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a b s t r a c t 

Background and Objective: Model-based and personalised decision support systems are emerging to guide 

mechanical ventilation (MV) treatment for respiratory failure patients. However, model-based treatments 

require resource-intensive clinical trials prior to implementation. This research presents a framework for 

generating virtual patients for testing model-based decision support, and direct use in MV treatment. 

Methods: The virtual MV patient framework consists of 3 stages: 1) Virtual patient generation, 2) Patient- 

level validation, and 3) Virtual clinical trials. The virtual patients are generated from retrospective MV 

patient data using a clinically validated respiratory mechanics model whose respiratory parameters (res- 

piratory elastance and resistance) capture patient-specific pulmonary conditions and responses to MV 

care over time. Patient-level validation compares the predicted responses from the virtual patient to their 

retrospective results for clinically implemented MV settings and changes to care. Patient-level validated 

virtual patients create a platform to conduct virtual trials, where the safety of closed-loop model-based 

protocols can be evaluated. 

Results: This research creates and presents a virtual patient platform of 100 virtual patients generated 

from retrospective data. Patient-level validation reported median errors of 3.26% for volume-control and 

6.80% for pressure-control ventilation mode. A virtual trial on a model-based protocol demonstrates the 

potential efficacy of using virtual patients for prospective evaluation and testing of the protocol. 

Conclusion: The virtual patient framework shows the potential to safely and rapidly design, develop, and 

optimise new model-based MV decision support systems and protocols using clinically validated models 

and computer simulation, which could ultimately improve patient care and outcomes in MV. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Mechanical ventilation (MV) is the primary form of care pro- 

ided to respiratory failure patients [1,2] . Existing MV treatment 

uidelines are general and utilise a ‘ one-size-fits-all ’ approach, 

hich benefits some patients, but may harm others [3–5] . Model- 

ased decision support systems, which are mathematical models 

sed to suggest appropriate treatment settings based on patient 

hysiology, have been developed to provide precise and person- 
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lised approaches to MV treatment, with the hope of bringing ben- 

fit to all and harm to none [6–13] . 

Clinical trials are a prerequisite for validating the efficacy and 

afety of a model-based treatment or protocol. However, substan- 

ial resources are required for the implementation of a clinical 

rial [14] . Furthermore, to achieve statistical significance, a suffi- 

ient trial sample size is also required depending on the mea- 

ured outcome metric and assumed effect size, both of which can 

e variable [15] . To overcome some of these barriers, the con- 

ept of digital twins (DT) for clinical application has been devised, 

16,17] based on work in other fields [18,19] . A DT is defined as a

igital copy of a physical system capable of accurately simulating, 

eplicating, and predicting the behaviour of the physical system in 

arious scenarios [20] . A DT approach to clinical trials, even be- 
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ore clinical use, implements virtual modelling to ensure robust- 

ess and statistical significance of in-silico experimental results, 

hus utilising far fewer resources, exposing fewer patients to trial 

onditions and risks, and facilitating more rapid evaluation of new 

rotocols [21,22] . 

Physical and virtual modelling, the basis of DT technology, are 

lready well-established techniques in the industry, where they 

ave helped to rapidly evaluate interventions that improve pro- 

uctivity and quality [18–20] . DT technology has been successfully 

pplied in different manufacturing industries such as product de- 

ign and production while increasing attention has been shown 

n medicine [16,17,20,23] . It is characterised by the integration of 

yber-physical systems, enabling predictive diagnosis and perfor- 

ance optimisation of physical systems (in the physical layer) in 

 virtual environment (in the cyber layer) that is low-risk and in- 

xpensive, [18,19] before implementation in physical world systems 

24] . 

In the context of MV research, the physical system includes 

he patient-specific respiratory system, its physiology and mechan- 

cs parameter profiles. The physical system related to MV also in- 

ludes related physiological systems which can interact with the 
Fig. 1. a) Virtual patient creation, b) Patient-level validation and

2 
oals of the system under development, such as hemodynamic and 

etabolism interactions with the respiratory system in deciding 

lood oxygenation [25–27] . The DT in the cyber layer is the virtual 

atient, which can be developed using respiratory mechanics mod- 

ls and other data-driven approaches capable of capturing patient 

esponses. In other words, the virtual patient takes the form of an 

dentified sensitivity profile extracted/ created from retrospective 

atient data [21,22,28,29] . A validated virtual patient can then rep- 

esent an actual patient where in-silico tests of various MV treat- 

ents, protocols, interventions, or even real-time guidance towards 

djustment of MV settings can be performed [16] . 

Virtual patients have been used extensively in the validation of 

lycaemic control protocols before being put to clinical use, [30–

2] and recently, virtual patients have been derived using different 

hysiological lung models [33–37] . However, these studies inves- 

igate a limited number of prediction cases that are derived over 

poradic points in time, rendering continuous assessment of pa- 

ient conditions not possible. A virtual cohort consisting of mul- 

iple validated virtual patients could provide a platform for clini- 

al trial simulation, allowing safe, effective, rapid, and low-cost as- 

essment of novel interventional strategies and approaches to care. 
 c) Virtual trial simulation process for protocol analyses. 
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uch a cohort may also serve to validate clinical trial results by as- 

essing the performance and safety of the intervention [38] . This 

aper presents a framework for the generation of virtual patients 

o be used in MV treatment, validation of virtual patients at the 

atient level, and outlines how a virtual patient cohort can be used 

s a platform for the development and testing of model-based pro- 

ocols in a longitudinal study before proceeding into actual clini- 

al trials. The developed virtual cohort consists of ∼1,416 hours of 

reath data from 100 virtual patients developed from two clinical 

ohorts. The virtual patients enable a more realistic and continu- 

us assessment of patient-specific respiratory mechanics and mea- 

ured outcomes over an extended period of time. Furthermore, the 

evelopment of virtual patients could improve the statistical power 

f measured outcomes without having to recruit more patients in 

linical trials. 

