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A B S T R A C T   

Background: Intravenous fluid infusions are an important therapy for patients with circulatory shock. However, it 
is challenging to predict how patients’ cardiac stroke volume (SV) will respond, and thus identify how much 
fluids should be delivered, if any. Model-predicted SV time-profiles of response to fluid infusions could poten
tially be used to guide fluid therapy. 
Method: A clinically applicable model-based method predicts SV changes in response to fluid-infusions for a pig 
trial (N = 6). Validation/calibration SV, SVmea, is from an aortic flow probe. Model parameters are identified in 3 
ways: fitting to SVmea from the entire infusion, SVfit

fl , from the first 200 ml, SV200
fl , or from the first 100 ml, SV100

fl . 
RMSE compares error of model-based SV time-profiles for each parameter identification method, and polar plot 
analysis assesses trending ability. Receiver-operating characteristic (ROC) analysis evaluates ability of model- 
predicted SVs, SV200

fl and SV100
fl , to distinguish non-responsive and responsive infusions, using area-under the 

curve (AUC), and balanced accuracy as a measure of performance. 
Results: RMSE for SVFit

fl , SV200
fl , and SV100

fl was 1.8, 3.2, and 6.5 ml, respectively, and polar plot angular limit of 
agreement from was 11.6, 28.0, and 68.8◦, respectively. For predicting responsive and non-responsive in
terventions SV200

fl , and SV100
fl had ROC AUC of 0.64 and 0.69, respectively, and balanced accuracy was 0.75 in 

both cases. 
Conclusions: The model-predicted SV time-profiles matched measured SV trends well for SVFit

fl , SV200
fl , but not 

SV100
fl . Thus, the model can fit the observed SV dynamics, and can deliver good SV prediction given a sufficient 

parameter identification period. This trial is limited by small numbers and provides proof-of-method, with 
further experimental and clinical investigation needed. Potentially, this method could deliver model-predicted 
SV time-profiles to guide fluid therapy decisions, or as part of a closed-loop fluid control system.   

1. Introduction 

Intravenous fluid infusions are an important therapy for patients 
with circulatory shock [1]. However, only half of hemodynamically 
unstable patients are fluid responsive [2] and unneeded fluid therapy 
leads to fluid overload, and increasing ICU stay and mortality [3–5]. 
Thus, it is crucial to identify whether patients are fluid responsive, 
defined as an increase in cardiac output (CO) or stroke volume (SV) ≥
10 − 15% after a fluid challenge of 250–500 ml [2,6]. 

Numerous metrics for assessing fluid responsiveness exist, as 

discussed in Refs. [1,7]. Dynamic measurements are more useful than 
static metrics, which do not reliably indicate fluid responsiveness [1,7]. 
Consensus statements say fluid therapy should be targeted using flow 
based metrics, SV and CO, rather than pressures [8]. Additionally, 
echocardiography is a useful, but intermittent tool to assess cardiac 
function, providing information about preload, afterload and contrac
tility [1]. However, none of the metrics currently available can accu
rately predict fluid response time-profiles, or fluid responsiveness, so 
successful fluid therapy remains an uncertain proposition [9]. 

Simple lumped-parameter models in Refs. [10,11] relate fluid 
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infusion time-profiles to blood volume and SV response, respectively. 
The 3-parameter model in Ref. [10] describes blood volume response to 
fluids as a proportional controller, and accurately fits observed dy
namics. This model is extended by Ref. [11] for which blood volume 
response to fluids and hemorrhage is modelled as a proportional-integral 
(PI) controller. SV, CO, and blood pressure changes are then estimated 
using two additional models. Overall, 8 parameters are required to 
provide an SV output from an input fluid time-profile and an input heart 
rate time-profile, and the model fits experimental data well. This 
model-based approach of [10,11] can potentially allow prediction of 
fluid-responsiveness and closed-loop fluid control, a holy grail for 
critical-care [11–13]. However, the model from Ref. [11] requires 8 
parameters to provide an SV output, and the model’s ability to predict 
fluid responsiveness has not been directly assessed. 

This study presents a model-based method to predict SV changes in 
response to a series of fluid-infusions for a pig trial. The model is similar 
to Refs. [10,11], but with reduced complexity, making it easy to inter
pret, and requiring identification of only 4 parameters. Model parame
ters are identified from a measured SV input from either the entire fluid 
infusion, or just the first 100 ml or 200 ml, and in each case the model 
performance is compared. The outcome is a simple, clinically-applicable 
model which can deliver predicted SV response time-profiles to an input 
fluid infusion time-profile. 

2. Materials and methods 

2.1. Porcine trials and measurements 

Pig experiments were conducted at the Centre Hospitalier Uni
versitaire de Liège, Belgium and approved by the Ethics Committee of 
the University of Liège Medical Faculty, permit number 14–1726. 

