
Energy for Sustainable Development 77 (2023) 101342

A
0
(

Contents lists available at ScienceDirect

Energy for Sustainable Development

journal homepage: www.journals.elsevier.com/energy-for-sustainable-development

Swarm electrification: Harnessing surplus energy in off-grid solar home
systems for universal electricity access
Ida Fuchs a,∗, Sergio Balderrama b, Sylvain Quoilin c, Pedro Crespo del Granado d,
Jayaprakash Rajasekharan a

a Department of Electric Energy, Norwegian University of Science and Technology, Trondheim, Norway
b Centro Universitario de Investigacion en Energias, Universidad Mayor de San Simon, Cochabamba, Bolivia
c Integrated and Sustainable Energy Systems, University of Liege, Liege, Belgium
d Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Trondheim, Norway

A R T I C L E I N F O

Keywords:
Energy access
Solar home systems
Swarm electrification
Energy sharing
Peer-to-peer

A B S T R A C T

Achieving universal access to electricity by 2030, as set out by the Sustainable Development Goals, presents a
significant challenge given the current rate of progress. A recent promising concept is swarm electrification.
Its central idea is the peer-to-peer energy sharing of surplus energy in solar home systems (SHSs) to connect
additional neighbors and grow a bottom-up grid. This paper studies the surplus energy in SHSs and its
underlying influencing factors as a basis for swarm electrification. An open-source multi-model-based techno-
economic analysis of off-grid SHS including surplus energy as a value is presented. Three distinct household
types from the tier 3 category in the Multi-tier framework are compared based on their unique ratios of peak-
to-average demand and percentage of load consumption during sun hours. A statistical analysis of surplus
energy for each household type is presented and energy sharing with additional households at tier 1–2 is
simulated. Two economic analysis methods, including surplus energy, are presented and compared: single-
objective cost minimization and multi-objective compromise programming. The study finds that a low ratio of
demand during sun hours leads to higher surplus energy volumes, while a peak-to-average ratio alone cannot
give such indications. Both economic methods suggest that optimizing the SHS design for tier 3 households
involves a slight increase in solar power capacity when considering the expected revenue from selling surplus
energy to 2–3 households in tiers 1–2. The total cost for the tier 3 households are reduced by 40% − 64%,
additionally to decreasing their own lost load by 4% − 7%, and reducing the up-front cost to get electricity
access for the tier 1–2 households by 50% compared to purchasing their own full SHS.
Introduction

Electricity access

The United Nations’ Sustainable Development Goals (SDGs) were
adopted in 2015 as a universal call to action to end poverty, protect the
planet, and ensure that all people enjoy peace and prosperity by 2030.
Achieving these goals requires concerted efforts from governments,
civil society, the private sector, and individuals worldwide. However,
as we approach the halfway mark between 2015 and 2030, progress has
been mixed. In particular, the latest tracking report on SDG 7, which
aims to ensure access to affordable, reliable, sustainable, and modern
energy for all, highlights significant challenges. The report reveals that
the target for 2030 is not achievable under the current pace of progress
according to the International Energy Agency (IEA). An estimated 670
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million people will still lack access to electricity in 2030, and more
than 2.1 billion people will continue to rely on traditional methods of
cooking with biomass, kerosene, or coal reported by IEA, IRENA, UNSD,
World Bank, and WHO (2022).

Describing access to energy is a challenging and intricate task
according to Bhatia and Angelou (2014). Thus, the authors propose
the Multi-tier Framework (MTF)1 not defining access to electricity as
a binary concept but in five distinct levels, or tiers (𝑇 1 − 𝑇 5). In the
lower tiers (𝑇 1−𝑇 2), users typically have access to light, mobile phone
charging, and entertainment in the form of radio and TV. In the higher
tiers (𝑇 3 − 𝑇 5), access includes higher power and energy-intensive
household appliances such as refrigerators, kettles, rice cookers, irons,
and others. When tracking progress towards SDG 7 and achieve the
2030 goal, households are considered to have access to electricity when
vailable online 10 November 2023
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Nomenclature

𝐴 Set of all assets
𝑎 Asset
𝑐𝑖𝑛𝑣𝑒𝑠𝑡,𝑎(𝑡) Specific investment cost per unit for 𝑎 in

period 𝑡
𝑐𝑙𝑜𝑎𝑠𝑡𝑙𝑜𝑎𝑑 (𝑡) Specific penalty cost for a unit of lost load

in 𝑡
𝑐𝑝𝑟𝑖𝑐𝑒(𝑡) Price for surplus energy
𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒,𝑎(𝑡) Specific salvage value per unit for 𝑎 in

period 𝑡 = 𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡
𝐷𝑆𝐻𝑅 Demand during Sun Hours Ratio
𝐸 − 𝑆𝐿𝑅 Expected served load ratio
𝐸𝑑𝑎𝑦 Total energy for one day
𝐸𝑠𝑒𝑟𝑣𝑒𝑑 Energy of demand that is served by the SHS
𝐸𝑡𝑜𝑡𝑎𝑙 Energy of total demand of a year
𝑓𝑖(𝑥) Value of the alternative 𝑥 for criterion 𝑖 in

MOCP
𝐹 ∗
𝑖 The ideal (best) value for criterion 𝑖

𝑓 ∗
𝑖 The anti-ideal (worst) value for criterion 𝑖

𝑖 Criterion in MOCP
𝐿𝑣(𝑥) Distance to an Utopian solution in MOCP
𝑛 Number of criteria in MOCP
𝑁𝑃𝐶𝑎𝑠𝑠𝑒𝑡𝑠 net present cost of the assets
𝑁𝑃𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡 Connection cost
𝑁𝑃𝐶𝑖𝑛𝑣𝑒𝑠𝑡,𝑎 Investment cost for 𝑎
𝑁𝑃𝐶𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑 Net present cost of the lost load
𝑁𝑃𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝑎 Net present cost of replacement of 𝑎
𝑁𝑃𝐶𝑡𝑜𝑡𝑎𝑙 Total net present cost of SHS
𝑁𝑃𝑉𝑟𝑒𝑣𝑒𝑛𝑢𝑒 Net present value of the surplus energy

revenue
𝑁𝑃𝑉𝑠𝑎𝑙𝑣𝑎𝑔𝑒,𝑎 Net present value of 𝑎 at 𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡
𝑃 (𝑡) Power in specific time step 𝑡
𝑃𝑎𝑣𝑔 Average power
𝑃𝑐ℎ Power of battery charging
𝑃𝑑𝑒𝑚𝑎𝑛𝑑 Power of residential demand
𝑃𝑑𝑖𝑠 Power of battery discharging
𝑃𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑 Power of lost load
𝑃𝑝𝑒𝑎𝑘 Peak power
𝑃𝑃𝑉 Power of PV generation
𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠 Power of surplus energy
𝑃𝐴𝐷𝑅 Peak to Average Demand Ratio
𝑞𝑎 quantity of asset 𝑎
𝑞𝑎(𝑡) The quantity for 𝑎 in 𝑡
𝑞𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑 (𝑡) quantity of lost load in 𝑡
𝑞𝑠𝑢𝑟𝑝𝑙𝑢𝑠(𝑡) Expected quantity of surplus energy that

household can sell
𝑟 Interest rate
𝑆𝐸𝑅 Surplus Energy Ratio
𝑆𝐿𝑅 Served Load Ratio
𝑡 time step
𝑇𝑒𝑛𝑑 Ending time of sun hours
𝑇𝑠𝑡𝑎𝑟𝑡 Starting time of sun hours
𝑇 𝑖 Tier 𝑖 in the MTF with 𝑖 = 1...5
𝑣 Parameter for MOCP
𝑊𝑖 Weight of the criterion 𝑖
𝑥 Solution option in MOCP

they meet the lowest level of the MTF. However, although this repre-
sents an improvement in their situation, it does not fully align with the
overarching objective of SDG 7, which seeks to achieve universal access
2

E-SE Expected surplus energy
E-SER Expected surplus energy ratio

Glossary

ConCom Connection combinations
MEM Modern Energy Minimum
MOCP Multi-objective compromise programming
MTF Multi-tier Framework
PAYG Pay-as-you-go
Prosumpy Energy Prosumer analysis toolkit for Python
PV Photovoltaic
PVGIS PV Geographical Information System
pvlib PV library in Python
RAMP Remote-Areas stochastic Multi-energy load

Profiles generator
SDG Sustainable Development Goal
SEBuy Surplus Energy Buyer
SESell Surplus energy seller
SHS Solar Home System
SOCM Single-objective cost minimization

to reliable, affordable, and sustainable energy. Additionally, households
still face the challenge of obtaining clean cooking solutions. To address
this issue, increasing access to higher tiers during the electrification
process can not only provide solutions for access to electricity, but it
can also help to tackle the problem of clean cooking and even access
to clean water by using kettles.

The ambitious level of access to electricity has also been presented
by Bazilian et al. (2021) where the authors propose the Modern Energy
Minimum (MEM) of 1000 kWh per person per year, inclusive of both
household (300 kWh) and non-household electricity consumption (700
kWh). It is better aligned with historical trends and development
aspirations for employment, higher incomes, prosperity, and economic
transformation. As prices for solar panels and battery technology con-
tinue to decrease, and with improved technological advances, aiming
for higher tiers or even the MEM is becoming increasingly achievable.
Our paper examines the feasibility of such a goal by addressing energy
access with Solar Homes Systems (SHSs) at tier 3, which meets the
criteria for MEM.

SHSs have played a crucial role in facilitating rural electrification,
particularly for the ‘‘last mile’’ communities, and according to World
Bank (2022) they will continue to be a prominent approach. They
consist of photovoltaic (PV) panels, battery storage and the necessary
power electronics to control the system. According to the World Bank,
1.1 billion people will have access to at least 𝑇 1 and above through SHS
by 2030. Out of these, around 650 million individuals might become
initial users of SHS. This encompasses 464 million people who will
adopt SHS as their main electricity source, along with an additional
186 million who will utilize it to supplement an unreliable grid.

