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Abstract

We generalize here the notion of interpolation space of given expo-

nent by replacing this exponent with Boyd functions. In particular, this

approach leads to the usual interpolation method with a function parame-

ter. We present some results in this general setting. Some are well-known,

others not so well.
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1 Introduction

The origin of the theory of interpolation can be traced back to Marcinkiewicz
[26] and the Riesz-Thorin theorem [33, 35], which states that if a linear function
is continuous on Lp and Lq, then it is also continuous on Lr for r between p
and q. Later, as it was shown that Sobolev spaces were constituted of functions
that have a non-integer order of di�erentiability [21, 1, 34], various techniques
were conceived to generate similar spaces. Among them were the interpolation
methods. Let us brie�y recall the basic de�nitions (see Section 3 for more
details). Let A, A0, A1, B, B0 and B1 be Banach spaces. The pair (A,B) is
called an interpolation pair if we have

A0 ∩A1 ↪→ A ↪→ A0 +A1 and B0 ∩B1 ↪→ B ↪→ B0 +B1,

where ↪→ is the symbol for the continuous embedding and if any linear operator
T : A0 + A1 → B0 + B1 which maps continuously A0 to B0 and A1 to B1 also
maps A to B continuously. Moreover, (A,B) is said to be of exponent θ ∈ [0, 1]
if there exists a constant C > 0 such that

∥T∥A,B ≤ C∥T∥1−θA0,B0
∥T∥θA1,B1

, (1)

for any operator T as above, where ∥T∥X,Y is the norm of T : X → Y .
The real interpolation methods [21, 4, 36, 17, 1, 34] have been generalized

using a function parameter (see [31, 14, 7, 12, 16, 30, 27, 25, 32] and references
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therein). Most of the times, these authors start from the K-method. Let A0 and
A1 be two Banach spaces continuously embedded into a Hausdor� topological
vector space so that A0 ∩A1 and A0 +A1 are well de�ned Banach spaces. One
de�nes the K-functional by

K(t, a) := inf
a=a0+a1

{∥a1∥A0
+ t∥a1∥A1

},

for t > 0 and a ∈ A0 + A1. Given 0 < θ < 1 and q ∈ [1,∞], a belongs to the
interpolation space (A0, A1)θ,q if a ∈ A0 +A1 and

(2−jθK(2j , a))j∈Z ∈ ℓq. (2)

The generalized version is obtained by replacing the sequence (2−jθ)j∈Z ap-
pearing in (2) with a Boyd function (see Section 2). Similar de�nitions have
been proposed in [19, 23] and the relations between these techniques have been
studied in [20]. The J-method is de�ned in a similar way: one sets

J(t, a) := max{∥a∥A0 , t∥a∥A1},

for t > 0 and a ∈ A0 ∩A1. This time, one considers

(2−jθJ(2j , bj))j∈Z ∈ ℓq,

with a =
∑
j∈Z bj and bj ∈ A0 ∩ A1 (for all j), the convergence being in A0 +

A1. This approach can be generalized in the same way and one can show
that both methods give rise to the same spaces, in the sense of Theorem 6.2
(with equivalence of norms). The Boyd functions form a natural apparatus
for studying function spaces [2, 13, 28, 15, 29, 19, 23, 24] and interpolation
methods with a function parameter provide an interesting tool in this context
[14, 27, 32, 10]. For example, they lead to a de�nition of the Besov spaces of
generalized smoothness based on the usual Sobolev spaces [23]. Other examples
are given in [27].

In this work, we show that this generalized approach still allows a functorial
interpretation. We introduce the Boyd functions earlier in the process, that is
in the notion of interpolation of real exponent. We are thus naturally led to
consider results such as the Aronszajn-Gagliardo theorem. We also consider
real interpolation methods, but without con�ning ourselves to the K- and J-
methods.

We begin by introducing the usual notions related to the Boyd functions in
order to replace t 7→ tθ in (1) with a Boyd function ϕ, which leads to (3), as a
starting point. Next, we explore the basic properties of this theory. We show
that, under the right hypothesis, the usual results can be formulated in this
more generalized setting. For example, the real interpolation methods are still
equivalent in this context (this is a generalization of Theorem 2.2 from [14] for
example) and a reiteration theorem still holds.

As we often rephrase standard theory exposed in classical textbooks (see
[4, 8] for instance) using Boyd functions, proofs are given with a minimum of
details and, in some cases, are omitted. Also, we tried to keep the notation as
standard as possible. Throughout the paper, we use the letter C for a generic
positive constant, while d is the dimension of the space if it makes sense.
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2 Boyd functions

We recall here some basic properties of the Boyd functions. The interested
reader can consult [27, 20] and the references therein for the details.

De�nition 2.1. A function ϕ : (0,∞) → (0,∞) is a Boyd function if

� ϕ(1) = 1,

� ϕ is continuous,

� for any t > 0,

ϕ̄(t) := sup
s>0

ϕ(ts)

ϕ(s)
<∞.