A total of 6 Pure Piétrain pigs were used, weighing 18.5 kg–29.0 kg. 
Diazepam (1 mg kg− 1) and tiletamine-zolazepam (0.1 ml kg− 1, con
taining 25 mg ml− 1 tiletamine and 25 mg ml− 1 zolazepam) were used for 
initial sedation and anesthesia. A continuous infusion of sufentanil (0.1 
ml kg− 1 h− 1 at 0.005 mg ml− 1), thiobarbital (0.1 ml kg− 1 h− 1) and 
cisatracurium besylate (1 ml kg− 1 h− 1 at 2 mg ml− 1) were used to 
maintain sedation and anesthesia, delivered via superior vena cava 
catheter. Pigs were mechanically ventilated via tracheostomy with 
baseline positive end-expiratory pressure (PEEP) of 5 cmH2O and tidal 
volume of 10 ml kg− 1 delivered by a GE Engstrom Care Station me
chanical ventilator (GE 92 Healthcare, Waukesha, WI, USA). 

Blood pressure was measured in the proximal aorta (Pao), femoral 
artery (Pfem), and vena cava (Pcv) using high fidelity pressure catheters 
(Transonic, Ithaca, NY, USA). Left ventricle pressures and volumes (VLV) 
were measured using 7F micromanometer-tipped admittance catheters 
(Transonic, Ithaca, NY, USA). Aortic flow (Qao) was measured from an 
ultrasonic aortic flow probe positioned around the proximal aorta near 
the aortic valve (Transonic, Ithaca, NY, USA). Once the probe was 
located, the thorax was held closed using clamps. All data was recorded 
at a sampling rate of 250 Hz as a single Notocord data file (Instem, 
Croissy-sur-Seine, France). Signals were filtered with a 5th order But
terworth low-pass filter, with a cut-off frequency of 20 Hz (Pfem, Pao, Pcv) 
and 10 Hz for noisier signals (VLV, Qao). 

Pigs were given 3 fluid infusions of 500 ml of saline solution over 30 
min to increase circulatory volume and ventricular preload. After each 
100 ml of fluid was delivered, there was an end expiratory pause, in 
which the ventilator is paused at end-expiration for 20 s. The effect of 
this pause is to increase cardiac preload, and thus SV [14]. Between the 
first and second fluid infusion, pigs were given an infusion of endotoxin 
(E. Coli lipopolysaccharide at 0.5 mg kg− 1 over 30 min) to produce a 
septic shock like response [15]. Pigs 1, 3, and 6 died during the endo
toxin infusion. Fig. 1 shows the fluid infusions delivered for each pig. 

2.2. Measurement of SV 

Measured SV (SVmea) obtained from integrating Qao over one beat is 
used for validation and calibration. Beats are separated using the foot of 
Qao, identified using a shear-transform algorithm [16]. Flow probes are 
quoted as having precision of ±2% [17]. Pig 1 flow probe was faulty, 
delivering non-physiological waveforms, and for this pig SVmea is ob
tained from admittance catheter Vlv as the difference between maximum 
and minimum Vlv over one beat. Admittance catheter SV has 
Bland-Altman mean bias [limits of agreement (±1.96 standard dev.)] of 
6% [± 29%] using 3D-echocardiography as a reference method [18]. 
Clinically, SVmea for calibration could be obtained non-invasively using 
echocardiography. 

2.3. Fluid response model 

The fluid response model has two parts. The first part models how 
blood volume responds to a fluid infusion based on control of blood and 
extravascular fluid-balance using a PI controller, similar to Refs. [10, 
11]. The second part models how SV responds to a change in blood 
volume with a linear relationship. The outcome is a model that calcu
lates SV response to a fluid infusion input with 4 parameters, compared 
to 8 parameters for [11]. 

2.3.1. Blood volume control 
The blood volume control model, similar to Refs. [10,11], is based on 

the physiological principle fluid volume distribution between 
intra-vascular and extra-vascular compartments aims to regulate the 
ratio of fluid change [19]. Thus, the target steady-state change in blood 
volume, RB(t), and extravascular volume, RE(t), in response to an input 
fluid flow, F(t), is described in terms of the ratio α, yielding: 

RB(t) = α
∫ t

0
F(τ)dτ RE(t) = (1 − α)

∫ t

0
F(τ)dτ (1)  

Where 0 < α < 1, and a ratio of α:1-α fluid volume is absorbed into the 
blood and extra-vascular compartments respectively. 

Flow to shift fluid from the blood to the extra-vascular compartment, 
q(t), is a function of the error eB(t) between target RB(t) and actual blood 
volume change, ΔVB(t), yielding: 

eB(t) = RB(t) − ΔVB(t) (2) 

The relationship between q(t) and eB(t) is modelled as a proportional- 
integral (PI) controller with proportional gain, KP, and integral gain, KI, 
defined: 

q(t) = − KpeB(t) − Ki

∫ t

0
eB(τ)dτ (3) 

Blood can only enter/leave the vascular compartment as F(t) or q(t), 
and can only enter/leave the extra-vascular compartment as q(t). Thus 
conservation of blood volume means: 

ΔV̇B(t) = F(t) − q(t) ΔV̇E(t) = q(t) (4) 

Fig. 1. Time-schedule of fluid infusions (Fluids) and endotoxin infusion (Endo) 
for each pig. 
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Combining Equations (1)–(4), the dynamics of ΔVB(t) are governed 
by: 

ΔV̈B(t) + KpΔV̇B(t) + KIΔVB(t) = Ḟ(t) + αKpF(t) + αKI

∫ t

0
F(τ)dτ (5) 

This equation has the closed-form solution, derived in full in Ap
pendix A, given initial steady state conditions ΔVB = 0, ΔV̇B = 0, 
defined: 

ΔVB(t) =
e− 0.5t(Kp − ω)

ω

∫ t

0
e0.5τ(Kp − ω)g(τ)dτ − e− 0.5t(Kp+ω)

ω

∫ t

0
e0.5τ(Kp+ω)g(τ)dτ

(6)  

where ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2
P − 4KI

√

and g(t) is the right hand side of Equation (5). 
Note, ω is bounded to 0 < ω < KP so solutions are real-valued and 
overdamped. 