Fernandez-Fuentes, Eras Almeida, and Egido Aguilera present the
technological innovations in SHS based on the experiences of Bolivia,
Peru, and Argentina. The authors define three generations of SHS.
The third generation SHS is highly efficient, uses LED lamps, lithium
batteries, microelectronic control, and plug-and-play connections. The
equipment can be self-managed by users and reflects the technology’s
high reliability with a minimum maintenance service. Such plug and
play components and modular solutions could lead to an acceleration
of SHS deployment and enable a bottom-up growth of rural microgrids
consisting of interconnected SHS. The growing of such a bottom-up
grid is a concept called Swarm Electrification visualized in Fig. 1 and
further described in Section ‘‘Background’’. The central premise of the

concept is the existence of surplus energy in SHSs, with the primary
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Fig. 1. Swarm electrification’s four phases from SHS to national grid.

focus being the accessibility of this surplus energy to accommodate
additional users.

Surplus energy

Surplus energy is the energy that cannot be used or stored, i.e. it
is curtailed. This curtailment is usually not the case in grid connected
SHSs in areas with a stable and reliable grid, nor is there a significant
energy demand that cannot be met by the grid (lost load). However, the
trading of surplus energy from residential SHSs or simply residential PV
systems has become popular in recent years and is currently addressed
as active consumers or prosumers in literature. Bjarghov et al. (2021)
give a comprehensive review on developments and changes in local
electricity markets with increased distributed renewable generation
including prosumers and peer-to-peer trading of electricity. The authors
identify five challenges that such local electricity markets aim to solve,
one of which is the optimal utilization of distributed supply, which
essentially refers to the efficient use of surplus energy. This is com-
parable to the aim for swarm electrification, where such an optimal
utilization simply means that the surplus energy is used to connect
further households and thus reduce the costs for all involved parties.
Kirchhoff, Kebir, Neumann, Heller, and Strunz (2016) compare peer-
to-peer electricity trading in local energy communities in Germany
with swarm electrification in the Global South. The findings indicate
that local energy communities in developing regions and local energy
communities in Germany have several common factors for successful
achievement. The outcomes illustrate that a significant level of user
ownership and the ability to expand the system according to user
requirements are particularly encouraging characteristics.

Since peer-to-peer trade of surplus energy from SHS is the basis of
swarm electrification, it needs to be studied in depth to quantify the
3

techno-economic benefits of the concept. Kirchhoff (2015) simulated a
single SHS of 65 W and a 100 Ah battery for Bangladesh, demonstrating
surplus energy levels of 30% of the total generation for one year.
This gives an indication that there is a potential, but it does not give
knowledge on what influences the amount of surplus energy. Soltowski,
Bowes, Strachan, and Anaya-Lara (2018) studied real data from 𝑇 1 and
𝑇 2 SHSs in Rwanda and demonstrate that they both show significant
demand diversity and an average surplus energy of 65%. The same au-
thors, (Soltowski et al., 2022), present a field study where they use the
fact that up to 70% of the energy generated by SHSs of 50 W installed
PV and 17 Ah battery capacity is surplus and effectively goes to waste,
due to high solar resource peaks aligning with low demand periods
and restricted storage capacity. They demonstrate a successful trial of
the interconnection of 7 households with SHSs and surplus energy to
a new household without SHS and a community refrigerator. Bhatti
and Williams (2021) provide different ways to estimate the surplus
energy based on real load profiles in off-grid systems in urban and rural
India. They find an average surplus energy through the year of around
50%. The values for the urban and rural households are consistent
with the level of solar energy available. The estimated surplus energy
for the monsoon months of July and August is 25% based on the
reduction in solar output and greater use of fans during humid weather.
Although, their study is based on measurements, giving realistic results
for the surplus energy estimate, it does not study the specific influence
of different load profiles of consumers and its influence on surplus
energy and its potential of energy sharing. This was first presented
by the same authors as this paper in Fuchs, Balderrama, Del Granado,
Quoilin, and Rajasekharan (2023). The study analyzes the dependencies
of surplus energy on the size of the SHS, i.e. installed PV capacity
and battery capacity and on the stochastic PV generation profile and
demand profile of different types of end-users. Further on, the study
presents a calculation on how much of the surplus energy can be shared
with further households assuming swarm electrification. However, the
simulations only cover one year and a more detailed statistical analysis
with several years and different stochastic load profiles was still missing
in the literature, and is hereby presented by this work.

With a more accurate estimation of expected surplus energy in a
SHS and the simulation of the quantity that can be shared or sold
further, it becomes possible to include the value of this surplus energy
into the sizing process of SHS. This could improve the original decision
making when purchasing SHSs considering a community with swarm
electrification from the perspective of end-users. However, in typical
studies where sizing of SHS is the focus, surplus energy is often not
the focus or a parameter that is minimized or avoided, since it is
seen as an indicator for an oversized system. Both single-objective
and multi-objective optimization methods have been used. Fioriti, Poli,
Duenas-Martinez, and Micangeli (2022) defines the concept of multiple
design options for a single-objective optimization. The authors propose
a novel methodology for sizing stand-alone hybrid energy systems that
identifies the optimal solution and post-processes the search history to
select second-best options of interest. Balderrama et al. (2019) proposes
a two-stage linear programming optimization framework for isolated
hybrid microgrids with multiple energy sources. The study focuses on
tackling uncertainty in both demand and renewable generation in the
planning process and proposes a robust method with little impact on
the total net present cost. Although, these studies are clearly relevant,
they do not consider single end-users and their potential of economical
improvement by including the surplus energy as a value or criterion
into the system sizing or investment decision-making process. One
example where surplus energy is minimized, is the study of Narayan,
Chamseddine, Vega-garita, Qin, and Popovic-gerber (2019) that pro-
poses a genetic algorithm-based multi-objective optimization approach
that minimizes the surplus energy, loss of load probability, and battery
size while maximizing the battery lifetime. The authors studied the
optimal-sized SHSs and show that for demands above 𝑇 2, the present
day SHS sizing needs significant improvements. Additionally, they find
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that the electricity needs of higher tiers of MTF without compromising
one or more of the system metrics cannot be achieved purely through
standalone SHS at an affordable limit. Higher tiers include high-power
appliances that create high power peaks in the demand profiles and
significantly influence the sizing of SHS. Such appliances are often
those that can improve life-style and help development, e.g. rice cook-
ers, kettles or irons. Therefore, one of the motivations of our paper,
is to analyze how the disadvantages in sizing of SHS for such high-
power peaks, could be off-set by advantages through sharing the surplus
energy with additional households. This requires considering surplus
energy as a quantifiable value with the potential to improve the overall
economics for the SHS owner. Therefore, it must be considered as
a criterion during the system sizing process. Thus, two methods for
the economic analysis where surplus energy is included, are presented
and compared: single-objective cost minimization and multi-objective
compromise programming.

Contributions

The paper’s novelty stems from its in-depth examination of the
second phase of swarm electrification, achieved through an open-
source, multi-model-based techno-economic analysis of off-grid SHS,
with a particular emphasis on surplus energy. Unlike previous studies
discussed in the literature, which lacked a statistical analysis of surplus
energy and its inclusion in investment decision-making for participants
in the second phase of swarm electrification, this paper addresses these
gaps comprehensively.

The key contributions of this paper are:

• Multi-model-based simulation, statistical analysis and estimation
of surplus energy in different typical tier 3 solar home systems for
rural Sub-Saharan Africa

• Swarm electrification model for assessment of surplus energy
supplying further households at tier 1 and 2

• Including surplus energy as value in solar home system invest-
ment decision making process by comparing single-objective cost
minimization and multi-objective compromise programming

• Demonstration of 40% − 64% total cost reduction potential for
energy access including electric cooking for tier 3 households
and 50% up-front cost reductions for connected tier 1 and 2
households

The remainder of this article is organized as follows: In Section
‘‘Background’’ we explain swarm electrification which forms the back-
ground of this study. In Section ‘‘Methodology’’ we present the method-
ology that is used in this paper. First we explain how the surplus energy
is modeled, secondly we evaluate how much of the surplus energy
could be shared with additional households, and thirdly we propose
the economic methods to evaluate the value of the surplus energy
integrated in the investment decision making process. In Section ‘‘Case
study’’ we present the case study and the input data that is used in the
model. In Section ‘‘Results’’ we present the results. This is followed by
a discussion and finally a conclusion of the paper.

Background

A new emerging concept that focuses on organically grown bottom-
up grids is swarm electrification visualized in Fig. 1. It was first intro-
duced by Groh, Philipp, Lasch, and Kirchhoff (2014) and describes a
step by step electrification process with four phases.

It starts with individual stand-alone SHS and proceeds with the
interconnection of households where the first step of a swarm grid is es-
tablished. Further, the system grows and step by step new participants
or technologies can be added to reach higher levels of electrification.
The advantages of the concept are to give electricity to more people,
4

Fig. 2. Swarm electrification — phase 2: Possible connection combinations of 𝑇 1 and
𝑇 2 to 𝑇 3 households.

give access to increased power and energy and make electricity more
affordable for the involved participants.

Sheridan, Sunderland, and Courtney (2023) present a comprehen-
sive review on swarm electrification of 89 scientific papers since 2011,
where 90% were published since 2015. The authors highlight the
potential of swarm electrification but also identify the need for new
business models to make it more financially attractive to investors,
customers and end-users as one of the key challenges found in the
literature. By reducing dependence on subsidies and non-governmental
organizations, a commercially-led electrification program could be es-
tablished. Our paper addresses the need for new business models by
quantifying the value of the surplus energy in the SHS and therewith
attracting private investment.

Narayan et al. (2019) demonstrate that the interconnection of SHSs
into a bottom-up microgrid results in an increase of electrification level
and a decrease of individual system sizes. This is a very important
result for increasing the level of energy access and decreasing the costs,
however the study mainly represents phase 3 of swarm electrification
with a focus on tier 𝑇 4 and 𝑇 5 households. There, a local microgrid
is implemented and sharing runs through that network. In contrast, in
phase 2 of swarm electrification the emphasize lays on the lower tiers
𝑇 1, 𝑇 2 and 𝑇 3 and their first individual connections into a nanogrids.
This is exemplified in Fig. 2.

