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in accordance with the decision of the Board of Deans,

to be defended in public
on XXXX XXth of XX XXXX, at XX.XX hours

by

Elizaveta A. Lavrova
born on September 6, 1992

in Moscow, Russia



Promotors
Prof. Dr. Philippe Lambin, Maastricht University
Prof. Dr. Ir. Christophe Phillips, Liège University
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Chapter 1. Introduction

1.1 Motivation

Neurological diseases have emerged as a significant global health
challenge, representing both a leading cause of disability and a major
contributor to mortality worldwide [1]. Among the most impactful
neurological conditions are Alzheimer’s and Parkinson’s diseases,
multiple sclerosis, and stroke [2, 3]. These conditions appear from
diverse causes, including genetic disorders, congenital abnormalities,
infections, lifestyle or environmental factors, and various injuries
[3]. Most of them exhibit a prolonged development phase [4, 2, 5,
6]. Early diagnosis of neurological diseases remains a challenge as
symptomatic changes become apparent only at later stages. At the
moment, diagnosis primarily relies on the symptoms, clinical history,
and the occurrence of recurrent clinical episodes [3, 7, 8].
Most neurological diseases currently lack a definitive cure [9].
However, timely and appropriate personalized treatment can
effectively slow down or even halt the disease progression, leading to
a substantial improvement in the quality of life for patients and their
families [6]. The availability of disease-modifying and symptomatic
medications, while promising, poses a significant financial burden on
national healthcare systems [10] and creates risks for patients while
not selected correctly. Therefore, gaining insights into diagnosis and
treatment response beforehand becomes paramount in optimizing
resource allocation and ensuring efficient healthcare management for
patients. This leads us to a pressing unmet clinical need for reliable
and objective biomarkers discovery to enable early detection and
personalized treatment of neurological diseases [11].
In modern clinical practice, medical imaging has become an essential
tool to investigate anatomical, morphological, and functional
abnormalities. In neurology, several imaging modalities are
commonly employed [12]: magnetic resonance imaging (MRI)
is known for its ability to provide optimal soft tissue contrast
without ionizing radiation and facilitate both anatomical and
functional studies [13, 14, 15], positron emission tomography (PET)
imaging is an instrument to study metabolism [16, 17], while X-ray

2



computed tomography (CT) scans offer structural visualization with
rapid observation capabilities [18]. Additionally, CT angiography
(CTA) enables visualization of the blood vessels after injecting an
intravascular tracer and therefore CTA is mostly used for stroke
evaluation [19]. A more advanced technique, CT perfusion (CTP)
allows for blood flow quantification [20]. Blood vessel visualization
for stroke patient management is possible with MR angiography and
perfusion as well [21]. Although integrated into clinical protocols,
the existing imaging criteria for diagnostics remain subjective.
Advancements in medical imaging technology have led to improved
image quality, accompanied by massive data aggregation [22]. As a
consequence, neuroimaging has emerged as a promising field for
data-driven approaches.
According to ISO/IEC TR 24028:2020, artificial intelligence (AI) is the
”capability of an engineered system to acquire, process and apply
knowledge and skills” [23]. Machine learning is a subfield of AI
that develops and studies the statistical approaches to solve tasks
by processing training data instead of using formal instructions.
Deep learning is a subfield of machine learning that utilizes features
created by the artificial neural network during the model training
process. With the continuous advancement of computing capabilities,
particularly with the “graphical processing units” (GPUs) and
the growth of global data, deep learning has demonstrated high
performance in various tasks. Modern neural networks exhibit the
ability to accomplish image [24] and speech [25] recognition, generate
lifelike data [26], comprehend natural language [27], and learning
autonomy [28]. With computational power reaching billions of
parameters, these models possess the capacity to autonomously learn
complex processes from the available data. As a result, these models
find applications not only in decision support but also in intermediate
steps, such as data synthesis or labeling, further enhancing their
potential impact across various domains.
In general, medical data-driven AI uses data from prior cases to
address clinical inquiries for new patients. Transforming existing
clinical data into actionable information would empower healthcare
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Chapter 1. Introduction

professionals to make better-informed decisions for future patient
care.
Radiomics is a methodology that combines imaging data with
machine learning to facilitate quantitative imaging [29]. The main
hypothesis of radiomics is that medical images are not just visual
representations of the human body but valuable data [30]. This
approach involves extracting numerous quantitative features from
medical images and linking them to relevant clinical outcomes.
There are two main approaches within radiomics: handcrafted
and deep radiomics [31, 32]. Handcrafted radiomics relies on the
computation of predefined mathematical features, while deep
radiomics utilizes deep learning techniques to automatically extract
and select model-defined features. Handcrafted radiomics can be
seen as a manually engineered precursor to the more automated deep
learning pipeline. While handcrafted radiomics boasts interpretability
and requires less data, it is limited by pipeline design and may
fail to uncover sophisticated patterns in the data. The success of
deep radiomics relies on vast amounts of training data, and its
black-box nature poses interpretability challenges for clinicians [33].
Nevertheless, methods such as saliency mapping or GradCam [34]
offer opportunities to interpret the outcomes of deep neural networks,
thus promoting transparency and enhancing their clinical application.
Radiomics has proven to be highly successful in oncology, yielding
promising results in improving the diagnosis, prognosis, and
treatment planning for cancer patients [35, 36, 37]. It is driven by a
large amount of labeled data available due to the need for treatment
protocols. Over the past years, researchers have investigated the main
challenges and limitations associated with this approach [38]. As the
field of radiomics continues to progress, there is a rising interest in
exploring its potential beyond oncology, particularly in the domain
of neurology. In this context, radiomics holds the promise of playing
a pivotal role in early disease detection and optimizing patient care
for neurological conditions. To achieve this goal, a comprehensive
analysis of good practices and well-established pipeline steps in the
oncological radiomics approach must be conducted. By examining
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the successful methodologies and techniques utilized in oncological
studies, valuable insights can be gleaned to guide the implementation
of radiomics in the neurological field. However, given the unique
characteristics and demands of neurological diseases, it is essential
to identify and address the additional requirements specific to this
domain. By integrating the existing neuroimaging data, the potential
benefits include improved model training and validation, enhanced
generalization of results, and accelerated progress in neurological
radiomics research. Ultimately, harnessing the vast repository of
neuroimaging data is expected to yield valuable insights and enhance
the clinical utility of radiomics in the neurological context. As we
delve into this new frontier, several critical questions arise concerning
the applicability of radiomics in neurology. Identifying potential
pitfalls and proposing effective solutions becomes imperative
to ensure the successful integration of this methodology in the
neurological domain and gaining its full potential in improving
patient outcomes.

1.2 Background: Imaging of the most common
neurological disorders

1.2.1 Multiple sclerosis

Multiple sclerosis is a demyelinating disorder that primarily affects
the central nervous system [39]. It exhibits a characteristic pattern
of dissemination, both in space (with multiple plaques occurring in
different regions of the central nervous system) and in time (with
plaques appearing at different time points). Clinical symptoms can
vary significantly depending on the affected brain regions, leading
to the application of various tests to assess motor and cognitive
functions.
The diagnosis of multiple sclerosis relies on the McDonald diagnostic
criteria [40], which encompass a range of assessments, including
clinical history, cerebrospinal fluid analysis, immunoglobulin G
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Chapter 1. Introduction

levels in serum, evoked potentials, and MRI. Radiographic features
primarily revolve around the distinctive characteristics of the plaques,
which typically manifest as ovoid shapes distributed around veins.
CT features tend to be non-specific and may include uniformly
hypoattenuating lesions, brain atrophy (particularly in advanced
stages), and contrast enhancement during active phases [41, 42].
In contrast, MRI plays a crucial role in diagnosis and follow-up.
The MRI protocol typically includes T1-weighted (T1w),
T2-weighted (T2w), fluid-attenuated inversion recovery (FLAIR), and
diffusion-weighted imaging (DWI) sequences.
Specific MRI findings include hypointense lesions (also called ”black
hole lesions”) on T1w images, thinned corpus callosum (brain region
beneath the cerebral cortex), and hyperintense lesions in advanced
disease cases. On T2w images, lesions appear hyperintense. FLAIR
sequences are the most sensitive among the other typical sequences,
and they reveal hyperintense lesions. Active lesions, on T1w images
with gadolinium contrast enhancement, show increased intensity.
However, routine asymptomatic follow-up does not necessarily
require contrast enhancement. DWI can display active plaques with
either high or low apparent diffusion coefficient values, signifying
altered diffusion properties [42, 43].
A distinctive MS-specific feature is the presence of ”Dawson’s fingers”
— demyelinating plaques distributed perpendicular to the lateral
ventricles of the brain [43].
The typical radiographic features of multiple sclerosis are presented
on Figure 1.1.

1.2.2 Stroke

A stroke is a clinical condition characterized by the abrupt onset of
a focal neurological deficit, presumed to be of vascular origin [44].
Strokes are typically categorized into two main types: ischemic stroke
and hemorrhagic stroke. The most common ischemic stroke occurs
when there is a sudden episode of neurological dysfunction due to
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(a) (b) (c)

Figure 1.1: Some of the typical radiographic features of multiple sclero-
sis observed in three different patients on MR scans: (a) multi-focal ar-
eas of hyperintensity on FLAIR (image source: case courtesy of Henry
Knipe, radiopaedia.org, rID: 30252), (b) hyperintense Dawson’s fingers
on FLAIR (image source: case courtesy of Frank Gaillard, radiopaedia.
org, rID: 35916), (c) T1w ”black hole” lesions (image source: case courtesy of
Ahmed Abdrabou, radiopaedia.org, rID: 35195)

localized tissue infarction in the central nervous system, attributed
to arterial thrombosis, embolization, or severe hypoperfusion. In
common usage, ischemic stroke mainly refers to cerebral infarctions.
Ischemic strokes usually present with a rapid onset of neurological
deficits, the nature of which depends on the specific area of the brain
affected. These symptoms may evolve over hours and can either
worsen or improve [45].
For diagnosing acute strokes, several imaging techniques are
commonly employed, mostly including non-contrast CT scans, CT
perfusion scans, and CT angiography. The earliest visible sign on CT
imaging is a hyperdense segment within a blood vessel, representing
the direct visualization of intravascular thrombus or embolus and is
immediately apparent, as well as a loss of differentiation between
gray and white matter [46]. In acute cases, hypoattenuation and
swelling become more pronounced, and subacute cases exhibit
subsiding swelling and the emergence of small cortical petechial
hemorrhages, resulting in increased cortex attenuation [47]. In chronic
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Chapter 1. Introduction

cases, a region of low density with a negative mass effect is present
[47].
CT perfusion scans are used to identify the core of the infarct (the
irreversibly damaged area) and the penumbra (the affected but
potentially recoverable area) [48]. CT angiography helps identify
thrombi, assess the condition of the carotid and vertebral arteries, and
evaluate collateral vessels [49].
MRI is frequently employed for follow-up imaging to monitor the
recovery process and identify potential necrotic tissue [50].
Stroke imaging provides crucial additional information about the
stroke patient’s condition, aiding in the selection of appropriate
treatment strategies and assessing the extent of damage [45].
The typical radiographic features of stroke are presented on
Figure 1.2.

(a) (b) (c)

Figure 1.2: Some of the typical radiographic features of stroke observed in
three different patients on CT scans: (a) left thalamic hypodense focus de-
veloped during 24 hours after stroke onset (image and description source:
case courtesy of David Cuete, radiopaedia.org, rID: 36507), (b) a small
irregular hypodense area seen at the left temporal region with loss of grey-
white matter differentiation (image and description source: case courtesy of
Rania Adel Anan, radiopaedia.org, rID: 99808), (c) extensive infarction in
the territory of the left middle cerebral artery (image and description source:
case courtesy of David Cuete, radiopaedia.org, rID: 35732)
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1.2.3 Alzheimer’s disease

Alzheimer’s disease is a neurodegenerative condition characterized
by the accumulation and deposition of cerebral amyloid-β [51]. It is
primarily associated with memory deficits and is diagnosed based on
specific criteria, such as the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s Disease
and Related Disorders Association Alzheimer’s criteria [52], which
involve both clinical and histological signs.
These criteria include the use of neuroimaging and laboratory
examinations, including blood and cerebrospinal fluid analyses, to
rule out other potential causes. However, it’s essential to note that
the only definitive diagnostic test for Alzheimer’s disease is a brain
biopsy, which is rarely performed in practice due to its invasiveness
[53]. Additionally, certain fluid biomarkers, such as beta-amyloid,
total tau, and hyperphosphorylated tau, are employed to provide
further diagnostic support [54].
The most commonly used imaging modalities for Alzheimer’s
disease are MRI and PET scans. Braak’s staging system is employed
to distinguish between different progression stages: I-II involves
early cortical involvement, III-IV involves the limbic system and
hippocampus, and V-VI involves the cortex with temporal lobes [55].
During MRI examinations, gray matter atrophy is measured both
overall and in various cortical regions.
To assess patients with mild cognitive impairment and predict
whether it will progress to Alzheimer’s disease, nuclear imaging
techniques like F-18 fluorodeoxyglucose (FDG), amyloid, and tau PET
scans are used. These techniques reveal hypometabolism, increased
amyloid deposition, and heightened tau protein activity [56].
However, it’s important to note that these features are not specific
to Alzheimer’s disease and can be observed in other conditions as well.

The typical radiographic features of Alzheimer’s disease are presented
on Figure 1.3.
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(a) (b) (c)

Figure 1.3: Some of the typical radiographic features of Alzheimer’s disease
observed in three different patients on multimodal data: (a) cerebral volume
loss on FLAIR, T2w hyperintense regions suggest a concurrent component of
chronic small vessel ischaemic change (image and description source: case
courtesy of Frank Gaillard, radiopaedia.org, rID: 10738), (b) decreased
metabolism activity on the bilateral parietotemporal cortex (image and de-
scription source: case courtesy of Bruno Di Muzio, radiopaedia.org, rID:
22715), (c) volume loss and large ventricles on CT (image and description
source: case courtesy of Frank Gaillard, radiopaedia.org, rID: 33753)

1.3 Objectives, aims, and outline of the thesis
The primary aim of this thesis was to explore the feasibility of uti-
lizing the radiomics approach in clinical neuroimaging while identi-
fying the key factors and challenges within the field (neuroimaging
and radiomics workflows connected by this thesis are illustrated on
Figure 1.4). An additional objective was to test the hypothesis that
radiomic features extracted from the brain regions provide informa-
tion about brain tissue pathology not detectable by the human eye. To
achieve these goals, the specific objectives of the study were as follows:
(i) to conduct a comprehensive review of the current radiomic work-
flow as applied as a transition from oncological to clinical neuroimag-
ing tasks and uncover the main challenges (Chapters 2 and 3), (ii)
to assess the predictive capability of radiomic features in neuroimag-
ing tasks (Chapter 4), (iii) to propose potential solutions for address-
ing some of the challenges encountered in applying the radiomics ap-
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proach to neuroimaging (Chapters 4, 5, and 6).

Figure 1.4: The goal of this thesis is to explore the feasibility of utilizing the ra-
diomics approach in clinical neuroimaging inheriting the best practices from
both radiomics and neuroimaging pipelines (as illustrated by connecting neu-
roimaging and radiomics workflows by orange arrows).

This thesis is composed of 7 chapters.
Chapter 1: General introduction and outline of the thesis.
In this introductory section, I outline the motivation behind this
thesis and present its main objectives. The chapter provides an
overview of the entire thesis, highlighting the structure and content
of the subsequent chapters. Chapter 2: Radiomics Capability in
Neuro-Oncological Tasks [57].
This chapter explores the established radiomics methodology in the
context of neuro-oncological tasks. Specifically, in this published
peer-reviewed article we demonstrate how brain MRI radiomics can
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estimate the chromosome 1p/19q co-deletion status, which serves as
a diagnostic biomarker for low-grade glioma. This work serves as a
strong foundation and motivation for extending the application of
radiomics to non-oncological brain studies.
Chapter 3: Radiomics Application in Non-Oncological Neurology:
Overview and Challenges (under the peer review).
Here, we present a comprehensive review of the application
of radiomics in non-oncological neurology. Focusing on
neurology-specific steps of the radiomics pipeline, we explore
potential clinical applications and discuss the existing challenges in
implementing radiomics in non-oncological brain studies.
Chapter 4: Exploratory Study: Radiomic Biomarkers in Multiple
Sclerosis [58].
This chapter presents an exploratory study that identifies potential
radiomic biomarkers of multiple sclerosis. In this published
peer-reviewed article we put our thesis hypothesis to the test,
demonstrating the potential of qMRI radiomics in the detection of
pathological information in normal-appearing tissues. To address
challenges related to MRI expressed in arbitrary units and enable
multi-center multiple-sclerosis studies, we propose the use of unique
qMRI sequences.
Chapter 5: Deep Learning for Carotid Artery Segmentation in Stroke
At-Risk Patients [59].
In this chapter, we address a critical challenge in radiomics by
proposing a deep learning method for automated carotid artery
segmentation in patients at risk of stroke. While automated
plaque characterization research exists, carotid artery localization
is typically performed manually or in a semi-automated manner.
In this published peer-reviewed article we introduce a U-Net
implementation with a consensus patching strategy, trained on
partially labeled data, that effectively detects and segments carotid
arteries on neck MRI with performance comparable to state-of-the-art
models. This chapter presents an innovative auto-segmentation
method as a solution to the manual data labeling challenge.
Chapter 6: An Open-Source Software Package for Medical Imaging
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Data Curation and Exploration [60].
in this published peer-reviewed article we propose an open-source
software tool that links the various steps of the radiomics pipeline. By
offering a solution to pipeline and implementation standardization
challenges, this software package facilitates the integration and
standardization of radiomics methods. Moreover, we advocate for
the use of an open-source tool for data preparation and exploratory
analysis to democratize the implementation of radiomics.
Chapter 7: General Discussion and Perspective.
This final chapter offers a comprehensive discussion of the work
presented in this thesis. We delve into the implications of our
findings and recommendations for future applications of radiomics in
neurological decision-making. Additionally, we explore the potential
for enabling radiomics as a valuable tool in neurological clinical
decision aid.
The structure of this thesis is presented in Table 1.1.
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Chapter 1. Introduction

Table 1.1: Thesis structure
Part 1 – Introduction

Chapter 1 General introduction and outline of the thesis
Part 2 – Radiomic methodology transfer from oncology to neurology
Chapter 2 Radiomics capability in neuro-oncological tasks
Chapter 3 Radiomics application in non-oncological neurology:

overview and challenges
Part 3 – Predictive power of radiomics in neuroimaging

Chapter 4 Exploratory study: radiomic biomarkers in multiple scle-
rosis

Part 4 – Addressing challenges in radiomics for neurology
Chapter 5 Deep learning for carotid artery segmentation in stroke-at-

risk patients
Chapter 6 An open-source software package for medical imaging

data curation and exploration
Part 5 – Discussion

Chapter 7 General discussion and prospectives
Appendices
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Chapter 2. Radiomics capability in neuro-oncological tasks

Abstract
Purpose. The 1p/19q co-deletion status has been demonstrated to be a
prognostic biomarker in lower grade glioma (LGG). The objective of
this study was to build a magnetic resonance (MRI)-derived radiomics
model to predict the 1p/19q co-deletion status.
Method. 209 pathology-confirmed LGG patients from 2 different
datasets from The Cancer Imaging Archive were retrospectively
reviewed; one dataset with 159 patients as the training and discovery
dataset and the other one with 50 patients as validation dataset.
Radiomics features were extracted from T2- and T1-weighted
post-contrast MRI resampled data using linear and cubic interpolation
methods. For each of the voxel resampling methods a three-step
approach was used for feature selection and a random forest (RF)
classifier was trained on the training dataset. Model performance
was evaluated on training and validation datasets and clinical utility
indexes (CUIs) were computed. The distributions and intercorrelation
for selected features were analyzed.
Results. Seven radiomics features were selected from the cubic
interpolated features and five from the linear interpolated features on
the training dataset. The RF classifier showed similar performance
for cubic and linear interpolation methods in the training dataset
with accuracies of 0.81 (0.75-0.86) and 0.76 (0.71-0.82) respectively; in
the validation dataset the accuracy dropped to 0.72 (0.6-0.82) using
cubic interpolation and 0.72 (0.6-0.84) using linear resampling. CUIs
showed the model achieved satisfactory negative values (0.605 using
cubic interpolation and 0.569 for linear interpolation).
Conclusions. MRI has the potential for predicting the 1p/19q status in
LGGs. Both cubic and linear interpolation methods showed similar
performance in external validation.
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2.1 Introduction

Gliomas are tumors of the central nervous system and are the
most frequent primary tumors arising in the brain [1]. They are
classified into four grades based on their aggressiveness by The
World Health Organization (WHO). WHO grade II (low grade) and
grade III (anaplastic) diffuse gliomas form a heterogeneous group of
neoplasms, also known as Low Grade Gliomas (LGGs), characterized
by a wide range of malignant potential affecting mostly young adults
[2]; LGG is potentially a fatal disease, with an median overall survival
of around 7 years [3]. LGG finally advances to higher grades, with a
significantly lower survival rate [3].
Treatment choices for LGG are based on WHO grades, molecular
profiles, and patient characteristics (e.g. age and Karnofsky
performance status) [4]. The co-deletion of chromosome arms 1p and
19q has an important role in choosing the right treatment, indeed
co-deletion is a useful prognostic molecular marker as it can be used
for the prediction of response to radiotherapy and chemotherapy,
and it is associated with longer survival [5, 6, 7, 8]. Thus, efficient
treatment planning necessitates proper classification of WHO grade
and 1p/19q co-deletion status.
The 1p/19q status can be determined by different techniques:
fluorescence in situ hybridization (FISH), polymerase chain
reaction, array comparative genomic hybridization, or multiplex
ligation-dependent probe amplification [9]. This molecular
classification is achieved through histopathologic examination; albeit
being the reference standard for this task, it has some limits, such as
limited surgical accessibility and heterogeneity of the sampled tissue.
Furthermore, biopsy samples are not representative of the whole
neoplasm [10].
The unmet clinical need is to find a non-invasive and robust
classification method of 1p/19q status of the entire tumor volume in
order to effectively direct treatment planning of LGG [5, 6, 7, 8] for
cases when complete resection cannot be performed and/or where
the biopsy cannot be obtained from the tumor. Most notably, in
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childhood tumors around 30–50% of LGGs are inoperable as a result
of their position in highly eloquent areas of the brain [11]. Currently,
MRI is a useful technique in order to obtain helpful data for therapy
decisions, and for pre-therapeutic noninvasive diagnosis.
Radiomics is a research field whose scope is to extract imaging
features from radiographic images (including MRI) that can
potentially capture phenotypic, genomic, proteomics patterns having
prognostic value and clinical significance. The underlying hypothesis
of radiomics is that medical imaging may express additional data
correlating with genomic and proteomics patterns and can be
manifested in macroscopic image-based features, not visible by the
unaided eye and thus not used [12, 13, 14].
In the last few years different studies have demonstrated that 1p19q
status can be predicted using MRI [15, 16, 17, 18, 19, 20, 21, 22].
Furthermore, Branzoli et al. [23] recently identified elevated levels
of cystathionine in 1p/19q co-deleted gliomas compared to non
co-deleted gliomas, using in vivo magnetic resonance spectroscopy.
In our analysis, routine MRI sequences were used, without additional
experimental or expensive MRI sequences.
The main purpose of this study was to develop and to validate a
non-invasive method to predict the 1p/19q status of LGG from
T2-weighted and T1-weighted post-contrast MRI images using
texture analysis as an alternative to surgical biopsy. The secondary
aim was to compare two voxel resampling methods: radiomics
features calculated from images resampled using cubic and linear
interpolation methods. Cubic spline and convolution interpolation are
third-order methods that typically interpolate smoother surfaces than
linear methods, while they are known to be slower in implementation
[24]. Linear interpolation is a commonly used algorithm since it is
computationally cheap and leads neither to rough blocking artifacts
images that are generated by nearest neighbor techniques, nor will
it cause out-of-range gray levels that might be produced by higher
order interpolation [25].
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2.2 Materials and methods

2.2.1 Data

The training dataset consisted of 159 LGG patients with pre-operative
MRI images and 1p/19q status proven by biopsy. They were identi-
fied within the LGG-1p19q Deletion dataset [15, 26, 27] on The Cancer
Imaging Archive (TCIA). The validation dataset consisted of similar
patient data of 50 randomly selected patients, also from TCIA, albeit
in the TCGA-LGG dataset [27, 28]. For TCGA, the 1p/19q status for
validation dataset was derived from a previous study based on this
dataset [16]. Patients were selected according to the following inclu-
sion criteria: exams with a slice thickness ≤ 7.5 mm, artifacts in less
than 50% of the slices containing the gross tumor volume (GTV) visu-
ally assessed by a radiologist with 3 years’ experience (RC), and the
presence of T2-weighted and contrast enhanced T1-weighted images
and 1p/19q status. The GTV was delineated using MIM software ver-
sion 6.9.0 (MIM, Cleveland, United States) by one radiologist (RC).

2.2.2 Image pre-processing and radiomic feature extraction

In order to somewhat account for inter-scanner variability, Z-score
normalization was applied to the GTVs in each image series (per
patient). The formula for Z-score normalization for GTV intensities is:
OriginalIntensityV alue−µ

σ , where µ is the mean intensity inside each GTV
and σ is the intensity standard deviation in each GTV.
Voxel size resampling was performed before feature extraction using
cubic and linear interpolation separately. Images were resampled to a
voxel size of 3 mm ×3 mm×3 mm.
To reduce noise and computational burden, grayscale values were
aggregated into the same number of bins (50 bins) for all MRI
exams. The fixed bin number method was used to achieve a better
normalizing effect as intensity units are not absolute in MRI [25].
Radiomics features compliant with the International Biomarker
Standardization Initiative (IBSI), as well as non-IBSI features were

27



Chapter 2. Radiomics capability in neuro-oncological tasks

extracted with the RadiomiX research software (supported by
Oncoradiomics, Liège, Belgium).
Radiomics features were extracted consisting of five main groups:
1) fractal features, 2) first order statistics, 3) shape and size, 4)
texture descriptors including gray level co-occurrence (GLCM),
gray level run-length (GLRLM) and gray level size-zone texture
matrices (GLSZM), 5) features from groups 1, 3 and 4 after wavelet
decomposition. GLCM distance was 1.