Thus, from an input fluid infusion flow F(t) and initial conditions of 
the system, in this case assumed steady state, changes in VB can be 
predicted from Equation (6). ΔVE can also be predicted from Equation 
(4), knowing predicted ΔVB. 

2.3.2. SV-blood volume relationship 
SV is modelled as linearly related to VB. Specifically, venous return, 

QVR(t), can be expressed in terms of mean systemic filling pressure, Pms, 
resistance to venous return, R, and Pcv [20,21]: 

QVR(t) =
Pms(t) − Pcv(t)

R
(7)  

where Pms is the pressure arising from stressed blood volume, equal to 
the difference between VB and unstressed blood volume, VBU: 

Pms =
VB(t) − VBU(t)

C
(8)  

where C describes blood vessel compliance. Thus, combining these 
equations: 

QVR(t) =
VB(t)
RC

−
VBU(t)

RC
−

Pcv(t)
R

(9) 

Beat-wise venous return volume SVVR is on average equal to SV, to 
maintain equal inflow and outflow from the heart [22], yielding: 

SV(t) = SVVR(t) =
QVR(t)

fHR
(10)  

where fHR is heart rate. 
Combing Equations (9) and (10), expressing blood volume in terms 

of an initial value,VB,0, and its change, VB = VB,0 + ΔVB, and assuming 
Pcv, VBU and fHR changes are small during the fluid infusion, then SV(t) 
can be defined: 

SV(t) =
ΔVB(t)
RCfHR

+
VB,0 − VBU

RCfHR
−

Pcv

RfHR
(11) 

The constant term, VB,0 − VBU
RCfHR

− Pcv
RfHR

, is the SV component at initial state 
when ΔVB = 0, denoted SV0. The term 1

RCfHR
, lumped to be A, represents 

the proportion SV changes in response to VB changes. Hence, the rela
tionship between model-predicted SVfl and VB can be modelled as a 
linear relationship, defined: 

SVfl(t) = AVB(t) + SV0 (12)  

where, in this study SV0 is identified for each fluid infusion separately by 
calibration using SV0, the average SV for first 50 beats of the infusion. 
Clinically, this calibration could be obtained via echocardiography, 
which, while adding workload, would have clinical value being used to 
guide decisions on delivering fluid therapy. 

2.3.3. Parameter identification and model validation 
The resulting fluid response model of Equations (6) and (12) has 4 

parameters (KP, ω, α, A). These parameters are identified from an input 
SV metric, SVin(t), by minimising the difference between SVin(t) and 
model-predicted SVfl(t) from Equation (12). SVmea is used for SVin, and is 
filtered with a 7-beat median filter, to reduce the impact of abnormal 
beats, such as extra-systoles, and an 18-beat moving average to reduce 
the impact of measurement noise and heart-lung interactions [23]. 
Clinically, SVin could be obtained via echocardiography. 

All four model parameters are identified simultaneously using the 
SciPy non-linear least squares optimisation function [24]. Parameters ω, 
α are bounded within their full ranges of 0 < ω < KP and 0 < α < 1, 
respectively. KP is a positive parameter, constrained to 0 < KP < 0.03, 
where the upper limit of 0.03 s− 1 anticipates fluid shift rates on a 
minute-hours timescale [19,25]. A is bounded to 0 < A < 0.3, which is 
expected to encompass its full physiological range, given A = 0.3 rep
resents a 3 ml SV increase in response to 10 ml increase in VB. 

Parameters are identified three different ways in this study:  

1. Fitting parameters to the entire fluid infusion. This approach assess if 
the model accurately describes fluid-response profiles observed. 
Model-output SV from this method is labelled SVFit

fl , and these SV 
values assess model fit performance and accuracy compared to the 
measured dynamics.  

2. Fitting parameters to the first 200 ml of the infusion only, and then 
using these parameters for predicting the remainder of the fluid 
infusion. This approach assesses if the model can predict fluid- 
response outcomes. SV from this method is labelled SV200

fl , and 
these SV values quantify predictive accuracy.  

3. Fitting parameters to the first 100 ml of the infusion only, and then 
using these parameters for predicting the remainder of the fluid 
infusion. This final analysis aims to assess if the model can predict 
fluid-response outcome from a small period at the beginning of the 
infusion. Fluid-response model outputs from this method are labelled 
SV100

fl , and these values quantify predictive accuracy with a minimal 
calibration period. 

The overall process for modelling SV response to a fluid infusion 
time-profile is shown in Fig. 2. 

2.4. Analysis 

Root mean squared error (RMSE) for SV from each parameter iden
tification method (SVFit

fl , SV200
fl , SV100

fl ) is calculated for each pig and fluid 
infusion. Mean RMSE is used compare the error for each method. 