The assumption is that there are 𝑇 3 households that have or do
purchase SHS and are able to sell surplus energy. These household will
further be referred to as the Surplus Energy Sellers (SESells). Then,
there are the households that are connecting to the SESells to buy the
surplus energy. These households are referred to as the Surplus Energy
Buyers (SEBuys). High up-front investment costs and high total invest-
ment costs are both barriers for energy access. The upfront investment
costs are the cost that have to be paid during the initial purchase of the
SHS at time step zero. The total costs include the further investment
costs as of the replacement of the battery and the penalty costs for
lost load. Further, the total cost are reduced by the salvage value of
the assets with a remaining lifetime after project lifetime. The upfront
investment costs are one of the most crucial barriers for very low income
households, which are the SEBuys in this study. The SESells are low and
middle income households and they might consider the total investment
costs more than the upfront costs.

To overcome high upfront costs there are financing models like
Pay-as-you-go (PAYG) and microfinance. PAYG allows users to pay for
a product or service in installments, typically through mobile money
or other digital payment systems. It offers the potential to deliver an
increasing and faster access to clean affordable energy, however, both
the technology and business model are more complex than current
alternatives according to Barrie and Cruickshank (2017). Microfinance,
on the other hand, is a financial service model that provides small
loans, savings accounts, and other financial services to low-income
individuals, households, and small businesses who lack access to tra-
ditional banking services. Both financing solutions provide support in
overcoming the upfront costs, however they do not necessarily help
in reducing the total costs. The financing models SESell and SEBuy
in phase 2 of swarm electrification could potentially provide upfront
reduction (for SEBuy) and total cost reduction (for both SESell and
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Fig. 3. Overall sequence of models. Light blue: Surplus energy models. Medium blue: Swarm electrification model. Dark blue: Economic models.
s

Table 1
Comparing finance models.

Cost PAYGO Microfinance SESell SEBuy

upfront cost reduction ✓ ✓ ✗ ✓

total cost reduction ✗ ✗ ✓ ✓

SEBuy) due to the utilization of surplus energy that otherwise would
go to waste. Table 1 shows the potential cost reductions for a SESell
and SEBuy compared to PAYG and microfinance. Dumitrescu, Groh,
Philipp, and von Hirschhausen (2020) argues that swarm electrification
can out-perform existing technical solutions and business models as mi-
crofinance and PAYG, because it can bridge between the bottom-up and
top-down electrification initiatives without excluding either of them.
In this paper, we analyze the economic benefits of purchasing higher
tier SHS as a SESell and connect neighbors at lower tier as SEBuy, by
adding the value of the surplus energy into the decision-making process
for investing in a higher tier SHS.

Methodology

Fig. 3 presents an overview of the different elements of the overall
model. Each element is explained in its own subsection in this chapter.
The first step are the surplus energy models, including the PV model,
the demand model and the dispatch model. The second step is the
swarm electrification model, that simulates if the given surpluses can
provide sufficient energy to additional households. Third and finally,
the economic models Single-objective cost minimization (SOCM) and
Multi-objective compromise programming (MOCP) are introduced and
explained here. They provide two methods of including the value of the
surplus energy into the investment decision process.

Surplus energy models

PV model
The PV generation is modeled by using the methods available in

PV library pvlib2 provided by Holmgren, W. Hansen, and A. Mikofski
(2018). For our work, the PV Geographical Information System (PVGIS)
is chosen to calculate the PV energy yield for the given location as
explained by Huld, Müller, and Gambardella (2012). The combination
of both tools, pvlib and PVGIS, gives access to several different irradia-
tion databases and modeling parameters in the Python environment.
In order to calculate the output power of the solar panels both the
global irradiance and the irradiance components from the dataset called
PVGIS-SARAH2 were used. The irradiance components are direct, dif-
fuse, and reflected irradiance. The PV model gives the output PV power
per time step for a normalized 1 kW𝑝𝑒𝑎𝑘 SHS for the desired years. This
output power is resized according the modeling needs in the further
steps.

2 https://github.com/pvlib/pvlib-python
5

Demand model
To evaluate the surplus energy in SHS, annual time series for

the demand in rural isolated communities have to be used. Such
demand profiles can be generated using the open-source stochastic de-
mand modeling tool developed by Lombardi, Balderrama, Quoilin, and
Colombo (2019). The model is implemented in Python and available as
Remote-Areas stochastic Multi-energy load Profiles generator (RAMP)3.
Version v0.3.1 was used in this work. RAMP was developed for typical
end-users in rural areas, i.e. rural residential loads, rural schools, rural
health centers and churches. The model is generic and can be adopted
for any region or village of interest by adjusting the input data for
the appliances. Every appliance is emulated through the definition of
multiple parameters that can be flexibly adjusted based on modeling
requirements. The key parameters include the appliances’ power capac-
ity, duration of usage, and specific time frames for usage. Additionally,
stochastic parameters are added. This creates unique demand profiles
each time the model is run. The model allows to create generic demand
profiles based on the MTF with specific attributes that are of interest
in this study. How the demand profiles and these attributes influence
the surplus energy can be studied by introducing load metrics. In this
paper we use the Peak to Average Demand Ratio (𝑃𝐴𝐷𝑅) , referring to
the difference between the maximum power demand and the average
power demand, which both have significant influence on the design and
sizing of the SHS. The formula for calculating the 𝑃𝐴𝐷𝑅 is:

𝑃𝐴𝐷𝑅 =
𝑃𝑝𝑒𝑎𝑘

𝑃𝑎𝑣𝑔
(1)

where 𝑃𝑝𝑒𝑎𝑘 is the peak demand and 𝑃𝑎𝑣𝑔 is the average demand over
a given time period. In energy access higher 𝑃𝐴𝐷𝑅 occur when intro-
ducing high power appliances such as a kettle, a rice cooker or an iron.
These appliances could increase lifestyle and improve development,
especially for the electrification of cooking. However, they often come
with a significant challenge in terms of SHS sizing, due to the high peak
power. In general, such appliances require larger SHS and hence lead
to higher costs but also more surplus energy.

Another load metric that is relevant for this research describes
the correlation between load profile and generation profile, which we
define as the Demand during Sun Hours Ratio (𝐷𝑆𝐻𝑅) . The 𝐷𝑆𝐻𝑅 is
the ratio of the demand that occurs during the sun hours, where the SHS
is generating significant PV power. This percentage of the demand can
be covered directly by the PV panels, while all load outside these hours
and especially during nighttime has to be covered by a sufficiently sized
battery. The formula for calculating the 𝐷𝑆𝐻𝑅 is:

𝐷𝑆𝐻𝑅 =

∑𝑇𝑒𝑛𝑑
𝑡=𝑇𝑠𝑡𝑎𝑟𝑡

𝑃 (𝑡)

𝐸𝑑𝑎𝑦
(2)

where 𝑃 (𝑡) is the demand for each time step 𝑡. 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑒𝑛𝑑 define the
tart and end time of sun hours. 𝐸𝑑𝑎𝑦 is the total demand over one day.

3 https://github.com/RAMP-project/RAMP

https://github.com/pvlib/pvlib-python
https://github.com/RAMP-project/RAMP
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Fig. 4. Dispatch model with its in- and output.

Fig. 5. Solar off-grid system setup including surplus energy and lost load.

Dispatch model
Fig. 4 presents the dispatch model block from Fig. 3 and further

describes its in- and outputs.
It uses the demand profiles from the demand model and PV gener-

ation yields from the PV model to dispatch the different SHS system
sizes and calculate the surplus energy (𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠) and Served Load Ratio
(𝑆𝐿𝑅) for each of these SHS sizes. The normalized PV generation for 1
kW𝑝 installed capacity and the simulated demand profiles are the inputs
for the model. The model varies PV and battery size and adjusts the PV
generation to the modeled size. The surplus energy is calculated for
each of the system sizes for each SESell.

For this purpose, the open-source Energy prosumer analysis toolkit
for python (Prosumpy4) is used. Prosumpy was originally programmed
by Quoilin, Kavvadias, Mercier, Pappone, and Zucker (2016) to study
the self-consumption of grid connected SHS. However, with only small
adaptions the same dispatch model can be used for an off-grid setting
as shown in Fig. 5.

The selection of the dispatch strategy aims to optimize the utiliza-
tion of PV energy. Priority is assigned to using the energy generated
by the PV system (𝑃𝑃𝑉 ) to meet the residential demand (𝑃𝑑𝑒𝑚𝑎𝑛𝑑). In
cases where the PV energy output exceeds the demand, the surplus is
directed towards charging the battery (𝑃𝑐ℎ). Conversely, when the PV
energy is insufficient, energy is drawn from the battery (𝑃𝑑𝑖𝑠) until the
deficit is resolved. In an off-grid system supplementary energy cannot

4 https://github.com/energy-modelling-toolkit/prosumpy
6

be bought or sold. Instead the options are not supplying the demand
resulting in lost load (𝑃𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑) , or to have surplus energy (𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠).
These behaviors can be synthesized in the power balance equation:

𝑃𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑃𝑃𝑉 − 𝑃𝑐ℎ + 𝑃𝑑𝑖𝑠 − 𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠 + 𝑃𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑 (3)

In Prosumpy the dispatch is implemented as logical functions and
power flows are calculated and stored for further use. Except the
change from grid-connected to an off-grid system the model in Pro-
sumpy is maintained as introduced in Quoilin et al. (2016).