. Methods 

An illustration of the virtual patient framework presented in 

his research is shown in Fig. 1 . The framework can be divided into

 sections. The first is the virtual patient creation ( Fig. 1 a), where

etrospective data is used to form digital twins of real clinical pa- 

ients using physiological models. The second is the patient-level 

alidation ( Fig. 1 b), involving data comparisons between the vir- 

ual patients predicted responses and actual retrospective patient 

esponses, and thus crucial for validating the model used to form 

hese virtual patients. The final section is the virtual-trial simula- 

ion ( Fig. 1 c), where cohorts of validated virtual patients are used 

s a platform for rapid prototyping, development, and validation of 

V setting selection protocols. 

.1. Virtual patient generation 

A virtual MV patient is generated using a respiratory mechan- 

cs model. Retrospective clinical pressure-flow ( P- ̇ V ) and integrated 
Table 1 

Patient information for Cohort 1 (Malaysian cohort). 

Patient 

No. Sex Age Weight (KG) Diagnosis 

1 F 43 52.0 Thyroid carcinoma with meta

2 M 54 70.2 Hypoxic respiratory failure 2 0

3 M 52 65.0 Lung cancer and superior ven

4 M 64 81.0 CRBSI and HAP 

5 F 63 38.0 Sepsis 

6 F 73 70.2 CRF 2 0 to septicaemia cause 

7 F 64 44.2 CAP, acute pulmonary oedem

8 M 48 79.4 Severe CAP with moderate AR

9 M 42 53.7 Sepsis 2 0 CAP with Lung Abs

10 F 60 77.7 Acute Coronary Syndrome wi

11 M 64 47.8 CAP 

12 M 74 77.0 Sepsis, HAP 

13 M 63 55.0 HAP with parapneumonic eff

14 M 53 54.0 Severe Sepsis 2 0 , HAP, TRO, M

15 F 62 75.0 HAP 

16 F 34 65.0 ARDS 2 0 Pneumonia 

17 M 43 80.0 Acute Pancreatitis 

18 F 61 97.3 Right Lobar Pneumonia 

19 M 48 56.0 CAP 

20 F 53 72.0 Neutropenic Sepsis 2 0 , CAP, U

21 F 65 50.0 Recurrent Multifocal Infarct w

22 M 48 91.9 Partially Treated Pneumonia 

23 F 66 60.0 Septic Shock 2 0 to HAP with 

24 M 53 62.0 Sepsis secondary to HAP 

Total - - - - 

Median 

[IQR] 

- 67 

[54-70] 

65.0 

[53.9-77.2] 

- 

∗CRBSI–Catheter-related bloodstream infection, HAP–Hospital-acquired pneumonia, CRF

Chronic kidney disease, COAD–Chronic obstructive airway disease, CAP–Community-a

related orbitopathy, VC–Volume control, SIMV–Synchronised intermittent mandatory v

3

olume ( V ) data are used to identify patient-specific respiratory 

odel parameters, including respiratory elastance, E rs and respira- 

ory resistance, R rs from a single compartment model via integral- 

ased parameter identification [39,40] . The resultant E rs and R rs 

rofiles over time, from breath-to-breath, along with other patient- 

pecific data, such as weight and trial length, create a fundamental 

omputational model to form a DT of the clinical patient [16] . 

.1.1. Clinical patient data 

This study uses measured airway P- ̇ V data from 35 retrospec- 

ive patients in two clinical cohorts receiving invasive MV for res- 

iratory failure [41–43] (IREC: IRC6 6 6 and DSRB Ref:2018/0 0 042). 

etailed patient demographics are shown in Tables I and II . The in- 

lusion criteria are: 1) Patients requiring invasive mechanical ven- 

ilation (MV) (Intubation or tracheotomy); 2) Patients with PF ra- 

io [oxygen partial pressure to fraction of inspired oxygen] < 300 

mHg); and 3) Arterial line in situ. Patients are excluded from 

he trial if: 1) Patients who are likely to be discontinued from 

V within 24 hours; 2) Patients with age < 16; 3) Any medical 

ondition associated with a clinical suspicion of raised intracranial 

ressure and/or a measured intracranial pressure ≥ 20 cmH 2 O; 4) 

atients with high spinal cord injury and loss of motor function 

nd/or have significant weakness from any neurological disease; 5) 

atients who are moribund and/or not expected to survive for > 

2 hours; and 6) Lack of clinical equipoise by ICU medical staff

anaging the patient. 

The patients of both cohorts provide a total of 198 days of 

V data with 100 virtual patients generated. Ventilator data was 

ecorded using the CURE soft [44] connected to a Puritan Bennet 

B840 or PB980 ventilator [ 86 ]. Airway pressure (cmH 2 O) and flow 

L/min) were recorded at a sampling rate of 50 Hz. 