Model ability to predict SV trends is assessed by polar plot analysis 
[26] for each parameter identification method. A total of 200 beats are 
used from each fluid infusion, equally spaced across the infusion. For 
each beat, an X–Y pair of ΔSV percentage changes is calculated (X: 
ΔSVmea, Y: ΔSVfl). Polar angle (θ) is calculated as the angle of divergence 
of the ΔSV X–Y vector from the identity line Y = X. Radius is the per
centage change of SVmea. Trending ability is assessed using angular 
limits of agreement, defined as the larger value of the 2.5th & 97.5th 
percentile of θ, calculated with angles converted to a [− 90◦, +90◦] 
range. Only sufficiently large ΔSV are used in calculating limits of 
agreement, with small changes within a radius of < 10% ignored due to 
the impact of measurement noise. Acceptable angular limits of agree
ment are ±30◦, based on those proposed for cardiac output monitoring 
[26], though noting this application is predicting SV response rather 
than monitoring it. 

The ability of SV200
fl , SV100

fl to successfully predict both responsive 
and non-responsive infusions is assessed using receiver-operator char
acteristic (ROC) analysis [27]. An infusion is responsive if SVmea(tend) >

1.3× SVmea(tstart), where tstart is the first 50 beats, and tend is the final 50 
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beats of the fluid infusion, and SV is averaged over these beats. The 30% 
increase threshold, compared 10–15% clinically [2,6], was chosen given 
SV is evaluated immediately as the infusion ends, and the large size of 
the fluid infusion for these pigs. Varying responsiveness threshold, c, 
where SVfl(tend) > c × SVfl(tstart), is used to produce a ROC curve of false 
positive rate (FPR) vs. true positive rate (TPR). The optimal cut-off 
threshold was chosen to maximise both sensitivity (TPR) and speci
ficity (1 − FPR). Area under the curve (AUC) and balanced accuracy 
provide a measure of diagnostic accuracy of the model for identifying 
responsive and non-responsive infusions. High sensitivity and specificity 
in predicting non-responders would have the greatest clinical benefit in 
reducing iatrogenic harm in fluid therapy. SVFit

fl is calculated solely to 
verify model fit to observed SV dynamics, and thus is not included in 
ROC analysis. 

For a reference fluid-responsiveness metric, a ROC curve was 
generated for stroke volume variation (SVV). SVV was chosen as it has 
the best clinical performance (AUC = 0.90) without requiring an addi
tional test/manoeuvre in ventilated patients [28]. SVV is calculated 
using: 

SVV =
Max(SV(tstart)) − Min(SV(tstart))

SV(tstart)
(13) 

The statistical significance of ROC AUC differences for SV200
fl , SV100

fl , 
and SVV is compared using DeLong’s test [29]. 

3. Results 

Fig. 3 shows the time-series response of SVmea and model-predicted 
SVfl for each pig and fluid infusion. Fluid infusions led to an initial in
crease in SV, followed by a plateau and, in some cases, a decline in SV. 
All pigs had some response to the endotoxin infusion: reduced SV for 
Pigs 2, 4, and 5, and circulatory failure and death for Pigs 1, 3, and 6. 
The end-expiratory pauses induced a temporary SV spike, most notable 
for Pigs 1 and 3 (Fig. 3). Pig 5 had a short period of arrhythmia during 
fluid infusion 1, causing large SV variations at approximately 20 min 
through the infusion (Fig. 3). 

The RMSE of each parameter identification method (SVFit
fl , SV200

fl , 
SV100

fl ) for each pig and infusion, and overall, is given in Table 1. SV from 

optimal parameter identification, SVfit
fl , had a good mean RMSE of 1.8 

ml, and SV200
fl had a reasonable mean RMSE of 3.2 ml. SV prediction 

from the first 100 ml of the infusion, SV100
fl , was much poorer, with mean 

RMSE of 6.5 ml. 
Polar plot analysis in Fig. 4 shows trending ability of model- 

predicted SVfl compared to SVmea, for each of the three parameter 
identification methods. The SVfit

fl angular limit of agreement of 12◦, in
dicates very good trending ability. Trending ability is reasonable for 
SV200

fl , for which the angular limit of agreement of 28◦ meets the 30◦

acceptance criterion [26]. SV100
fl angular limit of agreement of 69◦ is 

outside the acceptance criterion of 30◦. Note, this large discrepancy is 
largely caused by ΔSVs just outside the exclusion radius, and most 
measurements are within smaller limits on the polar plot (Fig. 4). 

ROC analysis to test the ability of SVV, SV200
fl , and SV100

fl to distin
guish responsive and non-responsive infusions is shown in Fig. 5. Table 2 
shows SVV and SV changes from SVmea, SV200

fl , and SV100
fl , and whether 

each method correctly identified infusions as responsive/non- 
responsive. Using SVmea there were 6 positive cases (responsive) and 6 
negative cases (non-responsive). For SV200

fl the optimal cut-off range was 
1.6–1.7, for which there were 0 FP and 3 FN. For SV100

fl the cut off range 
was 1.5–1.7 for which there were 1 FP and 2 FN. SV200

fl and SV100
fl had 

AUCs of 0.64 and 0.69, respectively, and both had a balanced accuracy 
of 0.75. For SVV the were 0 FP and 5 FN, with AUC of 0.39, and balanced 
accuracy of 0.58. 