The set of Boyd functions will be denoted by B.

The function ϕ̄ is sub-multiplicative, Lebesgue-measurable and we have both
1/ϕ̄(1/t) ≤ ϕ(t) ≤ ϕ̄(t) and 1/ϕ(t) ≤ 1/ϕ̄(1/t).

De�nition 2.2. Given ϕ ∈ B, the lower and upper Boyd indices [6] are de�ned
by

b(ϕ) := sup
t∈(0,1)

log ϕ̄(t)

log t
= lim
t→0+

log ϕ̄(t)

log t

and

b(ϕ) := inf
t∈(1,∞)

log ϕ̄(t)

log t
= lim
t→∞

log ϕ̄(t)

log t
,

respectively.

Let us give an family of Boyd functions that naturally generalize the function
t 7→ tθ appearing in (2).

Example 2.3. Let ψ be a slowly varying function on (0,∞):

lim
t→0

ψ(tx)

ψ(t)
= 1,

for any x > 0. For θ ∈ R, the function ψ : t 7→ tθψ(t) is a Boyd function such
that b(ϕ) = b(ϕ) = θ [18]. Such functions are known as Karamata regularly
varying functions [5]. A standard choice for the slowly varying function is ψ =
| ln |γ , for γ > 0.

Such functions naturally appear when dealing with the law of the iterated
logarithm [18], but logarithmic corrections are also commonly needed in inter-
polation theory [11].

If ϕ ∈ B, for ε > 0 and R > 0, there exists a constant C > 0 such that

C−1rb(ϕ)+ε ≤ ϕ(r) ≤ Crb(ϕ)−ε,

for any r ∈ (0, R) and a constant C > 0 such that

C−1rb(ϕ)−ε ≤ ϕ(r) ≤ Crb(ϕ)+ε,

for any r ≥ R. Moreover, for such a function ϕ, we have the following properties:

3



� b(ϕ) > 0 ⇔ ϕ̄ ∈ L1
∗(0, 1) ⇔ lim

t→0+
ϕ̄(t) = 0,

� b(ϕ) < 0 ⇔ ϕ̄ ∈ L1
∗(1,∞) ⇔ lim

t→∞
ϕ̄(t) = 0,

� b(ϕ) > 0 ⇒ ϕ ∈ L∞(0, 1),

� b(ϕ) < 0 ⇒ ϕ ∈ L∞(1,∞),

where Lq∗(a, b) = Lq(a, b, dt/t).

De�nition 2.4. A function ϕ : (0,∞) → (0,∞) is Boyd-regular if

� ϕ(1) = 1,

� ϕ ∈ C1(0,∞),

� we have

0 < inf
t>0

t
|ϕ′(t)|
ϕ(t)

≤ sup
t>0

t
|ϕ′(t)|
ϕ(t)

<∞.

The set of Boyd-regular functions will be denoted by B∗.

We have B∗ ⊂ B. The set of functions ϕ ∈ B∗ that are strictly increasing
(resp. strictly decreasing) will be denoted by B∗

+ (resp. B∗
−).

Given two functions f and g de�ned on (0,∞), we write f ∼ g if there exists
a constant C > 0 such that C−1g(t) ≤ f(t) ≤ Cg(t) for any t > 0. If ϕ ∈ B
is such that b(ϕ) > 0 (resp. b(ϕ) < 0), then there exists ξ ∈ B∗

+ (resp. ξ ∈ B∗
−)

such that ξ−1 ∈ B∗
+ (resp. ξ−1 ∈ B∗

−) and ϕ ∼ ξ.

3 Interpolation and Boyd functions

We present here a generalization of the interpolation spaces of real exponent
using Boyd functions. We shall reserve N for the category of all normed vector
spaces (the objects of N are normed vector spaces and the morphisms are the
bounded linear operators) and B for the sub-category of all Banach spaces.

Let us �rst brie�y recall the basic theory of interpolation (see [4, 8] for
example). If (A0, ∥ · ∥A0

) and (A1, ∥ · ∥A1
) are two normed topological vector

spaces, A0 and A1 are compatible if they are both subspaces of a Hausdor�
topological vector space. In this case, A0 ∩A1 is a normed vector space for the
norm

∥a∥A0∩A1 := max{∥a∥A0 , ∥a∥A1}

and A0 +A1 is a normed vector space for the norm

∥a∥A0+A1
:= inf

a=a0+a1
{∥a0∥A0

, ∥a1∥A1
}.

Moreover, if A0 and A1 are both complete, so are A0 ∩ A1 and A0 + A1. Let
C be a sub-category of N and denote by Cc a category of compatible couples
Ā = (A0, A1) (such that A0 ∩ A1 and A0 + A1 are in C). The morphisms
T : (A0, A1) → (B0, B1) in Cc are bounded linear mappings from A0 + A1

to B0 + B1 such that both T : A0 → B0 and T : A1 → B1 are morphisms
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in C. The two basic functors Σ and ∆ from Cc to C are de�ned as follows:
Σ(T ) = ∆(T ) = T and

∆(Ā) = A0 ∩A1 and Σ(Ā) = A0 +A1.