To analyze and compare surplus energy from the different dis-
patches, specific system metrics need to be defined. Quoilin et al.
(2016) use the self-sufficiency rate as the ratio between the self-
consumed energy and the total annual energy demand, and the self-
consumption rate as the ratio between the self-consumed energy and
the annual energy produced by the PV array. Those metrics are com-
mon for sizing of PV battery systems according to Weniger, Tjaden,
and Quaschning (2014). The self-sufficiency rate indicates how well
the self-owned system can serve the demand, while it is assumed the
rest of the demand is served by a grid. In an off-grid setting there is
no grid, and the fraction of energy that is not served by the self-owned
system becomes lost load. However, the fraction that is served, called
the Served Load Ratio (𝑆𝐿𝑅) in an off-grid system, is mathematically
the same as the self-sufficiency rate for on-grid system and we define
it as the percentage of the total demand of the year 𝐸𝑡𝑜𝑡𝑎𝑙 that is served
by 𝐸𝑠𝑒𝑟𝑣𝑒𝑑 :

𝑆𝐿𝑅 =
𝐸𝑠𝑒𝑟𝑣𝑒𝑑
𝐸𝑡𝑜𝑡𝑎𝑙

(4)

The self-consumption rate that was used by Quoilin et al. (2016)
gives insight into how much of the energy produced by the SHS actually
is used to supply the demand, while the remaining percentages of that
ratio would inform about the surplus energy. However, since this study
focuses on surplus energy, we define the Surplus Energy Ratio (𝑆𝐸𝑅)
as the percentage of 𝐸𝑡𝑜𝑡𝑎𝑙 that is surplus energy 𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠:

𝑆𝐸𝑅 =
𝐸𝑠𝑢𝑟𝑝𝑙𝑢𝑠

𝐸𝑡𝑜𝑡𝑎𝑙
(5)

The SER gives insight in how much surplus energy the SHS generates
compared to the total demand that it tries to serve.

Swarm electrification model

The swarm electrification model presents the approach employed
to assess the surplus energy and its viability for supplying electricity
to extra households during the second phase of swarm electrification.
How much of the surplus energy actually can be shared is dependent
on different aspects, that are:

Control aspects:

• Sharing only surplus energy
• Sharing only surplus energy with smart control of battery charg-

ing
• Sharing both surplus energy and battery capacity
• Sharing both surplus energy and battery capacity with smart

control of battery charging

Infrastructure aspects:

• Bilateral energy sharing (nanogrids between specific households)
as in phase 2 of swarm electrification

• Energy sharing into a local network (microgrid and local energy
market) as in phase 3 of swarm electrification

Fuchs et al. (2022) present how different energy sharing control
aspects influence the 𝑆𝐿𝑅 for the involved partners. They show that
energy sharing of both surplus energy and battery capacity can result
in decreasing the 𝑆𝐿𝑅 for the household that originally had a higher

https://github.com/energy-modelling-toolkit/prosumpy
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Fig. 6. Swarm electrification model with its in- and outputs.

𝑆𝐿𝑅. This is because the additional connected households use energy
during night and discharge the battery of the SESell additionally to the
amount it is designed for. Thus, we focus on energy sharing of only
surplus energy here, and apply that in phase 2 of swarm electrification.
Although, smart control of battery charging could potentially improve
the situation, it is often not included in existing available SHS, and will
therefore be excluded now.

Fig. 6 shows the principles of the swarm electrification model block
from Fig. 3 and further describes its in- and outputs. Demand profiles
for SEBuy are used with the assumption that these households must
have purchased their own battery, but save the costs of purchasing ad-
ditional PV panels. Therefore, the simulated surplus energy time series
from the dispatch model is used as input for the swarm electrification
model instead of PV generation time series. The size of the battery is
fixed per household 𝑇 1 and 𝑇 2 to the optimal value of the battery
apacity if the households had purchased their own full SHS. The
conomic implications of these assumptions are discussed in Section
‘Discussion’’.

Further, it is assumed that the SESell can only connect a certain
umber of SEBuy, and therefore it is of interest to know the connec-
ion combinations (ConCom) of SEBuy that are possible to achieve a
aximal percentage of surplus energy that is sold. Only solutions that
aintain a 𝑆𝐿𝑅 of at least 85% for the SEBuy are regarded, to make

ure that the households get an adequate energy access. The maximal
ercentage of energy sharing define the percentage of surplus energy
or the SESell that can be shared with additional households.

conomic models

ingle-objective cost minimization
This section introduces SOCM including the value of the surplus

nergy. The overall objective function can be written as:

min
𝑎 ,𝑎∈𝐴

(𝑁𝑃𝐶𝑡𝑜𝑡𝑎𝑙 −𝑁𝑃𝑉𝑟𝑒𝑣𝑒𝑛𝑢𝑒) (6)

here 𝑁𝑃𝐶𝑡𝑜𝑡𝑎𝑙 is the total net present cost , 𝑁𝑃𝑉𝑟𝑒𝑣𝑒𝑛𝑢𝑒 is the net
resent value of the surplus energy revenue and 𝑞𝑎 is the quantity of
sset 𝑎 among all assets 𝐴. The assets are PV panels, batteries and
ower inverters. The two decision variable for the optimization are
𝑃𝑉 representing the size of the PV system, and 𝑞𝐵𝑎𝑡𝑡𝑒𝑟𝑦 representing
he capacity of the battery. The size of the off-grid converter is fixed
ccording to the demand.

A criteria for the sizing of the system is that it is able to meet
he demand. This can be included into the decision making in several
ays. One way would be to simple set a boundary limit of what is
n acceptable value of lost load for the customer and then choose the
est solution according to lowest costs. However, to make the SOCM
omparable to the MOCP that is presented in the following section, we
nclude the lost load as a penalty cost in the calculation of the 𝑁𝑃𝐶𝑡𝑜𝑡𝑎𝑙:

𝑃𝐶 = 𝑁𝑃𝐶 +𝑁𝑃𝐶 (7)
7

𝑡𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠 𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑
here 𝑁𝑃𝐶𝑎𝑠𝑠𝑒𝑡𝑠 is the net present cost of the assets and 𝑁𝑃𝐶𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑
s the net present cost of the lost load . The 𝑁𝑃𝐶𝑎𝑠𝑠𝑒𝑡𝑠 is calculated as
ollows:

𝑃𝐶𝑎𝑠𝑠𝑒𝑡𝑠 =
∑

𝑎∈𝐴
𝑁𝑃𝐶𝑖𝑛𝑣𝑒𝑠𝑡,𝑎 +

∑

𝑎∈𝐴
𝑁𝑃𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝑎 −

∑

𝑎∈𝐴
𝑁𝑃𝑉𝑠𝑎𝑙𝑣𝑎𝑔𝑒,𝑎 (8)

where 𝑁𝑃𝐶𝑖𝑛𝑣𝑒𝑠𝑡,𝑎 is the investment cost for each asset 𝑎 of the total set
of assets 𝐴 for the project. Accordingly, 𝑁𝑃𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝑎 is the net present
cost of the replacement cost and 𝑁𝑃𝑉𝑠𝑎𝑙𝑣𝑎𝑔𝑒,𝑎 is the net present value
of the asset 𝑎 at the end of project life time .

The 𝑁𝑃𝐶𝑖𝑛𝑣𝑒𝑠𝑡,𝑎 of asset 𝑎 is calculated by multiplying the specific
cost per unit 𝑐𝑖𝑛𝑣𝑒𝑠𝑡,𝑎(𝑡) for the asset 𝑎 with the quantity 𝑞𝑎(𝑡) in period
𝑡 = 0:

𝑁𝑃𝐶𝑖𝑛𝑣𝑒𝑠𝑡,𝑎 = 𝑐𝑖𝑛𝑣𝑒𝑠𝑡,𝑎(𝑡) ⋅ 𝑞𝑎(𝑡) (9)

The 𝑁𝑃𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝑎 of asset 𝑎 is calculated by the specific cost per unit
𝑐𝑖𝑛𝑣𝑒𝑠𝑡,𝑎(𝑡) multiplied by the replacement quantity 𝑞𝑎(𝑡) in period 𝑡 =
𝑇𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝑎:

𝑁𝑃𝐶𝑟𝑒𝑝𝑙𝑎𝑐𝑒,𝑎 = 𝑐𝑖𝑛𝑣𝑒𝑠𝑡,𝑎(𝑡) ⋅ 𝑞𝑎(𝑡) ⋅
1

(1 + 𝑟)𝑡
(10)

where 𝑟 is the interest rate . The 𝑁𝑃𝑉𝑠𝑎𝑙𝑣𝑎𝑔𝑒,𝑎 of asset 𝑎 at the end of
the project lifetime 𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡 is calculated by the specific value 𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒,𝑎(𝑡)
multiplied by the quantity 𝑞𝑎(𝑡) in period 𝑡 = 𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡:

𝑃𝑉𝑠𝑎𝑙𝑣𝑎𝑔𝑒,𝑎 = 𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒,𝑎(𝑡) ⋅ 𝑞𝑎(𝑡) ⋅
1

(1 + 𝑟)𝑡
(11)

where 𝑐𝑠𝑎𝑙𝑣𝑎𝑔𝑒,𝑎(𝑡) is the specific salvage value at 𝑡 = 𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡. Operational
costs for SHS are neglected here due to the fact that they are very
low compared to investment costs and that they would mainly involve
cost of working hours for maintenance, but this is usually done by the
private owner. Further, the penalty cost for lost load is calculated as
the following:

𝑁𝑃𝑉𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑 =
∑

𝑡
𝑐𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑 (𝑡) ⋅ 𝑞𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑 (𝑡) ⋅

1
(1 + 𝑟)𝑡

(12)

where 𝑐𝑙𝑜𝑎𝑠𝑡𝑙𝑜𝑎𝑑 (𝑡) is the specific penalty cost for a unit of lost load and
𝑞𝑙𝑜𝑠𝑡𝑙𝑜𝑎𝑑 (𝑡) is the quantity of lost load. Finally, the revenue from selling
urplus energy is calculated as follows:

𝑃𝑉𝑟𝑒𝑣𝑒𝑛𝑢𝑒 =
∑

𝑡
(𝑐𝑝𝑟𝑖𝑐𝑒(𝑡) ⋅ 𝑞𝑠𝑢𝑟𝑝𝑙𝑢𝑠(𝑡) ⋅

1
(1 + 𝑟)𝑡

) −𝑁𝑃𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡 (13)

where 𝑐𝑝𝑟𝑖𝑐𝑒(𝑡) is the price that surplus energy can be sold for in each
period 𝑡 and 𝑞𝑠𝑢𝑟𝑝𝑙𝑢𝑠(𝑡) is the simulated expected quantity of surplus
energy that the household can sell. How to estimate a realistic quan-
tity of surplus energy that can be sold, was described in the swarm
electrification model in Section ‘‘Swarm electrification model’’ in this
paper. The 𝑁𝑃𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡 is a one time connection cost including a smart
meter that measures the energy consumption, handles the control of the
energy sharing and preferable has an in-build payment function. Such
technology can already be found on the market and was introduced in
literature and tested in the field several times by Soltowski et al. (2022),
Kirchhoff and Strunz (2022) and Richard et al. (2022).