DeLong’s test for difference in AUC of each ROC curve from Fig. 5 did 
not yield statistically significant differences (p<0.05) in any case. SV200

fl 

vs. SVV had a p-value of 0.32, SV100
fl vs. SVV had a p-value of 0.14, and 

SV200
fl vs. SV100

fl had a p-value of 0.81. 
A summary of measured SV and arterial pressures for each pig and 

intervention is provided in appendix Table B1. Parameters from each 
parameter identification method are given in appendix Table B2. 

4. Discussion 

4.1. Response to fluid infusions 

The overall response pattern of increasing SV until the end of the 
infusion followed by SV reduction (Fig. 3) matches clinical observations 
from Ref. [25]. The extent and rate of SV increase varied across pigs, 
providing a range of responses to test the model. In particular, the 
large/fatal responses to the endotoxin reflect the severe septic-shock 
induced, providing a robust test for the model that is similar to poten
tial clinical use. 

Fig. 2. Overview of fluid response model method, reading left to right. Model-based SV time-profile response, SVfl, to input fluid infusion signal, F(t), is predicted. 
The blood volume control model describes how F(t) is balanced between VB and VE, modelled as PI control. The SV-VB relationship converts VB changes to an output 
prediction of SVfl. 
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4.2. Model performance 

SV from optimal parameter identification, SVfit
fl had very good fit and 

trending ability (Table 1, Fig. 4). This SVfit
fl accuracy shows the fluid 

response model performs well and can fit the observed SV changes, and 

overall dynamics, indicating the model is suitable. SV prediction from 
the first 200 ml of the infusion, SV200

fl , was good, whereas SV prediction 
from the first 100 ml of the infusion, SV100

fl , was much poorer, with polar 
plot angular limit of agreement outside the acceptance criterion (Fig. 4). 

When model-predicted SV200
fl and SV100

fl did perform poorly, they 

Fig. 3. SV time-profile for SVmea and model-predicted SV (SVFit
fl , SV200

fl , SV100
fl ) for each pig and fluid infusion.  
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tended to over-estimate SV increases, most substantially for Pigs 1 and 3 
(Fig. 3). This over-estimation is a concern clinically, as wrongly identi
fying patients as fluid responsive could lead to fluid overload and poor 
patient outcome [1,30]. The overestimation of SV is potentially a sys
tematic error which could be resolved by creating a weighting function 
to adjust predicted parameters. 

These results show the fluid response model can potentially be used 
to predict SV trends in response to a fluid infusion. However, an 
adequate parameter identification period is required. In this pig trial, a 
200 ml parameter identification period yielded good model perfor
mance, whereas 100 ml was insufficient. Longer parameter identifica
tion periods, such as 300 ml, would deliver even better model 
performance, but have less clinical value, as only the final 200 ml of the 
infusion is predicted. Clinically, model-predicted SV could be useful for 
guiding whether to continue a fluid infusion, or for closed loop fluid 
control [12,31]. 

ROC analysis to assess the ability of the model to classify responsive 
and non-responsive infusions showed similar performance of SV100

fl and 
SV200

fl (Fig. 5), likely because infusions with a large response overall 

responded well within the first 100 ml of the infusion. For SV200
fl the 

optimal cut-off gave 0 FP and 3 FN, and for SV100
fl the optimal cut-off 

gave 1 FP and 2 FN. Note, in a clinical setting, FPs are most problem
atic, given the potential harm of fluid overload. Differences in AUC are 
not statistically significant in any case, reflecting modest differences in 
AUC and that this ROC analysis is severely limited by low numbers (12). 
Further trials with a greater number of subjects and infusions is needed 
to better establish ability to classify responders/non-responders with 
this method. 

4.3. Limitations 

4.3.1. Experimental interventions 
This study has a limited number of pigs and fluid infusions, in part 

due to the severity of the endotoxin infusion, causing the death of three 
pigs. In addition, a controlled pig trial differs from a clinical scenario, 
due to the controlled nature, and anatomical differences between pigs 
and humans. However, the pig trial enables initial proof of concept and 
demonstration of the method, to justify a further clinical investigation. 

This experimental protocol could be improved upon for establishing 
parameter identification requirements. Future protocols could use 
different rate and duration of fluid infusions, and capture a period ‘at 
rest’ after each infusion. This would help to establish more clearly how 
to best administer a test bolus that would yield good parameter identi
fication, and thus good SV prediction. 

4.3.2. Model assumptions 
The fluid response model is a simple model, lumping the spatially 

varying arterial properties and complex fluid balance mechanisms into 
just a four parameters. In doing so, it assumes various factors are con
stant, such heart rate and VBU. To incorporate changes of these param
eters, the model could be extended to describe how heart rate and 
vasoconstriction, thus VBU, are regulated in response to the fluid infu
sion. Additionally, the model assumes initial steady state (ΔVB = 0,
ΔV̇B = 0), though an alternative known non-steady state could equally 
be used. For this proof-of-concept study, these modelling assumptions 
allow a simple clinically applicable model, which can predict response 
to a fluid infusion input time-profile. 

