 had strong inhibitory activity against Vibrio sp 
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through its main mechanism of amicoumacin production to involve disrupting the cell membrane 
and cell lysis, thus showing anti-Vibrio activity [74,75]. Probiotic Bacillus velezensis cell-free 
supernatant contained different types of bioactive molecules against A. salmonicida infection [76]. The 
lipopeptides N3 synthesized by the probiotic Bacillus amyloliquefaciens M1 have strong antibacterial 
activity in the whole-cell membrane, which can exhibit significant effect of ion-conducting channels 
in the whole-cell membrane as well as membrane-active properties [77,78]. The probiotic 
species Clostridium butyricum culture supernatant included different types of inhibitory substances, 
lowered the pH in the intestine, and thus decreased the growth of pathogens in fish intestinal 
epithelial cells [79]. Probiotic E. faecium was supplemented to the diets of Olive flounder and can 
enhance the antibacterial activity [80]. 

2.2.3. Biocontrol of viral diseases in aquaculture 

Microorganism strains with potential probiotic effects in aquaculture such as Pseudomonas spp., 
Vibrios spp., and Aeromonas spp. induce antiviral effects against hematopoietic necrosis virus (IHNV) 
infection [81,82]. Similarly, the potential probiotic strain Pseudoalteromonas undina VKM-124 was used 
to improve Yellow Jack (Carangoides bartholomaei) larval survival and enhance the antiviral effect 
against Neuro Necrosis Virus (SJNNV) infection [83,84].  

2.2.4. Immunostimulant agents in aquaculture 

Immunity development and modulation are amongst the various health benefits of probiotics in 
aquaculture. The majority of the earlier studies have dealt with the health-boosting capability of 
probiotics in aquatic organisms. Currently, probiotics are very much focused on the immunological 
development properties of the piscine system [19]. Different types of probiotics improve various 
immunological properties, and notably several fishes use the efficiency of probiotics to vitalize teleost 
immunity in both in situ and ex-situ conditions [85]. Although hopeful findings were reported in 
previous studies, most of immunostimulants did not progress to large-scale function for fish. Since 
various immunostimulants in aquaculture produce similar effects, researchers have demonstrated 
the utilization of probiotics to enhance disease resistance and the immune system of carp fish species 
[86,87]. Several carp fishes showed an increase in the production of total serum protein, nitric oxide, 
lysozyme, albumin, phagocytic activity by blood leucocytes, and the expression of IL-1b, superoxide 
anion, and myeloperoxidase content, respiratory burst activity, and globulin levels, complement C3, 
TNF-α, and lysozyme-C [86,88]. Current study reports indicate that probiotics (either single or mixed 
type) could enhance the immunological development of fish [89]. Those reports have emphasized the 
immunomodulating properties of beneficial living cell organisms and the factors to facilitate the 
optimal induction of defense responses in the fish community. The probiotic strain B. pumilus SE5 
isolated from the intestine of fast-growing grouper E. coioides [90,91] and subsequent studies 
demonstrated that both the viable and heat-inactivated B. pumilus SE5 could shape the intestinal 
immunity and microbiota [92], and improve the growth performance and systemic immunity in E. 

coioides [93]. The  dietary supplementation of the cell wall (CW), peptidoglycan (PG), and 
lipoteichoic acid (LTA) of probiotic B. pumilus SE5 and their effect on intestinal immune-related genes 
expression and microbiota have been evaluated in 60 days of feeding trial. PG and LTA of probiotic B. 

pumilus SE5 were more effective than CW in shaping the intestinal immunity and microbiota in E. 

coioides [20], even if the mechanisms are largely unclear and need further study. 

2.2.5. Interference of quorum sensing in aquaculture 

Quorum sensing (QS) is a communication system among bacterial cells, which is very useful in 
controlling different kinds of biological macromolecule expressions like the virulence agents in a cell 
thickness-dependent comparative performance [94]. In this process, control of bacterial cells in gene 
expressions by generative, loosening and conceiving tiny marker molecules are called auto-inducers 
[95]. Disruption of the QS process of pathogenic organisms has been a probable anti-infective 
strategy, and different types of methods have been used to investigate the analysis of QS. These 
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include the inhibition of signal molecule biosynthesis, application of QS antagonists, chemical 
inactivation of QS signals by oxidized halogen antimicrobials, signal molecule biodegradation by 
bacterial lactonases and by bacterial and eukaryotic acylase, and application of QS agonists in 
aquaculture [96,97]. N-Acyl homoserine lactones (AHLs) are the most important family of QS auto-
inducers utilized in Gram-negative bacteria, and their biodegradation showed as a potential method 
to interrupt QS [98]. Bacillus sp. QSI-1 is a quorum quencher on virulence agent production and 
biofilm arrangement of the fish pathogen (A. hydrophila). The fish fed with QSI-1 was experimentally 
performed to have a relative percentage survival of 80.8%. The results indicate those AHLs degrading 
bacteria should be contemplated as an alternative to antibiotics in aquaculture for the biocontrol of 
bacterial fish infections [98,99]. In a biofilm system, bacteria are resistant to high temperatures, 
phagocytic cells, surfactants, antibiotics, and antibodies, and could alter their vital transmissions by 
quorum sensing signaling [100]. Probiotic Bacillus strains can effectively secrete quorum quenching 
enzymes and could reduce the pathogenic activity of A. hydrophila YJ-1 and control gut microbiota 
[101,102]. However, the form of action for this strain is still limited. Dietary supplementation of 
probiotics with quorum quenching activity such as Bacillus cereus QSI-1 has been shown to increase 
the intestinal barrier function and enhance the immune system of crucian carp against A. 

hydrophila infection. The quorum quenching bacteria increased the expression of tight junctions (TJ) 
proteins, ZO-1 and Occludin, which control the permeability and absorption of the intestinal mucosal 
barrier of crucian carp [103]. 