In the sequel, C will stand for any subcategory of N such that C is closed under
the operations sum and intersection, while Cc will stand for the category of all
compatible couples Ā of spaces in C. Given a couple Ā = (A0, A1) in Cc, a space
A ∈ C is an intermediate space between A0 and A1 (or with respect to Ā) if

∆(Ā) ↪→ A ↪→ Σ(Ā).

Such a space A is called an interpolation space between A0 and A1 (or with
respect to Ā) if in addition T : Ā→ Ā implies T : A→ A. Now, if B̄ is another
couple in Cc, two spaces A and B in C are interpolation spaces with respect to Ā
and B̄ if A and B are interpolation spaces with respect to Ā and B̄ respectively
and if T : Ā → B̄ implies T : A → B. These interpolation spaces are uniform
interpolation spaces if

∥T∥A,B ≤ Cmax{∥T∥A0,B0 , ∥T∥A1,B1}

always holds for some constant C > 0. If C = 1 in the previous inequality, A
and B will be called exact interpolation spaces. Of course, in the case B = A,
we will omit any reference to the second interpolation space B; in particular, we
set ∥T∥X := ∥T∥X,X . An interpolation functor (or interpolation method) on C

is a functor F : Cc → C such that if Ā and B̄ are two couples in Cc, then F (Ā)
and F (B̄) are interpolation spaces with respect to Ā and B̄, with F (T ) = T
for all T : Ā→ B̄. Naturally, the descriptive terms related to the interpolation
spaces can be transposed to the interpolation functors; we shall say that F is
a uniform (exact) interpolation functor if F (Ā) and F (B̄) are uniform (exact)
interpolation spaces with respect to Ā and B̄.

Given ϕ ∈ B, we will denote by ϕ∗ the function explicitly de�ned by

ϕ∗(t) :=
t

ϕ(t)
,

for t > 0.

De�nition 3.1. Let Ā = (A0, A1) and B̄ = (B0, B1) be two couples in Cc;
two interpolation spaces A and B with respect to Ā and B̄ respectively are of
exponent ϕ ∈ B if, for any T : Ā→ B̄,

∥T∥A,B ≤ Cϕ̄∗(∥T∥A0,B0
)ϕ̄(∥T∥A1,B1

) (3)

always holds for some constant C > 0. If C = 1, we say that A and B are exact
of exponent ϕ.

Most of the time, we will assume b(ϕ) > 0 and b(ϕ) < 1, which corresponds
to the classical assumption 0 < θ < 1 in (2) for example. The extreme cases (0
and 1) are not always meaningful, even in the classical setting [9, 4, 11].

Let us remark that A and B are of exponent ϕ if and only if they are of
exponent 1/ϕ(1/·).
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Theorem 3.2. Let ϕ ∈ B be such that b(ϕ) > 0 and b(ϕ) < 1, A be an interpo-
lation space with respect to Ā such that Aϕ ↪→ Σ(Ā), where Aϕ is the set of all
x ∈ Σ(Ā) admitting a representation of the form

x =
∑
j

Tjaj ,

with Tj : Ā → Ā and aj ∈ A for all j, the convergence being in Σ(Ā) and with
the norm

∥x∥Aϕ := inf
x=

∑
j Tjaj

∑
j

ϕ̄∗(∥Tj∥A0
)ϕ̄(∥Tj∥A1

)∥aj∥A.

Then Aϕ is a minimal exact interpolation space of exponent ϕ with respect to Ā
that contains A.

Proof. We directly get A ↪→ Aϕ, which implies that Aϕ is an interpolation space
with respect to Ā. From (3) with C = 1, it is easy to check that Aϕ is exact
of exponent ϕ. Finally, if B is an exact interpolation space of exponent ϕ with
respect to Ā that contains A, the same formula leads to Aϕ ↪→ B.

4 Aronszajn-Gagliardo-type theorems

In 1965, Aronszajn and Gagliardo showed that any interpolation space of a
given Banach couple could be realized as the value of a minimal or maximal
interpolation functor on the category of all Banach couples [3]. Later, connec-
tions between important methods of interpolation and this result were identi�ed
[7, 16], highlighting the importance of this theorem.

Theorem 4.1. Let A be an interpolation space of exponent ϕ with respect to
Ā, where ϕ ∈ B is such that b(ϕ) > 0 and b(ϕ) < 1. If X̄ is a given couple, the
set F (X̄) consists of those x ∈ Σ(X̄) which admit a representation x =

∑
j Tjaj

(with convergence in Σ(X̄)), with Tj : Ā→ X̄ and aj ∈ A for all j. De�ne

Nϕ(
∑
j

Tjaj) :=
∑
j

ϕ̄∗(∥Tj∥A0,X0)ϕ̄(∥Tj∥A1,X1) ∥aj∥A,

so that F (X̄) can be equipped with the norm

∥x∥F (X̄) := inf
x=

∑
j Tjaj

Nϕ(
∑
j

Tjaj).