The fluid response model in this study improves upon the more 
complex model from Ref. [11] for predicting fluid responsiveness. The 

Table 1 
Root mean squared error (RMSE) for model-predicted SV from each parameter 
identification method: SVFit

fl , SV200
fl , and SV100

fl .  

RMSE (ml)  

SVFit
fl  SV200

fl  SV100
fl  

Pig 1 Fluids 1 2.5 5.4 12.3 

Pig 2 Fluids 1 2.2 3.9 3.8 
Fluids 2 1.3 1.9 1.9 
Fluids 3 1.3 3.6 14.0 

Pig 3 Fluids 1 1.5 2.2 6.7 

Pig 4 Fluids 1 2.1 6.2 6.2 
Fluids 2 2.1 2.2 2.2 
Fluids 3 3.5 4.5 18.5 

Pig 5 Fluids 1 3.0 3.2 5.2 
Fluids 2 1.1 1.8 2.7 
Fluids 3 0.8 3.0 3.2 

Pig 6 Fluids 1 0.4 0.4 0.8 

Mean 1.8 3.2 6.5  

Fig. 4. Polar plot showing trending ability for model-predicted SV from each parameter identification method: SVFit
fl , SV200

fl , and SV100
fl . ΔSVs within a radius of 10% 

are excluded from angular limit of agreement calculation. 
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blood volume control model from Ref. [11] can model response to blood 
loss via hemorrhage. However, for clinical prediction, identification of 
hemorrhage-associated parameters would require some blood volume 
reducing intervention, likely to worsen patient condition. Also, the 
relationship between SV and VB in Ref. [11] requires an additional input 
of heart rate, meaning for predicting fluid responsiveness some way to 
predict heart rate changes is needed. Finally, the model from Ref. [11] 
avoids the need to assume Pcv is constant, through incorporating the 
empirical end-diastolic pressure-volume relationship. The outcome is a 
four-parameter Lambert W function relating SV to VB and heart rate, 
which is not readily interpretable and likely unnecessarily complex. 
Overall, the model presented in this study resolves clinical applicability 
issues of the model from Ref. [11] for predicting fluid response 
time-profiles. 

4.4. Translational considerations 

Further clinical investigation is needed to establish the suitability of 
clinically feasible SV metrics as a model input, such as SV from echo
cardiography, and to find a suitable/optimal fluid bolus size and time- 
profile for identifying model parameters. Differences between the 

experimental pig trial and a clinical scenario mean that quantitative 
findings are not directly translatable. Thus, the established acceptable 
volume of 200 ml for the pig trial is not clinically pertinent, but this 
study provides a method to clinically identify an appropriate bolus size. 
In ICU, a typical fluid challenge is 250–500 ml [2,6], and recommended 
fluid resuscitation volume is 30 ml kg− 1 [32]. Clinical validation should 
aim to establish if a volume less than or equal to a fluid-challenge can 
predict fluid resuscitation outcome. 

This methodology considers fluid-response in terms of the time 
varying response to an infusion, acknowledging that there may be initial 
response to fluids that does not persist such as [25]. Clinically, it is 
important to consider how fluid responsiveness is defined, in terms of 
when the 10–15% SV increase should occur by, and how long it lasts for. 
This method has potential advantage over tests that simply predict bi
nary classification of response/non-response as it predicts the 
time-profile of SV changes, which has clinical and monitoring 
benefits/utility. 

To test fluid response in septic shock, it is important for consider the 
physiological causes of septic shock: loss of arterial tone, venous dila
tion, and micro-circulatory and myocardial dysfunction [30]. 
Preload-inducing tests, such as a passive leg raise, can establish car
diac/myocardial response to increased preload, identifying 
Frank-Starling contractility for the patient [33]. However a fluid input of 
some description is required to identify fluid-balance/fluid-exchange 
parameters, as for this method. These parameters are potentially use
ful in identifying how patients will dynamically respond to fluids. 

5. Conclusions 

This study presents a clinically-applicable, model-based method for 
predicting SV changes in response to a fluid infusion, validated for a pig 
trial. The model-predicted SV time-profiles match measured SV trends 
well, when the calibration/parameter identification period is sufficient. 
This trial is limited by small numbers, thus, it provides proof-of-method 
but further investigation is needed to establish clearly the calibration/ 
parameter identification period requirements and clinical performance 
of this method. Potentially, the model-predicted SV time-profiles 
delivered could be used to guide fluid therapy decisions, or as part of 
a closed-loop fluid control system. 
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The authors declare that they have no conflicts of interest for the 
study titled “Predicting fluid-response, the heart of hemodynamic 

Fig. 5. ROC analysis for predicting responsive and non-responsive infusions from SVV, SV200
fl , and SV100

fl .  

Table 2 
SV proportional change (Δ, no units) at the end of each fluid infusion (tend) 
relative to SV at the beginning of the infusion (tstart), from SVmea and model- 
predicted SV200

fl , and SV100
fl . SVV (%) at the beginning of the infusion (tstart).    