2.2.6. Stress improvement in aquaculture system 

Stress in a fish’s life cycle disrupts the entire production. The culture species may be weakened 
and averse to taking food. This is called food irrational fear. In this condition, probiotics in culture 
farms can decrease stress levels as well as help to enhance the innate immune system against 
pathogens and environmental stressors [6,104]. Probiotic treatment is very helpful in increasing the 
production of fish within the given time and it also reduces the stress level in normal aquaculture 
practice.  

Studies have concluded that the use of some probiotic strains increased chronic stress resistance 
in zebrafish (D. rerio) [105,106]. An experimental nutritional probiotic Lactobacillus delbrueckii ssp. 
Delbrueckii supplementation of sea bass led to a decrease in cortisol levels from 25 to 59 days, which 
in fish tissue is a stress indicator since it is directly engaged with the host's reaction to stress [107]. 
One more approach evaluated that fishes treated with probiotics exhibited increased flexibility in 
stress tests when compared with the control group [65]. Antioxidative properties of 
probiotic Lactobacillus fermentum induce protective action in the intestinal microbial ecosystem and 
help to overcome exo- and endogenous oxidative stress [108]. The probiotic strain Bacillus 

coagulans SCC-19 alleviates the non-specific immune damage induced by cadmium in common carp 
while relieving oxidative stress induced by cadmium in fish [109].  

2.2.7. Reducing heavy metals in aquaculture 

Heavy metals (e.g., lead, cadmium, silver, chromium, mercury, cobalt, zinc, iron, and copper) 
are present in the soil, water, and atmosphere [110–112]. These metals can cause toxic effects on all 
organisms and pose a huge risk to food quality, crops, and environmental quality. Heavy metals are 
mainly connected with anthropogenic action in the ecosystem [113]. Aqueous release from metal 
industries (steel, mining, and electroplating) contains elevated levels of heavy metals that locate their 
system into water bodies which are also utilized for aquaculture action [114,115]. These heavy metals 
get accumulated in fish tissue, and thereby is a matter of great concern in human consuming via the 
food chain breathing. Their elimination is very helpful in reducing the toxic effect of the aquatic 
environment and outflow is subsequently imperative [116]. Among all recommended methods for 
eliminating heavy metal is the process of utilizing microbes, which is cost-effective [117]. Bacterial 
metabolic action activates the heavy metals via the production of organic and inorganic acids, 
complex formation with organic ligands, or oxidation reactions [118]. Microbes and microbial by-
products can accumulate separate minute particles in the form of dissolved metals [119]. Generally, 
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heavy metals activate the sporulation development of Bacillus species and thus decrease the heavy 
metal absorption [114,120]. In addition, probiotic microbes from aqua farming sediments can be 
utilized as a dietary supplement and helps to remove heavy metals, metal-resistant, and antibiotic-
resistant categories from the intestine of aquatic organisms, particularly fish, to control the progress 
of heavy metals accumulation [121]. 

2.3. Major probiotic genera as biocontrol agents in aquaculture 

The major probiotic genera used in aquaculture are Lactobacillus and Bacillus [122]. Most in 
case, Bacillus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella have been isolated 
from fish and shellfish gut [123–127]. Supplementation in aquaculture feed is achieved using single-
strain probiotics or association of various bacteria as multi-strain probiotics (MSP), which are 
reported to have more beneficial effects to host, owing to synergistic effects among various strains 
[128]. Table 1 lists some examples of probiotic-based functional feed additives for aquatic animals. 

Table 1. Functional feed additives of major probiotics in aquatic animals. 

Probiotics organisms Functions Aquatic organisms References 

Bacillus    
B. licheniformis HGA8B ↑growth performances and 

feed conversion ratio 
Up-regulation of immune 

genes 

O. niloticus [129] 

B. cereus G19 

B. cereus BC-01 

↑ growth and immunity Apostichopus 

japonicus 

[130] 

B. cereus EN25 Immunity and resistance 
against Vibrio splendidus 

A. japonicus [131] 

B. pumilus SE5 ↑ growth and immunity L. vannamei [132] 
B. subtilis AB1 Bactericidal activity against 

Aeromonas infection 
O. mykiss [133] 

Bifidobacterium    
Bifidobacterium animalis 

PTCC-1631 

↑growth performance, 
digestion and nutrient 

utilisation 

O. mykiss [134] 

B. lactis PTCC-1736 ↑growth,nutrient digestability 
and carcass composition 

O. mykiss [134] 

Carnobacterium    
C. divergens 

C. maltaromaticum 

Antagonistic effects against V. 

anguillarum, V. viscosus and A. 