2.2.3 Feature selection and statistical analysis

The Figure 2.1 illustrates the 3 steps that were performed only on the
training dataset for feature selection; the second step was repeated
300 times, with different sample groupings. All this procedure was
performed twice, for cubic and linear interpolation respectively. The
first step used correlation-based feature subset selection (CfsSubsetE-
val function, Weka software version 3.8.3) [29, 30, 31] to eliminate irrel-
evant and redundant features. In the second step, a table was created
that ordered and ranked features according to their importance using
a 10-fold cross validation treebag recursive feature elimination algo-
rithm (RFE) (Python 3.7.6 version, scikit-learn 0.21.2 package). Finally,
in the third step, a learning curve was computed (AUC vs. the incre-
mental number of features obtained from the ranked feature table).
Inter-correlation among selected features and with volume were calcu-
lated with the Spearman correlation coefficient. Moreover, the Mann-
Whitney test was applied in order to check statistically significant dif-
ferences in GTV values in co-deleted/non co-deleted groups in the
training dataset.
Statistical analysis was performed with Python 3.7.6 version (scipy
1.4.1 package, pandas 1.0.0 package).
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Figure 2.1: Feature selection (only training dataset).

2.2.4 Classification

A random forest (RF) classification model was trained on the training
dataset with the selected features, and performance metrics calculated
when applied to both datasets without further adjustments. To
mitigate the effect of the unbalanced outcomes, the training dataset
was balanced using an adaptive synthetic (ADASYN) resampling
approach, which creates artificial patients for the minority class,
before the RF model was trained [32]. On the training dataset,
internal 10-fold cross-validation was performed, followed by a
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bootstrap method (n=10000) to have an evaluation of the error of
the performance metrics (median, 2.5 and 97.5 percentiles). On the
validation dataset, a bootstrap method (n=10000) was implemented,
and the median values and 2.5 and 97.5 percentiles calculated. During
the cross-validation procedure, each set preserved roughly the same
ratio of samples for each class (co-deleted/non co-deleted) as the
complete training dataset and ADASYN applied to the training fold.
Accuracy, sensitivity, specificity, receiver operating characteristic
curve (ROC) and AUC were computed. All these steps of the
workflow were repeated twice (for cubic interpolation and linear
interpolation). Classification performance was compared for
cubic and linear interpolation-based data for both training dataset
cross-validation results and validation results; the DeLong test was
used to compare AUCs obtained from each model.
This segment and statistical analysis were performed with Python
3.7.6 version (scikit-learn 0.21.2 package, scipy 1.4.1 package), and R
3.6.1 version (pROC 1.14.0 package).

2.2.5 TRIPOD and Radiomics Quality Score

This study followed the instruction of Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD), and the Radiomics quality score (RQS) was used to
evaluate the radiomics workflow [12, 33, 34]. The RQS score for
this specific study was 44%. The RQS maximum score is 100% and
it is based on a 36 points system; a high value reveals a higher
methodological quality research and reporting [33].

2.2.6 Clinical utility index (CUI)

Clinical utility indexes were computed for the RF model tested on ex-
ternal validation dataset. CUI was developed in 2007 and aimed to
take into account both occurrence and discrimination [35, 36, 37, 38, 39,
40]. The value for CUI ranges from 0 to 1: excellent utility (CUI ≥ 0.81),

30



good utility (CUI ≥ 0.64), satisfactory/fair utility (CUI ≥ 0.49), and
otherwise poor [36].

2.3 Results

2.3.1 Data

Training dataset

One hundred and fifty-nine consecutive LGG patients with
pre-operative MRI images collected between 01-10-2002 and
01-09-2011 and biopsy proven 1p/19q status were identified within
the LGG-1p19q Deletion archive. The data included 102 patients
with co-deleted 1p/19q arms and 57 with non-co-deleted arms. The
grades of the LGG lesions were II (n = 104) and III (n = 55). The
types of LGG were oligoastrocytoma (n = 97), oligodendrogliomas
(n = 45), and astrocytomas (n = 17). Median age was 42 (range 13–84)
and this dataset included 76 women and 83 men. Post-contrast T1-
and T2-weighted images were available for all selected patients. All
images were acquired with 1.5T or 3T scanners, slice thicknesses
ranged from 1 to 7.5 mm and isotropic pixel size in the axial plane
ranged from 0.43 to 1.09 mm.

External validation dataset

No significant differences in gender (MF = 1.1 in training set vs. M
F =

1.3 in validation set) and WHO grade ratios ( II
III = 1.9 in training set

vs. II
III = 1.4) were observed between the training and validation sets.

There were significant differences in histology and age (mean age 46.5
in training set vs. 41.6 in validation set). Level of significance was
α = 0.05 for Chi-square tests and Mann-Whitney test (age compari-
son). Demographic and clinical data description are presented in Ta-
ble 2.1.
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Table 2.1: Data description
Training
dataset

Validation
dataset

p-value

Number of patients 159 60 —
Age in years, mean (SD) 41.6 (13.8) 46.5 (13.0) 0.026
Gender ratio (M/F) 83/76 28/22 0.759
Grade ratio (II/III) 104/55 29/21 0.435
Histology ratio
(astrocytoma/
oligoastrocytoma/
oligodendroglioma)

17/97/45 8/14/28 0.000

Outcome ratio (co-deletion/
non co-deletion) 102/57 25/25 —
The p-values for statistically significant differences of value distribution in training
and validation datasets were calculated with the following statistical tests: age —
Mann-Whitney, gender ratio — chi-square, grade ratio — chi-square, histology ratio
– chi square.

2.3.2 Radiomic feature extraction, selection, and statistical
analysis

In total, 5352 radiomics features per patient were extracted from both
T1- and T2-weighted images; 2676 features extracted with each of
cubic and linear interpolation voxel resampling methods.
After correlation-based feature subset selection a total of 48
features remained for cubic interpolation and 51 features for linear
interpolation.
These remaining features were fed into 300 loops of 10-fold
cross-validation RFE. GTV volume was not chosen among the selected
features.
With these ranked features, two learning curves were computed
(AUC vs. incremental increase of features) respectively for cubic
interpolation and linear interpolation using only the training dataset.
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Table 2.2: Selected features for cubic interpolation with frequency.
Features Frequency
GLCM average (T2w) 293
Wavelet LHL Stats median (T1w) 289
Wavelet LLH Stats median (T1w) 276
GLCM clusShade (T1w) 258
Wavelet LHH Fractal lacunarity (T2w) 223
Wavelet HLL GLCM correl1 (T2w) 212
Wavelet LLL Stats p10 (T2w) 206
Frequency is number of times the feature was selected during the 300 loops.

Table 2.3: Selected features for linear interpolation with frequency.
Features Frequency
Wavelet LLH Stats median (T1w) 275
Wavelet LHL Stats median (T1w) 271
Wavelet LLL IH p10 (T1w) 257
GLCM clusShade (T1w) 213
Wavelet LHH Fractal lacunarity (T2w) 205
Frequency is number of times the feature was selected during the 300 loops.

The classifier used to generate the curve was RF, with co-deleted/ non
co-deleted outcome and 10-fold cross validation.
The number of features for the final model was chosen near the first
salient point of the learning curve for AUC score. All features that
went into the model satisfy the condition that they were selected
more than 68% (greater than or equal to 205 times) in the RFE loops to
ensure a certain level of robustness.
Finally, the selected features were 7 for cubic interpolation (Table 2.2)
and 5 for linear interpolation (Table 2.3).
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Table 2.4: Classification performance scores obtained on training dataset (10-
fold cross validation).

Cubic interpolation,
median [2.5-97.5 percentile]

Linear interpolation,
median [2.5-97.5 percentile]

Accuracy 0.81 [0.75-0.86] 0.76 [0.71-0.82]
Sensitivity 0.77 [0.69-0.85] 0.72 [0.63-0.80]
Specificity 0.85 [0.78-0.92] 0.81 [0.74-0.88]
AUC 0.86 [0.81-0.91] 0.82 [0.75-0.87]

2.3.3 Classification

Results on training dataset

All results are reported as the median [2.5th-97.5th percentile]. For
cubic interpolation, the RF model achieved an AUC of 0.86 [0.81-0.91]
and for linear interpolation an AUC of 0.82 [0.75-0.87] (Table 2.4).
The DeLong test was used to compare model performances obtained
from models trained on data that underwent cubic and linear
interpolation. According to the results of this test, there was no
statistically significant difference between the two AUCs (p = 0.073).
The Mann-Whitney, applied to GTV values in co-deleted/non
co-deleted groups, shows no statistical difference between the two
groups (p = 0.149; α = 0.05).

Results on validation dataset

The AUC for features extracted for cubic interpolation was 0.87
[0.76-0.95] and for linear interpolation was 0.77 [0.61-0.89] (Table 2.5).
According to the DeLong test there was no statistically significant
difference between the two models (p = 0.178).

The ROC curves are shown in Figure 2.2 (for cubic interpolation) and
Figure 2.3 (for linear interpolation).
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Table 2.5: Classification performance scores obtained on external validation
dataset.

Cubic interpolation,
median [2.5-97.5 percentile]

Linear interpolation,
median [2.5-97.5 percentile]

Accuracy 0.72 [0.60-0.82] 0.72 [0.60-0.84]
Sensitivity 0.52 [0.32-0.72] 0.60 [0.40-0.80]
Specificity 0.92 [0.80-1.00] 0.84 [0.68-0.96]
AUC 0.87 [0.76-0.95] 0.77 [0.61-0.89]

2.3.4 Clinical utility index (CUI)

The positive CUI, calculated for the RF model with cubic interpolation
features and tested on validation dataset, was 0.451 (CI: 0.203-0.698);
the negative CUI was 0.605 (CI: 0.483-0.762). The positive and
negative CUI values obtained with cubic interpolation features had a
poor and a satisfactory/fair utility value respectively.
The positive CUI for the RF model, obtained with linear interpolation
features and tested on validation dataset, was 0.474 (CI: 0.238-0.709),
so with a poor utility value; the negative CUI for the model obtained
with linear interpolation features was 0.569 (CI: 0.435-0.703), so with a
satisfactory/fair utility value.
These results showed that the RF model, trained both with cubic
and linear interpolation features, achieved a satisfactory negative
CUI, meaning that this algorithm can be reasonably useful for
screening patients with 1p-19q non-co-deletion status. On the other
side, the RF model, trained both with cubic and linear interpolation
features, achieved a poor positive CUI, meaning that this method
has low utility to confirm patients with non-co-deleted status; in
practical terms, if a patient obtains a result that suggest having
non-co-deleted status, this patient should be further studied to
confirm the non-co-deleted status.

35



Chapter 2. Radiomics capability in neuro-oncological tasks

Figure 2.2: ROC AUC for features calculated with cubic interpolation - results
obtained on validation dataset.
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Figure 2.3: ROC AUC for features calculated with linear interpolation - results
obtained on validation dataset.
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2.4 Discussion

In this study we explored the ability of radiomics features
extracted from the GTV on preoperative MRI (acquired with
T1-weighted contrast enhanced and T2-weighted sequences) to
predict molecular status of chromosome 1p/19q co-deletion in LGG
patients. To investigate the influence of the resampling method
on the classification models’ performance, we used both cubic and
linear interpolation kernels for further comparison. After feature
selection, the feature vectors contained 5 and 7 features for cubic and
linear interpolation-based data, respectively. These feature vectors
only had 4 common features (Wavelet LLH Stats median (T1w),
Wavelet LHL Stats median (T1w), GLCM clusShade (T1w) and
Wavelet LHH Fractal lacunarity (T2w)). Therefore, we conclude that
the method presented is not completely robust to the resampling
method and additional studies on features reproducibility are needed.
According to Spearman correlation coefficient, within the training
dataset, the feature vectors consisted of statistically independent
features. In validation dataset, some of these features are correlated
to each other (Spearman correlation coefficient 0.76 and 0.77 for
T1-weighted Wavelet LHL Stats˙median (T1w) and Wavelet LLH -
Stats˙median (T1w) for cubic and linear interpolation-based features,
respectively).
According to DeLong test, there were no statistically significant
differences between AUCs obtained from the cubic interpolation
model and linear interpolation model both on training dataset
(p = 0.178) and validation dataset (p = 0.073).
The advantages of the present study are its non-invasiveness, the
analysis of the entire volume of the lesion, and the ubiquitous
availability, as it is based on simple conventional MRI sequences.
Other studies try to predict 1p/19q status, some of which aim to
solve the same problem using MRI [15, 16, 17, 18, 19, 20, 21, 22].
They all are using multimodal conventional MRI data, most often
combining T2-weighted and contrast enhanced T1-weighted data
together. Classification performance of the present study did not

38



exceed the results, obtained in [15, 16, 17, 19, 20]. Nevertheless, the
present study has some benefits over previously mentioned studies
[15, 16, 17, 20]: (1) the potential reproducibility, achieved with open
source data usage and utilization of an automated pipeline, (2) the
potential interpretability of results, as input features are known and
understood, (3) the presence of clinical utility evaluation, (4) the
evaluation of two different resampling methods.
The present study has some limitations. The main limitation is the
relatively small sample size, which decreases statistical power of the
classification results. For this reason, to test the model, we performed
cross-validation on the training dataset and then we trained it on
the whole training dataset to perform validation on external dataset.
Also, for this reason, to estimate model performance and its error on
external validation dataset, we performed a bootstrapping approach,
which produces multiple instances of the same observations and
omits other original observations. The second limitation was related
to data balance within and between training and validation datasets.
Outcomes in the training dataset were significantly unbalanced (102
cases of co-deletion vs. 57 cases of non-co-deletion); to partially
overcome this limitation, the ADASYN method was used, which
is not without uncertainties. The third limitation was related to
significant differences in histology and age distribution in training
and validation datasets. Histology effect and age have not been
investigated and included into models and they could be explored in
further studies. The fourth limitation was related to different MRI
field strengths, values of slice thickness (0.9-7.5 mm) and isotropic
pixel spacing (0.39-1.09 mm); these differences could be a source
of batch effects, modifying radiomics features significantly, but
also could be an opportunity to test the stability of methods across
different image acquisition parameters. The fifth limitation arises
from possible bias stemming from the random selection for 50 patients
inside the validation dataset.
In summary, the proposed non-invasive method is able to predict
molecular status of chromosome 1p/19q co-deletion in LGG patients,
based on multi-scanner multi-field MRI data. Although there is
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still room for improvement in accuracy metrics, its usefulness was
indicated for the estimation of prognostic molecular markers. Results
of its validation on external data demonstrated its generalizability.
According to the results of statistical tests, there were no statistically
significant differences between the AUCs obtained with different
spatial resampling interpolation methods (cubic and linear).
Regarding the diagnostic utility of this method, the CUI demonstrated
that the RF model (trained both with cubic and linear interpolation
features) achieved a satisfactory negative CUI, while the RF model
(trained both with cubic and linear interpolation features) achieved
a poor positive CUI. Therefore, linear and cubic models can be
reasonably helpful for ruling out non-co-deleted status, but they can
be poorly useful for confirming non-co-deleted status. This difference
can be explained by the different accuracy metrics: indeed, both
algorithms had specificity and positive predictive values higher than
sensitivity and negative predictive values; moreover, the unbalanced
class in the training dataset could affect the performance. These
results should be considered in future studies and should be taken
into account in a future clinical scenario.
This approach may be an opportunity to help medical decision.
Despite the dataset was limited, ADASYN increased the number
of cases in the training phase. However, further studies based on
more heterogeneous and larger patient population are mandatory to
confirm and validate our current results.

2.5 Conclusions

MRI radiomics analysis, based on T2-weighted and T1-weighted post-
contrast images, could supply a reliable noninvasive technique for the
prediction of 1p/19q status in LGGs, giving useful information for per-
sonalized therapy assessment and pretreatment prediction. Regarding
the two different voxel resampling methods, no statistically significant
differences were found.

40



2.6 Data availability statement
The dataset and GTV used in this article can be provided
upon contact with the corresponding author. The python
code used for the feature selection, classification model and
evaluation of the algorithm is available on GitHub https:
//github.com/roberto-casale/LGG-1p-19q-deletion.
Supplementary material is available via the link
https://www.ejradiology.com/article/S0720-048X(21)
00158-3/fulltext#supplementaryMaterial. Supplementary
material contains:

• outcomes for both training and external validation datasets (Ta-
bles 1 and 2 corespondingly), detailed feature list (Table 3), def-
initions of texture matrices (Table 4), results for feature selection
with RFE for cubic and linear interpolation implementation of
the pipeline (Tables 5 and 6), confusion matrices for cubic and
linear interpolation implementation of the pipeline (Tables 7 and
8),

• learning curves for cubic and linear interpolation implementa-
tion of the pipeline (Figures 1 and 2), correlation matrices for
cubic and linear interpolation implementation of the pipeline in
training and external validation datasets (Figures 3, 4, 5, and 6),
distributions of the values of the selected features for cubic and
linear interpolation implementation of the pipeline in training
and external validation datasets (Figures 7 and 8),

• description of voxel size selection, detailed description of the fea-
tures selection pipeline, definition and interpretation of CUI.
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Chapter 3. Radiomics application in non-oncological neurology:
overview and challenges

Abstract
Medical imaging technologies have undergone extensive
development, enabling non-invasive visualization of clinical
information. The traditional review of medical images by clinicians
remains subjective, time-consuming, and prone to human error. With
the recent availability of medical imaging data, quantification has
become an important goal in the field. Radiomics, a methodology
aimed at extracting quantitative information from imaging data,
has emerged as a promising approach to uncover hidden biological
information and support decision-making in clinical practice. This
paper presents a review of the radiomic pipeline from the clinical
neuroimaging perspective, providing a detailed overview of each
step with practical advice. It discusses the application of handcrafted
and deep radiomics in neuroimaging, stratified by neurological
diagnosis. Although radiomics shows great potential for increasing
diagnostic precision and improving treatment quality in neurology,
several limitations hinder its clinical implementation. Addressing
these challenges requires collaborative efforts, advancements in image
harmonization methods, and the establishment of reproducible and
standardized pipelines with transparent reporting. By overcoming
these obstacles, radiomics can significantly impact clinical neurology
and enhance patient care.
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3.1 Introduction

Since the discovery of X-rays [1], medical imaging has advanced
significantly. However, the conventional manual review of medical
images by clinicians is subjective, time-consuming, and costly. With
the increasing availability of medical imaging data, there is a growing
opportunity for quantitative analysis in this field.
Radiomics is a methodology aimed at retrieving quantitative
information from imaging data [2]. It is based on extracting numerous
descriptors from medical images and finding a link between features
and clinical outcomes. Handcrafted radiomics utilizes termed
features, which are mathematically defined during the pipeline
development, whereas deep radiomics utilizes features created by
the artificial neural network during the model training process. The
radiomics approach hypothesizes that medical imaging data contains
hidden, complementary biological information that can be used
for decision support in clinical practice [3]. Therefore, this method
is of high interest for application in individualized diagnosis and
treatment.
As handcrafted radiomics workflow requires a segmented region
of interest (ROI), this methodology has been extensively developed
in the oncological field where tumors and organs are routinely
delineated for treatment planning purposes [2]. Since its inception,
pioneer studies have revealed the connection between imaging
biomarkers and histology [4] and have matured to produce externally
validated and clinically relevant predictive models [5, 6].
Whereas in oncology a large amount of segmented imaging data
is accumulated mostly for radiotherapy needs, other branches of
medicine have collected imaging data and could potentially benefit
from the application of radiomics. Thus, it is essential to perform an
early diagnosis of neurological diseases since symptoms appear after
the disease progresses considerably. Often there are no formal reliable
biomarkers, and the diagnosis is based on the regularly reviewed
diagnostic criteria [7]. Therefore, the differential diagnosis between
the diseases and handling the atypical cases might be challenging.
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Thus, radiomics is an emerging methodology in medical imaging
research expanding from oncology to other branches of medicine.
However, the review of radiomics in non-oncological neurology
is needed to analyze the current state of the art, identify the
methodological pitfalls, and suggest possible solutions for the future
progress of quantitative clinical neuroimaging. In this review,
we present a typical workflow of radiomics analysis regarding
neuroimaging. We provide a broad overview of the currently
published works stratified by neurological diagnosis. We discuss the
current limitations of radiomics in neurology, suggesting potential
improvements.

3.2 Workflow
The following section considers the practical implementation of ra-
diomics in the neuroimaging field combining some common steps of
radiomics and neuroimaging workflows (illustrated in Figure 3.1). Af-
ter the steps are described, the list of the corresponding software is
provided.
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3.2.1 Data curation

In hospitals, the data is saved in Picture Archiving and Communica-
tions Systems (PACS) in Digital Imaging and Communications in
Medicine (DICOM) format [8, 9]. It stores imaging data together with
metadata. In research, open file formats are preferred, such as Nifti,
Analyse, MNC, and NRRD [10].
To read and write the imaging and metadata, an application
programming interface (API) for the currently relevant programming
languages is recommended to make the pipeline fully automated and
avoid manually introduced mistakes.
Clinical and metadata need to be anonymized or pseudo-anonymized,
considering the possible need for follow-up acquisitions [11]. Brain
scans usually include the facial features of the patient or teeth. Since
facial features or teeth can be used to identify a person, it is necessary
to remove them as well. A simple procedure for defacing is skull
stripping [12].
A good practice is a sanity check of the data. It might include linking
imaging and non-imaging samples to reveal missing or unwanted
data, acquisition time point check for longitudinal studies and image
quality check.
In neuroimaging research, the Nifti format is preferred as it is stan-
dardized and constructed specifically for neuroimaging data. In the
case of data conversion to Nifti with a custom code, it is important to
correctly transfer the geometrical parameters of the scan, as described
in https://nipy.org/nibabel/coordinate_systems.html.
For automated data analysis, maintaining a uniform data structure
is crucial. Data structure for different patients, imaging modalities,
and potential acquisition timeframes should be established together
with naming conventions for files and folders. For neuroimaging
specifically, the Brain Imaging Data Structure (BIDS) [13] is
recommended. It offers a standardized approach that is suited
for multi-modal data and its derivatives and is supported by the
community.
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3.2.2 Data pre-processing

After the proper curation, data is considered ready for use. The next
step is image pre-processing which is described in [14].
Since many imaging modalities or image acquisition time points can be
combined in neurology, brain scan co-registration is needed. It means
that multiple brain scans should be co-aligned to achieve the closest
spatial position. The data to be co-registered can belong to different
imaging modalities or sequences. Besides co-registration at the pa-
tient level, registration to the tissue probability maps in the standard-
ized space can be performed [15]. Co-registration can be performed in
both rigid (only the head position and orientation are changed) and
non-rigid (additional scaling and elastic deformations) ways. Even
though non-rigid co-registration allows for the best correspondence of
the anatomy and regions of interest, it changes visualized tissue tex-
ture. Therefore, for clinical tasks, mostly rigid co-registration on a pa-
tient level is applied.
Image re-shaping is required to obtain the same voxel shape within
the dataset. It allows for the same input image shape in the pipeline.
While changing the voxel size, it is important to consider the interpo-
lation effects introduced. In [16], different interpolation methods are
described. The detailed recommendations are given in [14].
Brain scans contain intensity inhomogeneities due to the presence of
the bias field. In MRI, the bias field is caused by the MR field in-
homogeneity of the scanner originating from the equipment [17] and
the patient disturbing the magnetic field. To reduce the effect of the
bias field, bias field correction (BFC) can be applied. While performing
BFC, it is important to consider that it might reduce the contrast and
remove critical abnormality information. The most popular method is
N4 BFC [18]. However, there are recent works on deep learning-based
BFC [19]. CT is not affected by bias because it represents attenuation of
the X-ray beam through the body, therefore, in general, this procedure
is not recommended for CT scans.
Since CT images are expressed in HU, with a well-defined range, more
advanced reliable pre-processing is possible. Knowing the characteris-
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tic HU for the tissue of interest, it is possible to exclude all the objects
on the scan that are not relevant to the analysis. Signal clipping can be
applied to the intensities outside of the range of interest [20].
Even though “hard pre-processing” is not recommended in the quan-
titative image analysis to prevent a signal loss [14], some filtering can
be applied to decrease the noise level. The most popular filters among
smoothing filters are Gaussian and median filters. Gaussian filter is
effective in removing high-frequency noises whereas a median filter is
applied to remove impulse noise [21].

3.2.3 Image segmentation

In neurology, ROIs can be anatomically or physiologically derived
and vary from application to application. Since brain structures
have a systematic organization and traditional computer vision
techniques can be applied for segmentation, there are many
computer vision-based auto-segmentation tools recognized by the
neuroimaging community. Nevertheless, the development of neural
networks brings new solutions which are gaining more interest. The
deep learning models are trained on different data and do not contain
mathematical constraints about anatomy or the expected distribution
of intensities.
Brain extraction narrows the image size and removes the surrounding
tissues. In some studies, radiomics analysis was performed over
the whole brain mask [22]. But since the brain includes different
structures, whole-brain radiomics do not give comprehensive
information about particular shapes and textures. Nevertheless,
this kind of analysis is prospective in the discovery of healthy and
pathological brain signatures for screening. In some works, features
are extracted from the right and left hemispheres to be compared [23].
A lower level of defining the ROIs is presented with the nervous
tissues. The human brain is composed of white and gray matter.
Analysis of the radiomics features extracted from the separate
brain tissues is closer to the in-vivo histology and allows for the
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interpretation of texture and density abnormalities.
Many studies focus on analyzing certain areas of the cortex and deep
gray matter. In this case, it is possible to build connections between
imaging data and functional outcomes since particular cortical
areas are responsible for the specific functions. Moreover, analyzing
certain areas can lead to early disease diagnosis before more severe
symptoms appear [24].
ROIs described above can contain both healthy and pathological
tissues. In most cases, neurological pathology appears in textural
changes. But when the pathological tissue is compact (hematoma or
tissue lesion), it can be selected as ROI.
Physiologically-derived ROIs are obtained from functional imaging
such as PET or fMRI. They represent the delineated tracer or function
activity areas. No manual delineation is needed, and ROI contours
depend on the selected binarization method.