SVmea SV200
fl  SV100

fl  SVV 

Δ Δ T/F Δ T/F % T/F 

Pig 1 Fluids 1 1.47 1.79 TP 2.24 TP 32 FN 

Pig 2 Fluids 1 1.11 1.28 TN 0.98 TN 30 TN 
Fluids 2 1.19 1.44 TN 1.44 TN 34 TN 
Fluids 3 1.11 1.58 TN 2.85 FP 21 TN 

Pig 3 Fluids 1 1.38 1.33 FN 1.69 TP 26 FN 

Pig 4 Fluids 1 1.14 1.51 TN 1.51 TN 32 TN 
Fluids 2 1.22 1.33 TN 1.33 TN 33 TN 
Fluids 3 2.14 2.77 TP 5.40 TP 123 TP 

Pig 5 Fluids 1 1.37 1.36 FN 1.71 TP 21 FN 
Fluids 2 1.29 1.50 TN 1.04 TN 15 TN 
Fluids 3 1.37 1.71 TP 1.09 FN 16 FN 

Pig 6 Fluids 1 1.40 1.39 FN 1.31 FN 9 FN  
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A. Blood volume control model derivation 

ΔVB(t) dynamics are governed by Equation (5): 

ΔV̈B(t) + KpΔV̇B(t) + KIΔVB(t) = Ḟ(t) + α Kp

F
(t) + αKI∫

t

0
F(τ)dτ (A.1) 

The solution ΔVB is made up of a homogenous solution ΔVB,h and particular solution ΔVB,p [34]. 

ΔVB(t) = ΔVB,h(t) + ΔVB,p(t) (A.2)   

A.1. Homogenous solution 

The homogenous solution ΔVB,h solves the unforced system, given by: 

ΔV̈B(t) + KpΔV̇B(t) + KIΔVB(t) = 0 (A.3) 

Using the exponential substitution ΔVB = Aeλt yields the following characteristic equation and roots: 

λ2 + Kpλ + KI = 0 λ =
− Kp ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K2

p − 4KI

√

2
(A.4) 

Substituting ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2
P − 4KI

√

gives two ΔVB, h components: 

u1 = e− t
2 (Kp − ω) u2 = e− t

2 (Kp+ω) (A.5) 

Thus, the homogenous solution ΔVB, h is: 

ΔVB,h(t) = C1e
− t
2 (Kp − ω) + C2e

− t
2 (Kp+ω) (A.6)  

where C1, C2 are constants of integration, to be identified using initial conditions. 

A.2. Particular solution 

The particular solution ΔVB, p solves the equation: 

ΔV̈B(t) + KpΔV̇B(t) + KIΔVB(t) = g(t) (A.7)  

where g(t) is the right hand side of Equation (A.1). ΔVB, p is found using the method of variation of parameters, which states that the solution will be 
[34]: 

ΔVB,p(t) = − u1(t)
∫

u2(t)g(t)
W(t)

dt + u2(t)
∫

u1(t)g(t)
W(t)

dt (A.8)  

where W is the Wronskian [34], given by: 

W(t) = u1(t)u̇2(t) − u2(t)u̇1(t) (A.9) 

Combing Equations (A.9) and (A.5) then W can be expressed as: 

W(t) =
− (Kp + ω)

2
e− t

2 (Kp − ω)e− t
2 (Kp+ω) −

− (Kp − ω)
2

e− t
2 (Kp+ω)e− t

2 (Kp − ω) (A.10) 

Simplifying to: 

W(t) = − ωe− Kpt (A.11) 

Thus, combining Equations (A.8), (A.11), and (A.5) yields an expression for ΔVB,p: 

ΔVB,p(t) = − e− t
2 (Kp − ω)

∫
e− t

2 (Kp+ω)g(t)
− ωe− Kpt dt + e− t

2 (Kp+ω)
∫

e− t
2 (Kp − ω)g(t)
− ωe− Kpt dt (A.12) 

Simplifying to: 
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ΔVB,p(t) =
e− t

2 (Kp − ω)

ω

∫

et
2 (Kp − ω)g(t)dt +

− e− t
2 (Kp+ω)

ω

∫

et
2 (Kp+ω)g(t)dt (A.13)  

A.3. Initial conditions 

The overall solution ΔVB is from combining Equations (A.2), (A.6) and (A.13): 

ΔVB(t) = C1e− t
2 (Kp − ω) + C2e− t

2 (Kp+ω) +
e− t

2 (Kp − ω)

ω

∫

et
2 (Kp − ω)g(t)dt +

− e− t
2 (Kp+ω)

ω

∫

et
2 (Kp+ω)g(t)dt (A.14) 

The derivative of Equation (A.14) is: 

ΔV̇B(t) = − C1
Kp − ω

2
e− t

2 (Kp − ω) − C2
Kp + ω

2
e− t

2 (Kp+ω) −
Kp − ω

2ω e− t
2 (Kp − ω)

∫

et
2 (Kp − ω)g(t)dt

+
Kp + ω

2ω e
− t
2 (Kp+ω)

∫

e
t
2 (Kp+ω)g(t)dt

(A.15) 

Evaluating initial zero condition ΔVB(0) = 0 for Equation (A.14) gives: 

ΔVB(0) = C1e0t + C2e0 +
e0

ω

∫ τ=0

τ=0
e

τ
2 (Kp − ω)g(τ)dτ + − e0

ω

∫ τ=0

τ=0
e

τ
2 (Kp+ω)g(τ)dτ = 0 (A.16) 