salmonicida 

- [135,136] 

Lactobacillus    
L. plantarum CLFP ↓mortalities against harmful 

strain L. garvieae 
O. mykiss [137] 

L. acidophilus Against Staphylococcus xylosus, 

Aeromonas hydrophila gr.2 and 

Streptococcus agalactiae 
infection 

Clarias gariepinus [138] 

L. pentosus ↑growth performances and 
feed conversion ratio 

↑survival against Vibrio species 

L. vannamei [139] 

Lactococcus    
Lactococcus lactis 

BFE920 

Activation of non-specific 
immune system 

Bactericidal activity against S. 

iniae 

Paralichthys olivaceus [140] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 November 2023                   doi:10.20944/preprints202311.0408.v1

https://doi.org/10.20944/preprints202311.0408.v1


 9 

 

Leuconostoc    
Lc. Mesenteroides CLFP 

196 
 

↑survival against A. 

salmonicida infection 
Salmo trutta [141] 

Pediococcus    
P. pentosaceus HN10 ↑ feed utilization, digestive 

enzyme activity and antivibrio 
activity 

L. vannamei [142] 

Enterococcus    
E. casseliflavus 

CGMCC1.2136 

↑growth performances, 
immunity and digestive 

enzyme activity 

Rutilus rutilus 

caspicus 

[143] 

E. casseliflavus ↑growth performances and 
disease resistance against S. 

iniae 

O. mykiss [144] 

E. durans ↑growth performances and 
survival rate 

O. mykiss [145] 

Clostridium    
C. butyricum 

 

↑antibacterial activity against 
Vibriosis infection 

O. mykiss [146] 

C. butyricum ↑ immunity, regulate gut 
microbiota, antagonistic effects 

against Aeromonas sp., Vibrio 
sp., Pseudomonas sp. 

C. carpio [147] 

Weissella    
W. confusa ↑growth performances O. mykiss [148] 
W. confusa ↑growth performances, 

antibacterial activity against A. 

hydrophila 

Lates calcarifer [149] 

Other strains    
A. veronii BA-1 ↑immune system and 

antibacterial activity 
C. carpio [150] 

Micrococcus luteus ↑growth performances and 
feed conversion ratio 

O. niloticus [151] 

Pseudoalteromonas 

undina VKM-124 
↑survival and antiviral activity Carangoides 

bartholomaei 

[83] 

Yeast    
S.cerevisiae ↑growth performances and 

resistance into waterborne Cu 
toxicity 

Sarotherodon 

galilaeus 

[152] 

S. cerevisiae ↑ immunity and ↓ mortality 
against P. fluorescens 

Mystus cavasius [153] 

Yarrowia lipolytica ↑ immune response, 
antioxidant status, and disease 

resistance against V. 

parahaemolyticus infection 

Lutjanus peru [154] 

Multi-strain    
B. subtilis and Bacillus 

licheniformis (BioPlus2B
) 

↑ resistance against Y. ruckeri O. mykiss [155] 

Lactobacillus delbrueckii 

Lactobacillus rhamnosus 

L. plantarum 

B. bifidum 

↑growth performances and 
immunity 

Acipenser baerii [156] 
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Lactobacillus plantarum 

(STBL1), Saccharomyces 

cerevisiae (STBS1), and 

Bacillus safensis 

(SQVG18) 

↑growth, antioxidant capacity, 
digestion, and gut microflora 

P. vannamei [157] 

↓Decrease or reduce, ↑Increase or improve 

3. Prebiotics 

Prebiotics are "non-digestible sugars, which helpfully influence the host by specifically 
enhancing the development of health-encouraging strains in the gut" [158,159]. Prebiotics improve 
the synbiotic association amid the gut microbiota of the host [160], and are also known as 
immunosaccharides. There are various types of prebiotic compounds, including mannan 
oligosaccharides (MOS), fructooligosaccharides (FOS), and arabinooligosaccharides (AOS), which 
play a significant role in improving the natural immune system [161]. MOS is most frequently used 
in animal diets. This prebiotic improves growth activity, feed utilization, survival rate, development 
of immune reaction, and antagonistic activity against aquatic pathogens [162–164]. Oligosaccharide-
type components have been connected with the development of immunity [165,166], and were used 
extensively in diverse fish species such as Psetta maxima [12], Larimichthys crocea [167], Paralichthys 

olivaceus [168], Rutilus rutilus [169], Piaractus mesopotamicus [170] and Acipenser Persicus [171]. 
Previous study reports have examined the function of prebiotics in cultured finfish and shellfish, 
explaining that these compounds have significant effects on gut microbial composition, immune 
system, and infection resistance against pathogenic organisms in fishes [172,173]. Previous studies 
have also verified the health beneficial effects of prebiotics on growth, and physiological status [174]. 
Prebiotics can improve the capability and feasibility of aquaculture production. The most frequently 
used prebiotics, including xylooligosaccharide (XOS), FOS, transgalactooligosaccharide (TGOS), 
glucooligosaccharide (GOS), soybean oligosaccharide (SBOS), polydextrose, inulin, and 
Lactosucrose, enhance the aquaculture production [175]. Natural sources of prebiotics in vertebrates 
include onion, garlic, tomato, honey chicory, leek, and so on [176].   