.1.2. Data Processing 

P ̇ V data is filtered and processed according to criteria set in pre- 

ious works [9,43] . This is done to remove breaths with excessive 
Ventilation Mode 

Days of 

recording 

stasis lung, liver, and bone VC (SIMV) 16 
 to aspiration pneumonia VC (SIMV) 3 

a cava obstruction PC (SIMV) 3 

VC (SIMV) 2 

VC (SIMV) 11 

and ascites, HPT, DM, CKD, COAD VC (SIMV) 6 

a, stage 2 acute kidney injury VC (SIMV) 8 

DS VC (SIMV) 5 

cess PC (SIMV) 9 

th Cardiac Asthma VC (SIMV) 3 

VC (SIMV) 2 

PC (BiLevel) 2 

usion VC (SIMV), PC (BiLevel) 7 

elioidosis VC (SIMV) 3 

PC (SIMV) 3 

VC (SIMV) 7 

VC (SIMV) 3 

VC (SIMV), PC (BiLevel) 4 

VC (SIMV) and PC (SIMV) 14 

nderlying Breast Cancer PC (SIMV) 8 

ith Poor Neurological Recovery PC (SIMV and BiLevel) 6 

PC (SIMV) 6 

bronchospasm VC (SIMV) and PC (SIMV) 7 

VC (SIMV) 3 

- 141 

- 5.5 

[3-7] 

–Chronic renal failure, HPT–Hyperparathyroidism, DM–Diabetes mellitus, CKD–

cquired pneumonia, ARDS–Acute respiratory distress syndrome, TRO–Thyroid- 

entilation, PC–Pressure control. 
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Table 2 

Patient information for Cohort 2 (Singaporean Cohort). 

Patient 

No. Sex Age Weight (KG) Diagnosis Ventilation Mode 

Days of 

recording 

1 M 65 60.0 Relapsed DLBCL, carbapenem resistant klebsiella PC (PS) 4 

2 M 70 90.0 Pneumonia likely aspiration related VC (AC) 3 

3 M 54 85.0 Septic shock VC (AC) 3 

4 M 69 75.1 Acute on chronic liver failure secondary to Hep B 

reactivation flare requiring PLEX 

VC (AC), PC (PS) 5 

5 M 70 66.0 Pneumonia VC (AC) 6 

6 F 77 45.1 Refractory PD peritonitis with septic shock VC (AC) 4 

7 F 70 49.7 AOCKD Diabetic ketoacidosis, NSTEMI VC (AC), PC (PS) 4 

8 M 35 77.9 Acute exacerbation of asthma VC (AC) 4 

9 M 72 50.0 Infective exacerbation of ILD then desaturated with T1RF VC (AC), PC (AC, PS) 4 

10 M 46 70.0 T1RF secondary to pneumonia VC (AC) 5 

11 M 55 82.2 T1RF VC (AC) 4 

Total - - - - - 57 

Median 

[IQR] 

- 67 

[54-70] 

68.5 

[59.4-77.2] 

- - 4 

[4-4.75] 

∗DLBCL–Diffuse large B-cell lymphoma, NSTEMI–non-ST segment elevation myocardial infarction, Hep V–Hepatitis B, PLEX–Plasma exchange, PD–Peritoneal 

dialysis, AOCKD–Acute on Chronic Kidney Disease, ILD–Interstitial Lung Disease, T1RF–Type 1 respiratory failure, DKA–Diabetic ketoacidosis 

Table 3 

Ventilator input settings extracted from different MV modes. 

MV Mode Pressure Control Volume Control 

Extracted Settings • Respiratory rate, RR • Respiratory rate, RR 
• Positive end-expiratory pressure, PEEP • Positive end-expiratory pressure, PEEP 
• Inspiratory pressure, P I • Tidal volume, V T 
• Inspiratory time, T I • Peak inspiratory flow, ˙ V MAX 

• Rise percent, RP • Plateau time, T PLAT 

• Plateau pressure, P PLAT • Waveform 

• Driving pressure, P PLAT - PEEP • Plateau pressure, P PLAT 

• Driving pressure, P PLAT - PEEP 
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oise, patient effort, and asynchronies to ensure accurate identifi- 

ation of E rs and R rs . Specific details regarding the filtering criteria 

re available in the Supplementary Material (Section A) . Mean E rs 

nd R rs over time intervals of length, N were used to represent the 

atients’ respiratory mechanics within this time interval. For this 

tudy, N is chosen as 10 minutes for all further analyses in this 

tudy. These E rs and R rs profiles form the virtual patient as a DT of

he retrospective patient data. For consistency, E rs and R rs are re- 

erred to as the averaged E rs and R rs over each interval (E rs ave and 

 rs ave ). 

Clinically implemented MV settings and important MV parame- 

ers are also extracted and identified from each patient’s MV data 

o form interval settings, along with the patient weight. MV set- 

ings and parameters extracted from patients in each ventilation 

ode are summarised in Table 3 [2,45,46] . 

While patients in this cohort undergo a variety of ventilation 

odes based on their underlying condition and clinician deci- 

ion, virtual patients and their clinically implemented interval set- 

ings were only generated and extracted from patients undergo- 

ng volume-control modes (AC/VC, SIMV/VC), or pressure-control 

odes (AC/PC, SIMV/PC, PS, and BiLevel/PC) to minimise breaths 

here there is considerable effort from the patient, which may dis- 

ort the data by artificially lowering E rs [47,48] . 

.1.3. Physiological model 

A physiological model defines the patient-specific condition of 

hese virtual patients. This study uses the single compartment lin- 

ar lung model [49] , shown in (1) : 

 ( t ) = E rs ( t ) V ( t ) + R rs ( t ) ̇ V ( t ) + P 0 (1) 

Where P ( t ) is the airway pressure delivered by the ventilator 

cmH 2 O) at time t, V ( t ) is the volume of air delivered (L), ˙ V (t)

s the flow of air delivered (L/s), and P 0 is the offset pressure 

hich is set to PEEP (cmH O) when there is no auto- PEEP . Res-
2 

4

iratory system elastance (cmH 2 O/L) and respiratory system resis- 

ance (cmH 2 Os/L) are represented by E rs ( t ) and R rs ( t ) respectively.

aptured over time, the profiles of E rs ( t ) and R rs ( t ) represent and

eveal the evolution of patient-specific conditions throughout their 

tay [28,50] . 