3.2.4 Feature extraction

Radiomic features are usually divided into shape-, intensity-, and
texture-based features [4]. The first category contains mathematical
descriptors of ROI geometry, both 2D and 3D. The second category
contains intensity statistics and histogram-derived descriptors. The
third category contains descriptors of the spatial distribution of image
intensity values and their mutual orientation. Shape-based features
are not relevant in most neuroimaging studies since the shape of the
analyzed ROIs is either standardized or complicated. Nevertheless,
volume is always important since it can represent the dystrophy of
brain structures, lesion load, or size of the affected area. Intensity-
and texture-based features describe tissue properties including tissue
homogeneity and density, therefore these groups of features are used
in neurological studies.
Additional features to the ones obtained from the original image
can be extracted when the same values are calculated from the
transformed images. Image transformations may include, but are
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not limited to, square, square root, logarithm, exponential, Gaussian,
Laplacian, Laplace of Gaussian, wavelet, local binary pattern, and
Gabor filters.
While performing feature extraction, besides image and ROI mask,
feature extraction parameters are needed. Different feature extraction
tools provide different levels of customization. IBSI has some
recommendations on the most common feature extraction parameters.
This includes intensities re-scaling with normalization or z-scoring.
Intensity re-scaling for the images expressed in arbitrary units (MRI)
is recommended but it is not for (semi) quantitative images, such as
CTs. Another feature extraction parameter is intensity discretization
before extracting texture features [25].

3.2.5 Data analysis

After the feature extraction step, data analysis as well as model
development and validation are performed. For this, there are a large
number of publications on good practices in AI [26, 27]. Therefore, in
this section, we will focus on radiomics-specific steps.
Every case of missing data raises a question of feature or patient
elimination or data imputation. In [28], a histological data imputation
approach was suggested relying on the present features. Excluding
patients will limit the population. Excluding features will limit
the amount of diagnostic information. However, crucial clinical or
demographic information missing should lead to record exclusion.
Since the radiomic features are highly intercorrelated, in case of the
absence of a radiomic feature, it can be both eliminated or imputed.
While developing a radiomics signature, it is important to assess
feature stability and exclude non-reproducible features. To detect
reproducible features, test-retest studies should be performed [29, 30].
Additionally, stability does not mean informativity, therefore, further
steps on feature selection are needed.
After the data is split into train and test sets, the test set should be
kept apart and used only in model evaluation so that they do not
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interfere with the model-building process. In some cases, when the
data size is not large or to show model robustness to data deviation,
cross-validation is performed. This means that the data is split in
one of the common cross-validation schemes multiple times and the
whole training process is performed from scratch for every split. To
show model generalizability, a good practice is to perform external
validation —- to demonstrate model performance on external data
coming from different acquisition equipment or hospitals.
To get rid of the redundant information in the data, inter-correlated
features should be excluded preserving the information content.
Additionally, it is necessary to exclude features with zero and low
variance since they may contain little signal. To detect non-variant
features, the standard deviation is usually calculated followed by
scaling to the mean value. This approach gives unstable results if
feature values have significantly different ranges and mean values.
One of the popular methods is implemented as a nearZeroVar
function of Caret package (https://topepo.github.io/caret/)
in R.
The final step before modeling is feature selection to only retain the
informative features. Usually, feature selection steps are model-based.
Therefore, for different machine learning models, different features
might be selected. The feature set should be reported together with
the model performance: if the resulting model performs with low
scores, we cannot conclude that the features are strongly linked to the
outcome. Feature selection can be performed based on the univariate
feature performance [31], feature weights in the model, or “recursive
feature elimination” (RFE) based on recursively decreasing the feature
set size and comparing model performances [32]. The number of the
features in the final feature set can be estimated based on the sample
size using several rules of thumb [33, 34], or empirically based on the
saliency point of the dependency of the model score from the number
of features.
Dimensionality reduction methods such as principal component
analysis (PCA) [35], independent component analysis (ICA) [36], or
linear discriminant analysis (LDA) [37] can also be used to decrease
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the model complexity. This group of methods is based on the
features decomposition resulting in the input matrix transformation
into a lower-dimensionality matrix containing only distinctive
information. However, it is not commonly used in radiomics since it
transforms transparent radiomic features into abstract values losing
the interpretability of the final method.
In deep radiomics, feature reduction, and selection procedures are
performed by the neural network in a data-driven manner.
At this stage, overfitting as one of the major problems in machine
learning should be considered. Comparison of the training and
testing set scores enables assessment of an overfitting effect. A way
to examine the model for overfitting is a permutation test [38].
To prevent overfitting, several techniques can be applied. These
techniques are based on introducing random components into the
data or the model and include data augmentation, regularization,
ensembling, early stopping, or dropout layer for deep radiomics.

3.2.6 Harmonization

After the whole radiomics pipeline is established, the next steps are
larger multi-center studies or clinical trials. One of the challenges here
is feature instability caused by variations in population or acquisition
equipment. It leads to situations where models are performing
poorly on the data from the unseen domain. Harmonization is data
alignment ensuring its compatibility and consistency. As it was
shown in [39], harmonization can be performed at different steps of
the radiomics pipeline, but globally in the image or feature domain.
In multi-center studies, data harmonization can start at the beginning
of the study by standardizing image acquisition. Nevertheless, even
when the protocols are standardized, the intensity distribution in
scans can vary, especially while dealing with MRI data. To identify
stable features, test-retest and phantom studies can be performed [30].
If the raw sensor data is available, scans can be reconstructed with the
same parameters [40]. It is possible to implement traditional image
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processing methods (intensity normalization, z-scoring) as well as
deep-learning-based style transfer. Nevertheless, while changing
the appearance of the scans and their intensity distribution, it is not
clear whether it will improve feature analysis. In [41], the U-Net is
trained to produce the MRI scans with consistent contrast. In [42], the
generative adversarial network was trained to harmonize MRI scans
aiming to preserve the consistency of feature values.
Finally, feature values can be harmonized. The most popular
feature harmonization method is ComBat originally developed for
harmonization of the gene expression data [43]. It is an empirical
Bayesian method aimed at removing batch-specific bias and
preserving the influence of biologically significant components.
For the neuroimaging data, DeepCombat combining conditional
variational autoencoder architecture with ComBat methodology is
suggested [44].

3.2.7 Handcrafted vs. deep radiomics

Deep radiomics automatically learns representative image features
from the high-dimensional data by using non-linear modules
of the neural network [45]. Handcrafted radiomics represents a
“hard-coded” version of deep radiomics. Whereas in handcrafted
radiomics ROI, feature formulas, and mathematical models are
defined by the user, in deep radiomics, these instances are learned
from the data. Therefore, feature extraction and selection can be
replaced with the neural network. However, a neural network can
be a supplementary component for the handcrafted workflow to
segment the ROI. In the most general case, the whole scan can be used
as a neural network input, as illustrated in Figure 3.2. In this case, the
model will learn to identify the informative features of the scan.

Both handcrafted and deep radiomics have advantages and
limitations. Handcrafted radiomics can be trained with less data
and is more transparent due to the interpretable features. However,
it is limited in capturing complex patterns, not robust to variations
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Figure 3.2: Radiomics pipeline: steps of the handcrafted radiomics represent
the ”hard-coded” implementation of the deep radiomics.

of imaging parameters, and requires image preprocessing and
segmentation. Deep radiomics learns relevant features automatically,
captures more complex dependencies, and shows impressive results.
It can adapt to the different imaging modalities and tasks with
minimal changes in architecture. Moreover, additional domain
knowledge can be utilized with transfer learning. However, deep
radiomics is greedy for training data and computational resources
and is challenging to interpret [46, 47].
Not all of the handcrafted features are necessarily linked to
the outcome. In contrast, deep radiomics generates features
during the training process. Recently attention in AI has shifted
towards self-supervised learning and foundation models [48, 49].
Self-supervised learning aims to provide pseudo-labels to the data by
deriving supervisory signals from the data. After pre-training, models
can be fine-tuned for specific downstream tasks. This approach allows
for training with a substantial amount of unlabeled data and enables
utilization of the same pseudo-labels for multiple downstream tasks
creating a new concept of imaging features.
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3.2.8 Neuroimaging software packages

To sum up, the most acknowledged open-source neuroimaging soft-
ware packages are presented in Table 3.1. At the moment, the most
common language for open-source research software is Python. Ta-
ble 3.2 presents Python packages for neuroimaging.
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3.3 Applications

The number of papers in non-oncological neurology is growing start-
ing from the first publication in 2017 [9], which explicitly mentions ra-
diomics. Figure 3.3 shows the number of papers per year found in the
PubMed database with the search query ”radiomics AND neurology
NOT oncology”. In this section, we will review the non-oncological
neurological studies utilizing radiomics.

Figure 3.3: Number of publications, by year, containing keywords ”ra-
diomics AND neurology NOT oncology” in PubMed database (access date:
22.09.2023).

3.3.1 Alzheimer’s disease

Alzheimer’s disease (AD) is the leading cause of dementia worldwide,
and dementia is the leading cause of disability among the elderly
population [73]. Since research is extensively performed in this field,
and much experience and data have been accumulated, the first
neurological radiomic studies were performed in this area.
As the disease develops gradually, causing different levels of
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disability, the first work [74] classified disease stages with deep
radiomics using data from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database [75]. This first study pointed out the
need for more data and for establishing the connection between the
radiomic features and pathological processes. There are some later
works on AD stages classification as well [76]. Many later works
performed binary classification between AD patients and normal
controls (NC) to show that MRI- and PET-derived features can
be associated with AD [77, 78, 79, 80, 81, 82, 83, 84, 85]. Whereas
in AD, pathological changes might be well visible in scans and
be accompanied by strong clinical symptoms, mild cognitive
impairment (MCI) is harder to diagnose. Moreover, MCI individuals
can be confused with AD patients and NC. There are works on
distinguishing between NC and MCI patients [86, 87]. Most of the
AD radiomics studies are performed on classification between NC,
MCI, and AD patients utilizing either pair-wise binary or multi-class
classification [88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]. As MCI
is considered an early stage of AD, for these patients it is crucial to
know whether their impairment will progress to AD. In [100], the
classification model is trained to estimate amyloid positivity status
in MCI patients. In several works, classification models are built to
directly predict the conversion from MCI to AD [101, 102, 103, 104,
105, 106, 107]. There were also attempts to predict the speed of disease
progression [108]. Nevertheless, AD is not the only cause of dementia,
and focusing on AD patients only will lead to the lack of specificity
of the methods. There are works on the classification of the different
dementia diagnoses: dementia with Lewy bodies vs AD [108, 109]
and idiopathic normal pressure hydrocephalus vs. AD [110].
Nevertheless, besides clinical radiomics, there are traditional
neuroimaging features to characterize the brain. Functional
connectivity plays an important role here. Even though several
studies relied on fMRI [111, 87, 76, 105, 83], the connection between
these biomarkers has yet to be revealed. In [111], the correlation
between connectivity and radiomic features is studied.
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3.3.2 Multiple sclerosis

Multiple sclerosis (MS) is the leading cause of disability among the
young population [112]. The disease progression is fast, therefore early
diagnosis and prognosis for the patient are important.
However, the first deep radiomic study on inflammatory degenera-
tion was performed on survival classification of the amyotrophic lat-
eral sclerosis patients [113]. MS-related studies were performed later
and covered simple binary classification between MS and NC [114,
115, 116]. These works show the utility of the approach but lack the
specificity of MS among other inflammatory neurodegenerative dis-
eases. Neuromyelitis optica-spectrum disorder (NOSD) can be easily
confused with MS therefore a precise diagnosis is needed to enable the
correct treatment. There are some works on binary classification be-
tween MS and NOSD [117, 118, 119, 120]. There are studies where the
classification models are built to distinguish between MS and other di-
agnoses such as neuropsychiatric systemic lupus erythematosus [121]
and ischemic vasculopathy [122]. The multi-class classifier was built
to distinguish between MS, NOSD, migraine, and vasculitis [123]. Be-
sides diagnosis, it is essential to grade the disease severity within the
MS cohort. In [124], the radiomics model was trained to estimate the
relapse rate in MS. In [125], the EDSS score was predicted with deep
radiomics. In [126], MS types were classified as well as NC.
Several models are trained to characterize the neurodegeneration pro-
cess. In [127], the deep learning model is built to perform the detec-
tion of the demyelinated voxels on PET. In [128], MS lesion classifica-
tion is performed. In [129, 130], lesion rim status classification is per-
formed. In [131], a handcrafted radiomic model was built to predict
lesion growth.

3.3.3 Parkinson’s disease

Parkinson’s disease (PD) is a degenerative condition of the central
nervous system, which develops disability faster than any other
neurological disorder [132]. Since it develops gradually, exploration
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of the early and specific biomarkers is essential.
The first work was on the motor function assessment in PD [9]. To
show the utility of radiomics, the models were built to distinguish
between PD patients and NC [133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144]. As PD is heterogeneous in terms of its clinical
phenotype, for treatment and severity estimation, PD variants
classification is important. The models to classify the patients between
parkinsonism subtypes were built in some works [145, 146, 147, 148,
149, 150, 151, 152]. In PD there is a need for differentiation from
other similar diseases. In [153, 154], binary classification models were
trained to distinguish between PD and multiple system atrophy and
progressive supranuclear palsy. Radiomics approach was also used
for the treatment response prediction [155].
Transfer learning attempts are performed in the PD field trying to
fine-tune the AD diagnostic model for PD diagnosis [156]. Diagnostic
support solutions are suggested as in [155], where the nigrosome 1
abnormalities detector is trained.

3.3.4 Stroke

Stroke is the second leading cause of death, and third leading cause
of disability worldwide [157]. The main task in stroke management is
patient outcome prediction.
As a first task in stroke management, stroke areas should be identi-
fied. In [158], the deep learning model was trained to detect the stroke
area on non-contrast CT scans. In [159], the model was trained to dis-
tinguish between hyperperfusion areas from normal ones. In [160],
primary and secondary hemorrhages were classified. The other works
were devoted to the prognosis of stroke area development [161, 162,
163, 164]. Besides the pathology development prediction, there were
studies focused on the prediction of the biological recovery processes.
In [165], collateral circulation was classified. In [166, 167], models
were trained to predict recanalization. Most works were focused on
the treatment outcome prediction, including functional and cognitive,
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for both thrombolysis and mechanical thrombectomy [168, 169, 170,
171, 172, 173]. There are studies on stroke onset time estimation with
radiomics [174]. Finally, some studies are performed to train the ra-
diomic models to predict post-stroke events such as recurrent stroke
or epilepsy [175, 176, 177].

3.3.5 Epilepsy

Epilepsy is the most common neurological disease [178]. In [179], the
model was trained to predict epilepsy laterality. In [180], the epileptic
foci detection method was suggested. In [181], the radiomic model was
trained to detect focal cortical dysplasia lesions. In [182], the binary
classifier was built to distinguish between Juvenile Myoclonic Epilepsy
and NC.

3.3.6 Mental disorders

Mental disorders affect behavior and quality of life significantly and
are observed in 12.5% of the population [183]. Most studies in ra-
diomics in mental disorders are devoted to the binary classification be-
tween the NC and schizophrenia patients [184, 185, 186, 187, 188, 189,
190, 191, 192], bipolar disorder patients [193], or first episode psychosis
[194, 195, 196]. In [195], a more difficult deep radiomics classifier was
built to distinguish between schizophrenia patients, major depressive
disorder, and NC. In [196], the classifier was built to distinguish be-
tween first-episode psychosis, bipolar disorder, and NC. Finally, there
are some works on radiomics implementation for treatment response
prediction [197, 198].

3.3.7 Neurodevelopmental disorders

The most common neurodevelopmental disorders are autism
spectrum disorder (ASD) and attention-deficit/hyperactivity disorder
(ADHD). They affect cognitive and behavioral functions and might
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Table 3.3: Some of the open-source neuroimaging datasets.
Name Modality Cohort
ADNI [75] MRI, PET AD
OASIS [203] MRI, PET, CT NC, AD
ATLAS [204] T1w MRI Stroke
IXI Dataset [205] T1w, T2w, PDw, MRA, dMRI NC
Yale Test-Retest Data [206] Anatomical and functional MRI NC

ISLES [207]
DWI, ADC and FLAIR MRI,
CT perfusion

Stroke

MS Lesion Segmentation
Challenge 2015 [208]

T1w, T2w, FLAIR, PDw MRI MS

NFBS skull stripped repository [209] T1w MRI
Psychiatric
symptoms

Calgary-Campinas-359 [210] T1w MRI NC
CT-ICH [211] CT TBI
RSNA Intracranial
Hemorrhage [212]

CT Stroke

PPMI [213] Clinical and biological data PD

require life-long care and support. In most radiomic studies, binary
classification models were built to distinguish between NC and ASD
[199], and ADHD [200, 201]. In [202], ASD-linked radiomic features
were revealed.

3.3.8 Open-source datasets

We believe that to enable extensive research in some diagnostic areas
it is essential to have access to a sufficient amount of medical imaging
data. Table 3.3 presents some popular open medical imaging datasets
containing neuroimaging data.

3.4 Discussion

In this review, we gave an overview of the radiomics pipeline in clin-
ical non-oncological neuroimaging and gave some recommendations
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on each step of the pipeline. The variety of open-source tools for neu-
roimaging analysis as well as the expanding amount of radiomics stud-
ies are bringing optimism to the development of artificial intelligence
(AI) in clinical neurology. Moreover, the amount of accumulated data
is still growing, pushing the quantitative neuroimaging development
forward. Therefore, the approaches, that previously existed in oncol-
ogy, can be landed in neurology. However, there are some limitations
present in the majority of the papers and characterizing the current
challenges in the field.

3.4.1 Data availability

Many current studies are cross-sectional and performed on small pri-
vate datasets. These datasets usually are not sufficient to demonstrate
pathological patterns and represent the target cohort. One-center train-
ing severely decreases the generalizability of the model. To enable clin-
ical implementation of the model, it needs to confirm its performance
on various demographics as well as acquisition equipment set-ups.
External validation on samples coming from the different data do-
mains is recommended. It is desirable to have external validation data
to be prospectively collected to show robustness to the potential data
drift. However, external validation results should be interpreted care-
fully. Sample size, heterogeneity, and data balance should be consid-
ered. External validation performance should be explainable consid-
ering the sample properties. The external validation does not give
absolute information about model generalizability. There are some
industry-inspired suggestions to perform regular and recurrent vali-
dation every time the model is deployed to evaluate the generalizabil-
ity of the predictive model [214, 215].
Another consequence of the limited data accessibility is the low re-
producibility of the published studies. Experiments on private data
cannot be repeated. Additionally, it is not possible to check the la-
beling correctness. Moreover, if one wants to compare some models,
he needs to test them on the same cohort. Nevertheless, there are
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established datasets used by multiple research groups. These are 1)
open-source datasets, such as ADNI, 2) challenge datasets (https:
//grand-challenge.org/) which are much smaller and usually
do not have extensive multi-modal data, 3) clinical trials datasets (for
example, [216]). However, using a single dataset without any exter-
nal data introduces overfitting across the community, which limits the
usefulness of the dataset itself. To make the data and data-driven solu-
tions sustainable and therefore trustful, the following four principles
have to be maintained: Findability, Accessibility, Interoperability, and
Reusability (FAIR) [217].
Lately, the attention is drawn to the latest generation of models – foun-
dation models. They have a huge potential in medicine [49, 218]. How-
ever, the main challenge in their implementation is the high demand
for the amount of the training data. This fact gives an additional moti-
vation for data sharing and aggregation.

3.4.2 Data harmonization

Another limitation resulting from limited data availability is the lack
of data harmonization. It is affecting the radiomic methods themselves
because of the heterogeneity of the population as well as acquisition
equipment. If the development data is not population and equipment
representative, every new inference data point can be out of the dis-
tribution which leads to the wrong model outcomes. The CT data is
presented in HU which gives it quantification and stability. MRI data
is expressed in arbitrary units and acquired with a large variety of MR
sequences and hardware. One of the promising directions in the MRI
research is in multi-echo qMRI maps reconstruction. It gives stability
and quantification to the MRI data, but at the moment this approach is
far from being used in the clinical set-up.
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3.4.3 Clinical relevance of the data

Reliable and stable imaging biomarkers for neurological disorders
should be not only sensitive but also specific for every neurological
condition. In the current studies, most of the models are developed
to distinguish between the disorder and NC. Therefore, these
approaches are not applicable in clinical practice, where more than
one neurological condition can be suspected. Moreover, co-existing
conditions are also possible. Therefore, broader studies and
intra-diagnosis tests are needed to develop disease-specific radiomic
signatures.
Most neurological diseases develop gradually, and the patients are
diagnosed in already chronic stages of the disease. This brings bias
to the study data since it almost does not contain non-symptomatic
patients at early stages. These patients are highly important in
developing methods for early diagnosis and disease prevention.
However, there are some longitudinal studies (for example,
ADNI-based) that are performed with the early-stage cases.

3.4.4 Study design

Current studies are mostly proof-of-concept. Therefore, the
study design is highly simplified. Prediction tasks are solved as
classification tasks in most cases and the outcomes are limited by the
predicted event timeframe.
Imaging modality should be selected correctly, based on domain
knowledge, existing clinical protocols, and its availability.
The fusion of data of different natures should not be performed
before the predictive power of every baseline data source is studied.
However, data fusion can be justified by showing the added value in
model performance obtained with the fused data compared to the
separate baseline models.
For handcrafted radiomics, ROI selection should be based on domain
knowledge. However, for the radiomic studies of different clinical
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applications, ROIs are selected based on the brain areas affected the
most by the corresponding diseases.

3.4.5 Pipeline implementation

Different research groups perform radiomic pipeline steps differently
and in different order. This results in inconsistency and low
reproducibility of the results. To overcome this issue, transparent
reporting is essential following TRIPOD [219] and RQS [220].
Recently, the CheckList for EvaluAtion of Radiomics Research
(CLEAR) checklist for radiomics was out [221].
Additionally, code sharing has become a common practice in scientific
reporting in the last few years making the results transparent and
reproducible.
Another challenge is caused by the fact that multiple data processing
tools are implemented in different platforms and environments
breaking the consistency of the data flow. However, for every
common neuroimaging tool multiple APIs exist enabling a single
infrastructure for the study implementation.
To justify the selection of the model, its design, and hyperparameters
in a reproducible environment, experiment tracking tools such as
MLFlow (www.mlflow.org) are useful. They do not only inform the
researcher about the best-performing setup but also the protocol of all
the experiments.
Another implementation challenge is related to image segmentation
which is traditionally performed manually. Since intra- and
inter-reader agreement is never absolute, development and
improvement of the automated segmentation methods is needed.
For the clinical application of AI in medical imaging, FUTURE-AI
guiding principles are developed [222] to ensure that AI solutions are
effective, trustworthy, ethical, and safe.
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3.4.6 Interpretation

Even though the reported models perform with high scores, there is
still a lack of interpretation. For this, behavioral analysis should be
performed and aligned with the clinical knowledge. Connections
between the predictive and stable radiomic features and clinical
parameters should be studied. Additionally, pathological mechanisms
are not revealed by the radiomic studies, and large work should be
done in this field supported by extensive clinical and histological
data.
Since medical imaging analysis involves high-stakes decisions,
information is needed about which influence inputs have on a final
decision of the model. Due to a simple implementation, handcrafted
radiomics is more transparent compared to deep radiomics. However,
for acceptance in clinical practice, implementation of explainable AI
(XAI) is needed for overcoming a ”black box problem” [223, 224].
While every AI model is accompanied by its performance scores,
which provide insights into its efficiency and facilitate comparisons
with other models [225], it is imperative to remember that the
significance lies not in the AI scores themselves but in the impact
on clinical outcomes. Consequently, for more advanced models, the
inclusion of supplementary metrics is vital to elucidate how they
enhance the clinical pipeline.

3.5 Conclusion

We gave a review of the radiomic pipeline from the clinical neuroimag-
ing perspective. The amount of the collected data and the high perfor-
mance of the published models have shown that the application of ra-
diomics in neuroimaging will increase diagnostic precision and quality
of treatment. However, there are some important limitations prevent-
ing the implementation of this methodology in clinical practice. To
overcome these limitations, it is necessary to set data exchange and
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collaborations, work on data harmonization methods, and implement
reproducible pipelines and transparent reporting.

References
[1] Eyal Bercovich and Marcia C Javitt. “Medical Imaging: From

Roentgen to the Digital Revolution, and Beyond”. en. In: Ram-
bam Maimonides Med J 9.4 (Oct. 2018). DOI: 10.5041/RMMJ.
10355.

[2] Philippe Lambin et al. “Radiomics: extracting more information
from medical images using advanced feature analysis”. In: Eu-
ropean journal of cancer 48.4 (2012), pp. 441–446. DOI: 10.1016/
j.ejca.2011.11.036.

[3] Julien Guiot et al. “A review in radiomics: Making personalized
medicine a reality via routine imaging”. en. In: Med. Res. Rev.
42.1 (Jan. 2022), pp. 426–440. DOI: 10.1002/med.21846.

[4] Hugo J W L Aerts et al. “Decoding tumour phenotype
by noninvasive imaging using a quantitative radiomics
approach”. en. In: Nat. Commun. 5 (June 2014), p. 4006. DOI:
10.1038/ncomms5006.

[5] Wyanne A Noortman et al. “Development and External Valida-
tion of a PET Radiomic Model for Prognostication of Head and
Neck Cancer”. en. In: Cancers 15.10 (May 2023). DOI: 10.3390/
cancers15102681.

[6] Philipp Guevorguian et al. “External validation of a CT-based
radiomics signature in oropharyngeal cancer: Assessing
sources of variation”. en. In: Radiother. Oncol. 178 (Jan. 2023),
p. 109434. DOI: 10.1016/j.radonc.2022.11.023.

[7] Vivek Kumar Sharma et al. “Biomarkers: Role and Scope in
Neurological Disorders”. en. In: Neurochem. Res. 48.7 (Feb.
2023), pp. 2029–2058. DOI: 10.1007/s11064-023-03873-4.

77

https://doi.org/10.5041/RMMJ.10355
https://doi.org/10.5041/RMMJ.10355
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1002/med.21846
https://doi.org/10.1038/ncomms5006
https://doi.org/10.3390/cancers15102681
https://doi.org/10.3390/cancers15102681
https://doi.org/10.1016/j.radonc.2022.11.023
https://doi.org/10.1007/s11064-023-03873-4


Chapter 3. Radiomics application in non-oncological neurology:
overview and challenges

[8] Charles Parisot. “The DICOM standard”. en. In: Int.
J. Card. Imaging 11.3 (Sept. 1995), pp. 171–177. DOI:
10.1007/BF01143137.

[9] Arman Rahmim et al. “Improved prediction of outcome in
Parkinson’s disease using radiomics analysis of longitudinal
DAT SPECT images”. en. In: Neuroimage Clin 16 (Aug. 2017),
pp. 539–544. DOI: 10.1016/j.nicl.2017.08.021.