Multi-objective compromise programming
This section introduces MOCP including the value of the surplus en-

ergy. Multi-objective optimization is a method that involves optimizing
multiple conflicting objectives simultaneously. The goal is to identify
a set of solutions that represent a trade-off between the different
objectives. Khezri and Mahmoudi (2020) present one way of finding
such a trade-off, which is compromise programming. It was successfully
implemented for evaluating renewable energy programs, particularly in
low-income rural regions by Ferrer-Martí, Ferrer, Sánchez, and Garfí
(2018). It involves measuring each solution option against an ideal
solution, which is a perfect outcome that satisfies all criteria. Such
an outcome cannot be achieved and is therefore called an Utopian
solution. Consequently, the best solution is the one that is closest to

the Utopian solution. The proximity is determined by the mathematical
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Table 2
PV input data.

Parameter Value

Latitude 3.5◦S
Longitude 39.8◦E
Altitude 60 m
Timezone GMT+3
tilt 10◦

Azimuth North

distance 𝐿𝑣(𝑥) between an option 𝑥 and the Utopian solution, which is
based on the metric 𝑣, as demonstrated in Eq. (14).

𝐿𝑣(𝑥) =

[ 𝑛
∑

𝑖=1
(𝑊𝑖)𝑣 ⋅

(𝐹 ∗
𝑖 − 𝑓𝑖(𝑥)
𝐹 ∗
𝑖 − 𝑓 ∗

𝑖

)𝑣]1∕𝑣

(14)

Here, 𝑛 represents the number of criteria; 𝑊𝑖 stands for the weight of
the criterion 𝑖; 𝑓𝑖(𝑥) serves as the value of the alternative 𝑥 for criterion
𝑖; 𝐹 ∗

𝑖 signifies the ideal value for criterion 𝑖 (the best value among all
the alternatives); 𝑓 ∗

𝑖 constitutes the anti-ideal value for criterion 𝑖 (the
worst value among all the alternatives).

The distance metric 𝐿𝑣(𝑥) can be computed using different values of
the parameter 𝑣, ranging from 1 to infinity (∞). The choice of the value
of 𝑣 reflects the relative importance given to each criterion’s deviation
from the ideal value. Higher 𝑣 values signify a greater emphasis on
the maximum deviation. For instance, 𝐿1(𝑥) considers both small and
large deviations equally important, while 𝐿∞(𝑥) takes only the largest
deviation among all criteria into account. In this study, a combination
of metrics 1 and ∞ was employed, where

𝐿𝑉 (𝑥) = 𝛼 ⋅ 𝐿1(𝑥) + [1 − 𝛼] ⋅ 𝐿∞(𝑥) (15)

with 𝛼 set to 0.5. This combination has been shown to be effective in
previous studies involving multi-criteria analyses of renewable energy
programs by Ferrer-Martí et al. (2018).

The aim is to integrate surplus energy as a value into the investment
decision process. Thus, we propose to treat the revenue or surplus
energy as one of the criteria MOCP, resulting in the following three
criteria 𝑖 = 1...3: Minimization of costs of assets, maximization of
𝑆𝐿𝑅 and maximization of revenue from surplus energy. This results
in the following value functions: 𝑓1(𝑥) = 𝑁𝑃𝐶𝑎𝑠𝑠𝑒𝑡𝑠, 𝑓2(𝑥) = 𝑆𝐿𝑅 and
𝑓3(𝑥) = 𝑁𝑃𝑉𝑟𝑒𝑣𝑒𝑛𝑢𝑒.

Case study

Input data for surplus energy calculation

PV data
The location for the PV data calculation is Dzunguni village, Kenya.

The coordinates are [−3.5; 39.8]. Solar radiation, wind and temperature
data from 10 years (2006–2015) are used. The database PVGIS-SARAH2
in PVGIS is used to simulate the PV generation in pvlib. The system is
facing north, which is the optimal azimuth on the southern hemisphere.
The tilt angle is 10 degrees, which mirrors the inclination of numerous
houses within the rural vicinity. Different azimuth angles for the PV
panels for the simulated houses are not chosen here, because given a
low tilt these angles would not influence the PV generation or energy
sharing significantly as it was demonstrated by Fuchs et al. (2022). The
energy yield is calculated for each year for 1 kW𝑝 nominal capacity
and re-sized according to needs in the further calculations. Table 2
summarizes the input data for the PV generation calculation.

Fig. 7 shows the daily PV generation per 1 kW𝑝 installed capacity.
The average daily PV generation is 5.3 kWh/day.
8

Fig. 7. Daily PV generation output for the years 2006–2015 (orange) and average of
all years (black) for a 1 kW𝑝 PV system in Dzunguni village, Kenya.

Table 3
MTF criteria.

T1 T2 T3 T4 T5

Available power (W) > 3 > 50 > 200 > 800 > 2000
Daily Energy (Wh/d) > 12 > 200 > 1000 > 3400 > 8200
Annual energy (kWh/y) > 4 > 73 > 365 > 1241 >2993

Table 4
Appliances for SE seller households.

Load Rating P [W] Quantity q [–]

𝑇 31 𝑇 32 𝑇 33 𝑇 31 𝑇 32 𝑇 33
LED light 7 7 7 5 5 5
Phone 3 3 3 3 3 3
Radio 8 8 8 1 1 1
Fan 25 25 25 2 2 2
TV 40 40 40 1 1 1
Tablet 18 18 18 1 1 1
Fridge 100 0 0 1 0 0
Kettle 0 400 400 0 1 1
Rice cooker 0 600 600 0 1 1
Iron 0 750 750 0 1 1

Demand data
As introduced in Section ‘‘Electricity access’’ the MTF is used, to

model typical demand profiles for rural households in Kenya. The
different levels of access to electricity are clustered in tiers (𝑇 1-𝑇 5)
defined by several criteria. The relevant criteria for this paper are
minimum available peak power and minimum available daily/annual
energy, see Table 3 based on Bhatia and Angelou (2014).

In this study we chose 𝑇 3 households for the analysis of surplus
energy, because they are comparable to the MEM, as introduced in
d. We want to analyze the surplus energy of households with access
to different services (different appliances) but still compare to the
same level of access as a 𝑇 3. Thus, three different typical demand
profiles, 𝑇 31, 𝑇 32 and 𝑇 33 are generated with the demand generator
RAMP based on the appliances in Table 4. The appliances’ ratings and
quantity for each tier used in this study is based on data in literature of
comparable studies as in Narayan et al. (2020) and fieldwork in Kenya
at Eco Moyo Education Center5 in February/March and November
2022.

Table 4 shows the ratings and the quantity of the used appliances
for each of the three different 𝑇 3 households where surplus energy is
modeled. These households represent the SESell. It should be noticed
that the 𝑇 32 and 𝑇 33 have exactly the same number of appliances and
ratings. The difference between those two households is the time of
use of the high-power appliances, which are kettle, rice cooker and
iron. While 𝑇 32 uses all high power appliances during daytime when
there is PV generation, the other household 𝑇 33 uses these appliances
during the evening, and therefore has to rely on a battery that is sized
accordingly. This is visualized in Fig. 8. The orange curves in Fig. 8(A)
show 365 demand profiles in 15 min time resolution for 𝑇 31, 𝑇 32 and

5 https://www.ecomoyo.com/

https://www.ecomoyo.com/
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Fig. 8. Demand profiles in (A) and daily energy demand in (B) for households 𝑇 31, 𝑇 32 and 𝑇 33. The demand profiles in (A) give insight on the stochastic variations from day
to day, while the daily demand in (B) for all 10 scenarios give insight on stochastic variations from year to year.
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Table 5
Key metrics of demand profiles.

𝑇 31 𝑇 32 𝑇 33
Annual energy demand [kWh] 597 592 591
Average daily energy demand [Wh] 1636 1622 1620
Peak power [W] 224 828 986
Minimum power [W] 2 0 0
Average power [W] 68 68 68
PADR [–] 3 12 15
DSHR [%] 26 64 13

𝑇 33. The darker the orange curve area is, the more frequently these
values occur each simulated day. The black curves show the average
demand profiles over 365 stochastic days. In total, the study uses 3650
daily demand profiles which represent 10 years of stochastic demand.
The resulting daily energy demand is plotted in (B) for these 10 scenario
years and the average daily demand over these 10 years is plotted in
black in (B). (A) gives insight into the stochastic behavior from day to
day, while (B) shows the stochastic variations between the 10 years.
The households 𝑇 31, 𝑇 32 and 𝑇 33 are representative for a 𝑇 3 demand
regarding their energy demand. However, they are different in shape,
resulting in a different 𝑃𝐴𝐷𝑅 for 𝑇 31 compared with 𝑇 32 and 𝑇 33.
In terms of the MTF you can argue, that the modeled 𝑇 32 and 𝑇 33
are even achieving the 𝑇 4 available power minimum of 800 W. The
difference between 𝑇 32 and 𝑇 33 is the time of the day when the main
consumption happens, in this case the use of the high power appliances.
For 𝑇 32 the use of these high power appliances is during daytime when
there is solar PV generation, and for 𝑇 33 this occurs after sunset. This is
described by the metric 𝐷𝑆𝐻𝑅, which is defined as the percentage of
demand that occurs during 𝑇𝑠𝑡𝑎𝑟𝑡 = 10:00 and 𝑇𝑒𝑛𝑑 = 16:00 of the day.
Table 5 shows these key metrics of the modeled 𝑇3 demand profiles.