If F (X̄) ↪→ Σ(X̄) for all couples X̄, then F gives a minimal interpolation functor
which is exact of exponent ϕ such that F (Ā) = A.

Proof. The classical proof can be adapted without any di�culty to this context
(see [4] for example).

Theorem 4.2. Let A be an interpolation space of exponent ϕ with respect to
Ā, where ϕ ∈ B be such that b(ϕ) > 0 and b(ϕ) < 1. If X̄ is a given couple, the
set F (X̄) consists of those x ∈ Σ(X̄) such that Tx ∈ A for all T : X̄ → Ā with
norm

∥x∥F (X̄) := sup{∥Tx∥A : ϕ̄∗(∥T∥X0,A0)ϕ̄(∥T∥X1,A1) ≤ 1}.

If ∆(X̄) ↪→ F (X̄) for all couples X̄, then F gives a maximal interpolation
functor which is exact of exponent ϕ such that F (Ā) = A.
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Proof. Let x ∈ F and f ∈ Σ(X̄)′ such that ∥f∥ = 1 and f(x) = ∥x∥Σ(X̄). If CA
is the constant corresponding to the continuous inclusion ∆(Ā) ↪→ A, assuming
that ∆(Ā) ̸= {0}, for a given ε > 0, there exists an element a ∈ ∆(Ā) with
∥a∥∆(Ā) = 1 such that ∥a∥A > CA − ε.

Consider the operator P ∈ L(X̄, Ā) de�ned by P (y) = f(y)a. One has

ϕ̄∗(∥P∥X0,A0
)ϕ̄(∥P∥X1,A1

) ≤ ϕ̄∗(∥a0∥A0
)ϕ̄(∥a1∥A1

) ≤ 1.

Therefore,
CA∥x∥Σ(X̄) ≤ ∥x∥F (X̄).

As a consequence, F (X̄) is an interpolation space with respect to X̄.
It is easy to check that F is an exact interpolation functor of exponent ϕ

such that F (Ā) = A that is maximal.

5 The K-method

Mimicking the usual K-method [31], one can construct here a family of inter-
polation functors on N; we obtain the real interpolation spaces with a function
parameter (see [27, 32] and references therein).

Let us recall that given a couple Ā and t > 0,

K(t, a) = K(t, a; Ā) := inf
a=a0+a1

(∥a0∥A0
+ t∥a1∥A1

),

for a ∈ Σ(Ā). The function t 7→ K(t, a) is positive, increasing and concave. We
also have K(t, a) ≤ max{1, t/s}K(s, a).

For ϕ ∈ B and q ∈ [1,∞], let Kϕ,q(Ā) be the space of all a ∈ Σ(Ā) such that

∥a∥Kϕ,q = ∥a∥Kϕ,q(Ā) := (

∫ ∞

0

( 1

ϕ(t)
K(t, a)

)q dt
t
)1/q <∞,

with the usual modi�cation when q = ∞.

Theorem 5.1. For ϕ ∈ B, Kϕ,q is an exact interpolation functor of exponent
ϕ on N. Moreover, we have

K(t, a) ≤ Cϕ(t)∥a∥Kϕ,q .

Proof. The fact thatKϕ,q is an exact interpolation functor is well known [27, 32].
The classical proof (see [4], Section 3.1) can be easily adapted to show that this
functor is of exponent ϕ.

Obviously, K1/ϕ(1/·),q is also exact of exponent ϕ on N.

Remark 5.2. From the fact that, for a ∈ Σ(Ā), t 7→ K(t, a) is non-decreasing
and t 7→ K(t, a)/t is non-increasing, since ϕ is a Boyd function, a belongs to
Kϕ,q(Ā) if and only if

(
K(2j , a)/ϕ(2j)

)
j∈Z ∈ ℓq.

The usual results can be revised to get the following propositions. The proofs
are omitted, since they can be easily obtained from the original ones (see [4],
Section 3.4).
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Proposition 5.3. Given ϕ ∈ B, for 1 ≤ p ≤ q ≤ ∞, we have the continuous
inclusion Kϕ,p(Ā) ↪→ Kϕ,q(Ā).

Proposition 5.4. For ϕ ∈ B and q ∈ [1,∞], we have

Kϕ,q(A0, A1) = Kϕ∗,q(A1, A0).

Proposition 5.5. Let ϕ, ϕ0, ϕ1 ∈ B and q, q0, q1 ∈ [1,∞]; if b(ϕ0) < b(ϕ) and
b(ϕ) < b(ϕ1), then

Kϕ0,q0(Ā) ∩Kϕ1,q1(Ā) ↪→ Kϕ,q(Ā).