.2. Patient-level validation 

An illustration of the patient-level validation is shown in 

ig. 1 b. This analysis validates the single compartment model pre- 

ented in (1) and is used to generate the virtual patients. This val- 

dation also tests the overall ability of the generated virtual pa- 

ients in predicting clinical patient responses to changes in MV 

are or settings, given that the accurate identification of patient- 

pecific E rs ( t ) and R rs ( t ) is achieved [21] . The extracted MV settings

n Fig. 1 b are shown in Table 3 . 

.2.1. Input waveform generation 

The extracted clinical interval settings from the data processing 

tep are used as input variables to simulate input pressure wave- 

orms or volume and flow waveforms depending on the ventilation 

ode. The equations used for flow and volume waveform genera- 

ion (VC ventilation) and pressure waveform generation (PC venti- 

ation) are shown and illustrated in Fig. 2 . The specific definitions 

or the setting parameters used in Fig. 2 are presented in Table 3 . 

The mathematical equations used to generate the input wave- 

orms for the different ventilation modes in Fig. 3 are given in (2)–

9), where (2)–(4), (5)–(7) and (8)–(9) are used for the VC square 

aveform, VC ramp waveform and PC square waveform, respec- 

ively. 

 I = 

V T 

˙ V 

− α (2) 

MAX 
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Fig. 2. Input waveforms for different ventilation modes: (a) VC square waveform, (b) VC ramp waveform, (c) PC square waveform 

Fig. 3. Illustration of virtual trial for a single virtual patient within the cohort 
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 ( t ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ V MAX 

α t, 0 ≤ t ≤ α

˙ V MAX , α < t ≤ T I + α
˙ V MAX 

α ( T I + 2 α) − ˙ V MAX 

α t, T I + α < t ≤ T I + 2 α

0 , T I + 2 α < t ≤ T PLAT + T I + 2 α

(3) 

 ( t ) = 

T PLAT + T I +2 α∫ 
0 

˙ V ( t ) dt (4) 

 I = 

2 V T 

˙ V MAX 

− α (5) 

˙ 
 ( t ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ V MAX 

α t, 0 ≤ t ≤ α
˙ V MAX 

α ( T I + α) − ˙ V MAX 

α t, α < t ≤ T I + α

0 , T I + α < t ≤ T PLAT + T I + α

(6) 

 ( t ) = 

T PLAT + T I + α∫ 
0 

˙ V ( t ) dt (7) 

 ( t ) = 

{
P I 
θ

+ PEEP , 0 ≤ t ≤ θ

P I + PEEP , θ < t ≤ T I 
(8) 
5

= 

{
min 

(
2 , 2 

3 
T I 
)
, RP = 1 

min 

(
2 , 2 

3 
T I ×

(
1 − RP 

100 

))
, 1 < RP ≤ 100 

(9) 

.2.2. Forward simulation 

The generated waveforms are then used as inputs to the sin- 

le compartment model to simulate and predict clinical outputs. 

pecifically, if the patient was undergoing VC ventilation, the VC 

nterval settings are used to generate input flow and volume wave- 

orms, which are then used to forward simulate the uncontrolled 

ressure output. For PC ventilation, PC interval settings are used 

o create input pressure waveforms, which are then used to for- 

ard simulate the uncontrolled flow and volume outputs. In both 

ases, the magnitude and shape of these uncontrolled outputs are 

 function of patient-specific pulmonary mechanics and response 

o MV, where accurate prediction of outcomes validates the model 

erformance in capturing these patient-specific elements. 

The predicted virtual patient responses are then compared with 

he clinically measured patient responses which are median values 

ver the time interval, N to assess the validity and prediction accu- 

acy of the single compartment model. For PC and VC MV modes, 

he measured patient responses monitored are tidal volume and 

eak pressure, respectively, V T and P MAX , respectively. The median 

Interquartile range, IQR] error and absolute percentage error be- 

ween the clinical and simulated respiratory waveforms are calcu- 
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Table 4 

Implemented narrowing objectives for the VENT protocol. 

Criteria and Parameter Parameter Equation Reference 

5 L/min ≤ Minute ventilation ≤ 12 L/min V T × RR × Weight [2] 

Mechanical power < 17 J/min RR · { �V · [ 1 
2 

· E rs (t) + RR · ( 1+ I: E ) 
60 ·I: E · R rs (t) ] + �V · PE E P } [56] 

Minimum driving pressure, �P (cmH 2 O) P PLAT − PEEP [87] 

Most identical to previous interval settings - - 
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t

ated. The square of the Pearson correlation coefficient, R 

2 between 

he actual and virtual patient predicted patient responses (tidal 

olume and peak pressure) is also determined, evaluating the ac- 

uracy of the identified, patient-specific model. To evaluate the di- 

ergence between the clinically measured and predicted data, the 

ullback-Leibler (KL) divergence, D KL is also calculated for the two 

ariables V T and P MAX [51,52] . This procedure is performed on all 

xtracted interval settings on the respective patients. This process 

s summarised in Fig. 1 b. 

.3. Virtual trial 

A virtual trial is defined to be an in-silico experimentation of 

reatment protocols performed on a developed virtual patient plat- 

orm. The virtual trial in this study requires a cohort of validated 

irtual patients, which can be generated using a respiratory sys- 

em model. The virtual cohort forms a platform for the rapid pro- 

otyping and development of novel, personalised MV treatment ap- 

roaches and protocols. To showcase the virtual trial in this proof- 

f-concept study, the model used to generate the cohort is the sin- 

le compartment model shown in Eq. (1) and the protocol used to 

elect input settings is the VENT protocol [9] . The VENT protocol is 

ummarised in the Supplementary Material (Section B) provided. 

 summary of the virtual trial simulation process is illustrated in 

ig. 1 c. 