3.1. Action in the gastrointestinal tract of aquatic animals 

Prebiotics exert possible effects on host biological response, protecting fish species against 
harmful microbes and thus decreasing their mortality. However, the evaluation of the intestinal 
microbiota of important commercial fishes like hybrid striped bass, channel catfish, salmonids and 
tilapia is necessary to infer if there are any particular bacterial species to be enhanced by the 
utilization of prebiotics. By increasing the production of volatile fatty acids (VFA) in the GIT, the 
host's advantage is the inhibition of potentially pathogenic organisms [177,178]. The synthesis of VFA 
in the aquatic organisms’ GIT indicates the presence of microbial communities [179]. The herbivorous 
fish were the first species (Kyphosus cornelii and K. sydneyanus) shown to contain VFA synthesized by 
the intestinal bacterial community [180]. Another fish species tilapia (Oreochromis mossambicus) was 
established to have VFA produced by intestinal bacterial communities [181]. Prebiotics have 
numerous favorable effects in aquatic animals by enhancing disease resistance and improving 
nutrient accessibility [182]. Recently, our group evaluated the effects of FOS on growth performance 
and predominant autochthonous intestinal microbiota of shrimp (L. vannamei) fed diets with fish 
meal partially replaced by soybean meal. The results showed that a dietary supplement of 2-4 g/kg 
FOS could improve the growth performance, and survival rate, and exert a beneficial effect on the 
intestinal microbiota of shrimp. A dose adding 2-4 g/kg FOS in shrimp diets with fish meal partially 
replaced by soybean meal was recommended [183,184].  

3.2. Regulation in the immune system of aquatic animals 

In the past decades, prebiotics has been used to regulate intestinal microbiota, modulate 
immunity, control pathogens, and increase the survival ability of aquatic animals. Fishes are a diverse 
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group of organisms that include sharks, rays, and bony fishes [195]. Similar to all vertebrates, fishes 
rely fully on their natural immunity against pathogens due to the restrictions in their adaptive 
immune function [187]. There are various cellular and soluble components primarily concerned with 
the immune responses including phagocytes, leukocytes, and auxiliary cells, which are organized in 
tissues and organs with leukocytes being the most functional. The impacts of prebiotics on immunity 
are indirect and involve the modification of the gut microbes, thereby enhancing the immune system. 
Thus, these beneficial components assist in supply change effectiveness, enhance fish growth, and 
induce inhibitory activity against pathogens through the viable prohibition of linkage sites, synthesis 
of natural organic acids (e.g., formic acid, lactic acid, acetic acid), hydrogen peroxide, and numerous 
other compounds like bacteriocins, siderophores, lysozyme, and antibiotics. This also causes a change 
in physiological and immunological responses in fish’s spleen, kidney and thymus, which are major 
lymphoid organs [48,188]. The prebiotic components act as growth promoter for commensal microbes 
to inhibit the adhesion and assault of harmful microorganisms in the epithelial cells. A beneficial 
effect of monosaccharide components arises from enhancing immune function and acting as a 
protection system for lymphoid organs as well. 

3.2.1. Phagocytosis 

Phagocytosis is the process by which immune cells like macrophages and neutrophils, engulf 
and digest foreign cells or particles, such as bacteria, viruses, or cellular debris [189]. FOS (0.5%) is 
used to enhance phagocytosis, respiratory burst, and phenoloxidase activity of sea cucumber 
coelomocytes and infection resistance against V. splendidus infection [190]. The phagocytic capability 
of inhabitant and obtained trout macrophages are related to the circumstances (i.e., in suspension 
versus attached and spread) of the cells at the time of particle treatment. Substrate binding and cells 
spreading may play a very important function in controlling the overall phagocytic capability of 
macrophages. Since the host’s resistance against infectious agents depends upon the phagocytic 
ability of the cells, the finding that obtained trout macrophages can surround larger numbers of 
activity latex particles than inhabitant cells provides a better understanding of immune regulatory 
mechanisms in fish [191]. Dietary supplementation of FOS significantly improved lysozyme activity 
compared to control diet group. However, there were no significant effects of the phagocytic 
percentage of the phagocytic index. In addition,  a combination of FOS and MOS (5.0 g/kg) showed 
a significant difference in phagocytic activity of Japanese flounder [171]. 

3.2.2. Macrophages activation 

Macrophages play a very imperative function in the nonspecific and specific connection of the 
immune function to synthesize the highest level of immune reaction and eliminate harmful microbes. 
Macrophages are stimulated to produce diverse inflammatory cytokines like tumor necrosis factor 
(TNF), IL-1, IL-12, etc. [80]. The alterations in the physiology of macrophages as a result of 
environmental signals can benefit them with improved antimicrobial activity. Nevertheless, 
ecosystem signals do not always cause changes that improve macrophage immune activity. Both 
nonspecific and specific immune responses can result in macrophages that are more vulnerable to 
harmful infections and less prepared to generate cytokines that enhance immune system response 
[192].  