Proposition 5.6. Given ϕ0, ϕ1 ∈ B such that b(ϕ0) < b(ϕ1) and q ∈ [1,∞], if
A1 ↪→ A0 then Kϕ1,q(A0, A1) ↪→ Kϕ0,q(A0, A1).

Proposition 5.7. Let ϕ ∈ B and q ∈ [1,∞]; if A0 and A1 are complete, so is
Kϕ,q(A0, A1).

Let us also recall the duality theorem and the power theorem, which are also
well-known in this context (and can be easily obtained from the proofs in [4],
Sections 3.7 and 3.11).

Theorem 5.8. Let Ā = (A0, A1) be a couple of Banach spaces such that ∆(Ā)
is dense in both A0 and A1; for 1 ≤ q <∞, 0 < b(ϕ) and b(ϕ) < 1, we have

Kϕ,q(Ā)
′ = Kϕ−,q′(A′),

where q′ is the exponent conjugate to q and ϕ−(t) = 1/ϕ(1/t).

Remark 5.9. For the case q = ∞, one has

K̄ϕ,∞(Ā)′ = Kϕ−,1(A′),

where K̄ϕ,∞(Ā) denotes the closure of Kϕ,∞(Ā) in ∆(Ā).

Theorem 5.10. For ϕ ∈ B such that b(ϕ) > 0 and b(ϕ) < 1, we have

Kϕ,q(A
p
0, A

p
1)

1/p = Kϕp,pq(Ā).

6 The J-method

We can also consider the J-method to get a second family of explicit interpola-
tion functors.

Let us recall that given a couple Ā and t > 0,

J(t, a) = J(t, a; Ā) := max{(∥a∥A0
, t∥a∥A1

),

for a ∈ ∆(Ā).
For ϕ ∈ B and q ∈ [1,∞], let Jϕ,q(Ā) be the space of all a ∈ Σ(Ā) which

can be represented by a =
∫∞
0
b(t) dt/t, with convergence in Σ(Ā), where b is

measurable, takes its values in ∆(Ā) for t > 0 and

t 7→ J(t, b(t))

ϕ(t)
∈ Lq∗. (4)
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This space is equipped with the norm

∥a∥Jϕ,q = ∥a∥Jϕ,q(Ā) := inf
b∈Jϕ,q(Ā)

∥J(t, b(t))
ϕ(t)

∥Lq∗ .

It is well known that the equivalence theorem still holds [14]; however as we
use here slightly di�erent arguments, we sketch a proof.

Lemma 6.1. For ϕ ∈ B such that 0 < b(ϕ), b(ϕ) < 1 and q ∈ [1,∞], we have
Kϕ,q(Ā) ↪→ Jϕ,q(Ā).

Proof. Let a be an element of Jϕ,q(Ā), so that a =
∫∞
0
b(s)ds/s with condi-

tion (4) satis�ed. From the trivial decomposition b = b + 0 = 0 + b, we get
b ∈ Σ(Ā) and we have

K(t, a) ≤
∫ ∞

0

min{∥b∥A0 , t∥b∥A1}
ds

s
.

We get

K(t, a)

ϕ(t)
≤

∫ ∞

0

min{(ϕ(t)
ϕ(s)

)−1,
t

s
(
ϕ(t)

ϕ(s)
)−1} J(s, b(s))

ϕ(s)

ds

s

≤
∫ ∞

0

min{ϕ̄(s
t
),
t

s
ϕ̄(
s

t
)} J(s, b(s))

ϕ(s)

ds

s
.

The last expression is a convolution product (for the multiplicative group R+

and the Haar measure ds/s) of the function s 7→ J(s, b(s))/ϕ(s) from Lq∗ and
s 7→ min{ϕ̄(1/s), ϕ̄(1/s)s}. This last function belongs to L1

∗ if 0 < b(ϕ) and
b(ϕ) < 1. By Young's inequality, we get

∥K(t, a)

ϕ(t)
∥Lq∗ ≤ C∥J(t, b(t))

ϕ(t)
∥Lq∗ ,

which is su�cient to conclude.

Theorem 6.2. For ϕ ∈ B such that 0 < b(ϕ), b(ϕ) < 1 and q ∈ [1,∞], we have

Jϕ,q(Ā) = Kϕ,q(Ā).

Proof. Let a be an element of Kϕ,q(Ā); one has K(t, a) ≤ Cϕ(t) for any t > 0.

For j ∈ Z, let a(j)0 ∈ A0 and a
(j)
1 ∈ A1 be such that a = a

(j)
0 + a

(j)
1 and

∥a(j)0 ∥A0 + ∥a(j)1 ∥A1 ≤ 2K(ej , a),

where e is Euler's number.