.3.1. Ventilation protocol for testing - VENT Protocol 

The VENT protocol [9] consists of four consecutive stages: A) V- 

tage; B) E-stage; C) N-stage and D) T-stage. The V-stage forward 

imulates all feasible MV setting combinations to obtain their pre- 

icted patient responses. The E-stage removes harmful combina- 

ions according to safety thresholds established in landmark clini- 

al trials. The N-stage allows clinicians to set clinical objectives to 

urther remove combinations. The T-stage then presents clinicians 

ith a narrowed range of recommended MV settings. This open- 

oop system was designed to provide clinicians with insight into 

he possible patient responses to the recommended MV settings 

nd allow them to select the best MV setting combination. 

However, to work independently in this virtual trial, the VENT 

rotocol is modified into a closed-loop system to provide a single, 

ptimal recommended MV setting combination. These additional 

arrowing (N-stage) objectives are summarised in Table 4 . Finally, 

n the event the VENT protocol cannot provide a recommendation, 

he previous interval settings are maintained and implemented. 

.3.2. Virtual trial procedure 

The virtual trial procedure is thus further illustrated in 

ig. 3 and described below: 

1. Initialise virtual patient by feeding initial values of the patient 

profile to the protocol. 

2. Implement protocol ( VENT Protocol) to introduce intervention 

(MV settings) for the current time interval. 

3. Record resultant virtual patient responses. 

4. Maintain protocol-recommended settings for one hour follow- 

ing the virtual patient profile and record the resultant patient 

responses for each interval. 
6 
5. Repeat steps 2 to 4 until the end of trial length (all patient data 

is analysed). 

In this research, the virtual patients are generated using Eq. (1) . 

he patient profile refers to patient-specific E rs (t) and R rs (t) pro- 

les identified from the retrospective data of each patient, and the 

rotocol used is the VENT protocol. However, the procedure pre- 

ented is general and can be used for virtual patients generated 

y any clinically validated and predictive respiratory model (e.g. 

53,54,37] ), using any patient-specific profile, and for any protocol. 

In this study, the clinical data is compared with the results of 

he virtual trial across several measured patient responses in a lon- 

itudinal study to assess the overall accuracy of the virtual trial in 

redicting clinical patient responses, a cohort-level validation [28] . 

n the PC ventilation trial, these patient responses are: V T , minute 

entilation, and mechanical power. In the VC ventilation trial, the 

atient responses are: P PLAT , minute ventilation, and mechanical 

ower. In addition, the cumulative distribution function (CDF) of 

ach metric from the VC (Volume control) and PC (Pressure con- 

rol) ventilation trial are analysed. This allows the data distribution 

f each parameter to be compared between the clinically measured 

ata and the simulated data (VENT protocol chosen settings and 

redicted patient responses). In this case study, protocol safety is 

efined as having the measured patient responses within the fol- 

owing safety thresholds [2,5,55,56] : 

• 4 mL/kg ≤ V T ≤ 8mL/kg 
• P PLAT < 30 cmH 2 O 

• 5 L/min ≤ Minute ventilation ≤ 12 L/min 

• Mechanical power < 17 J/min 

. Results 

.1. Virtual cohort 

A cohort of 100 virtual patients was created from the retrospec- 

ive ventilation data from 35 patients. A single patient provides 

ultiple virtual patients based on the number of recording ses- 

ions, where clinical interruptions are used to start a new virtual 

atient for the next recorded data segment. Such clinical interrup- 

ions are common. More specifically, 35 virtual patients underwent 

C ventilation, and 65 underwent VC ventilation. The virtual pa- 

ient profiles of each virtual patient in the cohort are shown in 

ig. 4 , which also shows the median and 5th and 95th percentile 

alues of E rs ( t ) and R rs ( t ) of each interval for the whole cohort. The

edian [5th–95th] trial length of the virtual cohort is 14.58 [0.67–

3.75] hours. 

.2. Patient-level validation 

This virtual cohort consists of ∼1,416 hours of breath data, pro- 

ucing 8,576 pairs of E rs ( t ) and R rs ( t ) values. A total of 8,576 clini-

ally implemented interval settings were also extracted, with 3,150 

f them coming from PC ventilation patients and the remaining 

,426 from VC ventilation patients. These extracted settings recre- 

te the input waveforms provided to patients during ventilation. 

ig. 5 shows an example of all measured input data within an in- 

erval along with the generated input waveform from the extracted 
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Fig. 4. E rs (top panel) and R rs (bottom panel) profiles of the generated virtual patient cohort 

Table 5 

Predicted patient responses of peak tidal volume and peak pressure for the PC and 

VC ventilation trial, respectively. 

V T prediction P MAX prediction 

Prediction cases 2,485 3,644 

Median [IQR] Error 26.42 [11.83-61.73] mL 0.80 [0.38-1.63] cmH 2 O 

Percentage [IQR] Error 6.80 [2.80-17.81]% 3.26 [1.50-6.21]% 

R 2 0.737 0.915 
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ettings for a PC ventilated patient (top) and a VC ventilated pa- 

ient (bottom). Note, only inspiration is generated and analysed as 

t provides all the desired measured patient responses, whereas ex- 

iration is passive and assumed not to affect these measures. Fig. 6 

nd Table 5 show the prediction accuracy results for these mea- 

ured patient responses, and thus assesses the patient-level valida- 

ion of this approach. The statistical and error analysis in Table 5 is 

ased on the total number of prediction cases in each of the PC 

nd VC trials. 

.3. VENT Protocol implementation on virtual cohort 

An example of a virtual trial of Virtual Patient 3_b and Virtual 

atient 16_b in PC mode and VC mode, respectively, are shown in 

ig. 7 . The top row shows the patient profile, and the second row 

hows both the clinically implemented settings (solid black lines) 

nd the VENT protocol input settings (dotted blue lines). Their cor- 

esponding measured patient responses are shown in the third 

ow. The red vertical lines separate the hourly changes in inter- 

ention settings obtained from the VENT protocol, where ventilator 

nput settings are determined by the VENT protocol and then main- 

ained for each hour before re-evaluation and any change. As such, 

he first interval before the 0 th hour represents patient initialisa- 

ion and is used as input for the first intervention for the VENT 

rotocol. 