Simplifying to: 

C1 + C2 = 0 (A.17) 

Evaluating initial steady-state condition ΔV̇B(0) = 0 for Equation A.15 yields: 

ΔV̇B(0) = − C1
Kp − ω

2
e0 − C2

Kp + ω
2

e0 −
Kp − ω

2ω e0
∫ τ=0

τ=0
eτ

2 (Kp − ω)g(τ)dτ

+
Kp + ω

2ω e0
∫ τ=0

τ=0
eτ

2 (Kp+ω)g(τ)dτ = 0

(A.18) 

Simplifying to: 

C1
− (Kp − ω)

2
+ C2

− (Kp + ω)

2
= 0 (A.19)  

Kp(C1 +C2) + ω(C2 − C1) = 0 (A.20) 

Combining Equations (A.17) and (A.20) yields: 

C1 = C2 = 0 (A.21) 

Using these values of C1, C2 in Equation A.14 yields the solution, as in Equation (6): 

ΔVB(t) =
e− 0.5t(Kp − ω)

ω

∫ t

0
e0.5τ(Kp − ω)g(τ)dτ − e− 0.5t(Kp+ω)

ω

∫ t

0
e0.5τ(Kp+ω)g(τ)dτ (A.22)  

B. Additional results  

Table B1 
Summary of Parch and SVmea during each fluid infusion for each pig. Values are presented as mean [2.5th,97.5th percentile]. P refers to beat-wise 
pressure, and PP refers to pulse pressure. N is the number of heart beats.    

N Parch  Parch PP SVmea 

mmHg ml 

Pig 1 Fluids 1 2270 63 [55, 65] 30 [24,31] 34 [24,41] 

Pig 2 Fluids 1 1984 58 [56, 60] 27 [25,29] 32 [29, 35] 
Fluids 2 2513 54 [51, 56] 31 [25,33] 16 [13,18] 
Fluids 3 2413 50 [47, 52] 32 [28,34] 18 [15,20] 

Pig 3 Fluids 1 2676 54 [45, 56] 28 [23,30] 44 [34, 49] 

Pig 4 Fluids 1 3312 84 [77, 87] 36 [31, 38] 35 [29, 39] 
Fluids 2 3156 64 [50, 67] 32 [24,34] 30 [23,34] 
Fluids 3 3144 46 [33, 49] 31 [19,32] 23 [9,29] 

Pig 5 Fluids 1 2510 46 [43, 48] 23 [21,24] 29 [22,33] 
Fluids 2 2306 36 [33, 40] 19 [15,21] 19 [15,21] 
Fluids 3 2150 43 [36, 44] 24 [17,25] 19 [15,21] 

Pig 6 Fluids 1 2291 50 [48, 51] 22 [19,24] 14 [11,16]   
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Table B2 
Fluid-balance model parameters identified by each parameter identification method: fitting to the entire fluid infusion (Fit), fitting to the first 200 ml of the 500 ml 
infusion (200), and fitting to the first 100 ml of the infusion (100).    

100KP (
1
s
)  100ω (1

s
)  α (No units) 10A (No units) 

Fit 200 100 Fit 200 100 Fit 200 100 Fit 200 100 

Pig 1 Fluids 1 0.19 1.35 0.00 0.00 0.00 0.92 0.26 0.42 1.00 0.63 0.97 0.64 

Pig 2 Fluids 1 0.79 1.40 1.08 0.00 0.01 0.00 0.08 0.09 0.00 1.06 1.94 1.83 
Fluids 2 0.09 0.60 0.00 0.00 0.19 0.00 0.00 1.00 0.71 0.15 0.12 0.12 
Fluids 3 0.48 2.33 2.90 0.77 1.00 0.00 0.00 0.04 0.19 1.06 3.00 3.00 

Pig 3 Fluids 1 0.10 0.10 0.56 0.00 0.00 0.41 0.16 0.00 1.00 0.55 0.56 0.48 

Pig 4 Fluids 1 0.13 0.66 0.66 0.00 0.21 0.21 0.00 1.00 1.00 0.51 0.32 0.32 
Fluids 2 0.37 0.66 0.66 0.81 1.00 1.00 0.00 0.00 0.00 1.60 2.26 2.26 
Fluids 3 0.30 0.39 1.25 0.00 0.91 1.00 0.10 0.08 0.31 1.98 2.18 2.72 

Pig 5 Fluids 1 0.32 0.11 3.00 0.00 0.00 1.00 0.37 0.00 0.74 0.45 0.42 0.43 
Fluids 2 0.31 0.69 0.36 1.00 0.00 0.00 0.03 0.19 0.00 0.58 0.85 0.73 
Fluids 3 0.20 0.73 0.33 0.00 0.00 0.00 0.13 0.37 0.00 0.42 0.58 0.54 

Pig 6 Fluids 1 0.48 0.57 0.11 0.00 0.00 0.00 0.54 0.46 0.00 0.16 0.19 0.16 

Mean 0.31 0.80 0.91 0.08 0.30 0.44 0.14 0.30 0.41 0.76 1.12 1.10 
Range 0.70 2.23 3.00 0.37 2.33 3.00 0.54 1.00 1.00 1.83 2.88 2.88  
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