3.2.3. Respiratory burst activity 

A respiratory burst is the fast release of reactive oxygen substances namely superoxide anions, 
hydrogen peroxide, and hydroxyl radicals. These reactive oxygen compounds are generally used to 
defend the capability of the host organism to counter harmful microbes. They are synthesized by 
activated phagocytes that are responsible for destroying microbes [193]. Respiratory burst analyses 
were performed in naturally resistant cells and blood neutrophils using NBT (nitro blue tetrazolium) 
or MPO (myeloperoxidase) methods. Inulin (5 g kg-1) was utilized as a dietary nutrient supplement 
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for Nile tilapia and improved lysozyme and hematocrit NBT action. It also significantly enhanced the 
natural immune system and increased the survival rate against A. hydrophila infection [194,195].   

The marine invertebrates contain enzymes such as tyrosinases, laccases, and catecholases which 
can be modified to complement the system of prophenoloxidase. This enhancement improves 
antagonistic activity through processes like phagocytosis and respiratory burst via opsonization. In 
a study conducted on red swamp crayfish, supplementation of a prebiotic nutrient diet with 8 and 10 
g kg-1 FOS over a 30-day trial period significantly enhanced phenoloxidase reaction, stimulated 
immune-related genes (lysozyme, crustin 1, SOD), and increased the survival rate and antibacterial 
activity against A. hydrophila infection [196]. 

3.2.4. Synthesis of antibodies 

B lymphocytes could produce special antibodies for recognizing specific microbial antigens and 
these antibodies could neutralize the antigens by surface binding and attaching to the target cells. 
Antibodies could also perform phagocytosis activity through the activated complement system, and 
antibody-dependent cellular cytotoxicity (ADCC). The hematocrit or total hemocyte was analyzed to 
count the total number of blood cells including WBC, RBC, and platelets. The hematocrit analytical 
methods are used for macro immune system analysis in fish [197]. These methods are used for the 
enhancement of immune cells (neutrophils, basophils, eosinophils, lymphocytes, and monocyte) in 
fish blood. The dietary supplementation of MOS and β-glucans were used to enhance the immune 
system of carp fry [198,199].   

3.3. Major prebiotics with biocontrol capabilities in aquaculture  

3.3.1. β-glucans 

There is enough evidence available regarding their positive effects on immune responses, 
disease resistance, and growth performance upon oral delivery to a variety of farmed animals such 
as salmonids [200], sea bream [201], and shellfish [202]. Supplementation of β-glucans as prebiotic 
enhances the growth activity and higher resistance action against pathogens in P. vannamei [203]. 
Prebiotic  administration of β-glucans in diet is used to increase disease resistance; its efficiency 
depends on their origin and structure [204]. The Glucan substance extracted from the cell wall of 
yeast (S. cerevisiae) has the ability to enhance the non-specific immune system and disease resistance 
in the Atlantic salmon [205]. 

3.3.2. Oligosaccharides 

The oligosaccharide components are crucial for the modulation of immune responses in fish 
species. The positive results of monosaccharide products have encouraged the development of 
various immunomodulating, environmentally friendly nutrient diet supplements for fish species 
[206]. The diet supplementation of MOS from 1 to 1.5g kg-1 was capable to get better the growth 
activity and the feed efficiency of common carp fingerlings, as well as their antibacterial ability 
against A. hydrophila infection [207]. The nutrient feed additives (FOS) in beluga (Huso huso) juveniles 
had numerous beneficial effects such as gut microbiota modulation, immune response, and digestive 
enzyme action and growth performance [208]. They also presented a 7-week study report in common 
carp with dietary supplementation of FOS at (0%, 0.5%, and 1%) different levels which proved to 
have significant effects on intestinal microbiota modulation and physiological response [209]. The 
dietary supplementation of MOS at 0.4% improved the growth performance and non-specific 
immune response of Asian catfish (Clarias batrachus) juvenile’s [210]. The prebiotics FOS, when used 
as feed additives in juvenile large yellow croakers was found to improve growth action and digestive 
enzyme action [12,211].  

Not all the prebiotic substances have immunostimulant properties, only a few references are 
available regarding the effects of isomalto-oligosaccharides (IMO), which consist of a combination of 
isomaltotriose, isomaltose, panose, and isomaltotetraose, on aquatic animals. No clear statement was 
recorded regarding immune responses [212].  
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3.3.3. Chitosan 

Chitosan is a linear polysaccharide component of β-(1–4) linked D-glucosamine and is 
synthesized through alkaline deacetylation. It is a major component of arthropods' exoskeleton like 
shrimps, crabs, insects, and lobsters. In aquaculture, chitosan induces immunostimulation effects in 
various species namely rainbow trout [213], olive flounder (Paralichthys olivaceus) [214], and 
salmonids [215]. The administration of chitosan in the nutrient feed of C. carpio koi for 75 days 
resulted in significant effects such as enhanced immune response, improved lipid metabolism, 
enhanced growth performance, and modulated intestine microbiota, thereby protecting the fish from 
pathogen invasion [216]. 

3.3.4. Inulin 

The prebiotic component inulin, a soluble plant fiber, is used in the fish diet and plays a crucial 
role in enhancing the immune system in both mammals and fish. In aquaculture, tinulin finds 
significant use by activating the beneficial bacteria, inhibiting the pathogens, and boosting  immune 
system activity [217]. Inulin has the potential to mitigate inflammation induced by a high-
carbohydrate diet, thereby enhancing pathogen resistance in fish. Additionally, supplementing with 
inulin led to changes in gut microbiota composition and their metabolites. These alterations likely 
contribute to alleviating the metabolic syndromes induced by a high-carbohydrate diet in fish. [218].  