The results of the virtual trial of the entire virtual cohort are 

hown in Table 6 . It shows the number of virtual patients gen- 
7

rated for each ventilation mode, as well as the cumulative trial 

ength of the virtual patients in each mode. The total measure- 

ents refer to the number of identified values of E rs ( t ) and R rs ( t ),

xtracted settings and measured patient responses. The specified 

easured patient responses of the clinical data are compared with 

he results of the virtual trial, as shown in Table 6 . In the PC ven-

ilation trial, the percentage of time the clinical data and VENT 

rotocol keeps the measured patient responses within the defined 

afety threshold values are 33.8% and 64.8%, respectively. In the VC 

entilation trial, the percentage of time the clinical data and VENT 

rotocol keep the measured patient responses within the defined 

afety threshold values are 37.0% and 97.0%, respectively. For each 

f the PC and VC virtual trials, the CDF plots of the patient respira-

ory profiles and ventilator input settings are shown in Fig. 8 . Sim- 

larly, the CDF plots of the predicted patient responses are shown 

n Fig. 9 . 

. Discussion 

Patient-level validation and prediction accuracy for the single 

ompartment virtual patient model shows a low prediction er- 

or, with prediction percentage errors for V T and P MAX of 6.8% 

nd 3.26%, respectively. The results show a good correlation be- 

ween the clinical data and virtual patient predicted responses, 

ith an R 

2 value of 0.737 and 0.915 for V T (PC mode) and P MAX (VC

ode), respectively. Within the range of clinical V T = 20 0-40 0 mL, 

here are significant differences between the predicted and clin- 

cally measured V T . This could be due to the presence of small 

synchronies and/ or spontaneous breaths that were not being fil- 

ered entirely, resulting in incorrect parameter identification us- 

ng the single compartment lung model. The lower than expected 

linical V T within that range could be due to the obstruction of 

irflow within the respiratory system in the actual patient. De- 

pite this, the low median [IQR] error for tidal volume prediction 

s 6.80 [2.80-17.81%] suggests a good correlation between the pre- 

icted and clinically measured values. Furthermore, the calculated 

 of 0.0603 and 0.0082 for V and P respectively also sug- 
KL T MAX 
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Fig. 5. The coloured thin lines show the actual measured breaths whereas the dotted red lines are the simulated breaths generated from the extracted settings. A comparison 

between the actual measured breaths (coloured thin lines) vs simulated breaths generated from extracted settings (dotted red line) is made. The resulting median [IQR] 

absolute percentage errors (%) are: 1.52 [1.43–1.60] (top: pressure waveform), 8.39 [8.18–8.54] (bottom: flow and volume waveform) 

Fig. 6. Clinical patient responses vs predicted patient responses of a) peak tidal volume and b) peak pressure of the PC trial using the single compartment model 

g

i

i

p

t

i

i

m

t

i

p

e

m

i

e

m

i

[

c

t

b

d

t

i

e

est reduced divergence between the simulated and actual (clin- 

cal) data. This patient-level validation demonstrates the accurate 

dentification of patient-specific sensitivities using the single com- 

artment model, thus enabling an accurate prediction of respira- 

ory patient responses under a range of protocol settings and typ- 

cal MV modes, [21,28] which is a robust approach. However, it 

s important to note that the correlation analysis can only deter- 

ine the linear relationship between the two variables, but not 

heir agreement, especially when a systematic measurement error 

s present [57] . 

The virtual patients were developed using a simple single com- 

artment lung model to avoid excessive model complexity, while 

nsuring sufficient granularity of the captured data [58] . As the 
8 
odel captures patient conditions at a particular point in time, it 

s assumed that the change in ventilator settings does not influ- 

nce the patient’s condition. While an increasingly complex model 

ay improve data fitting performance, the increased parameter- 

sation could lead to parameter trade-off and non-identifiability 

41,59,60] . Furthermore, the presence of spontaneous breathing 

ould also cause poor model fitting and incorrect parameter es- 

imation [41,61,62] . Similar patient-level validation studies have 

een performed with different models and have used similar vali- 

ation methods [34,36,37] . In addition, these issues are being fur- 

her addressed by new models capturing patient-specific breath- 

ng effort and ventilator unloading, which can both induce added 

rror in the personalised models used [33,63–65] . As such, this 
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Fig. 7. Example of a virtual trial showing clinical data (black), and the VENT protocol’s chosen settings and predicted patient responses (blue) 

9 
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Table 6 

Virtual trial results compared to clinical data for PC and VC ventilation patients. 

Pressure Control Ventilation 

Overall data Clinical data Virtual Trial 

Number of virtual patients 35 35 

Cumulative trial length 519.17 hours 519.17 hours 

Total measurements 3,150 3,117 (33 failed to converge) 