[10] Xiangrui Li et al. “The first step for neuroimaging data analysis:
DICOM to NIfTI conversion”. In: Journal of neuroscience methods
264 (2016), pp. 47–56. DOI: 10.1016/j.jneumeth.2016.
03.001.

[11] Khaled El Emam, Sam Rodgers, and Bradley Malin.
“Anonymising and sharing individual patient data”. en. In:
BMJ 350 (2015). DOI: 10.1136/bmj.h1139.

[12] Athena E Theyers et al. “Multisite Comparison of MRI Defacing
Software Across Multiple Cohorts”. en. In: Front. Psychiatry 12
(Feb. 2021), p. 617997. DOI: 10.3389/fpsyt.2021.617997.

[13] Krzysztof Gorgolewski et al. “Nipype: a flexible, lightweight
and extensible neuroimaging data processing framework in
python”. In: Frontiers in neuroinformatics (2011), p. 13. DOI:
10.3389/fninf.2011.00013.

[14] Alex Zwanenburg et al. “The Image Biomarker
Standardization Initiative: Standardized Quantitative
Radiomics for High-Throughput Image-based Phenotyping”.
en. In: Radiology 295.2 (May 2020), pp. 328–338. DOI:
10.1148/radiol.2020191145.

[15] David Alexander Dickie et al. “Whole Brain Magnetic Reso-
nance Image Atlases: A Systematic Review of Existing Atlases
and Caveats for Use in Population Imaging”. en. In: Front. Neu-
roinform. 11 (Jan. 2017), p. 226915. DOI: 10 . 3389 / fninf .
2017.00001.

78

https://doi.org/10.1007/BF01143137
https://doi.org/10.1016/j.nicl.2017.08.021
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1136/bmj.h1139
https://doi.org/10.3389/fpsyt.2021.617997
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.3389/fninf.2017.00001
https://doi.org/10.3389/fninf.2017.00001


[16] Thomas Martin Lehmann, Claudia Gonner, and Klaus Spitzer.
“Survey: Interpolation methods in medical image processing”.
In: IEEE transactions on medical imaging 18.11 (1999), pp. 1049–
1075. DOI: 10.1109/42.816070.

[17] P Padilla, J F Valenzuela-Valdes, and J L Padilla. “Inhomogene-
ity reduction for near field acquisition in high resolution MRI
systems”. In: 2017 13th International Wireless Communications and
Mobile Computing Conference (IWCMC). Valencia, Spain: IEEE,
June 2017, pp. 1513–1516. DOI: 10 . 1109 / ACCESS . 2017 .
2685079.

[18] Nicholas J Tustison et al. “N4ITK: improved N3 bias
correction”. In: IEEE transactions on medical imaging 29.6 (2010),
pp. 1310–1320. DOI: 10.1109/TMI.2010.2046908.

[19] Kai-Hsiang Chuang et al. “Deep learning network for
integrated coil inhomogeneity correction and brain extraction
of mixed MRI data”. en. In: Sci. Rep. 12.1 (May 2022), pp. 1–14.
DOI: 10.1038/s41598-022-12587-6.

[20] Pankaj Kandhway and Ashish Kumar Bhandari. “Modified
clipping based image enhancement scheme using difference
of histogram bins”. en. In: IET Image Proc. 13.10 (Aug. 2019),
pp. 1658–1670. DOI: 10.1049/iet-ipr.2019.0111.

[21] Arvind Kumar and Sartaj Singh Sodhi. “Comparative analy-
sis of gaussian filter, median filter and denoise autoenocoder”.
In: 2020 7th International Conference on Computing for Sustain-
able Global Development (INDIACom). IEEE. 2020, pp. 45–51. DOI:
10.23919/INDIACom49435.2020.9083712.

[22] Yingping Li et al. “Radiomics-based method for predicting the
glioma subtype as defined by tumor grade, IDH mutation, and
1p/19q codeletion”. In: Cancers 14.7 (2022), p. 1778. DOI: 10.
3390/cancers14071778.

79

https://doi.org/10.1109/42.816070
https://doi.org/10.1109/ACCESS.2017.2685079
https://doi.org/10.1109/ACCESS.2017.2685079
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1038/s41598-022-12587-6
https://doi.org/10.1049/iet-ipr.2019.0111
https://doi.org/10.23919/INDIACom49435.2020.9083712
https://doi.org/10.3390/cancers14071778
https://doi.org/10.3390/cancers14071778


Chapter 3. Radiomics application in non-oncological neurology:
overview and challenges

[23] Qingguo Ren et al. “A Pilot Study of Radiomic Based on Rou-
tine CT Reflecting Difference of Cerebral Hemispheric Perfu-
sion”. en. In: Front. Neurosci. 16 (Mar. 2022), p. 851720. DOI: 10.
3389/fnins.2022.851720.

[24] Y Lakshmisha Rao et al. “Hippocampus and its involvement in
Alzheimer’s disease: a review”. en. In: 3 Biotech 12.2 (Feb. 2022),
p. 55. DOI: 10.1007/s13205-022-03123-4.

[25] Loic Duron et al. “Gray-level discretization impacts
reproducible MRI radiomics texture features”.
In: PLoS One 14.3 (Mar. 2019), e0213459. DOI:
10.1371/journal.pone.0213459.

[26] Sujay Kakarmath et al. “Best practices for authors of healthcare-
related artificial intelligence manuscripts”. en. In: npj Digital
Medicine 3.1 (Oct. 2020), pp. 1–3. DOI: 10.1038/s41746-020-
00336-w.
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Chapter 4. Exploratory study: radiomic biomarkers in multiple
sclerosis

Abstract
Conventional magnetic resonance imaging (cMRI) is poorly sensitive
to pathological changes related to multiple sclerosis (MS) in
normal-appearing white matter (NAWM) and gray matter (GM), with
the added difficulty of not being very reproducible. Quantitative
MRI (qMRI), on the other hand, attempts to represent the physical
properties of tissues, making it an ideal candidate for quantitative
medical image analysis or radiomics. We therefore hypothesized that
qMRI-based radiomic features have added diagnostic value in MS
compared to cMRI. This study investigated the ability of cMRI (T1w)
and qMRI features extracted from white matter (WM), NAWM, and
GM to distinguish between MS patients (MSP) and healthy control
subjects (HCS). We developed exploratory radiomic classification
models on a dataset comprising 36 MSP and 36 HCS recruited in CHU
Liège, Belgium, acquired with cMRI and qMRI. For each image type
and region of interest, qMRI radiomic models for MS diagnosis were
developed on a training subset and validated on a testing subset.
Radiomic models based on cMRI were developed on the entire
training dataset and externally validated on open-source datasets
with 167 HCS and 10 MSP. The best diagnostic performance was
achieved in the whole WM. Here the model based on magnetization
transfer imaging features yielded a median area under the receiver
operating characteristic curve (AUC) of 1.00 in the testing sub-cohort.
Ranked by image type, the best performance was achieved by the
magnetization transfer models, with median AUCs of 0.79 (0.69–0.90,
90% CI) in NAWM and 0.81 (0.71–0.90) in GM. The external validation
of the T1w models yielded an AUC of 0.78 (0.47–1.00) in the whole
WM, demonstrating a large 95% CI and a low sensitivity of 0.30
(0.10–0.70). This exploratory study indicates that qMRI radiomics
could provide efficient diagnostic information using NAWM and
GM analysis in MSP. T1w radiomics could be useful for a fast and
automated check of conventional MRI for WM abnormalities once
acquisition and reconstruction heterogeneities have been overcome.
Further prospective validation is needed, involving more data.
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4.1 Introduction

Multiple sclerosis (MS) is an inflammatory disorder of the central
nervous system, responsible for focal and diffuse damages, including
both demyelination and neurodegeneration, and often leading to
physical and mental disability [1, 2]. In 2016, there were more than
two million prevalent cases globally [3]. In Europe, the overall mean
cost per patient was more than e50K (adjusted to 2015 purchasing
power parity) in a severe disease [4].
Early diagnosis in MS is challenging because the pathology
mechanisms are not yet completely understood, and disease
biomarker discovery is still ongoing. The McDonald criteria is
currently used for diagnosis [5]. It assimilates information about
clinical relapses and focal white matter (WM) lesions (plaques)
visualized with conventional magnetic resonance imaging (cMRI) and
cerebrospinal fluid (CSF) analysis [6, 7, 8, 5]. If the patient does not
meet the diagnostic criteria, the diagnosis of MS is provisionally not
retained. Although cMRI is playing a valuable role in routine clinical
practice, it merely captures a very small proportion of MS-related
pathological processes [9, 10]. It is particularly not sensitive to detect
and track diffuse pathological changes occurring both in the normal
appearing white matter (NAWM) and gray matter (GM). These
changes appear in the early stages of the disease and better correlate
with clinical outcomes than only the WM focal lesion load [11, 12, 13,
14, 15]. Additionally, routine cMRI voxel intensities are expressed
in arbitrary units, which vary based on a large number of factors,
including the patient being examined, equipment, and protocol
being used. This makes MRI analysis strongly dependent on the
expertise of the medical specialist and hinders data reproducibility
and comparison in follow-up and cross-sectional studies. Therefore,
there is an unmet clinical need for the development and automated
detection of quantitative and objective early MS biomarkers.
Quantitative MRI (qMRI) potentially overcomes these limitations by
quantifying the physical micro-structural properties of brain tissues
in standardized units. Commonly, some of the following parameters
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are estimated: longitudinal and effective transverse relaxation rates
(R1 and R2*, respectively) or times (T1 and T2*, respectively),
proton density (PD), magnetization transfer (MT) saturation, and a
number of diffusion MRI (dMRI) metrics. Values in qMRI maps are
linked to the physical properties of biological tissues, such as axonal
myelination (MT, R1, R2*, T1, and dMRI), iron accumulation (R2* and
T2*), and free water proportion (PD) [16, 17, 18]. It has been shown
that qMRI data are fairly reproducible between different scanners and
attractive for multi-center studies [19]. Current MS research compares
the qMRI properties of brain between healthy control subjects (HCS)
and MS patients (MSP) [20, 21, 22, 13, 23, 24]. It has been shown
that, with specific qMRI sequences, more MS-related damages can be
detected compared with cMRI using similar acquisition times [25].
Furthermore, it has been shown that qMRI reveals pathological GM
alterations [26] and early MS-related GM changes [27].
The discovery of quantitative imaging biomarkers is currently
experiencing a large increase in research interest, and radiomics
is rapidly emerging as a major tool in radiology. Radiomics is
a high-throughput imaging data quantification approach aimed
to calculate the quantitative descriptors of medical images to
characterize the underlying biology and establish a correlation with
clinical endpoints [28, 29, 30]. Radiomics has shown promise in
personalized medicine for cancer treatment [31, 32, 33, 34] and is
already applied in neurology to predict epilepsy in patients with
low-grade gliomas [35], to distinguish between MS and neuromyelitis
optica spectrum disorders on spine MRI [36, 37], and to differentiate
Alzheimer’s disease from mild cognitive impairment on MRI and
positron emission tomography [38, 39]. The standard pipeline for
radiomic analysis is presented in Figure 4.1.

Within the present study, we hypothesized that cMRI- and
qMRI-based radiomic models have a diagnostic value in MS, while
qMRI-based features have an advantage in the detection of diffuse
damages. The objective of the study was to investigate the ability
of radiomic features found in WM, NAWM, and GM, extracted
from cMRI and qMRI maps, to distinguish between HCS and MSP.
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Figure 4.1: Radiomics pipeline: (A) medical imaging and segmentation, (B)
feature extraction, (C) feature selection, and (D) modeling.

Radiomic classification models were developed and tested, and cMRI
models were validated on external publicly available datasets.

4.2 Materials and methods

4.2.1 Study design

This study was performed on three datasets: dataset 1 (DS1)
contains both cMRI (T1w and FLAIR) and four types of qMRI
maps (PD, MT, R1, and R2*) of both MSP and HCS, dataset 2 (DS2)
contains cMRI (T1W) of HCS, and dataset 3 (DS3) contains the
cMRI of MSP (T1w and FLAIR) (see Table 4.1). DS2 and DS3 were
combined into one validation dataset (DSV) using data selection
and additional pre-processing to minimize any mismatch with DS1
regarding demographics and image acquisition parameters. For each
participant, the same brain tissue segmentation method was applied.
DS1 was randomly split and used to train and test multi-channel
qMRI models as well as used for training of cMRI models, while DSV
was used to validate the cMRI models. The observations from test
subsets were kept apart from those of train subsets and were used
only to test the models. For each participant, radiomic features were
independently extracted from whole WM, NAWM, and GM regions
from all available image types. For MSP, WM volume included
combined NAWM and focal WM lesions. Since HCS do not have focal
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WM lesions, for them WM and NAWM volumes are matching.

With the addition of models combining features extracted from all four
qMRI maps, a total of 18 models were trained on DS1 [three regions of
interest (ROIs), five image types, and a combination thereof], of which
three models (three ROIs, one image type) were validated on DSV. All
feature selection and model training were performed in the respective
training datasets. The testing and/or validation datasets were kept
apart and were used only for evaluation purposes. The study design
is detailed in Figure 4.2. For each step, workflow execution times were
recorded, and the averages reported.

4.2.2 Data description

DS1 is a private dataset consisting of 72 participants, 36 MSP with
relapsing-remitting and progressive forms (CHU Liège, Belgium), and
36 HCS (GIGA-CRC in vivo imaging, University of Liège, Liège, Bel-
gium) acquired within an MS cross-sectional study (local ethic commit-
tee approval B707201213806) retrospectively collected between 2013
and 2017 [23]. It contains cMRI data (T1w for all the participants and
FLAIR only for the MSP) and qMRI maps (PD, MT, R1, and R2*; see
Figure 4.3). The inclusion criteria were as follows: (1) age between
18 and 65 years, (2) Expanded Disability Status Scale (EDSS) not more
than 6.5, (3) no relapse in the previous 4 weeks, and (4) MRI compati-
bility. The details of the MPM protocol are available in [23]. MS status
was estimated by CHU Liège neurology specialists based on McDon-
ald’s criteria 2010 [40]. This dataset was used for all the exploratory
analyses, including feature selection and model parameter tuning. Be-
fore the feature selection and subsequent steps, DS1 was randomly
split into training and testing subsets (80/20%), attempting to main-
tain distributions of outcome, age, gender, and scanner variables.

DS2 is the Calgary–Campinas-359 dataset – an open, multi-vendor,
multi-field-strength brain MRI dataset [41]. It is composed of volu-
metric T1w images of 359 presumed healthy adults, scanned between
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2009 and 2016. In the dataset description, there is no information about
the neurological status assessment.
DS3 is a subset of the MICCAI 2016 MS lesions segmentation (MSSEG)
challenge dataset. The MSSEG challenge dataset contains MRI data
for 53 MSP, but only 15 participants from the training subset are pub-
licly available [42, 43]. The data were acquired not later than 2016
in three different sites in France on four different multi-field multi-
vendor scanners with different sequences, including T1w and FLAIR.
We used the unprocessed data from DS2 to implement the same image
pre-processing protocol for all the datasets.
There are some differences between DS1 and DSV, the main difference
being the different image acquisition equipment and protocols (see Ta-
ble 4.1). Other differences are the lack of information about how HCS
and MSP status, respectively, was assessed in DS2 and DS3, and the
lack of MS stage of EDSS in DS3, making a comparison between DS1
and DS3 difficult. To minimize those differences and any potential
bias, DS2 and DS3 were combined and filtered to match the age range
and field strength present in DS1. Within the datasets, there were no
incomplete data.
A summary of the datasets is presented in Table 4.1.
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Figure 4.2: Study design.

Figure 4.3: Example of MRI data presented in DS1.
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4.2.3 MRI data pre-processing

All the data processing and analysis hereafter were performed on a
system containing 4 × 10 core 2.40 GHz Intel Xeon CPU and 64 GB
RAM.
The qMRI maps were generated in MATLAB 2017b (The MathWorks
Inc., Natick, MA, United States) with the use of the hMRI toolbox,
v0.2.0 [18], an extension of SPM12. In the absence of radiofrequency
field sensitivity bias map acquisition, the radiofrequency field
bias was corrected with a unified segmentation approach. The
radiofrequency transmit field (B1) bias was corrected using B1 and B0
maps, which were acquired with 3D echo-planar imaging mapping
protocols. The B1 data was processed with parameters which were
identical to the standard default ones. The multiparameter input
images included six MT-, eight PD-, and six T1-weighted images.
All images within DS1 were reconstructed with a resolution of 1 mm
× 1 mm × 1 mm; hence, we decided to resample the scans within DS2
and DS3 to the same resolution. We used cubic spline interpolation
as it performs well in terms of its Fourier properties, visual image
quality, and interpolation errors [44].
Following this step, tissue masks for CSF, GM, NAWM, and lesions
within DS1 were estimated. Tissue segmentation in HCS was
performed with a multi-channel unified segmentation protocol [45],
using multiple qMRI maps (PD, MT, R2*, and R1). It was performed
in MATLAB using hMRI for SPM12 with light regularization
(regularization coefficient, 0.001) and 60-mm cutoff for full-width at
half-maximum of Gaussian smoothness of bias. The outputs were
tissue probability maps for CSF, GM, and WM, with the voxel values
between 0 (background) and 1 (corresponding brain tissue). In order
to ensure the inclusion of only the relevant tissue class, binary masks
for each tissue were obtained by thresholding the tissue probability
maps at a high level of 0.9. For MSP, lesion masks were generated
from the combination of T1w and FLAIR images with LST [46] for
SPM12 by the lesion growth algorithm and corrected manually by a
qualified MS specialist (ELo) when necessary. Multi-channel tissue
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segmentation was performed using multiple qMRI maps (PD, MT,
R2*, and R1) with unified segmentation protocol in US-with-Lesion
[47], adding an extra lesion tissue class. In DSV, brain tissue
segmentation was performed with a single channel (T1w) unified
segmentation protocol in MATLAB with SPM12, using T1w images.
After segmentation, total intracranial volume (TIV) was estimated for
each patient as the morphological sum of the CSF, GM, NAWM, and
lesion volumes (where applicable). This combined ROI was used for
intensity normalization, as described below.
As the magnetic field inside an MRI scanner is not ideally
homogeneous and is affected by objects within it, a bias field signal
is introduced, degrading image quality as a smooth, low-frequency
signal that distorts segmentation results and feature values. To
partially correct for this in T1w images, N4 bias field correction [48]
was performed in TIV.
As cMRI voxel intensities are expressed in arbitrary units, the Image
Biomarker Standardization Initiative (IBSI) recommends using
normalization for raw MR data [49]. Therefore, within each T1w
scan, the intensities were normalized to arrive at a mean of 0 and a
standard deviation of 1. Normalization was performed within the
TIV, considering only TIV intensities.

4.2.4 Radiomic feature extraction and exploration

Radiomic features that quantitatively characterize the ROI,
e.g., intensity histogram, simple statistics, and texture [28, 50],
were extracted from pre-processed cMRI and qMRI data using
PyRadiomics 2.2.0 [51] in python v.3.7.1. Due to their small volumes,
features from lesion ROIs were not extracted, and they were used only
as an additional tissue class for brain segmentation. The radiomic
features of the following classes were extracted from original images:
FO statistics, gray-level co-occurrence matrix (GLCM) [52], gray-level
run length matrix [53], gray-level size zone matrix [54], neighboring
gray tone difference matrix [55], and gray-level dependence matrix
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Table 4.2: Overview of the independent feature sets per participant.
ROI Image type
WM (for MSP, NAWM + WM lesions) cMRI T1w
NAWM qMRI PD
GM MT

R1
R2*

In total, three ROIs In total, five image types

(GLDM) [56]. Contrary to oncological radiomic studies where
shape features are usually involved [28, 29, 50], here only FO and
texture features were considered. Many neurodegenerative disorders
have reported volumetric brain changes, showing disease-specific
patterns in brain substructures [57], which were not delineated in the
present study. Moreover, WM volumetric atrophy changes are mostly
explained with the presence of lesions [58], which also influence
first-order and texture features. Therefore, to further reduce the ratio
of the number of features vs. the number of samples, shape features
were excluded. Before gray-level texture matrices were calculated,
intensity discretization was performed with a fixed number of bins
Nbins = 50, in line with IBSI recommendations [49]. The fixed bin
number approach groups voxel intensities before discretization,
which additionally harmonizes multi-scanner multi-vendor multi-site
data.
No feature harmonization methods, such as ComBat [59], were
applied across the different datasets because of the small sample sizes
and considerable heterogeneity of scanners and protocols. To speed
up feature extraction, the ROI was pre-cropped into a bounding box
with 5-voxel-width padding. A separate feature set was calculated for
each ROI and image type. An overview of the feature sets is presented
in Table 4.2.

Feature analysis was performed in the whole DS1 to describe the data;
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its results were not included into model building. Statistical tests were
performed to gauge diagnostic efficacy in such a small dataset. A
univariate Mann–Whitney test was carried out using Bonferroni cor-
rection, and p ≤ 0.01 for two-sided hypothesis was considered sta-
tistically significant. Point-biserial correlation coefficients rpb and p-
values were calculated between radiomic feature values and MS sta-
tus; a correlation was considered statistically significant if |rpb|≥ 0.85
and p ≤ 0.05. Spearman correlations between the features and age
and the feature ROI volume were computed to gauge the added value
of radiomic features compared to age and volumetry, with |rS |> 0.85
considered highly correlated for each test. Additionally, the univari-
ate area under the receiver operating characteristic curve (AUC) was
calculated for each feature.

4.2.5 Radiomic feature selection

In order to remove redundant and non-informative features, feature
reduction and selection were performed on DS1, using the MS status
as the binary outcome where applicable. Feature selection was inde-
pendently carried out for the T1w, PD, MT, R1, and R2* maps to arrive
at a subset of N features each, attempting to adhere to published rules
of thumb to estimate the optimal number [60, 61]. We chose the follow-
ing approach to estimate the number of features Nfeatures = int(NS

10 ),
as outlined in [61], where NS is the number of samples in the minor
class.
Since DS1 is relatively small, especially after the train/test split, fea-
ture selection as described below was performed 100 times on an ex-
tended and balanced cohort of 100 participants created by randomly
sampling (with replacement) observations from the training subset. In
each of the 100 iterations, a fixed number N of the highest-ranking fea-
tures was retained, and at the end the features were ranked according
to how often they were selected.
The feature selection pipeline starts with excluding features with zero
or low variance. A feature was considered of low variance if the per-
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centage of its distinct values out of the number of observations was
less than 10% and the ratio of its most frequent values was more than
95/5. Next, features with high inter-correlation were excluded by cal-
culating the pairwise Spearman correlation between all the features.
From each pair of highly correlated features (|rS |> 0.85), we excluded
a feature having the highest correlation on average with all the re-
maining features. The final selection was performed with recursive
feature elimination [62] using random forest classifier [63] models [100
trees, as recommended by [64]; a number of features to consider when
looking for the best split int(

√
Nfeatures), where

√
Nfeatures is chang-

ing during recursive feature elimination iterations, as recommended
by [65]]. Random forest (RF) classifiers allow for robust variable im-
portance computation and do not need normalization. Moreover, the
number of available features exceeds the number of samples, and a
random forest classifier is still able to deal with such data. For each
selected feature, a distribution map was generated by calculating the
feature value within each 26 connected neighborhood of each voxel
within the image ROIs.

4.2.6 Model training and testing

Models were trained and tested on independent subsets of DS1. Obser-
vations from the training and testing subsets were randomly sampled
with replacement for 100 times, resulting in the creation of extended
and balanced training and testing cohorts. Every cohort contained 100
participants.
Separate binary classification models were trained on DS1 for different
image types, T1w, PD, MT, R1, and R2*, and for a combination of fea-
tures from PD + MT + R1 + R2* (composed of qMRI) to investigate the
value of each image type and ROI in the estimation of the MS status.
For each image type, three binary classification models were trained
using the same features from each image type and ROI: (i) random
forest (RF), (ii) support vector machine (SVM) [66], and (iii) logistic re-
gression (LR). For the RF model, the same settings as for the recursive
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feature elimination were used; for SVM, a radial basis function ker-
nel was used with regularization parameter C = 1.0, kernel coefficient
γ = 1/(Nfeatures×V ar(X))), where V ar(X) is the variance of the input
feature X (since we did not have any a priori expert knowledge about
the classification problem and did not perform any empirical valida-
tion of the model parameters, these are the default parameters for the
SVM, keeping a balance between classification accuracy and tolerance
to misclassification errors), and for LR, L2 penalty was used since this
regularization does not lead to high values among the regression co-
efficients, with dual formulation, as recommended when the amount
of observations exceeds the amount of features, and a liblinear solver,
which is recommended for small datasets; inverse of regularization
strength C = 1.0, which is optimal in terms of balance between accu-
racy and model complexity. Due to the small dataset sizes, DS1 was
used again as an exploratory dataset.
The performances of the models were estimated in terms of the follow-
ing metrics: accuracy, sensitivity, specificity, and AUC, with the corre-
sponding 90% confidence intervals (CI); for each model, learning and
curves were plotted. Since all the scores were estimated on the data
subsets, containing equal numbers of HCS and MSP, the imbalanced
data correction was not needed. The best model was selected based
on these performance metrics for different ROIs and tissue types, giv-
ing the AUC score more weight and excluding models with median
AUC scores below the threshold of 0.7, which is considered an under-
performing classification model. In order to select the best model type
(RF, SVM, or LR), the number of highest AUC scores was used.
The final models with the original coefficients were subsequently val-
idated on DS2 and DS3. As the combined dataset containing DS2
and DS3 was highly unbalanced regarding the outcome, bootstrapping
with balanced sampling was implemented. The models for qMRI were
not validated externally due to the unavailability of similar datasets.
To examine the models and methodology for overfitting, a permuta-
tion test was performed on DS1. The class labels in both training and
testing subsets were randomized, maintaining the same distributions
as in the original subsets. Without modifying the pipeline, feature se-
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lection was performed, models were trained and tested, and perfor-
mance metrics were calculated to ascertain whether the pipeline de-
tects patterns in randomly generated outcomes.

4.3 Results

4.3.1 Data description and MRI data pre-processing

Participants were drawn from DS2, aiming to match DS1 regarding age
and magnetic field strength. Participants with MRI quality, which was
not sufficient for robust automatic segmentation, were excluded after
a visual check (ELa). Finally, 167 participants were selected from this
dataset. Another 10 participants were selected from DS3, again trying
to match the age and field strength distributions with those of DS1. An
overview of the resulting feature sets is presented in Table 4.3.