The purpose of these three different demand profiles is to show
how different user preferences influence the sizing and the value of the
surplus energy. This is the reason why we introduced the load metrics
𝑃𝐴𝐷𝑅 and 𝐷𝑆𝐻𝑅, where the 𝑃𝐴𝐷𝑅 gives information on power peaks
in the demand and the 𝐷𝑆𝐻𝑅 gives information on how much energy
9

r

Table 6
Appliances for SE buyer households.

Load Rating P [W] Quantity q [–]

𝑇 1 𝑇 2 𝑇 1 𝑇 2

LED light 7 7 3 5
Phone 3 3 2 3
Radio 0 8 0 1
Fan 0 25 0 1
TV 0 40 0 1

s used while there is PV generation, which influence the need for
torage. The three input files for RAMP for the three households can
e shared upon request, including the time of use and the stochastic
arameters.

Demand patterns for 𝑇 1 and 𝑇 2 are likewise produced using RAMP
o facilitate an analysis of whether the surplus energy from 𝑇 3 house-
olds can fulfill the electricity requirements of 𝑇 1 and 𝑇 2. In this study,
1 and 𝑇 2 are identified as the SEBuy. Table 6 shows the input data
f these two lower tier households and the RAMP input files can be
hared upon request.

ispatch parameters
For the dispatch, it is assumed that the battery can only be charged

r discharged at a power level that refers to half of the total capacity.
he charging and discharging efficiency for the batteries is set to 0.9
nd is controlled by a dc–dc bidirectional power converter. Further, for
he dispatch model we assume that all households have a maximal load
apacity at 1000 W, which is either supported by an off-grid converter
r off-grid inverter, depending on the system type. The converter
fficiency is set to 0.95.

To take into consideration stochastic variations of both PV and
emand profiles the model uses 10 PV generation years, each with
0 different stochastic demand profiles for each of the 3 households,
esulting in 100 runs per household per SHS size.
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Table 7
𝑇 1 and 𝑇 2 connection combinations for swarm model.

ConCom T1 T1,T1 T2 T1,T1,T1 T1,T2 T1,T1,T2 T2,T2 T1,T2,T2 T2,T2,T2

𝐸𝑡𝑜𝑡𝑎𝑙
[kWh/a] 65 131 156 196 221 286 312 377 467
a
c
t
t
a
d

Table 8
Economic input data.

Cost in USD

PV cost per installed kWp 790
Battery cost per installed kWh 210
Inverter cost per installed kWp 190
Battery replacement cost kWh 140
Connection cost for selling surplus energy 50
PV salvage value per kWp after 10 years 200
Lifetime PV in years 20
Lifetime Battery in years 5
Lifetime Converters in years 10
Project life time in years 10
Interest rate in % 5
Selling price USD/kWh 0.2
Penalty cost for lost load in USD/kWh 0.2

Assumptions for swarm electrification

For the swarm electrification model, it is assumed that the SEBuy
has purchased a battery of the size that would be optimal if the
household had purchased a complete SHS. In our simulations, these
sizes are 200 Wh for the 𝑇 1 and 400 Wh for the 𝑇 2. Further, we assume
hat SESell household can maximal connect three SEBuy. This assump-
ion is due to existing technology introduced by Kirchhoff and Strunz
2022) and due to the fact that a household has limited neighbors in
roximity to be connected at a reasonable cost assumption. Therefore
ll possible combinations SEBuys, 𝑇 1 and 𝑇 2 households, with maximal
households connected to the 𝑇 3 SESell, are analyzed in the swarm
odel. These ConCom and their total annual energy demand are shown

n Table 7.
Further, the condition for the energy sharing in the swarm electrifi-

ation model is that the SEBuy 𝑇 1 and 𝑇 2 can reach a 𝑆𝐿𝑅 of at least
5% by connecting to a SESell. This level is set to make the option of
EBuy comparable to the option of purchasing complete SHS.

nput data for economic models

The cost input data for the economic model is partially taken
rom similar studies by Yaldız, Gökçek, Şengör, and Erdinç (2021),
ernandez-Fuentes et al., Balderrama et al. (2019) and partially taken
rom data collected during field trips to Kenya in February/March and
ovember 2022 (see Table 8).

The project life time is set to 10 years, which means the battery will
e replaced once, and the PV panels have a salvage value after the end
f project life time.

The connection cost for selling surplus energy includes the con-
roller and connection cables. From the most relevant existing example
f swarm electrification by SOLshare (2023), these costs are found to
e between 25 − 30𝑈𝑆𝐷, although they include subsidies according to
iemens (2023). Therefore, the costs are set to 50𝑈𝑆𝐷 in our study.

The selling price for energy sharing is set to 0.2𝑈𝑆𝐷∕𝑘𝑊 ℎ which
reflects the current Kenyan electricity price of 2023. In this way, the
national grid serves as a reference in our model, although the actual
option of connecting is not an alternative for the households.

The penalty cost for lost load is important for the SESell during the
sizing process of the SHS. The assumption is that any lost load could
potentially be covered by the another neighbor if the SESell is also a
SEBuy. However, we do not model this, we only assume that the penalty
10

cost is not higher than the selling price. For the SEBuy in the total cost
calculation the same penalty cost is assumed. However, the SEBuy is
not part of the optimization, but the cost changes (upfront cost, total
cost) are the results of the outcome of the system optimization for the
SESell.

Generally, setting a correct penalty cost for lost load is a challenge.
Therefore, multi-objective approaches are preferred as presented by
Narayan, Chamseddine, Vega-garita, Qin, and Popovic-gerber (2019).
With our assumptions the penalty cost for the lost load does not have
a large influence in the SOCM. It does not initiate higher investment in
assets, other than the investment that can compete with the alternative
grid tariff. This is chosen, because the objective of the paper is to focus
on the surplus energy value and its influence on investment costs.

However, when using the MOCP, the 𝑆𝐿𝑅 is maximized for the
SHSs, i.e. the lost load is minimized, as one of the three criteria besides
minimization of asset costs and maximization of revenue from selling
surplus energy. For the case study the minimization of the asset costs
is the main criteria, since this is cash costs that the households have
to provide. Thus, the weightings for this demonstration case study are
chosen to be 0.4 for the minimization of asset costs, and 0.3 each for
the maximization of surplus energy revenue and maximization of 𝑆𝐿𝑅.

Results

This section highlights the findings from the methodology (Section
‘‘Methodology’’) and case study (Section ‘‘Case study’’). It explores the
relationship between surplus energy, system sizes, and demand profiles
for 𝑇 3 households, and investigates the feasibility of using surplus
energy to supply 𝑇 1 and 𝑇 2 households in the second phase of swarm
electrification. Additionally, the results of incorporating the value of
surplus energy in the investment decision process using two economic
methods are presented.

Surplus energy simulations

PV and battery size are varied and the systems’ combinations are
simulated as described in Section ‘‘Dispatch model’’ for the three dif-
ferent 𝑇 3 demand profiles. Fig. 9 shows the statistical results of the
total surplus energy for a year in a box-and-whisker plot.

Ten different years with meteorological data for the PV generation
nd 10 years of stochastic demand are combined into a total of 100
alculations of the total surplus energy. The dispatch is run with 15 min
ime resolution. For each of the households 𝑇 31, 𝑇 32 and 𝑇 33 the
otal surplus energy is plotted for all system size combinations that
re modeled. The different PV sizes are shown in different colors. The
ifferent battery size is plotted along the 𝑥-axis. The boxes in the figure

extend from the first quartile to the third quartile of the simulated result
data for the total surplus energy, with a black line at the median of
the data. The whiskers extend from the box by 1.5x the inter-quartile
range. It can be observed that almost all data is inside the range of the
whiskers, and no outliers (fliers) occur, except a few at the very low
PV size combined with large battery installed capacity.

Fig. 10 presents the expected surplus energy (E-SE) for each house-
hold in 3D plots along the battery capacity at the 𝑥-axis and PV size
along the 𝑦-axis. The E-SE is the sum of all values of annual surplus en-
ergy for all 100 simulations (10 years each with 10 demand scenarios)
divided by the number of simulations 𝑠 = 100.

First of all, and as expected, an increasing PV capacity is the driving
influential component for the increase of surplus energy. Secondly,
increasing battery storage capacity decreases surplus energy. Never-
theless, although a higher PV capacity will notably augment surplus
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Fig. 9. The statistical results of the annual surplus energies from 100 calculations for each of the three simulated households.
Table 9
E-SLR in % and E-SE in % of the annual demand.

A) E-SLR in % B) E-SER in % of total demand

PV Battery [kWh] Battery [kWh]
[kW] 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

0.3 68 86 88 88 88 23 0 0 0 0
0.4 70 94 97 98 99 51 25 21 20 19
0.5 72 97 99 99 100 81 53 51 50 50

𝑇 31

0.6 73 98 99 100 100 111 84 81 81 81

0.3 79 86 88 88 88 11 3 1 1 1
0.4 87 94 98 98 99 34 24 22 22 21
0.5 92 98 99 100 100 61 54 53 52 52

𝑇 32

0.6 94 99 100 100 100 90 85 84 84 84

0.3 49 74 84 86 87 43 15 4 1 1
0.4 49 76 90 96 98 74 44 28 22 20
0.5 50 77 92 98 99 105 74 58 51 50

𝑇 33

0.6 50 78 92 99 100 136 105 89 82 81
Fig. 10. Expected surplus energy (E-SE) in kWh/year for different SHS sizes.

energy, we observe only a marginal reduction in surplus energy as
battery capacity increases beyond a certain threshold. This threshold
refers to the SHS sizes where the 𝑆𝐿𝑅 reaches values close to and above
90 percent, as it can be seen in Table 9. One can observe that the higher
the 𝐷𝑆𝐻𝑅, the lower is the threshold, while the different 𝑃𝐴𝐷𝑅 of the
systems does not have a significant influence here.