Figure 2 summarizes the main components of prebiotics from natural sources as well as their 
main action modes in improving host health. The functional feed additives of prebiotics in aquatic 
animals are summarised in Table 2. 

Table 2. Functional feed additives of prebiotics in aquatic animals. 

Prebiotics Functions Aquatic  species References 

FOS 
↑growth, survival and gut microbiota 
section 

L. vannamei [184] 

β-glucans 
↑growth, survival and immune 
system 

Sparus aurata [201] 

MOS 
↑growth, immune system, 
antioxidant capacity and intestinal 
health 

Cyprinus carpio [219] 

Chitosan 
↑growth, feed utilization, lipid 
metabolism, gut microbiota 
composition and immune system 

Cyprinus carpio koi [216] 

Inulin 
↑growth, antioxidant capacity, 
immunity, and gut microbiota at low 
salinity 

L. vannamei [220] 

↓Decrease or reduce, ↑Increase or improve. 
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Figure 2. Main chemical components of prebiotics from natural sources and their action modes in 
improving host health. 

4. Postbiotics 

4.1. Concept, definition and major components of postbiotics 

The use of live microorganisms as probiotics may have potential concerns associated with the 
gene resistance acquisition and translocation, and depends on their viability  [221]. Likewise, it has 
been recognized that non-viable microorganisms as well as their components and metabolites can 
provide positive effects on health leading to the apparition of postbiotic concept [222]. Postbiotics are 
defined by consensus panels as a preparation of inactivated microorganisms and/or their components 
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(cell fragments, cell walls, metabolites) that have beneficial health effects on host [223]. This definition 
does not include purified metabolites in the absence of cells and cells components. One defined 
postbiotics as dead microbes and/or cell structures or metabolites that are produced by bacterial lysis 
or secreted during fermentation process [224].  

Postbiotics include inactivated probiotics called paraprobiotics, metabolites like short chain fatty 
acids (SCFAs), vitamins, and phenolic acids, secreted proteins and peptides, functional proteins and 
enzymes, cell wall components like LTAs and peptidoglycan (PG)-derived muropeptides, secreted 
and extracellular polysaccharides (EPS), cell lysates, cellular components (glycans, enzymes), 
microbial fraction, and surface molecules such as pili [225,226].  

Figure 3 outlines main postbiotics components. 

 

Figure 3. Postbiotic main components and molecules. 

4.2. Action modes and applications of postbiotics in aquaculture 

The action mechanisms of postbiotics are still unclear but it has been generally assumed that 
they are similar to those of live probiotics [227]. Three main mechanisms are involved in postbiotics 
action modes.  

4.2.1. Immunomodulation by microbial compounds  

Postbiotics act on the immune system through two signaling pathways, namely nuclear factor -
kB (NF-kB) and mitogen-activated protein kinases (MAPK), which are involved in the immune and 
inflammatory responses. Postbiotics stimulate the innate and adaptive immune systems via external 
Toll-like receptors (TLRs) that recognize associated pathogens and bind to specific patterns such as 
LTAs and PGs. They also interact with intracellular nucleotide-like receptors (NLRs) and nucleotide-
binding and oligomerization domain (NOD)-like receptors, which can bind to molecules like 
lipopolysaccharides (LPS), PG, and flagellin, thereby activating innate immune signaling pathways 
[224,226]. The role of PG recognition proteins in innate immune responses against pathogens has 
been demonstrated in fish [228,229]. PG-derived muropeptides from bacterial cell walls have been 
shown to boost the immune system of fish [230] and shrimp [231]. For instance, muropeptides 
isolated from Bifidobacterium thermophilum have been proven to enhance shrimp immunity by 
increasing phagocytic activity or activating immune genes [231,232].  

Additionally, postbiotics can enhance epithelial barriers protection via cell surface molecules 
such as pili and secreted protein P40 [233]. For example, the role of  Lactobacillus pentosus surface 
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protein on immune response has been demonstrated in shrimp (L. vannamei) infected with Vibrio 

parahaemolyticus [234].  

4.2.2. Antagonizing pathogens by antimicrobial activities 

Postbiotics exhibit antimicrobial activities against various pathogens due to the presence of 
metabolites like peptides and organic acids [235]. Bacteriocin JFP2 isolated from B. amyloliquefaciens 
exhibits antimicrobial activity against fish pathogen A. hydrophila [236]. The dietary addition of 
postbiotic containing LAB (strain Lactobacillus) has been reported to protect rainbow trout (O. mykiss) 
against the bacterial fish pathogen L. garvieae after 30 days feeding [237]. 

4.2.3. Inhibition of oxidation by antioxidant enzyme systems and metabolites  

Various postbiotics obtained from LABs have been shown to exhibit antioxidant activity mainly 
attributed to phenolic compounds [238]. L. plantarum postbiotics have been documented to enhance 
antioxidant activity in animals [239]. In aquaculture applications, the overall antioxidant status of 
shrimp fed with diets supplemented with C. butyricum postbiotics was improved regarding the 
increase of alkaline phosphatase, acid phosphatase, total nitric oxide 
synthase, lysozyme, peroxidase, superoxide dismutase activities, total antioxidant capacity, and 
phenoloxidase content in the serum [240]. 