4.3.2 Radiomic feature extraction and description

For each T1w and qMRI image and ROI combination, 93 features
were extracted, resulting in 1395 features per participant. The
Mann–Whitney test revealed that 16% of the features (220 features out
of 1395) were sampled from significantly different distributions in
the HCS and MSP cohorts, mostly originating from WM in all image
types but also from NAWM in MT and R2*. In the entire feature set,
there was only one feature (R1 first-order minimum in WM) that was
highly correlated with the outcome, no feature was highly correlated
with age, and 10 features out of 1395 were highly correlated with
ROI volume. A univariate analysis showed that 28% of the features
(395 features out of 1395) had an area under the receiver operating
characteristic curve (ROC AUC) score > 0.75, most of which were
obtained from the PD, MT, and R2* maps (see Table 4.4).
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Table 4.3: Dataset summary details for the included participants.
Dataset 1 Dataset 2 Dataset 3

Participants
MSP (15 RR,

21 progressive),
HCS (36)

HCS (167) MSP (10)

Equipment

3T Siemens
Magnetom
Allegra (37)

and Prisma (35)

3T Siements (53),
Philips (54),

GE Healthcare (60)
MRI scanners

3T Siemens
Magnetom
Verio (5),
3T Philips
Ingenia (5)

Age, µ± σ
(years)

45.8 ± 12.1 52.7 ± 7.3 40.5 ± 10.8

Gender
(M/F) 0.76 0.96 1.00
We used the following abbreviations: µ — average, σ — standard deviation, MSP —
multiple sclerosis patients, RR — relapsing-remitting, HCS — healthy control
subjects, M — male, F — female.
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Table 4.4: Number of features out of 1395 with age, volume, and outcome
correlations having |rS |> 0.85 as well as univariate AUC >0.75 and corrected
Mann-Whitney p < 0.01.

ROI T1w PD MT R1 R2*

|rageS |> 0.85
WM 0 0 0 0 0
NAWM 0 0 0 0 0
GM 0 0 0 0 0

|rvolume
S > 0.85|

WM 0 3 1 1 0
NAWM 0 3 1 1 0
GM 0 0 0 0 0

|routcome
pb |> 0.85

WM 0 0 0 1 0
NAWM 0 0 0 0 0
GM 0 0 0 0 0

AUCunivar > 0.75
WM 13 62 21 45 52
NAWM 8 28 57 9 37
GM 3 7 26 5 22

pBonferroni
Mann−Whitney < 0.01

WM 9 41 10 37 7
NAWM 0 12 42 5 26
GM 1 0 18 2 10
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4.3.3 Radiomic feature selection

In the training subset of DS1, on average among all the image types
and ROIs, 7% from the initial feature set were excluded by the low
variance step, followed by 79% exclusion by the high correlation step.
The RF-based recursive feature elimination using data sampling with
replacement yielded the final feature vectors for each ROI and MRI im-
age type. To make the models easier to compare across ROI and MRI
image types, the three (Nfeatures =

NS
10 = 28

10 = 3) top-ranking features
were left in each final feature vector.
No high correlations were discovered between the selected features,
age, and ROI volume. For the selected features, the univariate AUC
was below a threshold of 0.7 for PD, MT, and R2* in NAWM and T1w
and for PD in GM. According to the Mann–Whitney test, the highest
number of features with significant differences in means in HCS and
MSP is discovered in WM (15 features out of 15) when ranking by ROIs
and on R1 (eight features out of nine) when ranking by image types.
A list of the selected features with their univariate ROC AUC scores
is presented in Figure 4.4. For the best features in each ROI and im-
age type, saliency maps were obtained by calculation of the feature
value in the neighborhood of each voxel. Examples of the normalized
saliency maps are presented in Figure 4.5.

4.3.4 Model training and testing

According to the DeLong test with use of the Bonferroni correction,
different ML models had significantly different (p = 0.01) AUC scores
in all the cases, with the exception of MT and qMRIcomb in WM, R1
in NAWM, and PD in GM. Among all the ROI and image types, in
most cases, the median values of the RF classifier performance scores
dropped below a threshold of 0.7. Having the highest number of top
AUC values, the LR model was selected. Results from the LR model
will be shown in the main body of the text. The performance metrics
are presented in Table 4.5.
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Models using features extracted from WM achieved the best classifi-
cation performance, with the best performance achieved by the MT
data. There were no statistical differences (p ≤ 0.01) in AUC scores
obtained for WM in MT, R1, and qMRIcomb. The highest median per-
formance across all metrics was achieved with the MT model, all of
which yielded a value of 1.00. The T1w model performed generally
lower than the MT and combined qMRI models but outperformed the
PD model in median specificity, the R1 model in median sensitivity,
and the R2* model in median accuracy and AUC.
In NAWM, there were no significant differences in AUC scores ob-
tained for highest scoring R2* and qMRIcomb models. The highest
overall performance was achieved with the R1 model. The PD model
yielded a median specificity of 0.00 (no true negatives were achieved).
The T1w model performed generally poorer than the MT and R1 mod-
els but better than the PD, R2*, and qMRIcomb models.
In GM, there were no significant differences in AUC scores obtained
for MT and R1 and for R2* and qMRIcomb. The highest overall per-
formance was achieved with the MT-based model, which yielded a
median accuracy of 0.88.
The permutation test results showed a significant (p ≤ 0.01) drop in
AUC for all the models, except for PD and MT in NAWM and for T1w
in GM.
The classification performance metrics T1w models using the WM,
NAWM, and GM validated on the external DSV are presented in Ta-
ble 4.6. Since DS2 comprises only MS negative outcomes and DS3 only
MS positive outcomes, the separate accuracies for DS2 and DS3 are
equal to specificity and sensitivity, respectively, on the whole valida-
tion data. The medial validation model accuracy for DS2 is 1.00 in WM
and NAWM and 0.00 in GM; the medial validation model accuracy for
DS2 is 0.30 in WM, 0.20 in NAWM, and 0.90 in GM.
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Figure 4.4: Univariate area under the receiver operating characteristic curve
for the selected features; we used the following abbreviations: FO — first
order, LDHGLE — large dependence high gray level emphasis, SDLGLE —
small dependence low gray level emphasis, LAHGLE — large area high gray
level emphasis, MAD — mean absolute deviation, LGLE — low gray level
emphasis.
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Figure 4.5: Normalized saliency maps for the best selected features for each
region of interest and image type highlight the areas with the highest feature
values: (A) T1w GLCM cluster shade in WM, (B) PD first-order skewness in
WM, (C) MT first-order minimum in WM, (D) R1 first-order kurtosis in WM,
(E) R2* GLCM cluster shade in WM, (F) T1w GLCM cluster shade in NAWM,
(G) PD GLDM large dependence high gray level emphasis in NAWM, (H)
MT GLDM large dependence high gray level emphasis in NAWM, (I) R1 first-
order 10-percentile in NAWM, (J) R2* GLCM Imc2 in NAWM, (K) T1w first-
order 10-percentile in GM, (L) PD first-order 10-percentile in GM, (M) MT
GLDM small dependence low gray level emphasis in GM, (N) R1 first-order
minimum in GM, and (O) R2* GLDM low gray level emphasis in GM.
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Table 4.6: Logistic regression model performances on external validation
dataset showing the median (90% CI) for each tissue type for T1w images.
ROI Accuracy AUC Sensitivity Specificity
WM 0.65 (0.55, 0.85) 0.78 (0.47, 1.00) 0.30 (0.10, 0.70) 1.00 (0.90, 1.00)
NAWM 0.60 (0.55, 0.95) 0.65 (0.29, 1.00) 0.20 (0.10, 1.00) 1.00 (0.90, 1.00)
GM 0.45 (0.15, 0.45) 0.24 (0.05, 0.56) 0.90 (0.10, 0.90) 0.00 (0.00, 0.30)

4.3.5 TRIPOD Statement and Radiomics Quality Assurance

This study was evaluated with the Radiomics Quality Score (RQS) [29],
which yielded a final result of 39%. We likewise evaluated it with the
Transparent Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis (TRIPOD) [67] checklist score, which
was in the range of 0.71-0.77%.

4.4 Discussion

In this exploratory brain tissue MRI and qMRI radiomics study based
on a unique dataset, we report on several hypothesis-generating
findings for HCS vs. MSP classification. Previous studies on
radiomics in MS have been focused on T2w cMRI data and aimed to
distinguish between MS and neuromyelitis optica spectrum disorder
[36, 37] without external validation, hence the importance of this
work.
Of the three machine learning models (RFC, SVM, and LR) tested,
LR was the most stable with median accuracy, AUC, sensitivity, and
specificity all exceeding a value of 0.7 while achieving the highest
performance in terms of AUC. The fact that LR outperformed the
other models could be due to the small number of observations, where
the simplest models might perform best since they are less likely to
overfit. The selected radiomics features were not correlated with age
and volume (also a radiomic feature), which indicates that radiomics
could provide additional information to those simple variables.
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The best LR model performance concerning tissue type was achieved
using features extracted from WM. This was expected since focal WM
lesions (plaques) in the WM of MSPs affect the intensity distribution
[6]. In NAWM classification, which is more challenging, good
classification is achieved not only with MT and R1 maps but also
with T1w data. This result was not expected since this MRI sequence
is not sensitive to pathological NAWM changes within, as reported
in [6] and [21]. Nevertheless, it could be explained by the fact that
qMRI voxel values have a physical meaning, reflecting the water and
myelin contents. Furthermore, the qMRI map generation pipeline
contains image co-registration and B0 and B1 fields correction steps,
leading to interpolation and, therefore, smoothing of the qMRI map.
Consequently, T1w images have a higher spatial resolution, leading
to a more detailed texture analysis. In GM, the T1w-based model
underperforms, as it was expected, according to previous publications
[6, 21].
Among the image types, the best performance was achieved with MT
maps, which corroborates the findings of [23], where statistical tests
showed considerable differences between HCS and MSP. In WM,
the MT model demonstrated median accuracy, AUC, sensitivity, and
specificity of 1.00, which means that all the training observations
were classified correctly. As far as training observations did not enter
model training, we can conclude that, in our relatively small dataset,
the presence of focal WM lesions (plaques) makes the selected MT
features distinctive from the ones extracted from the healthy brain.
The PD maps showed the poorest performance with at least one of
the performance metrics crossing below a value of 0.7 in each tissue
type. This could be due to the potential residual T2* weighting, as
mentioned previously [23]. The results obtained with T1w and R1
data were significantly different, although both these image types
represent longitudinal relaxation. The main difference between them
is that T1w demonstrates the relative level of longitudinal relaxation
at some moment, expressed in arbitrary units, whereas the R1 map
represents the actual physical property of the tissue and is expressed
in standardized physical units (Hz). Furthermore, unlike for T1w
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data, reconstruction of the qMRI images is always performed with the
correction of instrumental biases and receive fields [18].
Although the T1w models are non-quantitative, they outperformed
some of the qMRI models in WM and NAWM yet had the poorest
performance in GM. Among all the T1w models, the WM model
yielded the highest median AUC of 0.78 and an underperforming
sensitivity with a median value of 0.30 on the testing subset of the
development dataset. On the external validation for T1w-based
models, all showed a poor performance. Nevertheless, among these
models, the best performance was achieved in WM, mainly due to
the presence of focal WM lesions, which are easily captured in the
radiomic analysis. In NAWM and GM, the differences between HCS
and MSP are presented on the microstructural level. The T1w data
is expressed in arbitrary units, and it is not consistent enough to
detect these changes within different scanners and centers. As the
T1w-based model in GM underperformed on the testing data, a good
performance on the validation dataset was not expected. Thus, even
though T1w data can perform well on the development dataset, its
application is challenging for multi-centric studies. The explanation
can be due to differences in imaging data, lack of sensitivity of
T1w contrast for these applications, low predictive ability of the
corresponding features, and their susceptibility to data effects.
Additionally, we suspect a bias that can be introduced by the clinical
differences in the cohorts in DS1, DS2, and DS3. Whereas MS status
assessment details, EDSS, and MS stage are known for DS1, there is
no such information about the participants from DS3, and there is
no information about the tests carried out for DS2 participants to
determine them as HCS.
The strengths of the current study include the use of unique
quantitative and reproducible imaging data, the use of an external
validation open-source data, and in-depth investigation of the
features in traditionally challenging tissues such as NAWM and GM,
which can have potential in early MS diagnosis.
This study has some limitations, too. The first stems from the small
number of observations in the DS1. Consequently, for external
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validation, we excluded participants which did not correspond to the
participants from DS1 in terms of age or MRI magnetic field strength.
All participants with insufficient MRI data quality, rendering it
unsuitable for robust automatic brain tissue segmentation, were also
excluded, introducing more bias. Another limitation is related to the
uniqueness of qMRI data, which means that there are no available
similar qMRI brain datasets for external validation, especially for MSP.
However, it was reported that qMRI is reproducible between different
scanner models, and multi-center studies can be expected [19]. The
third limitation is the absence of data harmonization performed
across datasets involved in this study. It results in non-uniformity of
non-quantitative MRI data between datasets and thus leads to model
performance degradation. The next limitation is related to the analysis
of only HCS and MSP data. Although the exploratory analysis of
the features demonstrated that some had very high univariate AUC
scores (¿0.99), absence of data for other neurodegenerative diseases,
and relatively small amounts of observations, we cannot conclude
that these features themselves can be reliable biomarkers in MS.
Thus, an analysis of other neurodegenerative disorders is needed
to distinguish between different diagnoses. The fifth limitation
pertains to the cMRI sequence analyzed in this study: even though
focal WM lesions are noticeable on T1w, this image type is not the
leading one in MS investigation. Among cMRI modalities, T2w,
FLAIR, and contrast-enhanced T1w provide appropriate contrast.
These modalities were not available for all the participants of DS1
(with qMRI acquisition): FLAIR scans were available for MSP only.
Therefore, an analysis of another cMRI and qMRI could be a subject
of future research. Finally, different brain segmentation approaches
were used for DS1 and external validation data. Even though the
same method was implemented for all the MRIs, segmentation in
DS1 was performed with qMRI data, while segmentation for external
validation was performed with cMRI data. It could affect the values of
radiomic features, as cMRI-based segmentation leads to an inaccurate
delineation of deep GM regions [16, 23].
Within the present study, we used standard open-source tools for data
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pre-processing and analysis. Thus, the diagnostic support workflow
execution times obtained within this study are indicative. Moreover,
they strongly depend on the hardware and software used, original
medical image parameters, pre-processing and analysis settings,
and radiomic features, composing the final signature. We did not
implement any optimization of computational resource consumption;
therefore, the obtained execution times represent the upper bound of a
workflow duration. Within the present study, cMRI- and qMRI-based
workflows took approximately up to 26 and 38 min per participant,
excluding the image acquisition time. This difference is due to the
relatively long time of qMRI map reconstruction. This shows that the
cMRI workflow can be implemented into the brain scanning protocols
as a screening for WM abnormalities. The qMRI workflow requires a
particular scanning protocol [16] and a relatively long analysis time.
Therefore, it can be implemented for diagnostic support for patients
with suspicious medical evidence.
This study indicated the potential of cMRI and qMRI radiomics in
MS-related biomarker development. In differentiating between MSP
and HCS, qMRI showed the advantage over cMRI in NAWM and
GM regions. Therefore, application of qMRI is promising in early MS
diagnosis. We believe that qMRI radiomic signatures can contribute
to multi-center studies, as also indicated in previous works [16, 17, 23,
18]. For this, the reproducibility of qMRI features is to be investigated
in the future. T1w WM analysis could potentially be applied for a
rapid check of cMRI for WM abnormalities. For research purposes, 7
T MRI is often applied to study NAWM and GM [15, 68], but it is not
widely used in clinical practice yet. We believe that 7 T MRI radiomic
analysis is a potential research field in MS diagnosis.
Our next step is to validate those findings in a prospective qMRI
study and test the hypothesis that those signatures are sensitive
to neurodegenerative changes in the early stages of MS and have
a diagnostic value for subjects at risk (e.g., clinically isolated
syndrome).
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4.5 Conclusion

This study demonstrates that brain cMRI and qMRI radiomic
features have the potential to distinguish between MSP and HCS.
In NAWM and GM analysis, having a potential in early automated
diagnosis, stable results are achieved with qMRI-based data. This is
a proof-of-concept clinical study demonstrating a strong signal in
brain imaging, but further research is needed to develop and approve
radiomic signatures for MS.
Nevertheless, future large-scale studies should evaluate the
reproducibility and generalizability of the proposed method and
create an MS-specific radiomic signature. Because of fully automated
pipeline and imaging data quantification, the proposed approach
shows its potential in relevance to time-saving and reproducibility in
MS diagnosis.

4.6 Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions DS2 and DS3 are public datasets, the
accession details can be found in [41] and [39]. DS1 MRI data
cannot be shared publicly. The code to perform the analysis and
radiomic features values are publically available from GitHub
URL: https://github.com/CyclotronResearchCentre/
brain-tissue-radiomics-on-clinical-and-quantitative-MRI-for-MS.
Requests to work with the DS1 on a collaborative basis should be
directed to ELo, elommers@chuliege.be. The Supplementary
Material for this article contains intermediate and negative results
as well as TRIPOD and RQS checklists and it can be found online
at: https://www.frontiersin.org/articles/10.3389/
fnins.2021.679941. Supplementary material contains: detailed
image acquisition parameters for DS1 (Table 1), demographic data
for DS1 (Table 2), qMRI parameters calculated in DS1 (Table 3, [23]),
comparison of age and sex distributions in HCS and MSP as well
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as in development and validation groups (Table 4), list of extracted
radiomic features (Table 5), participant distributions in development
and validation groups (Table 6), number of features per feature set
kept after every feature selection step (Table 7), list of the selected
features (Table 8), Spearman correlation coefficients of the selected
features with age and ROI volume (Figure 1), univariate ROC AUC
scores and correlations with the mean ROI intensity for the selected
features (Table 9), DeLong p-values for LR, SV, and RF classifiers
(Table 10), performance comparison for LR, SV, and RF classifiers
(Table 11), LR coefficients for the trained models (Table 12), DeLong
test p-values for different qMRI maps (Table 13), permutation test
results (Table 14), permutation test p-values (Table 15), univariate
ROC AUC scores for demographic and clinical variables (Table 16),
RQS checklist (Table 17), TRIPOD checklist (Table 18), and list of the
software packages used (Table 19).
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Chapter 5. Deep learning for carotid artery segmentation in
stroke-at-risk patients

Abstract
We present a fully automated method for carotid artery (CA) outer
wall segmentation in black blood MRI using partially annotated data
and compare it to the state-of-the-art reference model. Our model was
trained and tested on multicentric data of patients (106 and 23 pa-
tients, respectively) with a carotid plaque and was validated on dif-
ferent MR sequences (24 patients) as well as data that were acquired
with MRI systems of a different vendor (34 patients). A 3D nnU-Net
was trained on pre-contrast T1w turbo spin echo (TSE) MR images.
A CA centerline sliding window approach was chosen to refine the
nnU-Net segmentation using an additionally trained 2D U-Net to in-
crease agreement with manual annotations. To improve segmentation
performance in areas with semantically and visually challenging vox-
els, Monte-Carlo dropout was used. To increase generalizability, data
were augmented with intensity transformations. Our method achieves
state-of-the-art results yielding a Dice similarity coefficient (DSC) of
91.7% (interquartile range (IQR) 3.3%) and volumetric intraclass cor-
relation (ICC) with ground truth of 0.90 on the development domain
data and a DSC of 91.1% (IQR 7.2%) and volumetric ICC with ground
truth of 0.83 on the external domain data outperforming top-ranked
methods for open-source CA segmentation. The uncertainty-based ap-
proach increases the interpretability of the proposed method by pro-
viding an uncertainty map together with the segmentation.
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5.1 Introduction

Stroke is the second leading cause of death and a leading cause of
disability in adults worldwide [1]. Carotid artery (CA) atherosclerosis
is one of the major causes of stroke as it can lead to the formation of
an embolus from an atherosclerotic plaque or hypoperfusion due to
narrowing of the CA lumen. Current risk assessment and treatment
decision strategies for patients with carotid artery stenosis due to the
presence of a carotid plaque who suffered a recent transient ischemic
attack (TIA) or stroke are based on the degree of CA stenosis [2].
However, recent studies have shown that plaque morphology and
composition can improve stroke prediction [3, 4, 5, 6].
Modern medical imaging techniques, such as ultrasound (US),
computed tomography angiography (CTA), and magnetic resonance
imaging (MRI) help shed light on CA plaque characteristics in
a non- or minimally-invasive manner. MRI, especially when
combining multiple contrast weightings with a reference black blood
T1-weighted scan, can provide extensive information about the CA,
plaque morphology, and even plaque subcomponents in 3D without
the adverse effects of radiation dose on the patient [5, 7]. One of the
challenges of MRI is the fact that manual CA plaque characterization
is time-consuming and subjective [8]. Therefore, there is a demand to
automate this process.
In the last decades, several research groups reported on various
methods to enable automated plaque characterization on
multi-contrast MRI by segmenting plaque components. Computer
vision approaches such as shape fitting, active contours, and level
sets, in combination with simple machine learning methods such as
classification and clustering, were attempted early on [9, 10, 11, 12,
13, 14, 15, 8, 16, 17, 18, 19, 20, 21]. In more recent years, convolutional
neural networks (CNN), including U-Net, have gained increasing
attention [22, 23, 24, 25, 26, 27, 28]. Whereas in early works, mostly
area or volume differences were used as segmentation evaluation
metrics, [17] was one of the first to report traditional segmentation
scores such as Dice Score Coefficient and Hausdorff distance.
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When analyzing the many techniques that have attempted to
characterize CA plaque and its subcomponents, it becomes clear that
the levels of automation are widely disparate. Even though plaque
characterization methods are automated, they require CA localization
first, and this step is performed manually. In some studies, readers
need to delineate the outer wall and lumen on every MRI slice [10,
12, 11, 8, 22, 21]. In other studies, plaque characterization needs
manually pre-cropped regions containing the CA or lumen seed
points in every slice as an input [9, 23, 26, 27]. Sometimes even
additional delineation of a muscle region is needed for intensity
re-scaling [9, 10, 11]. While there are some studies where the CA
was located using the lumen seed points in the distal slices alone,
or in different CA branches [13, 18, 14, 19, 20], user interaction is
still necessary, and no studies show robustness to seed positioning.
A couple of publications report on automated CA localization, but
the detection area is limited to manually selected slices [17]. These
approaches are time-consuming and introduce inter- and intra-reader
variability. Moreover, with a multi-contrast approach, different MRI
scans should be co-registered, which is at the moment performed in a
semi-automated manner. Therefore, to increase the speed, robustness,
reliability, and reproducibility of advanced quantitative CA analysis,
while decreasing cost and clinical burden, automated detection and
segmentation of the CA on black blood MRI sequences remains an
unmet clinical need.
There are a number of challenges related to CA segmentation. First
of all, currently popular deep learning-based semantic segmentation
approaches show robust performance but require large amounts
of fully annotated training data [29]. In most datasets, only the
symptomatic CA is delineated. Moreover, in most cases, only the
internal CA is delineated meaning that in addition to the external
branch of the symptomatic CA and the entire asymptomatic CA,
vertebral arteries are also not delineated. Even though those arteries
are not of high clinical interest, for a deep learning network they are
essentially the same objects as the CA. Other neck arteries are also
present on the slice, and if their external walls and lumens are clear on
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the image, being unlabelled, they can confuse a segmentation model.
Second, multi-contrast MRI often experiences a domain shift caused
by different acquisition protocols [30]. Therefore, models trained
on the data from some particular scanner and acquisition protocol
might not be performing well on the data from slightly different
acquisition settings. Third, MRI is expressed in arbitrary units [31].
Therefore, segmentation by thresholding characteristic physical
density units, such as Hounsfield units, is problematic. Fourth,
ground-truth segmentation is usually performed on the reference MR
sequence, and the other black blood sequences are rigidly coregistered
in a semi-automated manner, which might cause co-registration
issues related to patient movement. Finally, Most modern deep
learning applications do not provide uncertainty estimations of the
segmentations and retail “black boxes” regarding the interpretability
of the outputs. Nevertheless, at the moment, the demand for
interpretable methods is growing [32]. At the moment, there are
several studies aimed to perform the whole CA segmentation [27, 28,
33], but they all used the data from the same domain for both training
and evaluation of their models.
To address these issues, we aimed to develop an automated method
for common and internal CA detection on black blood MRI which
would be robust against image quality and acquisition protocol
variations and could be trained on partially segmented data, as well
as providing uncertainty estimates of the segmentations generated.
For this, we trained a nnU-Net [34], known for its high semantic
segmentation performance in similar tasks [35], on lateral halves of
T1-weighted (T1w) scans containing CA outer wall contours. After
an nnU-Net model was trained to perform semantic segmentation
of CA on 3D MRI scans, an additional U-Net was trained on 2D
patches, containing the CA contour, to refine the output contours
in anatomically challenging slices such as bifurcation areas and
increase the generalizability of the method on the external data. To
refine segmentation in visually challenging voxels, we incorporated
an uncertainty component into the loss function using Monte-Carlo
dropout during training. Within this study, we hypothesized that
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the proposed workflow would be able to segment CA on black
blood MRI robustly regardless of black blood sequence, contrast
media, or MRI vendor. Our secondary hypothesis was that these
nnU-Net refinements will improve the segmentation. We refer
to the refined segmentation network as “U-CarA-Net” (short for
“U-Net-based carotid artery segmentation”), and the network with
added uncertainty regularization as “UR-CarA-Net” (short for
“U-Net-based carotid artery segmentation with regularization”).
We tested U-CarA-Net and UR-CarA-Net on the training data as
well as on data from an external center. Additionally, we tested
the method on the regular T2w TSE scans and post-contrast
T1w TSE scans. We performed an ablation study comparing the
segmentations produced by the backbone nnU-Net, U-CarA-Net,
and UR-CarA-Net. Our contribution in this work lies in the
implementation of a fully automated model for the segmentation
of CA in two clinically relevant MRI sequences which can be
trained on partially labeled data as only the symptomatic CA was
delineated - and the addition of an uncertainty estimate of the
segmentations. The code is open-source and available at GitHub:
https://github.com/lavrovaliz/ur-cara-net [36].