V T (mL/kg) 6.86 [5.89- 7.97] 4.06 [3.96- 4.77] ∗

Minute Ventilation (L/min) 7.74 [6.54- 9.41] 5.78 [5.19- 6.92] ∗

Mechanical power (J/min) 16.67 [13.91-21.34] 11.33 [9.16-15.12 ∗

�P (cmH 2 O) 16.54 [13.32-20.76] 12.77 [8.54-14.45] ∗

V T between 4–8 mL/kg 68.98% 68.85% 

Minute Ventilation between 5–12 L/min 84.32% 87.36% 

Mechanical Power < 17 J/min 53.81% 95.96% 

Within all safety thresholds 33.81 % 64.84 % 

Volume Control Ventilation 

Number of virtual patients 65 65 

Cumulative trial length 897.17 hours 897.17 hours 

Total measurements 5,426 5,426 

P PLAT (cmH 2 O) 23.69 [20.17–29.39] 17.09 [14.20-22.69] ∗

Minute Ventilation (L/min) 9.06 [7.29–10.74] 5.20 [5.13–6.44] ∗

Mechanical power (J/min) 18.71 [13.81–27.80] 10.07 [7.08–13.03] ∗

�P (cmH 2 O) 14.22 [11.9 - 18.78] 9.00 [5.55–11.19] ∗

P PLAT < 30 cmH 2 O 77.86% 98.53% 

Minute Ventilation between 5–12 L/min 84.14% 99.82% 

Mechanical Power < 17 J/min 41.72% 97.10% 

Within all safety thresholds 36.97 % 97.08 % 

∗ P < 0.05 using Wilcoxon signed rank test when compared to clinical data. 

Results are reported as median [IQR] values over the total measurements made for each category. 
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atient-level validation highlights the need of validating model 

erformance, particularly at the patient level, to ensure the accu- 

ate identification of patient-specific sensitivities to generate well- 

alidated virtual patients and resulting virtual cohorts that are ac- 

urate. 

In the virtual protocol implementation study, the closed-loop 

ENT protocol is implemented on the virtual cohort, and the re- 

ults are compared to the measured patient responses of the clini- 

al protocols used. As the VENT protocol aims to optimise the im- 

lemented MV settings for lung protective ventilation, this results 

n the differences between data distributions of the input settings 

nd patient responses as seen in Figs. 8 and 9 . By using the vir-

ual patients as a platform for the virtual trial, the VENT protocol 

s shown to significantly increase the percentage of time where the 

mplemented MV settings fall within the clinically derived safety 

hresholds, with improvements of 31.03% and 60.11% for PC and VC 

ode, respectively. In addition, the VENT protocol also significantly 

ncreases the percentage of time within the safety threshold ( < 17 

/min) by 42.15% and 55.38% for PC and VC modes, respectively, 

howing the capability of the virtual trial platform for an in-silico 

mplementation and validation of setting mechanical power. These 

esults demonstrate the potential to virtually, and thus safely, test 

ew care approaches in terms of quantifiable, clinically accepted 

afety and performance metrics. 

The results of the virtual trial presented thus demonstrate the 

easibility of the virtual patient as a platform for testing and vali- 

ating MV protocols, in this case, the VENT protocol [9] . This study 

s thus the first virtual trial analysis for MV. This virtual patient 

nd digital twin based approach is more common in glycaemic 

ontrol, [22,30,38,66–68] but still rare, especially in other areas of 

are [28] . While the VENT protocol is only an open-loop single- 

tep protocol, this study introduces a modified closed-loop VENT 

rotocol. The testing of the modified VENT protocol on the virtual 

atient platform will provide the opportunity to create a protocol 

hat enables dynamic patient monitoring while adapting to evolv- 

ng patient conditions over an extended period of time. 

The selection of models and retrospective data used to develop 

he virtual patient is highly dependent on the patient response 
10 
easures of a specific protocol. As a proof of concept, the virtual 

atients presented were only used to test protocols dependent on 

easured patient responses such as V T , P PLAT , �P , minute ventila- 

ion and mechanical power. However, these measured patient re- 

ponses are directly related to patient-specific respiratory condi- 

ions, thus providing an appropriate metric to quantify and capture 

atient-specific responses towards MV protocols. 

In MV research, virtual patient cohorts can be used to design 

nd validate MV protocols in-silico, whereby virtual patients in- 

rease the amount of available data without needing to recruit 

ore patients in clinical trials. Thus, this reduces the risks of 

arm subjected to actual patients while ensuring data sufficiency 

o achieve statistical significance of results. In addition, this study 

pplies a deterministic model approach to virtual patients, thus the 

eveloped virtual patients enable patient-specific analysis as op- 

osed to a cohort generalised approach. 

Model-based decision support systems have been explored in 

he past with goals of optimising MV support. Banner et al. 

69] developed a ventilator advisory system to provide automatic 

nd valid recommendations for setting pressure support ventila- 

ion (PSV) settings. This approach is however limited to PSV and 

ails to cater to the various modes of MV available. In the works 

f Das et al. [70] a model-based method is used to optimally man- 

ge MV settings such as V T , ventilation rate, inspiratory/expiratory 

atio, PEEP, and inspired fraction of oxygen. However, this study 

s based on a limited number of in-silico patients, disease states, 

nd a short analysis period of only 20 minutes. Other model-based 

V decision support systems [7] are capable of producing valid 

V setting suggestions, but do not track the dynamic evolution of 

atient-specific respiratory mechanics and MV settings over time. 

he VENT protocol-based virtual patient platform developed in this 

tudy addresses these issues posed whereby a closed-loop deci- 

ion support system is introduced for pressure- and volume-based 

V. Furthermore, the dynamic change of patient-specific E rs (t) and 

 rs (t) is also analysed over an extended period of time for virtual 

atients developed from 2 clinical cohorts, encompassing various 

atient demographics and disease states. The developed virtual pa- 

ients enable the development of a dynamic, “one method fits all ”
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Fig. 8. The empirical cumulative distribution function (CDF) plots of the PC (left column) and VC (right column) trial. The clinically measured data are plotted as blue lines, 

whereas the VENT protocol chosen settings are plotted as red lines. 
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ersonalised MV protocol. Furthermore, the continuous and ex- 

ended monitoring of patient-specific respiratory mechanics such 

s E rs via the virtual patient platform allows tracking of patient 

isease progression, thus providing a platform for the long-term 

alidation of MV protocols. 