In aquaculture, postbiotics have been used as growth promoters instead of antibiotics, as 
immune system stimulation and as disease control [197,233,241]. Recently, the potential application 
of postbiotics in aquaculture water quality to modulate bacterioplankton communities and to 
influence nutrient cycling and bacterial pathogen abundance has been reported [242]. Figure 4 
illustrates potential applications of probiotics in aquaculture. Table 3 shows some recent potential 
applications of postbiotics in aquaculture. 

 
Figure 4. Postbiotics in aquaculture. 

Table 3. Some recent potential applications of postbiotics in aquaculture. 

Postbiotics 
Microorganism 

producer 

Aquatic 

species 
Applications References 

Exopolysaccharides Lactococcus lactis Z-2 
Common carp   
(C. carpio) 

Immunity 
enhancement 
Resistance against A. 

hydrophila 

[243] 

Cell surface 
proteins 

L. pentosus 

Shrimp  
(Litopenaeus 

vannamei) 

Immune response 
improvement 

[234] 
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Cell wall 
components (PGs 
and LTA) 

B. pumilus SE5 
Grouper  
(E. coioides) 

Growth performance 
improvement  
Innate and adaptive 
immunity amelioration 

[93] 

Lipoteichoic acids L. plantarum LTA 
Silvery pomfret  
(Pampus 

argenteus) 

Against V. anguillarum-
caused vibriosis  

[244] 

Non live 
microorganisms 

    

 
S. cerevisiae, B. 

velezensis and Cetobacteriu

m somerae 

Common carp 
(C. carpio) 

Gut microbiota 
improvement Enhance 
non specific immunity 
Antioxidant status 
improvement 

[245] 

 Dried autolyzed yeast 
Gilthead sea 
bream (Sparus 

aurata) 

Intestinal microbiota 
improvement 

[246] 

 
Rhodotorula 

minuta and Cetobacterium 

somerae 

Hybrid sturgeon 
(Acipenser baerii 
x Acipenser 

schrencki) 

Growth performance 
improvement 
Non-specific immunity 
improvement 

[197] 

 
Heat killed L. plantarum L-
137 

Nile tilapia  
(O. niloticus) 

Growth performance 
stress resistance and 
immunity 
enhancement 

[247] 

5. Synbiotics 

Synbiotics refer to dietary additives that blend probiotics and prebiotics in a synergistic 
combination, thereby enhancing their beneficial effects. When either dietary additives or 
supplements are used, the resulting positive effects typically follow one of three patterns: ingredient 
effects, synergism, or potentiation. Supplementation outcomes occur when the combined effects of 
both additives used together approximate the sum of the effects of the individual supplements. In 
the case of synergism, the amalgamated result of the two products is significantly greater than the 
sum of the effects of each factor administered alone. The term potentiation is used differently; some 
pharmacologists interchange it with synergism to describe a result that is better than that of a 
supplement alone, while others use it to describe an outcome that is only present when both 
substances are used simultaneously [248,249].  

5.1. Possible modes of action of synbiotics in aquaculture 

5.1.1. Synbiotics enhance digestive enzyme and growth performance 

Dietary administration of synbiotics is helpful in enhancing the digestive enzyme action of fish, 
allowing the host to degrade more nutrients. This dietary method increases digestive action and 
likely enhances the weight gain rate and/or feed efficiency [250]. Nutrient diet supplementation with 
a mixture of probiotics and monosaccharides enhances feed efficiency and overall health in carp. 
However, limited data is available in aquaculture regarding the function of nutrient diet 
supplementation of synbiotics in carp [23]. Nutrient diet administration of synbiotics enhances the 
lymphocyte and white blood cells in carp [251]. Synbiotics (IMBO), a combination of probiotics (E. 

faecium) and prebiotics (FOS), have been used to enhance the growth performance, survival rate, and 
digestive enzyme function of common carp fingerlings [252]. Dietary supplementation of FOS, MOS, 
and B. clausii can improve growth performance and health benefits of the Japanese flounder more 
than the control diet [168]. Dietary supplementation of FOS and 1.35×107 CFU g-1 B. subtilis (single or 
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mixed) increases the specific growth rate (SGR) and feed efficiency ratio (FER) compared to the 
groups without B. subtilis additives in juvenile large yellow croaker (Larimichthys crocea) [211]. Figure 
5 illustrates the possible modes of action of synbiotics in aquaculture. 

 

Figure 5. Illustration of modes of action of synbiotics in aquaculture. 

5.1.2. Synbiotics improve immune response and disease resistance 

An amalgamation of probiotics and prebiotics feed supplements is mainly helpful to enhance 
the survival of beneficial organisms, as the presence of prebiotics protects well-organized 
fermentation. Finally, this rewards the host with a suitable approach [253]. The nutritional additives 
of probiotics and prebiotics (MOS, FOS, and inulin) enhance the fish immune system via GIT 
[23,254,255]. A synbiotic composed of Pediococcus acidilactici and galactooligosaccharides improved 
immune parameters and antagonistic activity against S. iniae when administered to rainbow trout 
fingerlings for 8 weeks [256]. The combination of probiotic Bacillus sp. and 0.2% of prebiotic 
isomaltooligosaccharide has been used to improve immune functions in shrimp (Penaeus japonicas) 
against V. alginolyticus infection [257]. In addition, the blended use of Bacillus and molasses improved 
the microbial population, enhanced the development of the probiotic community, and inhibitory 
activity against pathogens in pacific white shrimp [258]. The effectiveness of synbiotic treatment in 
conditions of defense against infectious factors could be evaluated by a confrontation examination 
due to its regulatory power over harmful microbes and its capability to resist infections  [259]. The 
functional feed additives of synbiotics in aquatic animals are summarised in Table 4. 