5.2 Methods

5.2.1 Method overview

The main steps of the proposed method are:

1. Splitting the image of the neck through the central medial plane
and keeping only the halves containing ground-truth CA seg-
mentation, keeping right side halves and reflecting left sides to
preserve the anatomy;

2. Training a 3D nnU-Net on lateral halves of T1w TSE images, con-
taining ground-truth CA contours, for CA segmentation;
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3. Training the U-CarA-Net on 2-channel 2D patches localized
along the CA centerline localized by the nnU-Net;

4. Training the UR-CarA-Net on 2-channel 2D patches localized
along the CA centerline using U-CarA-Net weights as initial
weights.

The pipeline is illustrated in Figure 5.1. A detailed description of the
steps is presented in the next sections.

Figure 5.1: Method overview; MRI - magnetic resonance imaging, GT -
ground-truth segmentation, SoftMax - nnU-Net SoftMax output, MC dropout
- Monte-Carlo dropout, STD - standard deviation, Seg Loss - segmentation
loss, UR - uncertainty regularization; all the models have binary outputs: CA
and non-CA, models outputs are presented in purple-yellow segmentation
map; the presented contours have several colors: green - ground truth, yel-
low - nnU-Net, blue - UR-CarA-Net.
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5.2.2 MRI scan split

As ground-truth segmentations were available only for the
symptomatic side, we split all the scans with the central median plane
to deal with the missing contra-lateral segmentation. For training
and validation, we selected the halves containing the ground-truth
segmentations. To preserve the anatomy for the nnU-Net model, we
keep the right side halves untouched and the left side halves are
reflected relative to the median plane assuming lateral symmetry of
the neck is not disturbed significantly with the minor deviations in
the positioning of the patients.

5.2.3 CA segmentation with nnU-Net

To perform the initial CA segmentation, we trained a 3D full-resolution
nnU-Net [34] on T1w TSE data. The method described performs data
pre-processing and adapts its training and data augmentation param-
eters according to the properties of the training data. We used the
standard settings from the original implementation including a combi-
nation of Dice similarity coefficient (DSC) and cross-entropy as a loss
function, stochastic gradient descent with Nesterov momentum as an
optimizer, poly learning rate schedule with an initial learning rate of
0.01, and training on 1000 epochs.

5.2.4 Segmentation refinement

Using the nnU-Net trained to segment CA in black blood T1w TSE
carotid scans, we were able to localize the CA centerline and get the
CA contour information. To refine the contours, given there could be
cases of slight co-registration errors in the data from the different se-
quences, we trained a 2D U-Net [37] to segment the CA on square MRI
slice patches, moving along the CA centerline.
For every slice, the patch center was placed into the center mass of
the nnU-Net outcome. As a 2-channel input for the U-CarA-Net, we
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used corresponding patches of the T1w slice and the nnU-Net soft-
max output. The nnU-Net softmax output gives information about the
reference segmentation as well as uncertainty information by labeling
voxels with values between 0 and 1.
After the U-CarA-Net is trained, we re-trained it in the following man-
ner to improve its performance, calling it UR-CarA-Net. Besides uti-
lizing a 2-channel input, we incorporated uncertainty information into
the loss function as suggested in [38] to improve probability calibra-
tion in the ”difficult” region. We generated the uncertainty estimate
using Monte-Carlo dropout during training. We trained the model
with dropout and after every epoch, we sampled outcomes obtained
on the validation data from the current epoch and previous N − 1
epochs. Then we calculated the value of the loss function composed of
the weighted segmentation loss and uncertainty regularization com-
ponent, where segmentation loss had DSC and cross-entropy compo-
nents.
In the following, P ⊂ R2 denotes the set pixels of a patch, θ ∈ Ω are
the parameters of the model, yp represents the “ground-truth” label of
the pixel p ∈ P, yp,θ the segmentation prediction for the pixel p ∈ P

with a model with parameters θ, and yp =
∫
θ∈Ω P(yp|θ)P(θ|D)dθ is the

Bayesian average estimate for the pixel p ∈ P approximated draw-
ing sets of weights Θ ∈ Ω using Monte-Carlo dropout with NΘ times
sampling on the training dataset D:

LTOTAL = wDSCLDSC + wBCEtanh(
γBCELBCE

2
))︸ ︷︷ ︸

Segmentation

+

+wUNCtanh(
γUNCRUNC

2
))︸ ︷︷ ︸

Uncertainty

(5.1)

where tanh : x → ex−e−x

ex+e−x is an hyperbolic tangent, LTOTAL is the final
loss function, the segmentation loss contains weighted DSC loss LDSC
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and cross-entropy loss LBCE , RUNC is our proposed uncertainty reg-
ularization component, the corresponding weights are wDSC , wBCE ,
and wUNC , and scaling factors are γBCE and γUNC . The loss functions
and regularization component are calculated as the following:

LDSC = 1−
s+ 2

∑
p∈P ypyp

s+
∑

p∈P yp +
∑

p∈P yp
, (5.2)

LBCE = −
∑
p∈P

yplog(yp) + (1− yp)log(1− yp)), (5.3)

RUNC =
∑
p∈P

1

NΘ

∑
θ∈Θ

(yp − yp,θ)
2. (5.4)

where s is a smoothing factor.

We implemented hyperbolic tangent as a scaling function to cross-
entropy and uncertainty components since they have ranges of values
different from each other and DSC. Both components have 0 as a min-
imal possible value, and the highest value depends on the image size
in the extreme case. We used hyperbolic tangent to scale the values of
these components in the range of [0, 1].

A new loss was implemented for training the U-CarA-Net model since
we assumed that the learning curve plateau was reached. As we in-
tended to improve the performance of a model trained to solve a par-
ticular task, we assumed that the U-CarA-Net weights were close to
the optimal point in the parameter hyperspace. Therefore, for UR-
CarA-Net, we decreased the learning rate to find a solution close to
the U-CarA-Net weights.
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5.3 Experimental set-up

5.3.1 Imaging data

This model-building procedure was registered at OSF.io
(10.17605/OSF.IO/VPT2B). We used imaging data acquired within
the PARISK study (clinical trials.gov NCT01208025) in Amsterdam
Medical Center (center 1), Erasmus Medical Center (center 2),
Maastricht University Medical Center+ (center 3), and University
Medical Center Utrecht (center 4) [2]. PARISK is a large prospective
multicenter study to improve recurrent stroke risk stratification based
on multimodality carotid imaging in symptomatic patients with
mild to moderate CA stenosis. Inclusion criteria were a transient
ischemic attack (TIA), amaurosis fugax, or minor stroke (modified
Rankin scale ≤ 3) of the CA territory, CA NASCET stenosis ¡70% of
the ipsilateral internal CA detected on Doppler US or CTA, and no
indication for a revascularization procedure. Exclusion criteria were
a probable cardiac source of embolism, a clotting disorder, severe
comorbidity, standard contraindications for MRI, . Written informed
consent was obtained from all patients before enrolment. MRI was
performed on 3T whole-body scanners. Centers 1, 3, and 4 used an
Achieva TX scanner (Philips Healthcare, Best, The Netherlands) with
an eight-channel phased-array coil (Shanghai Chenguang Medical
Technologies Co., Shanghai, China). Center 2 used a Discovery MR
750 system (GE Healthcare, Milwaukee, MI, USA) with a four-channel
phased-array coil with an angulated setup (Machnet B.V., Roden,
Netherlands). Apart from the difference in hardware and MRI
protocols, the main difference is in acquired and reconstructed voxel
sizes. More information is available in [2].
For this study, we used pre-contrast T1w TSE MRI. Additionally,
we validated the models on T2w and contrast-enhanced T1w (T1w
CE) TSE MRI. The scans were acquired with the same reconstructed
slice thickness of 2 mm and contained up to 15 slices, centered on
the CA bifurcation. The acquisition plane for all the protocols was
transversal. The MRI protocols were described previously [2] and are
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summarized in Table Table 5.1. We selected patients for whom the
described sequences were available. Therefore, our data contained 13,
115, 25, and 34 patients from centers 1, 2, 3, and 4, respectively.

Table 5.1: MRI scan parameters.
Sequence T1w QIR TSE T1w DIR FSE T2w TSE
Center 1, 3, 4 2 1, 3, 4
TR (ms) 800 1 RR 4800
TE (ms) 10 5.2 49
Acquired voxel
size (mm×mm)

0.62×0.67 0.55×0.71 0.62×0.63

Reconstructed
voxel size
(mm×mm)

0.30×0.30 0.55×0.63 0.30×0.30

Acquisition
matrix
(pixels×pixels)

260×240 256×224 260×252

Reconstruction
matrix
(pixels×pixels)

528×528 256×256 528×528

We used the following abbreviations: TR — repetition time, TE — echo time, RR — R
wave to R wave interval (1 heartbeat), QIR — quadruple inversion recovery, TSE —
turbo spin echo, DIR — double inversion recovery, FSE — fast spin echo.

5.3.2 Image pre-processing

The slices from centers 1, 3, and 4 were cropped to a 512 pixels × 512
pixels matrix by removing 8 border pixels from each side. The slices
from center 2 were resampled with cubic interpolation to an in-plane
0.3 mm × 0.3 mm pixel size and reshaped to a 512 × 512 matrix. The
reshaping was performed by padding. Intensity normalization was
performed by subtracting the minimum intensity and dividing it by
the intensity range for every slice.
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5.3.3 Experiments

We trained and evaluated three CA detection and segmentation mod-
els: the baseline nnU-Net and U-CarA-Net with and without uncer-
tainty component in the loss function. All the models were trained,
validated, and tested on the same data, for both U-CarA-Net models
the same data augmentation transformations were applied to the same
slices.
The patients from centers 1, 3, and 4 were split in a center-stratified
manner into training, validation, and test sets in the proportions of
0.70, 0.15, and 0.15, respectively. Training and validation sets were
used while training the models. Data from the test set were used to
evaluate the performance scores. Data from center 2 were used for ex-
ternal testing. The summary of the resulting data split can be seen in
Table Table 5.2.

Table 5.2: Patients split into training, validation, and test sets.
Center 1 2 3 4 Total
Total (N) 13 34 115 25 187
Training (N) 9 0 80 17 106
Validation (N) 2 0 17 4 23
Test (N) 2 0 18 4 23
External test (N) 0 34 0 0 34

All the data we had, we could separate into 4 domains. The pre-
contrast T1w TSE data from centers 1, 3, and 4 were split into training,
validation, and test sets and represented the development domain (re-
ferred to as DD). The scans from the training and validation sets were
used to train the CA detection models and tune hyperparameters. The
models were evaluated on the data from 3 domains different from the
development domain:

1. post-contrast T1w TSE MRI from the patients of centers 1, 3, and
4 test sets (referred to as D1),
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2. T2w MRI from the patients of centers 1, 2, and 3 test set (referred
to as D2),

3. T1w FSE from center 2 (referred to as external domain, ED).

To investigate the generalizability of the models trained on the DD,
they were evaluated on D1, D2, and ED to assess the center-specific
impact of a different vendor, and different acquisition and reconstruc-
tion protocols. A summary of the data domains we used in this study
is presented in Figure 5.2.

Figure 5.2: Data domain description.

5.3.4 Evaluation

To evaluate the results, we used common segmentation metrics such
as the DSC and Hausdorff distance (HD). These scores are tradition-
ally reported in segmentation studies and give an understanding of the
overlap and distance between the segmented areas. Additionally, we
used problem-specific metrics. As for our task, it is important to pre-
serve the centerline of the segmented area, so we used the center line
Dice similarity coefficient (clDSC) to evaluate the models [39]. As we
are dealing with uncertain reference annotations in D1 and D2, we uti-
lized the normalized surface distance (NSD) [39, 40] as an uncertainty-
aware score with a tolerance of 2 voxels as this is the average contour-
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ing disagreement we calculated from the manual annotations. Even
though we suggest a fully automated method, we still assume an ex-
pert interaction in the cases where the method fails. To assess a value of
a possible expert correction, we evaluate the relative added path length
(relAPL), which is the length of the contour that has to be drawn while
editing a segmentation [41] reported relative to the ground-truth con-
tour length.
Finally, we computed the clinical metric used in cardiovascular clinical
practice, the root-mean-square error between the ground truth and au-
tomatically segmented volumes (VRMSE). To measure the agreement
between ground-truth and automated segmentations, we calculated
the intraclass correlation (ICC) and performed Bland-Altman analy-
sis for the CA volumes. For the non-normal distributed scores, we
reported median values and interquartile ranges (IQR). For the differ-
ences in the scores, statistical significance was assessed using the two-
sided Wilcoxon test.
To better gauge the performance of our model in different conditions,
we investigated the influence of the slice location and image quality
on 2D segmentation scores. As previously described evaluation scores
assess segmentation quality in the whole 3D scan, to compare the seg-
mentation performance in different anatomical parts of the CA, we cal-
culated 2D DSCs in common and internal CA. We were dealing with
multiple data domains originating from contrast media presence, dif-
ferent acquisition protocols, and equipment, resulting in different lev-
els of noise and intensity bias, which, from the digital imaging point of
view, resulted in different image contrast. Therefore, we compared 3D
DSCs obtained for D1, D2, and ED scans, having the contrast within
and beyond DD contrast values. As a contrast evaluation metric, we
chose Michelson contrast, which characterizes areas with non-uniform
textures and is used in medical imaging [42].
To evaluate the effects of adding uncertainty information, we com-
pared the baseline model (nnU-Net) with U-CarA-Net and UR-CarA-
Net. All the models were trained on the whole training and validation
datasets with only the symptomatic CA labeled. All the pipelines used
the same trained nnU-Net model, both U-CarA-Net and UR-CarA-Net
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models had the same architectures. Evaluations were performed on
the test data.

5.3.5 Implementation details

We used the same architecture of U-Net as a backbone model for both
U-CarA-Net and UR-CarA-Net. The input shape was 64×64×2 since
we had 2 channels and a square patch size of 64 pixels × 64 pixels. A
patch size of 64×64 was selected since 64 is the smallest power of two
which exceeds the root square of the maximum CA area in training
data slices. Convolutional layers (Conv2D) with a kernel size of 3 pix-
els ×3 pixels were followed by batch normalization for faster training
and to reduce overfitting. The first Conv2D consisted of 16 filters. In
the contracting path, a number of filters were duplicated in every other
Conv2D, resulting in 256 filters in the bottleneck Conv2D layer. In the
expanding path, the number of filters was halved in every Conv2D. All
the activation layers after batch normalization layers were exponential
linear units (ELUs) for simplicity and generalizability, and to avoid the
vanishing gradient and dying node problems, except for sigmoid acti-
vation in the last conv2D for pixel-wise CA probability prediction for
a non-linearly separable problem. Activation layers were followed by
2D max-pooling layers downsampling the input with a 2×2 window
and a stride equal to the pool size selecting the max value from the
window. Every max-pooling layer was followed by a dropout layer to
prevent overfitting and enable uncertainty regularization component
in UR-CarA-Net. Every transposed Conv2D (Conv2DTranspose) had
a kernel size of 3 pixels × 3 pixels, strides of 2 pixels × 2 pixels, and
the same number of filters as an upcoming Conv2D. The initial learn-
ing rate of the Adam optimizer was reduced by a factor of 0.1 after 3
epochs of non-improvement of the loss function.
We trained the U-CarA-Net for 100 epochs with a batch size of 64. The
dropout rate was 0.05. The initial rate of the Adam optimizer was
0.001, it was reduced by the factor of 0.1 while the learning curve was
on a plateau for 3 epochs, and the lowest bound for the learning rate
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was 10-5. We trained UR-CarA-Net using U-CarA-Net weights as the
initial weights. The dropout rate was 0.1 to increase its influence on
the uncertainty regularization component. We used the same batch
size and learning rate-reducing strategy as for U-CarA-Net. However,
the initial learning rate of the Adam optimizer was set to 10−9, and the
lower bound for the learning rate was 10−15. Small values of the learn-
ing rate were used since the baseline model (U-CarA-Net) was already
trained to solve the task, hence, only refinement was needed. There-
fore, it was important not to move far in the hyperparameter space.
Weights for the loss functions components and scaling function fac-
tor were set to wDSC = 0.5, wBCE = 0.5, wUNC = 1, γBCE = 1, and
γUNC = 1. These values were estimated empirically while experiment-
ing with different weighting factors using weights from [38] as a refer-
ence.
To avoid overfitting and increase the robustness of the model to differ-
ent hardware, and reconstruction and acquisition protocols, data aug-
mentation was applied to all the training slices. The transformations
had a probability of 0.5 each and mostly simulated differences in in-
tensity distributions. The following transformations were performed:
horizontal and vertical flips, blurring with a kernel size ranging from 3
to 7 pixels, Gaussian noise with 0 mean and variance in the range from
10 to 50, brightness and contrast variation by 25%, and gamma trans-
formation with gamma ranging from 0.8 to 1.2. Every transformation
parameter was a random number from the uniform distribution of the
corresponding range. From every original slice used for data augmen-
tation, 10 augmented slices were generated.
We utilized Keras 2.2.4 with a TensorFlow 1.14.0 backend. All the train-
ing and testing were performed on one NVIDIA GeForce RTX 2080
Ti.

5.4 Results

The resulting nnU-Net configuration can be found in the debug file in
the project GitHub repository [36].
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As can be seen from Table Table 5.3, the overlap-based metrics, such
as DSC, clDSC, and NSD, are relatively high for all the models and
data domains. The highest medium DSC is 91.9% for the U-CarA-Net
in DD, the lowest is 88.3% for the U-CarA-Net in ED. The clDSC is
above 97% for all the models and all the data domains, even yielding a
median value of 100.0% for nnU-Net in D2, the U-CarA-Net in DD and
D2, and the UR-CarA-Net in D2. NSD scores are significantly higher
than the corresponding DSC, exceeding 97% for all the models and
data domains.
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The best performance among the data domains is achieved on the DD.
The common segmentation metrics (DSC, clDSC, and NSD) yielded by
the baseline model were relatively high in D1, D2, and ED. Neverthe-
less, clinically relevant volume-related scores, such as VRMSE, showed
insufficient segmentation in these domains, especially in ED yielding
a VRMSE of 1.26 compared to a VRMSE of 0.22 in DD. Low values
of ICC between ground-truth and auto-segmented contours in D1 and
ED show a poor agreement with the manual segmentation. Contour re-
finement with the U-CarA-Net improved segmentation scores for the
DD and distance-based metric HD for the D1 and D2. This resulted in
the improvement of VRMSE and ICC yielding better agreement with
the manual segmentation. Finally, contour refinement with the UR-
CarA-Net improved distance-based HD and relAPL for all the data
domains. It resulted in a lower VRMSE in D2 and ED and in higher
ICC for D1, D2, and ED. Moreover, for ED, compared to nnU-Net, ICC
increased by 0.30 and VRMSE decreased by a factor of 2. Additionally,
the UR-CarA-Net application results in IQR drop for HD, NSD, and
relAPL in all the domains, as well as DSC and clDSC for DD, D1, and
ED. For the ED, all the metrics obtained with the UR-CarA-Net show
the best performance of this model and the lowest IQRs. Nevertheless,
for the DD data, the best volume-based scores are still yielded with
nnU-Net. The most challenging data domain, even for the UR-CarA-
Net, was post-contrast MRI, where we could achieve an ICC of 0.74.
Even though we noticed an improvement in the distance- and volume-
based metrics while using the proposed model, overlap-based met-
rics have high values which are close to each other. Also a statistical
comparison of the interval-based estimations of the metrics is shown.
We compared the proposed method (UR-CarA-Net) with the baseline
(nnU-Net) and improved (U-CarA-Net) ones on the ED. As we can see
from results table, UR-CarA-Net significantly improved DSC, NSD,
and relAPL.
Bland-Altman plots in Figure 5.3 show, that even though all the models
are yielding absolute bias values close to 0 ml, the proposed method
could decrease the absolute systematic bias in DD by 0.07 ml, in D2 by
0.01 ml, and in ED by 0.40 ml. Nevertheless, for DD and D1 the lowest
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bias values were yielded with U-CarA-Net. We can also see that the
implementation of U-CarA-Net and UR-CarA-Net increased the seg-
mented volumes in DD, D2, and ED.
Figure 5.4 shows that 2D DSCs calculated in CCA are higher than in
ICA. The UR-CarA-Net application decreases the range of DSC devi-
ation, especially in ICA. Nevertheless, the lowest 2D DSC values and
the widest DSC IQR are observed in D1 ICA, where U-CarA-Net and
UR-CarA-Net do not improve the segmentation performance.
According to Figure 5.5, segmentation performance drops when the
Michelson contrast is not within the range presented in the DD. In
the D1, DSC is decreased by more than 20%, but in the D2 and ED,
UR-CarA-Net application reduces the DSC variance for the scans with
Michelson contrast values outside of the DD values.
Figure 5.6 shows segmentation results in the ”simple” cases. These
slices are taken from the different patients and data domains. On these
slices, the CA is clearly visible, it has a sufficient area, and the anatomy
is simple, without any bifurcations and other CA branches present.
The DSC values calculated for the same slice but with different models
are similar.
Figure 5.7 shows segmentation results in ”challenging” cases. The
slices are taken from the different patients with 2 representations from
each data domain.
The segmentation challenges were caused by complicated anatomy
(DD, D1), low image quality (ED), or different intensity distribution
(D2). In these examples, the nnU-Net contours do not cover the whole
CA area, especially in the bifurcation area or in the CA with stenosis.
This results in the non-smooth contours not covering the whole CA
area. In the DD case, the ICA was not a part of the contour. In the
D2 case, the CA had only some pixels segmented; in the case of ED,
it was not segmented. Implementation of the U-CarA-Net and UR-
CarA-Net increased the segmented areas and DSCs. For case A, even
though the highest DSC was yielded with UR-CarA-Net, the model
still did not segment the whole CA area, and the contour was not
smooth. However, the uncertainty map for this slice has high values in
the pixels, classified as false negatives, showing that additional atten-
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tion is needed. Finally, the UR-CarA-Net segmentation in the case ED
overlaps the CA area. Still, it has a curved shape, which is reflected in
the corresponding uncertainty map, having many bright pixels along
the predicted segmentation edges. Nevertheless, DSC increased from
0.0% to 79.9%.

Figure 5.3: Bland-Altman plots for the models obtained on DD, D1, D2, and
ED. The solid line represents the mean difference. The dashed lines represent
+1.96 standard deviations (top) and -1.96 standard deviations (bottom) from
the mean.
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Figure 5.4: Segmentation performance with regards to carotid artery (CA)
anatomy. Segmentation performance is measured in 2D Dice similarity co-
efficient (DSC). CA anatomy is defined as common CA (CCA) or internal CA
(ICA). Data were presented as box plots, where boxes are representing the
interquartile range (IQR), extending from Q1 to Q3 and centered on the me-
dian value. Upper whiskers represent the highest data point that is less than
Q3 + 1.5 × IQR. Lower whiskers represent the smallest data point that is
greater than Q3− 1.5× IQR.
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Figure 5.5: Segmentation performance with regards to the image quality cor-
responding or not to image quality in development domain (DD) data. Seg-
mentation performance is measured in 3D Dice similarity coefficient (DSC).
Image quality is defined in terms of Michelson contrast lying within and be-
yond DD values. Data were presented as box plots, where boxes are repre-
senting the interquartile range (IQR), extending from Q1 to Q3 and centered
on the median value. Upper whiskers represent the highest data point that is
less than Q3 + 1.5 × IQR. Lower whiskers represent the smallest data point
that is greater than Q3− 1.5× IQR.
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Figure 5.6: Segmentation of the ‘simple’ slices: blue contour — ground-truth,
yellow contour — segmentation model, DSC — 2D Dice similarity coefficient
for 2D contour, GT — ground-truth segmentation; first line — T1w TSE from
the development domain, second line — post-contrast T1w TSE, third line —
T2w, fourth line — external domain T1w FSE.
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Figure 5.7: Segmentation of the ‘challenging’ slices: blue contour — ground-
truth, yellow contour — segmentation model, DSC — 2D Dice similarity co-
efficient for 2D contour in percentage; first line — T1w TSE from the develop-
ment domain, second line — post-contrast T1w TSE, third line — T2w, fourth
line — external domain T1w FSE.
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5.5 Discussion and conclusion