While machine learning methods may be helpful in cases where 

here are large quantities of training data, the proposed work 

emonstrates a well-trodden path of using key sensitivities to gen- 

rate virtual patients that are deterministic, which are proven in 

ther studies [28,71] . Furthermore, machine learning models are 

ependent on the selected patient cohort data and can be biased 

oward “common” or typical patients and thus not generalise well 

o outliers [72,73] . Therefore, it would be hard to validate such a 
11 
odel as it does not relate back to specific patients from the clin- 

cal cohort. Thus, the proposed virtual patient framework enables 

he development of virtual patients which are patient-specific, al- 

owing comparison and validation with the available clinical data. 

.1. Limitations 

In terms of limitations, the identified profiles of E rs (t) and R rs (t) 

f the virtual patients are static and may not reflect the impact 

f the new MV settings implemented by the protocols. Patient- 

pecific values of E rs are affected by patient condition and dis- 

ase progression [43] . However, it may also be affected by ven- 

ilator settings [39,47,49] . In these virtual trials, the virtual pa- 
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Fig. 9. The empirical cumulative distribution function (CDF) plots of the PC (left column) and VC (right column) trial. The clinically measured data are plotted as blue lines, 

whereas the predicted patient responses are plotted as red lines. 
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ient E rs (t) and R rs (t) profiles will remain constant regardless of 

he protocol implemented as the profiles of E rs (t) and R rs (t) were 

dentified from the retrospective patient data. This study assumes 

hat breath-to-breath respiratory elastance and resistance are un- 

ffected by PEEP values and are constant over an entire breath. 

n clinical settings, patient ventilator settings (including PEEP) are 

valuated on an hourly basis and show little variation, and thus 

ould not have a significant influence on the breath-to-breath 

dentification of respiratory mechanics. Hence, future work leads 

o a more realistic virtual trial considering both the effect of E rs (t) 

nd R rs (t) evolution on implemented MV settings. 

Due to the limited complexity of the virtual patients, the re- 

ults of the virtual trials can only indicate potential in translation 

rom virtual findings to bedside performance. When transitioning 

etween protocol conception to clinical trials, the virtual trials are 

imited in their role as an intermediary stage of performance anal- 

sis and validation. Despite this limitation, we believe that the in- 

ermediary role of the virtual patient platform and virtual trials 

re vital for providing preliminary evaluation and understanding 

f treatment protocol performance, where harm to clinical patients 

an be avoided. 

Furthermore, as noted, current virtual trials only encompass 

he mechanical aspect of ventilation without the perfusion as- 

ect, which is of equal importance. Several important perfusion 

arameters, such as blood oxygenation, partial pressure of oxygen 

PaO 2 ), fraction of inspired oxygen (F I O 2 ), and pressure of end- 

idal CO 2 (PetCO 2 ) could provide further insight into MV patient 

ondition, but remain to be incorporated into the work of this re- 
12 
earch [74,75] . In particular, gas exchange models are proven and 

ight be directly integrated with the models and methods pre- 

ented here [76–79] . 

This paper clearly demonstrates the potential and feasibility of 

eveloping a virtual MV patient and establishes a methodology 

or prospective evaluation and testing. The development of a func- 

ional virtual MV patient will have a widespread application from 

roviding real-time bedside guidance of treatment, to in-silico test- 

ng of various treatment protocols [28,80] . In-silico development 

llows for the safe validation of treatment protocols in a virtual 

nvironment prior to clinical implementation, thus preventing un- 

ecessary harm to physical patients. 

In addition, the virtual patients generated in this study are 

ased only on a total of 35 clinical patients. While 100 virtual pa- 

ients have been generated from this clinical cohort, further inves- 

igation of the effective sample size required for statistical power 

f the results is required [15] . However, the primary aim of this 

tudy is to demonstrate the feasibility and concept of a generalis- 

ble virtual patient framework which has potential use with larger 

atient cohorts and in other fields of research. 

This concept of a virtual MV patient can be further extended 

ith the use of more complex models [37,41,54,64,81–84] to bet- 

er capture the dynamics of the patient’s respiratory system. As 

oted, a model providing a more comprehensive overview of pa- 

ient condition and variability in response to MV care would also 

dd utility. Furthermore, future works could also include the de- 

elopment of a dynamic virtual patient whereby patient sensitiv- 

ty profiles can dynamically evolve based on the implemented MV 
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nterventions. This would provide a more realistic virtual patient 

nd provide a platform for the development of personalised treat- 

ent protocols. The ability to predict patient responses to a treat- 

ent protocol would facilitate healthcare providers in determin- 

ng the cost and adequacy of these treatment protocols. In addition 

o this work, there are possibilities of exploring machine learning 

ethods in virtual patient generation if large quantities of clinical 

ata are gathered for training purposes. Loo et al. and Ang et al. 

ave investigated the use of models to generate synthetic data 

or machine learning model training, which can perform fairly. It 

as found that additional clinical MV data are needed to train the 

odel better [41,85] . The virtual patient framework also has the 

otential to provide open access to data, improving reproducibility 

nd encouraging the use of virtual trials. While these outcomes re- 

ain in future, the building blocks are already available for model- 

ased and digital twin driven decision support in MV care. 

. Conclusions 

A virtual cohort generated from retrospective patient data pro- 

ides a platform to test and validate different MV treatment selec- 

ion protocols. The virtual trials in this research show the poten- 

ial to design, develop, and optimise MV setting selection protocols 

afely and rapidly through computer simulation. The patient-level 

odel validation and resulting virtual clinical trials are the first 

emonstrations of the potential for digital twin models and virtual 

atients in this high-cost clinical space. The overall results thus 

resent a platform upon which significant improvements made in 

odelled mechanics would greatly provide added clinical utility. 
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