Since ϕ is a Boyd function, we have

0 ≤ ∥a(j)0 ∥A0 ≤ Cϕ(ej) ≤ C(ej)b(ϕ)−b(ϕ)/2,

where the right-hand side tends to 0 as j tends to −∞. On the other hand,

0 ≤ ∥a(j)1 ∥A1
≤ C(ej)b(ϕ)+εe−j

tends to 0 as j tends to ∞.
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For j ∈ Z, let us set

bj := a
(j+1)
0 − a

(j)
0 = a

(j)
1 − a

(j+1)
1 ∈ ∆(Ā),

so that
∑
j∈Z bj = a with convergence in Σ(Ā). For t ∈ (ej , ej+1), we get

∥bj∥A0
≤ 2K(ej+1, a) + 2K(ej , a)

and so t∥bj∥A1
≤ CK(t, a). Finally, by setting b(t) = bj for t ∈ (ej , ej+1), we

get a =
∫∞
0
b(t)dt/t and thus J(t, a) ≤ CK(t, a).

Remark 6.3. One can check that a belongs to Jϕ,q(Ā) if and only if a =
∑
j∈Z bj

in Σ(Ā) with bj ∈ ∆(Ā) for all j and
(
J(2j , bj)/ϕ(2

j)
)
j∈Z belongs to ℓq.

Considering the classical results, we get the following properties. Once again,
the proofs are left to the reader (see [4], Section 3.4).

Proposition 6.4. For ϕ ∈ B such that 0 < b(ϕ), b(ϕ) < 1 and q ∈ [1,∞),
∆(Ā) is dense in Kϕ,q(Ā).

Proposition 6.5. For ϕ ∈ B such that 0 < b(ϕ) and b(ϕ) < 1, the closure of
∆(Ā) in Kϕ,∞(Ā) is the space of the elements a such that K(t, a)/ϕ(t) tends to
0 as t tends to 0 or ∞.

The interpolation functors Jψ,1 and Kψ,∞ are extremal (in the sense of
Theorem 6.6), using the appropriate function ψ. For ϕ ∈ B, let us de�ne

ϕ(t) := sup
s>0

ϕ(s)

ϕ(ts)
.

Theorem 6.6. If F is an interpolation functor of exponent ϕ ∈ B with b(ϕ) > 0
and b(ϕ) < 1, then, for any compatible Banach couple Ā = (A0, A1), one has

J1/ϕ,1(Ā) ↪→ F (Ā).

Moreover, if ∆(Ā) is dense in A0 and A1, then

F (Ā) ↪→ Kϕ̄,∞(Ā).

Proof. The proof in [4], Section 3.9, can be easily modi�ed to get the desired
result.

7 Other real interpolation methods

As expected, the �espaces de moyennes� [21] and the trace spaces (�espaces de
trace�) [22] can be generalized in the context of the Boyd functions. The induced
methods are equivalent to the K-method.

Given a compatible Banach couple Ā = (A0, A1) and p ∈ [1,∞], let Xϕ,p(Ā)
be the subspace of Σ(Ā) de�ned by the norm

∥a∥Xϕ,p := inf
a=a0(t)+a1(t)

(∥a0(t)
ϕ(t)

∥p
Lp∗(A0)

+ ∥ϕ∗(t)a1(t)∥pLp∗(A1)
)1/p.
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Theorem 7.1. For ϕ ∈ B such that b(ϕ) > 0 and b(ϕ) < 1, we have

Xϕ,p(Ā) = Kϕ,p(Ā).

Proof. One has

∥a∥pXϕ,p ∼
∫ ∞

0

inf
a=a0(t)+a1(t)

(
1

ϕ(t)p
∥a0(t)∥pA0

+ ϕ∗(t)
p∥a1(t)∥pA1

)
dt

t

∼
∫ ∞

0

inf
a=ã0(τ)+ã1(τ)

1

ϕ(τ1/p)p
(∥ã0(τ)∥pA0

+ τ∥ã1(τ)∥pA1
))
dτ

τ
.

Using the power theorem, we get

Xϕ,p(Ā)
p = Kϕ1/p,1(A

p
0, A

p
1) = Kϕ,p(Ā)

p,

as desired.

If f is an A-valued function on (0,∞), f (m) will denote the derivative of
order m of f in the sense of the distribution theory. The space Xm

ϕ,p(Ā) is the

space of Σ(Ā)-valued functions f on (0,∞) that are locally A0-integrable and
such that f (m) is locally A1-integrable with

∥f∥Xmϕ,p := max(∥ϕf∥Lp∗(A0), ∥
1

ϕ∗(t)
f (m)(t)∥Lp∗(A1)) <∞.

We shall say that f has a trace in Σ(Ā) if f(t) converges in Σ(Ā) as t→ 0+; in
this case we set

trace(f) := lim
t→0+

f(t).

The trace space of functions in Xm
ϕ,p(Ā) will be denoted TXm

ϕ,p(Ā); it is the

space of all a ∈ Σ(Ā) such that there exists f ∈ Xm
ϕ,p(Ā) with trace(f) = a.

This space is a Banach space for the norm

∥a∥TXmϕ,p := inf
trace(f)=a

∥f∥Xmϕ,p .