In this work, we presented a method for CA segmentation on BB MRI.
The robustness of Our proposed method is more robust for different
MRI protocols and acquisition equipment. Even though we did not
observe any significant improvement testing our model on the data
from the development domain, volumetric ICC between ground-truth
and automated segmentations improved by 0.19, 0.03, and 0.30 in the
contrast-enhanced, T2w, and different center MRI, respectively. More-
over, in the external domain data, DSC, NSD, and relAPL improved
significantly. Even though the proposed method brought segmenta-
tion performance scores in the external domain more in alignment with
the ones in the development domain, in the contrast-enhanced and
T2w MRI, the volumetric scores were lower. This can be explained by
the fact that according to the protocol, the ground-truth contours are
drawn on the T1w TSE data. Therefore, they were drawn on develop-
ment domain data and then projected on contrast-enhanced and T2w
MRI. Due to the minor patient movement, some slight misregistrations
were possible. Additionally, in the T1w CE scans, contrast accumu-
lates in the highly vascularised outer vessel wall (adventitial layer),
which can cause a bias in the quantification of the wall volumes. High
clDSC and NSD scores were observed, which did not change much
between the models. Therefore, CA centerlines and main areas seg-
mented by the nnU-Net did not change much, and contours were re-
fined at the edges resulting in the difference between the segmented
volumes, which proves our secondary hypothesis.
In comparison to similar published work, [27] used a 3D U-Net to seg-
ment CA outer wall and lumen on the PARISK data excluding EMC
scans. The authors applied Monte-Carlo dropout as well to assess
the segmentation uncertainty, yielding DSCs of 76.4% for the vessel
wall and 88.5% for the lumen. The authors limited the scans by a
128 × 128 × 16 bounding box placed in the center of the ground-truth
segmentations. Zhu et al. [33] and Alblas et al. [28] applied 3D U-
Net for CA localization and 2D CNN for CA segmentation method
similar to ours that employs the sequential application of two deep
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learning models for 1) 3D CA centerline detection and 2) 2D CA wall
contouring. They achieved a median DSC of 81.3% for the vessel wall
on the open-source dataset acquired with the same MR protocol. Zhu
et al. [33] achieved DSCs of 89.68% and 80.29% for the lumen and
wall segmentation, respectively. They combined deep learning and
graph-based approaches and applied them to the multi-sequence MRI
acquired with the same protocols. DSCs reported in the current study,
obtained on the PARISK data, exceed the values reported in the litera-
ture. But for a fair comparison, the same dataset should be used.
Although several studies to develop CA segmentation methods have
been previously performed, we believe our work still stands out as a
fully automated pipeline. Moreover, to our knowledge, it is the first
study performing validation in multi-domain and multi-center data.
We showed that the implementation of our method improves the seg-
mentation performance on the external data domain to the level of the
performance achieved on the development data domain. To improve
our segmentation performance, we introduced three additional steps
to the high-performing baseline model (nnU-Net): 1) carotid MRI lat-
eral split to deal with one-sided annotations, 2) 2D contour refinement
in a patch put into the localized CA area using the original image and
nnU-Net softmax output, 3) introduction of an uncertainty component
to the loss function using Monte-Carlo dropout. The reproducibility
of this study is guaranteed by using carotid MRI data from a national
multicenter PARISK study which is a highly recognized dataset. As
all the patients had mild to moderate CA stenosis, the models were
trained on the target patient cohort data, so they are robust to the
pathological CA shape variations. We separately applied the method
to the different BB MR sequences from the multi-contrast dataset in-
stead of merging all these data into different channels which makes our
method less demanding for the input data. Finally, UR-CarA-Net does
not utilize the uncertainty information only in the training process but
also enables uncertainty map generation by activating the dropout lay-
ers during the inference. Therefore, scans with high uncertainty scores
can be reviewed separately.
There are some limitations of the presented approach. First of all, it is
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highly dependent on the baseline model (nnU-Net) used for the initial
CA segmentation. After nnU-Net, U/UR-CarA-Net scans the patches
along the primarily segmented CA. Therefore, if nnU-Net does not seg-
ment the vessel or segments the wrong object in the scan, this error can-
not be corrected by our method. Moreover, as presented in Figure 5.4,
whereas CCA segmentation DSCs are relatively high, there might be
errors in ICA segmentation. Nevertheless, Figure 5.4 also shows that
the proposed method improves the ICA segmentation. However, these
errors can be alleviated by increasing the dataset size. The second lim-
itation is related to the blind lateral split of the MR scans into the right
and left sides. If the patient is not positioned perfectly in the scan-
ner, it results in a significant disturbance of the anatomy. Neverthe-
less, we rely on the carotid MRI data corresponding to the acquisition
protocols where a patient is carefully centered in the scan. The third
limitation is in the application of the 2D approach in contour refine-
ment. We selected this approach for several reasons: 1) by using a 2D
input, the training data size is increasing, 2) scanning 3D scans with a
cubic 3D U-Net window will require more computational capacity, 3)
reconstructed z-axis resolution is much lower than in-plane resolution
(2 mm vs. 0.30 mm × 0.30 mm). Finally, it is necessary to be careful
in selecting the BB MR sequences since the enhancement of the outer
layer of the vessel wall can cause a bias in volumetric measurements.
As the proposed method is the first step in CA plaque characterization,
in future work, we aim to build a model for cardiovascular event pre-
diction in patients with CA stenosis to be able to stratify patients based
on their risk of stroke. Additionally, the results show that it is possi-
ble to use our method for BB MR sequence automated co-registration
by segmenting CA on the scans of the same patient and minimizing
the distance between the segmentations obtained on the different se-
quences. The achieved state-of-the-art segmentation metrics of our
method together with its interpretability due to the uncertainty maps
generation means the approach can be used as an initial step in CA
plaque analysis. It can be followed by automated plaque components
segmentation with one of the existing methods and handcrafted or
deep radiomics applications for clinical outcomes prediction.
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To conclude, in this first externally validated multi-center fully auto-
mated CA segmentation study, our model showed good segmentation
performance (DSC of 91.7% (IQR 3.3%) on the development domain
scans and 91.1% (IQR 7.2%) on the external domain scans), as well as
an agreement with the manual segmentation (volume ICC of 0.91 on
the development domain scans and 0.83 on the external domain scans).
Its application is also feasible for the other BB MRI, obtained with other
equipment or sequences. The suggested approach can be used for the
other tasks on partially labeled data. The code is available on GitHub
[36].
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Chapter 6. An open-source software package for medical imaging
data curation and exploration

Abstract
Medical image analysis plays a key role in precision medicine.
Data curation and pre-processing are critical steps in quantitative
medical image analysis that can have a significant impact on the
resulting performance of machine learning models. In this work, we
introduce the precision-medicine-toolbox, allowing clinical and junior
researchers to perform data curation, image pre-processing, radiomics
extraction, and feature exploration tasks with a customizable Python
package. With this open-source tool, we aim to facilitate the crucial
data preparation and exploration steps, bridge the gap between
the currently existing packages, and improve the reproducibility of
quantitative medical imaging research.
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Current version v0.11
Repository github.com/primakov/

precision-medicine-toolbox
Reproducible Capsule codeocean.com/capsule/

0396992/tree/v1
Legal Code License BSD-3-Clause
Versioning system Git
Code language Python
Dependencies numpy 1.16.2, SimpleITK 0.9.1,

PyWavelets 0.4.0, pykwalify 1.6.0,
six 1.10.0, tqdm 4.40.2, pydicom
1.3.0, pandas 0.25.1, pyradiomics
2.2.0, scikit-image 0.14.2, ipywidgets
7.4.2, matplotlib 3.0.3, Pillow 5.4.1,
scikit-learn 0.21.3, scipy 1.2.1, plotly
4.8.1, mkdocstrings 0.18.0, statsmod-
els 0.12.2, opencv-python 4.1.2.30,
seaborn 0.11.1, pickle-mixin 1.0.2,
openpyxl 3.0.7

Developer documentation precision-medicine-toolbox.
readthedocs.io/

6.1 Introduction

Precision medicine (PM) aims to enhance individual patient care
by identifying subgroups of patients within a disease group using
genotypic and phenotypic data, consequently targeting the disease
with more efficient treatment [1]. Medical image analysis plays a
key role in PM as it allows the clinicians to non-invasively identify
phenotypes [2].
The number of medical imaging data to analyze is rising rapidly.
Hence, there is a need for medical image analysis tools that can aid
clinicians in meeting the challenges of rising demand and better
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clinical performance, while reducing variability and costs. At the
heart of these tools will be advanced quantitative imaging analysis,
such as handcrafted radiomics and deep learning. Handcrafted
radiomics is the high-throughput extraction of pre-defined
high-dimensional quantitative image features and their correlation
with clinical outcomes using machine learning methods [3]. Deep
learning automatically learns representative image features from the
high dimensional image data without the need for feature engineering
by using non-linear modules that constitute a neural network [4]. The
field of quantitative image analysis is expanding [5, 6, 7]. Moreover, it
has demonstrated promising results in various clinical applications
[8, 9, 10, 11]. As with many nascent technologies, high-throughput
quantitative image analysis suffers from a lack of standardization,
e.g. in the image domain (different vendors, acquisition and
reconstruction protocols, pre-processing), or different definitions of
handcrafted features (such as shape, intensity, and texture features).
The spread of widely used open-source software such as Pyradiomics,
allows the extraction of standard handcrafted radiomics features [12].
Data curation and the pre-processing of medical images are
time-consuming and critical steps in the radiomics workflow that
can have a significant impact on the resulting model performance
[13, 14, 15]. These steps may be performed manually or using lower
level python libraries such as Numpy [16], Pandas [17], Pydicom
[18], Scikit-image [19], Scikit-learn [20], SimpleITK [21], Nibabel [22],
or Scipy [23]. As most current data curation workflows necessitate
time-consuming human input, this step becomes an error-prone
bottleneck and adds to the current reproducibility problem. Moreover,
it is important to perform an exploratory analysis to understand the
link between the data used as input in a machine learning model with
the outcome it has to predict. While there are tools available for the
implementation of the radiomics pipeline such as Nipype [24], Pymia
[25], and MONAI [26], there is also the need for a tool that allows for
the systematic and standardized data curation, image pre-processing,
and feature exploration during the development phase of the study.
We introduce the open-source precision-medicine-toolbox that
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facilitates data curation, image pre-processing, and feature
exploration using customizable Python scripts.

6.2 Implementation and architecture

As illustrated in Figure 6.1, dedicated base classes have been
implemented for each dataset type to extract the corresponding data,
as well as the associated metadata. The functionality classes inherit
from the base classes. This approach allows for the separation of
reading and processing tasks and makes it readily available for new
data formats or functions.
The imaging module allows for pre-processing and exploration of
the imaging datasets. It consists of the base DataSet class and the
inheriting ToolBox class. The DataSet class reads the imaging data
and the corresponding metadata and initializes a dataset object. The
ToolBox is an inheriting class that enables functions for working with
raw computed tomography (CT) or magnetic resonance (MR) imaging
data. Currently, the following functions are implemented: dataset
parameter exploration by parsing of the DICOM metadata, dataset
basic quality examination by comparing imaging parameters to the
user-defined threshold, conversion of DICOM data into volumetric
Nearly Raw Rusted Data (NRRD), image basic pre-processing,
unrolling NRRD images and region of interest (ROI) masks into
Joint Photographic Experts Group (JPEG) slices for a quick check of
co-registration between imaging data and masks, radiomics feature
extraction from NRRD/MHA data using Pyradiomics [12]. The image
and mask co-alignment pre-view example is illustrated in Figure 6.2.
The features module allows for the exploration of the feature
datasets. It consists of the base FeaturesSet class and the inheriting
AnalysisBox class. The FeaturesSet class reads the features data and
the corresponding metadata and initializes a FeaturesSet object. The
AnalysisBox class allows for the primary analysis of the features.
Currently, the following functions are implemented: visualization of
feature value distributions in classes and mutual Spearman correlation
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matrix, calculation of corrected p-values for Mann-Whitney U-test for
features mean values in groups, visualization of univariate receiver
operating characteristic (ROC) curves for each feature and calculation
of the area under the curve (AUC), volumetric analysis, calculation
of basic statistics for every feature. Features distribution in classes
visualization is illustrated in Figure 6.3.
The binary classification metrics reporting module allows for the
generation of binary classification performance metrics given true
labels and predicted probabilities.

Figure 6.1: Organization of the precision-medicine-toolbox: The DataSet class
takes an imaging dataset as in input and is inherited by the ToolBox class; the
FeatiresSet class takes a features dataset as an input and is inherited by the
AnalysisBox class.
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Figure 6.2: Example of the quick check of the segmentation alignment to the
original scan by visualizing CT axial slices.

Figure 6.3: Feature value distributions in multiple classes: A - for all the pre-
sented classes, B - for the selected classes I and IIIb.
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6.3 Quality control
To ensure that precision-medicine-toolbox meets the requirements, a
continuous integration workflow is built in GitHub actions. Tests
are run automatically after every new commit is pushed. Every
time, the project is built and unit tests are performed for the latest
Windows system on Python 3.7. Quick start and running software
examples are described in the documentation. Additionally, code
quality is reviewed with CodeFactor (http://codefactor.io).
The API specifications for all the classes and methods are generated
automatically from the source code annotations with Mkdocstrings
(https://mkdocstrings.github.io/). This enables keeping
documentation up to date with the latest developments of the package.

6.4 Software impacts
The functionality of the toolbox aims to meet some challenges that are
specific to the radiomics field. One of these challenges is the lack of
data and pipelines standardisation. Therefore, reproducibility is one
of the key criterias for the radiomics studies.
The toolbox is mostly dedicated to radiomics analysis, as it allows for
the handling of both raw imaging data and derivative features. Nev-
ertheless, its modules can be used separately for other medical imag-
ing research applications. The imaging module is applicable for deep
learning tasks to prepare the imaging data and get information regard-
ing the metadata. The features module can be used for any tabular data
analysis, such as health records or histology-derived features.

The toolbox was utilized and tested during the development of
multiple projects including automatic lung tumor segmentation on
the CT [27], repeatability of breast MRI radiomic features [28], and
radiomic-based diagnosis of multiple sclerosis [29].
The development of precision-medicine-toolbox aims for the
democratization of the machine learning and deep learning pipelines
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for researchers without strong programming skills. Additionally, it
drives a programming community effort to improve this package and
add its own variables and methods. Therefore, user contributions are
very welcome.

6.5 Conclusions and future works
The development of the precision-medicine-toolbox aims to lower
the entry barrier for researchers who are starting to work in medical
imaging. Moreover, it provides an open-source solution for the
researchers who already have their inhouse workflow of managing
data to increase the reproducibility of the quantitative medical
imaging research. We would also like to encourage the community to
improve this open-source toolbox by contributing to it.
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7.1 General discussion

The field of radiomics has garnered significant interest and is
primarily being explored in the context of oncology. Its primary
objective in oncology is to enhance diagnostic precision and optimize
treatment outcomes by associating quantitative imaging features with
the tumor phenotype [1, 2]. Moreover, radiomics has shown promise
in other medical domains through numerous proof-of-concept
studies, highlighting its potential prognostic or predictive capabilities
for various diseases beyond oncology.
This thesis represents a contribution to the application of radiomics
in the realm of neurological diseases. Neurological conditions, both
in the young and elderly population, are a leading cause of disability
and the second leading [3] cause of death globally [4]. Despite the
lack of effective treatment for most neurological diseases, early and
accurate diagnosis is critical to slow down the disease progression
and enhance the quality of life for patients and their families. The
implementation of radiomics in the neurological field offers a
promising tool to achieve these goals [3].
In the field of neurology, a majority of studies have focused on
extracting image features after diagnosis to derive disease-specific
characteristics, with some even aiming to distinguish between
different diagnoses or subtypes [5, 6, 7]. However, a subset of
studies has taken a longitudinal approach, extracting features from
early-stage patients to predict disease progression outcomes during
follow-up [8, 9, 6]. This longitudinal analysis may contain additional
diagnostic information, potentially enabling the assessment of disease
development or progression and facilitating the timely initiation of
treatment. In this thesis, we investigated the following hypothesis
stated in Chapter 1: Radiomic features extracted from brain regions
can offer valuable information regarding brain tissue pathology that
cannot be retrieved by the human eye. This investigation sought to
demonstrate the potential of radiomics in providing crucial diagnostic
information beyond traditional visually detectable biomarkers. The
findings from this study could pave the way for enhanced early
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diagnosis and intervention, ultimately improving patient outcomes
and quality of life for individuals living with neurological diseases.
Chapter 2 of the thesis demonstrates the predictive power of
radiomics in neuro-oncology, particularly in estimating the critical
1p/19q co-deletion status for low-grade glioma treatment selection.
As the corresponding tests for 1p/19q co-deletion status are invasive
and costly, the utilization of conventional handcrafted radiomics
proves to be a promising non-invasive alternative. By analyzing
T1w and T2w MR images, a proof-of-concept radiomic signature
is derived, offering accurate estimations of the 1p/19q co-deletion
status. The robustness of this signature is further validated using
external datasets, solidifying its reliability for clinical application.
In the pursuit of expanding oncological methodology to neurology,
this work serves as a pivotal bridge. While adopting conventional
oncological steps, such as dealing with the gross tumor volume, this
study also incorporates essential neurological steps, such as image
co-registration, bias field correction, and brain tissue segmentation.
This chapter also has the potential to confirm the hypothesis of this
thesis as the human eye cannot stratify the MR scans by 1p/19q
co-deletion.
Subsequently, within the realm of glioma classification, novel
approaches for feature selection have emerged [10]. In the domain of
predicting the molecular expression status of gliomas, recent studies
have focused on forecasting chromosome 7 gain and chromosome
10 loss in IDH wild-type histologically low-grade gliomas [11].
Additionally, fresh radiomics pipelines have been introduced for
estimating 1p/19q co-deletion status, both without [12] and with [13]
external validation.
Chapter 3 provides a comprehensive review of the implementation
of handcrafted and deep radiomics in non-oncological clinical
neuroimaging. The focus of the first part is on summarizing general
recommendations in the field, particularly for neurological data,
which is typically multi-modal and requires specific pre-processing
steps such as data co-registration and intensity normalization. In the
context of handcrafted radiomics, choosing the region of interest
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is a complex task that demands expert knowledge of the brain
regions affected by specific impairments. Nevertheless, radiomics
has the potential to aid in localizing new regions of interest. Data
segmentation, while challenging and requiring expertise, benefits
from available automated tools.
The chapter proceeds to offer an overview of radiomics studies in
major neurological diseases, including Alzheimer’s disease, multiple
sclerosis, Parkinson’s disease, stroke, and psychiatric diseases. These
studies primarily serve as a proof-of-concept, often with limited
sample sizes, retrospective designs, and lacking external validation.
While successful in binary classification between disease and
normal controls, their lack of specificity is evident, as real biological
populations may exhibit diverse diagnoses. However, the high
classification scores, reaching ROC AUC of about 90%, showcase the
potential of radiomics in distinguishing between disease and healthy
individuals.
The review concludes by summarizing the current challenges
hindering the widespread implementation of radiomics in clinical
practice. One of the main challenges lies in data availability, as many
studies rely on data acquired within the same hospital without
an external hold-out testing subset. Despite the delicate nature of
clinical data, the use of publicly available datasets can enhance trust
and reproducibility. Additionally, data harmonization is crucial,
considering the domain-specific biases present in medical imaging
data from different hospitals and scanners. Another major challenge is
the lack of standardization in the field of radiomics, resulting in a lack
of reproducibility and comparability across studies. To address this,
proposed solutions include careful reporting, adherence to reporting
guidelines such as RQS and TRIPOD, and study standardization as
suggested by IBSI. Furthermore, the availability of open-source tools
for automated analysis can contribute to overcoming these challenges.
The subsequent chapters delve into potential solutions for these
challenges, paving the way for the broader application of radiomics in
neurological clinical practice.
In Chapter 4, a proof-of-concept study was conducted to explore
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the utility of radiomics in distinguishing between multiple sclerosis
patients and normal controls. The study involved developing
radiomic signatures using both T1w data and quantitative MRI
(qMRI) maps. The analysis encompassed features extracted from
gray matter, white matter, and normal-appearing white matter
(NAWM) – white matter excluding lesions. Notably, the T1w-derived
signature was externally validated using two open-source datasets,
enhancing the robustness of the findings. The results of this study
demonstrated the discriminative power of radiomics even in NAWM,
which appears normal to the human eye. This outcome confirms the
thesis hypothesis that radiomics can extract quantitative information
about the underlying pathology from visually normal imaging data.
This ability to unveil hidden disease-related features in NAWM is a
promising step toward early detection and improved management of
multiple sclerosis.
Subsequent publications in the field of radiomics in multiple sclerosis
have primarily focused on grading disease severity rather than
distinguishing between multiple sclerosis patients and healthy
controls. In [14], features were meticulously analyzed to identify
correlations with the disability status of the patients. In [15], a model
was developed to predict the annualized relapse rate for individuals
with multiple sclerosis.
Additionally, Chapter 4 shed light on a potential solution to one of the
challenges highlighted in the thesis - the variability of imaging data
across different sites, scanners, and protocols. By leveraging a unique
dataset containing not only conventional clinical MR sequences but
also unique qMRI mapping, the study attempted to overcome the data
variability issue. The qMRI maps were obtained through a complex
multi-image acquisition protocol, allowing for the reconstruction
of physical properties in corresponding voxels. As a result, this
approach not only provided a richer dataset and yielded higher
classification scores but also produced potentially more standardized
data across different equipment and sites due to the physical nature
of the data [16]. It was shown, that neurology can benefit a lot from
qMRI, but histological confirmation will build a stronger foundation
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for the qMRI findings [17]. However, standardization is needed in the
field of qMRI as well [18].
In Chapter 5, we addressed another challenge identified in Chapter 3 -
the need for accurate and stable data segmentation. To overcome this
challenge, we proposed and implemented a deep learning method
to tackle the specific segmentation of the carotid arteries in neck
scans of stroke patients. The model was trained on multi-center data
originating from the same scanner model. To validate the model’s
performance, we tested it on data from different MR sequences,
including after-contrast data, and validated it on an external dataset
from a different hospital and scanner. Notably, manual annotations
on some sequences had slight shifts due to minor co-registration
issues related to biological motion. Therefore, our focus extended
beyond achieving a perfect overlap with the ground truth to ensuring
consistency in clinically relevant derivatives, such as carotid artery
volume. To address co-registration issues in certain voxels, we
introduced an uncertainty-based component in the loss function.
This innovative approach enabled the model to produce robust and
reliable segmentations, outperforming the current state-of-the-art
model (nnU-Net) in MR sequences different from the development set
and in the external dataset. The results of this work demonstrate the
applicability of deep learning approaches in resolving data labeling
challenges in a robust and automated manner. By leveraging the
power of deep learning, we offer a valuable solution to enhance the
accuracy and efficiency of data segmentation in clinical neuroimaging.
The subsequent stage in carotid artery segmentation involves quality
assurance for the segmentation process. This was achieved through
uncertainty estimation in [19]. The anticipated future steps in the
application of AI in carotid artery imaging include the development
of dependable predictive models for forecasting recurrent stroke.
In Chapter 3, it became evident that radiomics faces a significant
challenge related to the lack of reproducibility in current studies,
mainly stemming from the diversity of pipeline solutions and
undocumented pre-analysis steps, such as data curation and
exploration. To address this critical issue, in Chapter 6, we
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present the precision-medicine-toolbox, an open-source Python
package specifically designed for medical imaging data curation
and exploratory analysis. The precision-medicine-toolbox aims to
bridge the gap between existing open-source packages for radiomics
studies and improve the understanding of the underlying data.
By providing a standardized and community-driven tool, we
envision enhancing the reproducibility of radiomics studies and
democratizing the implementation of radiomics in a cross-disciplinary
environment. This toolbox compromises a comprehensive resource
for researchers and clinicians, facilitating robust data curation and
thorough exploratory analysis. It enables users to perform critical
pre-processing steps, data quality checks, and data exploration in a
standardized and transparent manner. Moreover, the open-source
nature of the toolbox fosters collaboration and contributions from
the radiomics community, ensuring continuous improvement and
adaptability to emerging research needs. Through this collective
effort, we seek to establish a more cohesive and standardized
approach to radiomics, promoting data-driven advancements in
neurology and beyond.
The infrastructure for radiomics research has witnessed continuous
expansion, transitioning from individual tools to more integrated
solutions. In [20], a physician-centered cloud platform was introduced
to streamline the creation of radiomics-based predictive models.

7.2 Prospectives

Over the past decade, the implementation of artificial intelligence in
medical image analysis, particularly in radiomics, has experienced
remarkable growth. Initially, handcrafted radiomics and later deep
radiomics found success in oncology, where relatively large and
accurately labeled datasets from the oncological patient management
pipeline enabled meaningful studies. However, critical revisions of
the field over the last years have highlighted the current obstacles
hindering radiomics from becoming part of clinical routine. Despite
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these challenges, radiomics has garnered increasing interest in other
medical domains, including neurology. In contrast to oncology,
neurological pathologies exhibit greater diversity, yet datasets are
often smaller and data exchange less prevalent. In the technology
development cycle, oncological radiomics has gone through a phase of
critical reflection and is now getting to the ”slope of enlightenment,”
benefitting from the lessons learned as illustrated on Figure 7.1 [21].
Conversely, as indicated in Chapter 3, neurological radiomics is
currently under academic interest and producing proof-of-concept
studies with smaller single-center datasets of retrospective nature, still
experiencing the ”peak of inflated expectations”.

In this thesis, the primary focus has been on comprehending

Figure 7.1: Phases of field development.

and addressing the limitations of radiomics in neuroimaging. By
identifying and tackling the challenges unique to neurological data,
we strive to move this field of research toward the ”plateau of
productivity”. The work presented here delves into understanding
the potential of radiomics in neurological diseases, investigating
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predictive capabilities, proposing solutions to data labeling
challenges, and offering tools for data curation and analysis.

7.2.1 Data availability

In the future, researching larger, heterogeneous, multi-centric
prospective datasets will be crucial to improving the generalizability
of radiomics methodology. This approach will allow testing the
methodology across different populations, reducing potential
biases, and providing reliable sensitivity and specificity scores
in representative data. External validation is already standard
practice in advanced studies, ensuring that the approaches are
robust and applicable beyond the training data. However, external
validation performance scores should be interpreted carefully since
the external validation data is just a snapshot of a certain population
acquired with a certain equipment at a certain time point. However,
corresponding validation methods can be implemented for different
validation goals such as internal validity, temporal generalizability,
geographical and domain generalizability [22]. Lately, continuous
recurrent validation has been proposed to deal with the data drift
over time and locations [23]. Longitudinal studies will play a pivotal
role, enabling researchers to delve into more relevant research tasks
related to disease development and clinical outcomes prediction. This
shift from current status estimation to early diagnosis and treatment
selection will significantly enhance patient care and management.
To achieve these research goals, stronger collaboration among
institutions in the field is essential. By pooling resources and sharing
data, researchers can access larger and more diverse datasets, further
enhancing the accuracy and relevance of radiomics studies. In the
ideal scenario, increased availability of research data will facilitate not
only methodological development but also the reproducibility and
reliability of reported results. Researchers will have access to a wealth
of data to validate and refine their approaches, contributing to a more
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robust and credible body of radiomics research.
However, data sharing is an essential subsequent challenge due to
the legal and ethical aspects linked to sensitive medical data. A
strategy to walk around and increase the amount of available training
data is the generation of synthetic data [24]; however, this approach
necessitates some attention to ensure the faithful preservation of
realistic anatomical and biological features, as well as the accurate
introduction of confounding factors inherent to the studies. Data
privacy challenges might be addressed through the implementation
of transfer or federated learning techniques, wherein data remains
localized at respective sites while being employed to train models
transmitted between these sites, as in [25]. In instances where data is
available but relevant labels are missing, self-supervised learning is a
potential method to mitigate the problem [26].