Table 9 presents the results of the expected 𝑆𝐿𝑅 (𝐸 − 𝑆𝐿𝑅) for
the SHS sizes simulated for each of the three 𝑇 3 households in (A).
The 𝐸 − 𝑆𝐿𝑅 is the sum of all values of 𝑆𝐿𝑅 for all 100 simulations
(10 years each with 10 demand scenarios) divided by the number
of simulations 𝑠 = 100. In (B) the table presents the expected 𝑆𝐸𝑅
(𝐸 − 𝑆𝐸𝑅) as a percentage of the total load of each household (each
of the households have a similar total load, see Table 5). Seeing these
values side by side, the 𝐸 − 𝑆𝐿𝑅 and 𝐸 − 𝑆𝐸𝑅, gives insight in how
much surplus energy the system produces compared to the actual load
it attempts to supply.

It can be observed that there is not always surplus energy. At low
PV sizes and very large battery capacities the system reaches acceptable
11
𝑆𝐿𝑅 at 85 − 88%, however the amount of surplus energy is between
0 − 1 kWh per year.

Further, it can be seen that several SHS sizes with low battery
capacity cannot fully serve the load (low 𝐸 − 𝑆𝐿𝑅) but have a surplus
energy much higher than the total load. A further interesting aspect are
the systems that have the same 𝑆𝐿𝑅 but differ strongly in the amount
of surplus energy. If not considering the value of surplus energy, an
investment decision would possibly be made by purchasing the system
with the lowest costs achieving a certain desired 𝑆𝐿𝑅. By considering
the surplus energy, another system might be optimal. The following
economical analysis compares these systems to provide this decision
support. However, before this, it has to be estimated how much of the
E-SE actually can be shared with neighbors.

Swarm electrification connections

In phase 2 of swarm electrification the total surplus energy from
an SHS cannot be shared or sold. Instead, the amount that can be
shared is restricted by the system design and load of the households that
receive the shared energy. This section provides the results regarding
how much surplus energy from 𝑇 3 households can be shared with 𝑇 1
and 𝑇 2 households based on the ConCom of those given in Table 7 in
Section ‘‘Assumptions for swarm electrification’’.

Table 10 presents the connection combination that achieve the
maximal shared surplus energy under the assumption that 𝑆𝐿𝑅𝑇 1,𝑇 2 >
85%. Fig. 11 shows this maximal surplus energy that can be shared.
Comparing the three households, it can be seen that household 𝑇 33
can share surplus energy in more cases than the other two households.
Further, 𝑇 33 can share with slightly more 𝑇 1∕𝑇 2 households and with
the higher household load 𝑇 2. This result comes from the fact that 𝑇 3
3
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Fig. 11. Maximal percentage of surplus energy that can be shared with the best 𝑇 1, 𝑇 2 connection combinations from Table 7 assuming 𝑆𝐿𝑅𝑇 1,𝑇 2 > 85%.
Table 10
Connection combinations and 𝑆𝐿𝑅𝑇 1,𝑇 2 for best solutions.

PV Bat Best ConCom SLR for best ConCom

[kW] [kWh] 𝑇 31 𝑇 32 𝑇 32 𝑇 31 𝑇 32 𝑇 32
0.3 0.5 – – T1,T1,T1 – – 86%
0.3 1 – – – – – –
0.3 1.5 – – – – – –
0.3 2 – – – – – –
0.3 2.5 – – – – – –

0.4 0.5 T1,T2 T1 T1,T2,T2 85% 87% 86%
0.4 1 – – T1,T1 – – 86%
0.4 1.5 – – – – – –
0.4 2 – – – – – –
0.4 2.5 – – – – – –

0.5 0.5 T1,T2,T2 T1,T2 T2,T2,T2 87% 87% 90%
0.5 1 T1,T1 T1 T2,T2 86% 85% 86%
0.5 1.5 – – T1,T1 – – 87%
0.5 2 – – – – – –
0.5 2.5 – – – – – –

0.6 0.5 T2,T2,T2 T1,T2,T2 T2,T2,T2 90% 88% 94%
0.6 1 T2,T2 T2,T2 T2,T2,T2 86% 85% 87%
0.6 1.5 T1,T1,T2 T1,T1,T2 T1,T2,T2 86% 86% 86%
0.6 2 T1,T1,T2 T1,T1,T2 T1,T2 85% 85% 86%
0.6 2.5 T1,T2 T1,T1,T2 T1,T2 85% 85% 85%
has a very low 𝐷𝑆𝐻𝑅 and therewith generally has more direct surplus
energy available after the battery of 𝑇 33 is fully charged.

Investment decision process

In this section we provide the results from two methods SOCM
and MOCP introduced in Section ‘‘Economic models’’ that include the
surplus energy as a value in the investment decision process. We
analyze if and how the investment decision changes when considering
that the household participates in swarm electrification phase 2 and
therefore consider the surplus energy as a value.

The achievable cost reductions are presented in Fig. 12(A) and
(B). Fig. 12(A) shows the potential in total cost reduction for the 𝑇 3
household. It can be seen that some of the system sizes are reaching sig-
nificant total cost reductions up to 68%. Such cost reduction could lead
to a different optimal solution (different PV and battery size), which
we show further down in the section. Analyzing the cost reductions of
the three 𝑇 3 households, it can be observed that the household 𝑇 33
has higher potential cost reductions than the two other households for
several of the SHS sizes. 𝑇 33 is the household with a high 𝑃𝐴𝐷𝑅 and
low 𝐷𝑆𝐻𝑅. It needs a larger SHS to achieve the same 𝑆𝐿𝑅 as the other
two households. Therefore, a potential higher cost reduction leads to
higher benefits for 𝑇 33, and can offset the initial disadvantage.

In Fig. 12(B) the cost changes for the SEBuy (𝑇 1, 𝑇 2) are presented
when comparing surplus energy purchase from 𝑇 3 to the option of
purchasing their own full SHS. SEBuy has a potential of 50% upfront
12
cost reduction for both 𝑇 1 and 𝑇 2, while compared to purchasing their
own SHS it shows a total cost increase of 20% and 32% respectively.
The cost increase comes from the price that is set for surplus energy.
A lower price would share the revenue more equal between the SESell
and SEBuy. This is further discussed in Section ‘‘Discussion’’.

Further, the results for the investment decision process are pre-
sented, comparing the two introduced methods SOCM and MOCP from
Section ‘‘Economic models’’ and how these two results deviate from
the sizing without taking surplus energy into account. In Table 11 the
objective function values for all SHS sizes for the SOCM in (A) and
for the MOCP in (B) are presented. With the given input data from
Section ‘‘Case study’’ the optimal solutions show disparity comparing
the two methods for 𝑇 31, while for the other two 𝑇 3 it is the same. It
can be observed that the MOCP gives priority to solutions that reach
higher 𝑆𝐿𝑅. This is because the criteria of maximization of 𝑆𝐿𝑅 and
therefore minimization of lost load has more impact with this method.
Consequently, if the penalty cost in the SOCM was higher, more similar
results would have been achieved.

Table 12 presents the benefits of introducing swarm electrification
including the value of the surplus energy into the investment decisions.
It shows the optimal original system sizes and costs using SOCM, when
not considering a phase 2 for swarm electrification, i.e. not considering
surplus energy as a value. Then, it shows the new system sizes and
their improvements for each 𝑇 3 and both economic methods SOCM
and MOCP, when a phase 2 is included into the decision process,
i.e. surplus energy as a value is integrated. Additionally, the table lists
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Fig. 12. Potential cost reduction for swarm electrification phase 2. (A) Potential in total cost reduction for the 𝑇 3 household. (B) Cost changes for 𝑇 1, 𝑇 2 comparing surplus
energy purchase to the option of purchasing a full SHS.
Table 11
Objective function values for the two economic methods.

A) 𝑁𝑃𝐶𝑇 𝑜𝑡𝑎𝑙 −𝑁𝑃𝑉𝑆𝐸𝑅 in USD B) 𝐿𝑝(𝑥) in %

PV Battery [kWh] Battery [kWh]
[𝑘𝑊 ] 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

0.3 846 831 974 1129 1285 45 40 43 47 51
0.4 595 825 952 1101 1254 38 38 40 44 49
0.5 406 717 1005 1158 1313 33 32 41 45 52

𝑇 31

0.6 324 492 673 827 1084 30 24 31 39 48

0.3 741 830 976 1129 1283 45 43 46 50 54
0.4 681 811 951 1101 1254 38 38 41 44 49
0.5 461 806 1003 1157 1312 22 36 41 45 52

𝑇 32

0.6 263 481 672 827 983 14 21 29 36 44

0.3 763 949 1010 1149 1300 39 41 42 45 49
0.4 549 839 1020 1121 1265 34 35 42 44 49
0.5 472 616 920 1168 1265 33 26 36 45 52

𝑇 33

0.6 536 437 599 935 1087 34 24 30 41 48
the increased access to electricity for additional households 𝑇 1 and 𝑇 2
with the new solutions.

It can be seen that one of the optimal strategies for all three
households is to rather invest in more solar than suggested in the base
case. For 𝑇 31 the SOCM suggests to reduce the battery size, however
this will result in a lower 𝑆𝐿𝑅. In general, one can see that the increase
of PV panels not only leads to a significant total cost reduction but
also a higher 𝑆𝐿𝑅 for the 𝑇 3 households, although, the initial upfront
cost increases slightly. When comparing the optimal solutions among
themselves, specifically (𝑇 31, 𝑇 32, 𝑇 33), it is observed that with the
MOCP, the two households with the lower 𝐷𝑆𝐻𝑅 (𝑇 31, 𝑇 33) arrive at
the same optimal solution. Additionally, they achieve very similar cost
reductions, despite having different optimal solutions in the base case.
The household with the high 𝐷𝑆𝐻𝑅 (𝑇 32) has a solution with a smaller
battery than the other two households, and thus it shows the lowest
total cost. But it also shows the highest percentage in cost reduction
compared to the other households. Although 𝑇 32 and 𝑇 33 have both
high 𝑃𝐴𝐷𝑅 they end up having very different solutions both before and
after including surplus energy, showing that the PADR alone cannot
give good estimates on the system design, especially not considering
swarm electrification.