Table 4. Functional feed additives of synbiotics in aquatic animals. 

Synbiotics Functions Aquatic organisms References 

P.acidilactici + GOS ↑growth, survival and digestive 
enzyme function 

Labidochromis lividus [260] 

B. clausii + FOS,MOS  ↑growth, survival and digestive 
enzyme function 

Paralichthys olivaceus [261] 

P.acidilactici + GOS ↑immunity and antagonistic 
activity against S. iniae infections 

Oncorhynchus mykiss [262] 

B. subtilis + L. acidophilus 
+ S. cerevisiae + FOS 

↑growth, and  feed efficiency 
ratio 

Eriocheir sinensis [263] 
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P.acidilactici + IMO ↑growth, immune response, and 
antioxidant capacity 

C. carpio [264] 

↓Decrease or reduce, ↑Increase or improve. 

6. Limitations of the use of biotic agents in aquaculture 

The use of biotic agents in aquaculture instead of antibiotics has recently gained significant 
interests [265]. Probiotics have been shown to be effective in promoting growth, increasing immunity, 
and improving resistance to infections in aquatic animals [266]. The major limitation of their use 
comes from the problem of possible gene resistance acquisition and translocation, as well as the 
question of their viability and/or ability to colonize the fish gut [221]. The use of multi-strain 
probiotics increases the possibility of strain survival rates and therefore improves the beneficial 
effects on growth, immunity and infection resistance of aquatic animals [128]. Postbiotics present an 
advantage over probiotics because they do not have viability problems and are less susceptible to 
environmental conditions [221,267]. Additionally, they generally have a complex composition made 
up of several compounds that play multiple roles and provide numerous beneficial effects on aquatic 
animals. However, their use to manage infectious disease is still in its early stages [235].  

Prebiotics, as inert biotic agents, are relatively safe and cost-effective alternative to probiotics. 
Several studies on their immunostimulant properties and growth promotion in fish and shellfish 
have shown some evidence for their interest in aquaculture [268]. Nevertheless, studies on the 
optimal dose should be carried out, as inadequate dose may lead to detrimental effects on aquatic 
animals [182,208]. Synbiotics improve the colonization of microorganisms in the intestines and are 
generally more effective than probiotics or prebiotics alone [267]. For example, Nile tilapia (O. 

niloticus) fed with synbiotic showed the highest increase in the specific growth rate compared to the 
group fed with probiotics or prebiotics alone [251,269]. Extensive studies are still needed to specify 
the role of prebiotics, probiotics, postbiotics, and synbiotics in growth performance, intestinal health, 
and immune aspects with a focus on the mechanisms underlying the synbiotic diet in aquatic animals 
against various pathogens. The mode of administration and dose of the biotic agents are also 
important and have certainly an impact on their effectiveness [270]. 

7. Concluding remarks and future perspectives 

Aquaculture is one of the fastest-growing food manufacturing sectors in the world. Disease 
outbreaks pose significant problems for aquaculture, impacting the financial status and economic 
development of people in the Asia-Pacific region as a whole. Globally, most researchers have 
analyzed and concluded that functional feeds (probiotics, prebiotics, and synbiotics) or 
immunostimulants are potential alternatives for the development of the modern aquaculture 
industry. These methods are particularly useful in enhancing aquaculture production as they offer 
numerous health benefits, such as the modulation of gut microbiota and immune systems, 
enhancement of disease resistance and survival rates, improvement of growth performance, and 
efficient feed utilization. 

While several study reports are available regarding probiotics, prebiotics, and synbiotics, these 
are not sufficient to drive the development of the aquaculture industry. Extensive studies are needed 
at different levels, corresponding to the role of prebiotics, probiotics, and synbiotics in growth 
performance, intestinal health, and immune aspects. Additionally, there is a need for a deeper 
understanding of the mechanisms underlying synbiotic diets in aquatic animals against various 
pathogens. 

This review concludes that functional feed additives, such as probiotics, prebiotics, and 
synbiotics, are utilized to enhance the immune system, disease resistance, gut microbiota survival 
rates, growth performance, and feed utilization in numerous commercially available fish species. 
However, data from zebrafish modeling studies are very limited. In the future, not only probiotics, 
prebiotics, and synbiotics but also various other beneficial substances, such as functional amino acids, 
fatty acids, enzymes, organic acids, and herbs, can be added or substituted to enhance the innate 
immune system, disease resistance, and growth and survival rates in the zebrafish model. These 
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additions can also improve feed quality levels in aquaculture. Furthermore, postbiotics, which are 
components or metabolites from dead probiotic microorganisms, show promise as functional feed 
components." 
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