7.2.2 Study design

Improving the study design represents a crucial direction for
the advancement of the radiomics field. Transitioning from
cross-sectional to longitudinal studies will enable researchers to
tackle predictive tasks, providing valuable insights into disease
progression and clinical outcomes. Similarly, shifting from binary
classification to multi-class classification will address real-world
diagnostic challenges, where identifying the specific diagnosis is
essential, enhancing the specificity and clinical relevance of radiomics.
Furthermore, emphasizing regression tasks will quantitatively assess
the patient’s condition, offering a broader spectrum of diagnostic
information beyond binary outcomes. Incorporating domain
knowledge into study design will play a pivotal role in justifying
the selection of the most appropriate imaging modality and region
of interest. Given the wealth of domain-specific knowledge in
neurology, this integration can significantly improve the accuracy
and precision of radiomics-based analyses. Data fusion techniques
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will further enhance the significance and performance of imaging
biomarkers. By combining information from multiple modalities and
sources, researchers can derive more comprehensive and insightful
radiomic signatures, potentially capturing complex relationships and
disease mechanisms. However, it is essential to critically investigate
the added value of each radiomic signature. Comparing models with
and without radiomics should be standard practice to ensure that the
incorporation of radiomics truly contributes to improved diagnostic
accuracy and clinical decision-making.
The enhancement of model performance does not always depend
on new and more sophisticated architectures. The important
step is the optimization of model parameters, as in some cases a
seemingly less powerful model with better-tuned parameters can
outperform a stronger but untailored model. Traditionally, ablation
studies have provided a robust justification for hyperparameter
selection. During the era of handcrafted radiomics, [27] suggested a
framework that experimented with diverse model configurations
and radiomic pipeline steps across various benchmark datasets,
ultimately selecting the most effective combination. This concept
has since evolved significantly within the domain of deep learning.
Innovations like nnU-Net, which extends the traditional U-Net
architecture by incorporating configuration parameters inferred from
the training data, have emerged [28]. Consequently, this evolution has
joined the field of AutoML, a methodology that leverages machine
learning to autonomously determine the optimal AI model setup and
hyperparameters, often employing techniques like neural architecture
search [29, 30]. Nonetheless, it’s imperative to acknowledge that
while AutoML offers powerful capabilities for automating parameter
selection, it comes at a cost. Both in terms of computational resources
and data requirements, AutoML can be quite demanding.
In the context of implementing AI in medical imaging, our focus
should not solely be on achieving higher AI-related technical scores
for their own sake, but rather on the pursuit of improved diagnostic
or predictive accuracy. While performance metrics like the Dice score,
ROC AUC, or MAE are valuable and provide quantitative insights
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into how well the AI model solves the statistical problem, it’s crucial
to understand that the ultimate goal is to enhance the model’s ability
to aid in clinical problems. By introducing clinically relevant scores,
we align the development of AI models with their practical utility in
the hospital setting.
As it was shown in, [31], there is no such thing as a fully validated
model. Even with an abundance of data, its utility can be limited
if strong domain shifts exist, leading to challenges in generalizing
the radiomics methodology across different imaging parameters.
To overcome these challenges, further research is needed in the
field of data harmonization and feature reproducibility, particularly
when dealing with a wide range of imaging parameter variations.
Standardization efforts, such as following recommendations from
organizations like IBSI [32], can play a vital role in ensuring
consistency and comparability across radiomics studies. Phantom
and test-retest studies are crucial to test the stability and reliability of
radiomic signatures. These studies provide valuable insights into
the robustness of the radiomics approach and help identify potential
sources of variability. In this thesis (Chapter 3), it was demonstrated
that radiomic signatures can benefit from the use of quantitative
mapping, where each voxel represents a physical property of the
corresponding volume. This approach not only enhances performance
but also provides valuable insights into the relationship between the
physical and biological properties of tissues. However, it is essential
to continue the development of quantitative imaging methods to
ensure that different data acquisition and image reconstruction
protocols yield consistent and comparable data.

7.2.3 Technological advances

The advancement of radiomics is closely tied to progress in
technology, encompassing developments in both hardware and
software domains. Research has demonstrated that more powerful
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MRI scanners can significantly reduce the acquisition time and
acquire scans of higher quality [33].
The field of AI is advancing rapidly, with recent achievements such
as visual transformers [34], ChatGPT [35], and Dall-E [36] capturing
our attention and highlighting the significance of foundation models.
These models are trained on extensive datasets in a self-supervised
fashion, demonstrating their capability to handle multi-modal
data and accommodate situations with limited task-specific labels.
They can be fine-tuned for a wide array of downstream tasks. The
potential applications of these models in medical AI, particularly
in the realm of medical imaging, have been extensively discussed
[37], and initial implementations have already been carried out
[38, 39]. Even though foundation models are very promising, their
development and implementation are associated with a large number
of challenges, including interpretability, downstream tasking without
losing knowledge, lack of effective benchmarking, and extensive data
and computational demands [40]. Some proof-of-concept generalist
biomedical AI systems are introduced together with multimodal
biomedical benchmarks [41]. However, at the moment, supervised
specialist models gain higher performance, and for widespread
adoption, the primary requirement is access to large-scale medical
datasets.

7.2.4 AI adoption

To increase AI acceptance in hospitals, models have to be not only ef-
fective but also transparent. For explainability of the model outcomes,
XAI has to be implemented [42, 43, 44]. However, this step is neces-
sary mostly for the research setup, during the model development and
adoption. In a clinical setup, the demand for XAI explanations might
be needed in non-trivial cases, such as clinical cases where the AI out-
come contradicts clinical data.
For the continued advancement of radiomics in neuroimaging, stan-
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dardization and transparent reporting throughout the pipeline imple-
mentation are imperative. To make the data and data-driven solu-
tions sustainable and therefore trustful, the following four principles
have to be maintained: Findability, Accessibility, Interoperability, and
Reusability (FAIR) [45]. Adhering to guidelines such as RQS and TRI-
POD will ensure a more consistent and reliable interpretation of study
results. Transparent reporting practices will enable better collaboration
among research groups, facilitating the exchange of both successful
and unsuccessful practices. By embracing transparent reporting, re-
searchers can collectively benefit from shared experiences and knowl-
edge, enhancing the justification for different implementation steps
within the radiomics pipeline. This collaborative effort will lead to
more robust and reproducible radiomics studies, ultimately bolstering
the credibility and applicability of radiomics in neurology and medi-
cal imaging. Community-driven tools will play a vital role in fostering
standardization and transparency. Open-source tools will empower
researchers with the resources to conduct radiomics studies in a stan-
dardized and reproducible manner.
Finally, while the accomplishments of AI in radiology are remarkable
and have demonstrated that certain models can outperform radiolo-
gists [46], it is crucial to emphasize that AI is not meant to supplant
hospital experts. Human radiologists possess a deeper understanding
of atypical cases and a richer context than AI models. Additionally, hu-
mans are the ones to make decisions due to legal and ethical reasons.
Instead, the objective of AI is to assume responsibility for routine tasks,
enhance the capabilities of human radiologists, and reshape their roles
[47, 48]. In essence, radiologists are transitioning into radiologists who
leverage AI as a valuable tool in their practice.

7.2.5 Currently commercially available tools

Whereas academic research is aiming to bring radiomics into
clinical practice, several AI-based commercial software products
have already emerged within radiology. Information on these
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products is aggregated at the www.aiforradiology.com website,
encompassing details like imaging specialty, target disease, imaging
modality, data format, processing time, pricing, and FDA and
CE clearance [49]. As of 23.10.2023, the site documented 74
neuroradiology products. Notably, a majority of these tools (40
products) are primarily focused on image quantification, particularly
involving brain or tissue segmentation and volume calculations.
Additionally, some tools (15 products) specialize in pathology
detection and classification, while a smaller subset (3 products) is
dedicated to image processing and reporting tasks.
However, a limited number of tools address higher-level tasks such
as disease grading (5 products), clinical predictions (2 products),
and biomarker discovery (1 product). It’s noteworthy that existing
research highlights a lack of scientific evidence regarding the
efficacy of many current tools, and transparency within the field
remains an ongoing concern [49, 50]. However, [51] is an example
of an extensive clinical validation of the MS monitoring tool. AI is
progressively entering neurological clinical practices, at the moment
with a predominant focus on enhancing scans, ROI segmentation, and
grading.
The translation of AI advancements into clinical practice entails
not only software and hardware engineering but also regulatory
considerations and a diverse range of specialized expertise. The
main medico-legal aspects to be addressed are data privacy,
marketing authorization, and medical malpractice liability [52].
The field of medical AI has gained more government regulations
in the last few years. In [53], an extensive overview of the risks
and risk assessment methodologies is given. Finally, even though
the potential of AI in radiology is large, we need to evaluate the
added value of AI in real-world scenarios by assessing changes in
the quality, efficiency, and costs of healthcare [54]. It is relevant
for the detection and quantification tools as well, therefore
development of the new products should include their integration
into clinical workflow [55]. Collaborative efforts between academia
and industry can significantly propel development by combin-
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ing knowledge and infrastructure across this interdisciplinary domain.

7.3 Concluding remarks

Numerous studies have been conducted to explore the potential of
radiomics in oncology, with some focus on neuro-oncology. However,
due to data availability and the unmet clinical need for imaging
biomarkers in other medical domains, radiomics has started gaining
traction in other diseases, including neurology.
This thesis provides a comprehensive overview of the neurological
radiomics pipeline, its clinical applications, and the current challenges
in the field. Further, it demonstrates the proof-of-concept capability
of radiomics to derive pathological information for neurological
tasks, even from normal-appearing tissues. Despite these promising
findings, neurological studies still face numerous limitations.
In an attempt to address some of these limitations, this thesis
utilized quantitative mapping of the brain, providing an accurate
measurement rather than conventional imaging. Additionally, we
proposed an automated and robust method for data labeling through
image segmentation, tackling the challenge of time-consuming
and not stable data labeling. Finally, we introduced a solution to
the pipeline standardization challenge, presenting an open-source
software tool for imaging data curation and exploration.
However, as the field continues its development phase, there is
still ample room for improvement. We outlined other challenges
that remain, such as the need for extensive and representative data
availability, data harmonization in the presence of diverse datasets,
improvement in study design to utilize high-quality data, and
standardization of the radiomics pipeline.
Addressing these challenges will drive the field of radiomics toward
clinical studies and eventually clinical implementation, enabling
early diagnosis and personalized treatment selection, ultimately
improving patient care and outcomes in neurology. As radiomics
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continues to evolve and overcome these hurdles, it holds the potential
to revolutionize precision medicine in neurology.
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Summary

The motivation behind this thesis is to explore the potential of
”radiomics” in the field of neurology, where early diagnosis and
accurate treatment selection are crucial for improving patient
outcomes. Neurological diseases are a major cause of disability and
death globally, and there is a pressing need for reliable imaging
biomarkers to aid in disease detection and monitoring. While
radiomics has shown promising results in oncology, its application
in neurology remains relatively unexplored. Therefore, this work
aims to investigate the feasibility and challenges of implementing
radiomics in the neurological context, addressing various limitations
and proposing potential solutions.
The thesis begins with a demonstration of the predictive power
of radiomics for identifying important diagnostic biomarkers in
neuro-oncology. Building on this foundation, the research then delves
into radiomics in non-oncological neurology, providing an overview
of the pipeline steps, potential clinical applications, and existing
challenges. Despite promising results in proof-of-concept studies, the
field faces limitations, mostly data-related, such as small sample sizes,
retrospective nature, and lack of external validation.
To explore the predictive power of radiomics in non-oncological tasks,
a radiomics approach was implemented to distinguish between
multiple sclerosis patients and normal controls. Notably, radiomic
features extracted from normal-appearing white matter were found
to contain distinctive information for multiple sclerosis detection,
confirming the hypothesis of the thesis.
To overcome the data harmonization challenge, in this work
quantitative mapping of the brain was used. Unlike traditional
imaging methods, quantitative mapping involves measuring the
physical properties of brain tissues, providing a more standardized
and consistent data representation. By reconstructing the physical
properties of each voxel based on multi-echo MRI acquisition,
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quantitative mapping produces data that is less susceptible to
domain-specific biases and scanner variability. Additionally, the
insights gained from quantitative mapping are building the bridge
toward the physical and biological properties of brain tissues,
providing a deeper understanding of the underlying pathology.
Another crucial challenge in radiomics is robust and fast data
labeling, particularly segmentation. A deep learning method was
proposed to perform automated carotid artery segmentation in stroke
at-risk patients, surpassing current state-of-the-art approaches. This
novel method showcases the potential of automated segmentation to
enhance radiomics pipeline implementation.
In addition to addressing specific challenges, the thesis also proposes
a community-driven open-source toolbox for radiomics, aimed at
enhancing pipeline standardization and transparency. This software
package would facilitate data curation and exploratory analysis,
fostering collaboration and reproducibility in radiomics research.
Through an in-depth exploration of radiomics in neuroimaging, this
thesis demonstrates its potential to enhance neurological disease
diagnosis and monitoring. By uncovering valuable information from
seemingly normal brain tissues, radiomics holds promise for early
disease detection. Furthermore, the development of innovative tools
and methods, including deep learning and quantitative mapping, has
the potential to address data labeling and harmonization challenges.
Looking to the future, embracing larger, diverse datasets and
longitudinal studies will further enhance the generalizability and
predictive power of radiomics in neurology. By addressing the
challenges identified in this thesis and fostering collaboration within
the research community, radiomics can advance toward clinical
implementation, revolutionizing precision medicine in neurology.
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Résumé

La motivation derrière cette thèse est d’explorer le potentiel de la
”radiomique” dans le domaine de la neurologie, où le diagnostic
précoce et la sélection précise du traitement sont cruciaux pour
améliorer l’issue des patients. Les maladies neurologiques sont une
cause majeure d’invalidité et de décès à l’échelle mondiale; il existe un
besoin pressant de biomarqueurs d’imagerie fiables pour contribuer à
la détection et à la surveillance des maladies. Bien que la radiomique
ait montré des résultats prometteurs en oncologie, son application en
neurologie reste relativement inexplorée. Par conséquent, ce travail
vise à étudier la faisabilité et les défis de la mise en œuvre de la
radiomique dans le contexte neurologique, en abordant diverses
limitations et en proposant des solutions potentielles.
La thèse commence par la démonstration du pouvoir prédictif de la
radiomique pour identifier d’importants biomarqueurs diagnostiques
en neuro-oncologie. Sur cette base, la recherche se penche ensuite
sur l’utilisation de la radiomique en neurologie non-oncologique, en
fournissant un aperçu des étapes de la chaı̂ne de traitements, des
applications cliniques potentielles et des défis existants. Malgré des
résultats prometteurs dans des études de ”preuve de concept”, le
domaine présente des limitations, principalement liées aux données,
telles que la petite taille d’échantillons, une nature rétrospective et un
manque de validation externe.
Pour explorer le pouvoir prédictif de la radiomique dans des tâches
non-oncologiques, une approche radiomique a été développée pour
distinguer entre des patients atteints de sclérose en plaques et des
sujets sains. Notamment, il a été constaté que les caractéristiques
radiomiques extraites de la substance blanche d’apparence normale
contenaient des informations distinctives pour la détection de la
sclérose en plaques, confirmant l’hypothèse de la thèse.
Pour surmonter le défi de l’harmonisation des données, ce
travail a utilisé la cartographie par IRM quantitative du cerveau.
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Contrairement aux méthodes traditionnelles d’IRM, l’IRMquantitative
implique l’estimation des propriétés physiques des tissus cérébraux,
offrant une représentation des données plus normalisée et cohérente.
En reconstruisant les propriétés physiques de chaque voxel en
fonction de l’acquisition d’IRM multi-écho, l’IRM quantitative produit
des données moins sensibles aux biais spécifiques du domaine et aux
variations liées aux machines. De plus, les informations obtenues
grâce à l’IRM quantitative contribuent à une meilleure compréhension
de la pathologie sous-jacente.
Un autre défi crucial en radiomique est l’étiquetage robuste
et rapide des données, en particulier la segmentation. Une
méthode d’apprentissage profond a été proposée pour effectuer
la segmentation automatisée de l’artère carotide chez des patients
à risque d’accident vasculaire cérébral, dépassant les approches
actuelles de pointe. Cette nouvelle méthode novatrice montre le
potentiel de la segmentation automatisée pour améliorer la mise en
œuvre de la chaı̂ne de traitement radiomique.
En plus d’aborder des défis spécifiques, la thèse propose également
une boı̂te à outils ”open source” communautaire pour la radiomique,
dans le but d’améliorer la normalisation et la transparence des chaı̂nes
de traitement. Ce logiciel facilitera la curation des données et les
analyses exploratoires, favorisant la collaboration et la reproductibilité
dans la recherche en radiomique.
Au travers d’une exploration approfondie de la radiomique en
neuro-imagerie, cette thèse démontre son potentiel pour améliorer
le diagnostic et la surveillance des maladies neurologiques. En
extrayantdes informations précieuses à partir de tissus cérébraux
apparemment normaux, la radiomique offre des perspectives de
détection précoce de maladies. De plus, le développement d’outils et
de méthodes innovantes, notamment l’apprentissage profond et l’IRM
quantitative, ont le potentiel de résoudre les problèmes d’étiquetage
et d’harmonisation des données.
En se tournant vers l’avenir, l’adoption de jeux de données plus
vastes et diversifiés ainsi que d’études longitudinales améliorera
encore la généralisabilité et la puissance prédictive de la radiomique
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en neurologie. En abordant les défis identifiés dans cette thèse et en
favorisant la collaboration au sein de la communauté de recherche,
la radiomique peut progresser vers une mise en œuvre clinique,
révolutionnant la médecine de précision en neurologie.
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Samenvatting

De motivatie achter dit proefschrift is het verkennen van het
potentieel van ”radiomics” op het gebied van neurologie, waarbij een
vroege diagnose en nauwkeurige behandelingskeuze cruciaal zijn
voor het verbeteren van de uitkomsten voor patiënten. Neurologische
ziekten zijn wereldwijd een belangrijke oorzaak van invaliditeit en
overlijden, en er is daarom een dringende behoefte aan betrouwbare
beeldvormende biomarkers om bij te dragen aan de detectie en
monitoring van deze ziekten. Hoewel radiomics veelbelovende
resultaten heeft getoond in de oncologie, blijft de toepassing
ervan in de neurologie relatief onontgonnen terrein. Daarom
heeft dit proefschrift tot doel de haalbaarheid en uitdagingen van
de implementatie van radiomics in de neurologische context te
onderzoeken, waarbij verschillende beperkingen worden onderzocht
en mogelijke oplossingen worden voorgesteld.
Dit proefschrift begint met een demonstratie van de voorspellende
kracht van radiomics voor het identificeren van belangrijke
diagnostische biomarkers in de neuro-oncologie. Op basis hiervan
richt het onderzoek zich vervolgens op radiomics in niet-oncologische
neurologie, waarbij een overzicht wordt gegeven van de stappen in
de pijplijn, van potentiële klinische toepassingen en van bestaande
uitdagingen. Ondanks veelbelovende resultaten in proof-of-concept
studies kent het veld beperkingen, voornamelijk gerelateerd
aan onderzoeksgegevens, zoals kleine steekproefgroottes, een
retrospectief karakter en het gebrek aan externe validatie.
Om de voorspellende kracht van radiomics in niet-oncologische taken
te onderzoeken, werd er een radiomics-benadering toegepast om
multiple sclerosepatiënten te onderscheiden van een controlegroep.
De voornaamste vondst is dat radiomics kenmerken die zijn
geëxtraheerd uit normaal ogend witte stof in de hersenen
onderscheidende informatie bleken te bevatten voor de detectie van
multiple sclerose, wat de hypothese van dit proefschrift bevestigt.
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Om de uitdaging van gegevensharmonisatie te overwinnen,
werd er in dit werk kwantitatieve mapping van de hersenen
gebruikt. In tegenstelling tot traditionele beeldvormingsmethoden
meet kwantitatieve mapping fysische eigenschappen van het
hersenweefsel, wat leidt tot een meer gestandaardiseerde en
consistente gegevensrepresentatie. Door de fysische eigenschappen
van elk voxel te reconstrueren op basis van multi-echo MRI-acquisitie,
produceert kwantitatieve mapping gegevens die minder gevoelig zijn
voor domeinspecifieke vertekeningen en scannervariaties. Daarnaast
dragen inzichten die zijn verkregen uit kwantitatieve mapping bij aan
een dieper begrip van de fysische en biologische eigenschappen van
hersenweefsel, wat vervolgens resulteert in een dieper begrip van de
onderliggende pathologie.
Een andere cruciale uitdaging in radiomics is robuuste en snelle
gegevenslabeling, met name voor segmentatie. Er werd een deep
learning methode voorgesteld om geautomatiseerde segmentatie van
de halsslagader uit te voeren bij patiënten met een verhoogd risico
op een beroerte, waarbij de huidige state-of-the-art benaderingen
werden overtroffen. Deze nieuwe methode demonstreert het
potentieel van geautomatiseerde segmentatie om de implementatie
van radiomics-pijplijnen te verbeteren.
Naast het onderzoeken van specifieke uitdagingen, stelt dit
proefschrift ook een door de gemeenschap gedreven open-source
gereedschapskist voor radiomics voor, gericht op het verbeteren van
de standaardisatie en transparantie van pijplijnen. Dit softwarepakket
zou gegevenscuratie en exploratieve analyse vergemakkelijken, en de
samenwerking en reproduceerbaarheid in radiomics-onderzoeken
bevorderen.
Middels een diepgaande verkenning van radiomics in neurobeeld-
vorming toont dit proefschrift het potentieel om de diagnose
en monitoring van neurologische ziekten te verbeteren. Door
waardevolle informatie te onthullen uit ogenschijnlijk normaal
hersenweefsel, biedt radiomics mogelijkheden om de ziekte in een
vroeg stadium te detecteren. Bovendien heeft de ontwikkeling
van innovatieve tools en methoden, waaronder deep learning en
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kwantitatieve mapping, het potentieel om uitdagingen op het gebied
van gegevenslabeling en harmonisatie aan te pakken.
Vooruitblikkend naar de toekomst zal het omarmen van grotere,
diverse data en longitudinale studies de generaliseerbaarheid
en voorspellende kracht van radiomics in de neurologie verder
verbeteren. Door de uitdagingen die in dit proefschrift zijn
geı̈dentificeerd op te lossen en samenwerking binnen de
onderzoeksgemeenschap te bevorderen, kan radiomics vooruitgang
boeken naar klinische implementatie, wat tot een revolutie kan leiden
op het gebied van precisiegeneeskunde in de neurologie.
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Valorisation

Neurological diseases pose a significant global health challenge, be-
ing a leading cause of disability and the second leading cause of death.
These diseases encompass diverse pathologies but may present similar
clinical symptoms, making accurate and early diagnosis crucial for ef-
fective treatment and patient outcomes. The application of radiomics,
a methodology combining imaging data and machine learning, has the
potential to transform neurology by facilitating quantitative imaging
and providing valuable biomarkers for neurological conditions. Un-
like its well-established use in oncology, radiomics in neurology faces
unique challenges and requires careful evaluation of its clinical appli-
cations.
The focus of this thesis was to investigate the suitability of radiomics
in neurology and identify potential clinical applications, while also ad-
dressing the existing challenges that hinder its implementation in clini-
cal practice. By performing experiments in both neuro-oncological and
neurological settings, we explored the predictive power of radiomics
and its ability to extract informative features from brain tissues that
may not be visually discernible, thus demonstrating the potential for
early disease detection and monitoring.
The thesis also proposes solutions to tackle challenges related to data
harmonization, segmentation, and pipeline standardization. By intro-
ducing a community-driven open-source software toolbox for data cu-
ration and exploration, we aim to enhance reproducibility and trans-
parency in radiomics studies, fostering collaboration and standardiza-
tion across research groups.
The technical findings and methodological advancements presented in
this thesis lay a foundation for further research and development in the
field of neurological radiomics. The utilization of radiomics and data-
driven approaches in neurology holds the promise of personalized pre-
cision medicine, potentially changing patient care by enabling more
accurate and tailored diagnoses, treatment plans, and patient manage-
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ment strategies.
As we progress toward the era of precision medicine, the results and
insights gained from this work have significant implications for the
future of neurology.

1 Scientific impacts

1. The experiments and analysis in this thesis are published in well-
cited journals, and all the publications are open-access, which
increases knowledge exchange in the scientific community.

2. All the papers were accomplished by the corresponding code
available at the open platforms (from Chapters 5 and 6 – sub-
mitted to codeocean.com) which confirmed the transparency
of the results and can be used for other similar projects.

3. Chapter 2 shows a conventional radiomics pipeline in neuro-
oncology and demonstrates the impact of image pre-processing
(interpolation during resampling) on the model performance.

4. Chapter 3 provides an extensive up-to-date review of radiomics
implementation in non-oncological clinical neuroimaging and
identifies the current challenges in the field.

5. Chapter 4 shows proof-of-concept development of radiomic
signature for multiple sclerosis; it demonstrates the results
obtained on conventional T1w MRI and overperforming
quantitative mapping, indicating that the second one has much
more potential in quantitative medical image analysis.

6. Chapter 5 suggests an uncertainty-based deep learning approach
for medical image segmentation on partially labeled data driven
by clinically relevant derivable from the segmentation instead of
traditionally applied segmentation performance scores.
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7. Chapter 6 suggests an open-source Python toolbox for medical
imaging data curation and exploration filling the gap between
the currently existing open-source tools.

2 Social impacts

1. Identification of the current challenges in the field will determine
the direction of future work for precision medicine empower-
ment in clinical neurology through radiomics.

2. Image quantification will non-invasively reveal diagnostic infor-
mation previously not available for the subjective and qualitative
perception of the human eye.

3. The application of quantitative imaging will lead to the develop-
ment of objective and robust imaging biomarkers; additionally,
it will create the data naturally harmonized between sites and
scanners.

4. Deep learning methods will support healthcare specialists
in solving time-consuming routine tasks such as medical
image segmentation, revealing time for more challenging and
expertise-demanding activities.

5. The precision-medicine-toolbox is not only available for every
individual in society, but it is also democratizing artificial intel-
ligence in medical imaging research by providing data curation
and exploration functionality for researchers without strong pro-
gramming backgrounds.

6. Precision medicine will facilitate early diagnosis and optimal
treatment improving quality of life for the population and
reducing healthcare costs.
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3 Economical impacts
The average age of the population is on the rise, leading to an in-
crease in the number of individuals affected by age-related conditions,
primarily neurological disorders such as dementia, Alzheimer’s, and
Parkinson’s diseases [1]. Additionally, there is a growing population
affected by diseases that typically impact younger individuals, like
multiple sclerosis [2]. As a consequence, the demand for healthcare
services is steadily rising. Unfortunately, the healthcare system re-
sources are already overstretched [3]. To effectively manage these pa-
tients, it is imperative to automate routine tasks and provide support
to existing healthcare experts.
Furthermore, in many countries, healthcare costs for each patient are
covered by healthcare insurance and treatment choices are influenced
by the available budget for a particular treatment [4, 5]. Hence, there
is a critical need for early diagnosis and optimized decision-making to
allocate insurance funds efficiently.
In light of these challenges, our study identifies current obstacles in
the field and proposes potential solutions for some of them. We aim
to establish a foundation for future research and clinical applications
that will aid neuroradiologists in making more informed decisions.
The outcomes of this thesis contribute to solutions that bring precision
medicine in neurology one step closer to reality.
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