Theorem 7.2. For ϕ ∈ B such that b(ϕ) > 0 and b(ϕ) < 1, we have

TXm
ϕ,p(Ā) = Kϕ,p(Ā).

Proof. This result can be shown using the same proof as for the corresponding
theorem of [4], Section 3.12.

8 A reiteration theorem

We give here a stability result for the repeated use of the real interpolation
method.

Let us recall (see [27]) that given ψ := ϕ1/ϕ0 with ϕ0, ϕ1 ∈ B, q0, q1 ∈ [1,∞],
E0 := Kϕ0,q0(Ā) and E1 := Kϕ1,q1(Ā), if b(ψ) > 0, there exists a bijection
ξ ∈ B∗

+ such that ψ ∼ ξ and

K(t, a; Ē) ∼ ∥K(·, a)
ϕ0

∥Lq0∗ (0,ξ−1(t)) + t∥K(·, a)
ϕ1

∥Lq1∗ (ξ−1(t),∞),

with Ē = (E0, E1) as soon as both the following conditions are satis�ed:

11



� b(ϕ0) > 0 if q0 <∞ or supt≤1 ϕ̄0(t) <∞ if q0 = ∞,

� b(ϕ1) < 1 if q1 <∞ or supt≥1 ϕ̄1(t)/t <∞ if q1 = ∞.

We �rst need some further results concerning the Boyd functions.

Lemma 8.1. Let u, v, ϕ be functions from (0,∞) to (0,∞); if u ∼ v and ϕ ∈ B
is such that b(ϕ) > 0 or b(ϕ) < 0, then ϕ ◦ u ∼ ϕ ◦ v.

Proof. Let us suppose that b(ϕ) > 0 and let ξ ∈ B∗
+ be such that C1ϕ ≤ ξ ≤ C2ϕ

for two constants C1, C2 > 0. Now, let C ′
1, C

′
2 > 0 be two constants such that

C ′
1v ≤ u ≤ C ′

2v. It is easy to check that we have

C1

C2ξ̄(C ′
2)
ϕ ◦ u ≤ ϕ ◦ v ≤ C2ξ̄(1/C

′
1)

C1
ϕ ◦ u.

The case b(ϕ) < 0 can be treated in the same way.

Lemma 8.2. Let ϕ1, ϕ2 ∈ B be such that b(ϕ2) > 0. If b(ϕ1) > 0, then ϕ1 ◦ ϕ2
belongs to B and b(ϕ1◦ϕ2) > 0. If b(ϕ1) < 0, then ϕ1◦ϕ2 ∈ B and b(ϕ1◦ϕ2) < 0.

Proof. Let us suppose that b(ϕ1) > 0 and let ξ, η ∈ B∗
+ be such that ξ ∼ ϕ1 and

η ∼ ϕ2. For t > 0, one has

ϕ1 ◦ ϕ2(t) ≤ Cξ̄(η̄(t)),

so that ϕ1 ◦ ϕ2(t) tends to 0 as t tends to 0+. As a consequence, we have
b(ϕ1 ◦ ϕ2) > 0. The case b(ϕ1 ◦ ϕ2) < 0 can be treated in the same way.

Let us recall the following notions. Let Ā be a couple of normed vector
spaces and ϕ ∈ B; if X is an intermediate spaces with respect to Ā, X is of class
CK(ϕ; Ā) if

K(t, a) ≤ Cϕ(t)∥a∥X ,

for all a ∈ X. In the same way, X is of class CJ(ϕ; Ā) if

ϕ(t)∥a∥X ≤ CJ(t, a),

for all a ∈ ∆(Ā). Finally, X is of class C(ϕ; Ā) if it is both of class CK(ϕ; Ā) and
CJ(ϕ; Ā).

Proposition 8.3. Let ϕ ∈ B be such that b(ϕ) > 0 and b(ϕ) < 1; X is of class
CK(ϕ; Ā) if and only if ∆(Ā) ↪→ X ↪→ Kϕ,∞(Ā).

Proof. This is clear since we have X ↪→ Kϕ,∞(Ā) if and only if

sup
t>0

K(t, a)

ϕ(t)
≤ C∥a∥X ,

X being an intermediate space with respect to Ā.

Proposition 8.4. Let ϕ ∈ B be such that b(ϕ) > 0 and b(ϕ) < 1; X is of class
CJ(ϕ; Ā) if and only if Kϕ,1(Ā) ↪→ X ↪→ Σ(Ā).

12



Proof. Let us suppose that X is Banach space of class CJ(ϕ; Ā); for a =
∑
j∈Z bj

in Σ(Ā), we have

∥a∥X ≤
∑
j∈Z

∥bj∥X ≤ C
∑
j∈Z

J(2j , a)

ϕ(2j)
,

so that Kϕ,1(Ā) is included in X.
On the other hand, if Kϕ,1(Ā) is included in X, let m be an integer and set

bm = a and bj = 0 for j ̸= m. In this case, we have

∥a∥X ≤ C∥a∥Kϕ,1 = C
J(2m, a)

ϕ(2m)
,

so that X is of class CJ(ϕ; Ā).