Discussion

The results of our study in terms of potential total cost reduction
between 40%–64% for the 𝑇 3 households and 50% of up-front cost
reduction for the 𝑇 1 and 𝑇 2 are significant and cannot be ignored. In
this section, we discuss the parameters and assumptions that have a
major influence on the results.

Previous studies of Kirchhoff (2015), Soltowski et al. (2018),
Soltowski et al. (2022) and Bhatti and Williams (2021) have
demonstrated between 30 − 70% surplus energy in existing systems
at 𝑇 1 and 𝑇 2. Our study gives a deeper insight in how surplus energy
13
Table 12
Results.

Base case without considering surplus energy
𝑇 31 𝑇 32 𝑇 33

SHS PV in [W] 400 400 300
SHS Battery [Wh] 1000 500 1000
SLR [%] 94 87 74
SHS upfront cost [USD] 716 611 637
SHS total cost [USD] 825 732 949

Including surplus energy with SOCM
𝑇 31 𝑇 32 𝑇 33

SHS PV in [W] 600 600 600
SHS Battery [Wh] 500 500 1000
SLR [%] 73 94 78
SHS upfront cost [USD] 769 769 874
SHS total cost - SE revenue [USD] 324 263 437
Total cost reduction [%] 60 64 53
Additional energy access 𝑇 1 0 1 0
Additional energy access 𝑇 2 3 2 3

Including surplus energy with MOCP
𝑇 31 𝑇 32 𝑇 33

SHS PV in [W] 600 600 600
SHS Battery [Wh] 1000 500 1000
SLR [%] 98 94 78
SHS upfront cost [USD] 874 769 874
SHS total cost - SE revenue [USD] 492 263 437
Total cost reduction [%] 40 64 53
Additional energy access 𝑇 1 0 1 0
Additional energy access 𝑇 2 2 2 3

in 𝑇 3 systems is influenced by different typical load profiles and the
SHS design. It reveals surplus energy levels of 30 − 45% of the total
production, or between 50 − 85% as a percentage of the total demand
for SHS designs reaching an 𝑆𝐿𝑅 of 99%.
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The stochasticity of the input parameter PV generation and demand
is discussed in the following. For the PV generation, 10 years of his-
torical data are used. The years are 2006–2015 due to the availability
of meteorological data in PVGIS. However, these years do not cover
the recently fast-changing climate with increased dry periods in the
analyzed regions. Less clouds could mean more direct irradiation and
would increase the PV generation during the rainy season and thus even
increase the benefit from surplus energy selling. However, less rain and
increased dry climate could also reduce the PV yield due to soiling,
if panels are not regularly cleaned. The demand, was modeled with
a stochastic demand generator. Although, the stochasticity is covered
by this, larger seasonal changes in the demand or long-term demand
growth were not included. Larger seasonal changes could influence
the surplus energy in both directions, while demand growth over time
would reduce the available surplus energy.

The applicability of the two methods SOCM and MOCP are discussed
next. One of the greatest challenges in the SOCM is to describe the
penalty cost for lost load in a realistic way. With the MOCP, one
does not need to consider that, since the method calculates the lowest
distance to each of the used criteria. Instead, in the MOCP method, the
modeler has to choose weightings for each criterion, which could in-
fluence the optimal solution significantly. However, the establishment
of such weightings, where criteria are weighted against each other, is
more practicable than finding an absolute value for penalty costs, as
it is needed in SOCM. Thus, MOCP could be the better choice here,
although both methods would deliver the same optimal solutions, if
penalty costs and weightings are designed accordingly.

Our study looks specifically in three different demand profiles that
are described by the metrics 𝑃𝐴𝐷𝑅 and 𝐷𝑆𝐻𝑅. We can observe that
households with the same 𝑃𝐴𝐷𝑅 do give very different results in terms
of expected surplus energy, optimal SHS and economic improvement
potential with swarm electrification. However, including the 𝐷𝑆𝐻𝑅
helped to explain these differences. The household with a high 𝑃𝐴𝐷𝑅
and high 𝐷𝑆𝐻𝑅 shows both the best original results, but also the
highest potential of improvement with swarm electrification. When
having a low 𝐷𝑆𝐻𝑅 and still high 𝑃𝐴𝐷𝑅 the household has original
the most expensive SHS requiring a large battery. However, this house-
hold can offset its original expensive situation and reaches the same
cost level as a household with a low 𝑃𝐴𝐷𝑅 and low 𝐷𝑆𝐻𝑅, when
including the surplus energy. Since these high 𝑃𝐴𝐷𝑅 are mainly caused
y introducing appliances related to electric cooking, this result shows,
hat including surplus energy as a value can increase the affordability
f electric cooking and thus improve sustainable development.

Another aspect for discussion are the assumptions made for SESell
nd SEBuy in swarm electrification phase 2. The SEBuy need to pur-
hase a battery, which is still a high upfront cost, although lower than
or the alternative buying a full SHS. Additionally, the total costs for
hese SEBuys are higher when they buy surplus energy and only a
attery, compared to the alternative of buying their own full SHS.
or very low income households, reducing the upfront cost is more
mportant than the total cost, since the households have access to small
mounts of cash flow, but they do not have sufficient savings for the
nitial purchase. However, the higher total costs come mainly from the
rice that is set for selling surplus energy. This price is set to the same
rice as the market price for electricity in Kenya in 2022, which is
.2$∕𝑘𝑊 ℎ. With this price the benefit for the SESell is very high and for
he SEBuy there is no benefit in total cost reduction. However, when
educing the price to 0.1$∕𝑘𝑊 ℎ the total cost increase for 𝑇 1 and 𝑇 2

becomes approximately zero and the optimal system size for the 𝑇 3
remains the same, although the cost reduction decreases because of a
lower revenue from the surplus energy selling. Further work could look
into the optimal price tariff for the local energy market. However, as
there is no other alternative for the service light than buying candles,
kerosine and oil lamps, the market price of 0, 2$∕𝑘𝑊 ℎ is already an
14

improvement to consider for the households 𝑇 1 and 𝑇 2.
In this paper, it is analyzed how the consideration of swarm electri-
fication phase 2 and thus including the surplus as a value could help to
make improved investment decisions already in phase 1. However, in
the same way, one could argue that already in phase 1 the consideration
of phase 3 should be made. In phase 3 it is assumed that a local micro-
grid is formed, which would make it possible for several participants to
share energy in the local market, rather than from individual household
to household. In that case, the percentage of surplus energy that can be
shared could be much larger, if there is deficit in the local community,
or much lower if many households with surplus energy are connected.
In their study, Narayan et al. (2019) quantifies some of the advantages
of phase 3 of swarm electrification, highlighting that greater diversity
in load profiles serves as one of the key driving factors for enhanced
benefits from energy sharing. Consequently, various system sizes may
prove to be optimal under different conditions, thus demanding further
research.

Conclusions

In this paper, a multi-model-based techno-economic analysis of off-
grid solar home systems that supply typical 𝑇 3 households by swarm
electrification in rural areas in Kenya was presented. Three different
demand profile types were studied, where one was a rather flat demand
profile related to owning a fridge, and two were profiles with typical
peaks for electric cooking at two different times of the day. In the
simulation, surplus energy was generated, and an assessment was con-
ducted to estimate the potential for sharing this energy with additional
households or neighbors within the community. This evaluation specif-
ically focused on the implementation of a bottom-up grid, particularly
exploring the possibilities offered by phase 2 of swarm electrification.
Then, an investment decision process including the expected revenue
from selling that surplus energy was performed with two different
methods. Based on the surplus energy analysis, the conclusions are as
follows:

• Solar homes systems with low installed photovoltaic capacity and
large installed battery capacity with a served load ratio (𝑆𝐿𝑅) of
up to 88% do not have surplus energy

• Increasing installed photovoltaic capacity to achieve higher 𝑆𝐿𝑅s
increases surplus energy faster than the 𝑆𝐿𝑅

• Beyond a certain point where the 𝑆𝐿𝑅s surpasses 90%, augment-
ing the installed battery capacity does not lead to a substantial
decrease in surplus energy.

• Peak-to-average demand ratio (𝑃𝐴𝐷𝑅) alone cannot give indica-
tions on surplus energy volume

• A low demand during sun hours ratio (𝐷𝑆𝐻𝑅) leads to higher
surplus energy volumes for systems with a 𝑆𝐿𝑅 < 90%

urplus energy from different typical demand profiles of 𝑇 3s was shown
o support 𝑇 1 and 𝑇 2 households, resulting in 𝑆𝐿𝑅 levels surpassing
5%. Swarm electrification can increase the affordability of electric
ooking both during day and evening time as demonstrated by the
ouseholds 𝑇 32 and 𝑇 33. Based on the economic study that incorporates
he value of surplus energy into the sizing and investment decision
rocess, the following conclusions can be drawn:

• Total cost reduction by including surplus energy as a value
reaches 40%–64% for the optimal systems for the 𝑇 3 households

• New optimal solutions have increased PV capacity, while battery
capacity stays the same

• New optimal systems lead to increased 𝑆𝐿𝑅 for the 𝑇 3 house-
holds by 4%–7%

• Households with high 𝑃𝐴𝐷𝑅 due to appliances for electric cook-
ing can offset their initial disadvantage due to high costs by
including surplus energy as a value

• Up-front cost reductions of 50% for connected 𝑇 1 and 𝑇 2 house-

holds
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The findings of this paper provide valuable insights for improving
the efficiency of energy sharing and optimizing the initial sizing of
stand-alone solar home systems (SHS) in phase one of swarm elec-
trification. The analysis and methods developed in this paper clearly
indicate that it will be possible to enhance the capability for optimal
surplus energy sharing among nanogrids in the second phase of swarm
electrification.

Future works will concentrate on the interconnection of various
existing solar home systems into a nano- or even microgrid (phase three
of swarm electrification). More diversified consumption profiles could
be studied, and productive uses or different rural services could be
included. Demand control and flexibility could be considered. Practical
aspects from a power electronics and control viewpoint need to be
regarded. Diverse local market regulations can be employed to gov-
ern the decentralized sharing of electricity among multiple agents.
Finally, swarm electrification can be integrated in large scale rural
electrification planning methods.
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