Let us now give a generalization of the reiteration theorem from [4].

Theorem 8.5. If for j ∈ {0, 1}, Xj is of class CJ(ϕj ; Ā) with b(ϕj) ≥ 0 and
b(ϕj) ≤ 1, let ϕ ∈ B be such that b(ϕ) > 0 and b(ϕ) < 1 and set θ = ϕ1/ϕ0,
ψ = (ϕ ◦ θ)ϕ0; if b(θ) > 0 or b(θ) < 0 then Kϕ,q(X̄) = Kψ,q(Ā).

In particular, if for b(ϕj) > 0 and b(ϕj) < 1, the spaces Kϕj ,qj (Ā) are
complete (j ∈ {0, 1}), then

Kϕ,q(Kϕ0,q0(Ā),Kϕ1,q1(Ā)) = Kψ,q(Ā).

Proof. For a = a0 + a1 ∈ Kϕ,q(X̄), we have

K(t, a; Ā) ≤ Cϕ0(t)K(θ(t), a; X̄).

Therefore,

∥a∥Kψ,q(Ā) ≤ C(

∫ ∞

0

(
K(ϕ1(t)/ϕ0(t), a; X̄)

ψ(t)/ϕ0(t)
)q
dt

t
)1/q,

so that for s = θ(t), we get

∥a∥Kψ,q(Ā) ≤ C(

∫ ∞

0

K(s, a; X̄)

ϕ(s)
)q
ds

s
)1/q

and thus Kϕ,q(X̄) ↪→ Kψ,q(Ā).
Now, for a =

∫∞
0
b(t)dt/t ∈ Jϕ,q(X̄), we have

ϕ0(t)K(θ(t), a; X̄) ≤
∫ ∞

0

ϕ0(t)K(θ(t), b(s); X̄)
ds

s

≤
∫ ∞

0

ϕ0(t) min{1, θ(t)
θ(s)

} J(θ(s), b(s); X̄)
ds

s

≤ C

∫ ∞

0

min{ϕ̄0(t/s), ϕ̄1(t/s)} J(s, b(s); Ā)
ds

s
,

so that for u = θ(t) and s = σt, we get

∥a∥Kϕ,q (X̄) ≤ C(

∫ ∞

0

(
ϕ0(t)K(θ(t), a; X̄)

ϕ0(t)ϕ(θ(t))
)q
dt

t
)1/q

≤ C(

∫ ∞

0

(

∫ ∞

0

1

ψ(s/σ)
min{ϕ̄0(1/σ), ϕ̄1(1/σ)} J(s, b(s); Ā)

ds

s
)q
dσ

σ
)1/q

≤ C∥J(s, b(s); Ā)
ψ(s)

∥Lq⋆
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and thus, using the equivalence theorem, Kψ,q(Ā) ↪→ Kϕ,q(X̄).

9 A compactness theorem

Using the previous reiteration theorem, one can show that the classical com-
pactness theorem [4] still holds in the setting of Boyd functions.

Theorem 9.1. Let Ā be a couple of Banach spaces, B be a Banach space and
consider a bounded linear operator T such that T : A0 → B is compact and
T : A1 → B (not necessarily compact); if E ∈ CK(ϕ; Ā) for some ϕ ∈ B such
that b(ϕ) > 0 and b(ϕ) < 1, then T : E → B is also compact.

Proof. The proof from [4], Section 3.8, can be easily adapted to provide the
desired result.

In the same way, we get the following theorem.

Theorem 9.2. Let Ā be a couple of Banach spaces, B be a Banach space and
consider a bounded linear operator T such that T : B → A0 is compact and
T : B → A1 (not necessarily compact); if E ∈ CJ(ϕ; Ā) for some ϕ ∈ B such
that b(ϕ) > 0 and b(ϕ) < 1, then T : B → E is also compact.

Corollary 9.3. Let ϕ0, ϕ1 ∈ B be such that

0 < b(ϕ0) ≤ b(ϕ0) < b(ϕ1) ≤ b(ϕ1) < 1;

if A0 and A1 are two Banach spaces such that A1 ↪→ A0 compactly, then

Kϕ1,q1(Ā) ↪→ Kϕ0,q0(Ā),

with compact inclusion.

Proof. Since the identityA1 → A0 is compact, Theorem 9.1 impliesKϕ1,a1(Ā) ↪→
A0 with compact inclusion. Now, from Theorem 9.2, we also have

Kϕ1,q1(Ā) ↪→ Kf,q0(A0,Kϕ1,q1(Ā)),

with compact inclusion. Since Theorem 8.5 implies

Kf,q0(A0,Kϕ1,q1(Ā)) = Kϕ0,q0(Ā),

for f such that ϕ0 = f ◦ ϕ1, we can conclude.
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