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Antibubbles are ephemeral objects composed of a liquid drop encapsulated by a thin gas shell immersed
in a liquid medium. When the drop is made of a volatile liquid and the medium is superheated, the gas shell
inflates at a rate governed by the evaporation flux from the drop. This thermal process represents an
alternate strategy for delaying the antibubble collapse. We model the dynamics of such “thermal”
antibubbles by incorporating to the film drainage equation the heat-transfer-limited evaporation of the drop,
which nourishes the gas shell with vapor, as for Leidenfrost drops. We demonstrate that the inflation of
the gas shell is drastically inhibited by the thermalization of the initially colder drop. Because of this
thermalization effect, smaller drops evaporate much faster than larger ones.
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An antibubble is a unique object, which owns its name
for being the contrary of a soap bubble [1–3]. If a soap
bubble is a thin spherical shell of soapy liquid surrounded
by air, an antibubble is a thin spherical shell of air
surrounded by soapy liquid. In a recent paper [4] we
reviewed the various factors controlling the lifetime of
antibubbles with surfactants, envisioning the feasibility of
future applications requiring a fine control of the lifetime,
like for instance in enhancing ultrasonic imaging [5,6],
or in oil-free encapsulation and drug vectorization [7].
Creating antibubbles without surfactant is much more
challenging, and their lifetimes are dramatically reduced,
i.e. from minutes to fractions of seconds, such that they can
hardly be observed without the help of high-speed imaging.
Yet, surfactant-free antibubbles can be obtained by
impacting a viscous drop onto a gas-liquid interface [8].
Under certain size and impact speed conditions, the drop
does not coalesce and rather entrains some gas layer below
the interface. The gas layer encapsulates the drop and the
antibubble forms. There, delayed-coalescence relies on
the viscous resistance of the intervening gas layer during
the impact. Now, the coalescence of the drop with the bath
can be delayed even longer if the intervening gas layer is
additionally fed with vapor. This strategy was reported in
the 1960s by Hickmann to obtain the so-called boules of
liquid floating above the same superheated liquid [9], and
later associated to the Leidenfrost effect [10] in the
particular case of a drop of a volatile liquid gently released
on a hot liquid bath [11]. In the 1980s, by releasing the drop
with higher impact speed, Ida and Takashima [12] and
Nosoko and Mori [13] succeeded to form thermal anti-
bubbles, without naming it, but instead referring to sub-
merged film boiling. In this Letter, we revisit this thermal
antibubble regime [12,13] as sketched in Fig. 1, and

demonstrate that the inflation of the gas shell due to the
production of vapor is strongly limited by the thermal-
ization of the initially colder drop.
Despite decades of studies on the Leidenfrost effect,

which threatens the safety of several industrial installations,
the prediction of the onset of this phenomenon remains
poorly understood. One of the issues that remains to be

FIG. 1. Thermal antibubble: the heat provided by the hot bath is
used for both evaporating and thermalizing the initially cold drop.
The generated vapor, while draining from bottom to top, delays
the antibubble collapse.
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investigated is the transient dynamics of the Leidenfrost
effect, a study that is highly challenging from a technical
point of view. Recent advances in experimental techniques
have made it possible to characterize this transient dynam-
ics [14–17]. However, these observations on the onset of
the Leidenfrost state should now be rationalized, and
thermalization should be an essential ingredient in this
problem. Thermalization has only been considered in
inverse Leidenfrost systems [18,19], for which the heat
reservoir for evaporating the bath surface is limited by the
size of the hotter drop, while for the direct Leidenfrost
system, the heat reservoir for evaporating the drop is
usually not limited by the size of the bath. Yet, a significant
part of the heat flux coming from the bath to evaporate the
drop is hijacked at the first instants for thermalizing the
initially colder drop. Thermal antibubble therefore con-
stitutes a unique system allowing one to quantify the vapor
generated by a (direct) Leidenfrost droplet and assess the
role of thermalization in the Leidenfrost onset.
In our experimental procedure, a bath made of V20

silicone oil is heated at a temperature Tb higher than the
saturation temperature Tsat ¼ 61 °C of the drop made of
hydrofluoroether 7100 (HFE). The drop, initially at the
ambient temperature T0 ¼ 25 °C, is released at the appro-
priate height to obtain antibubbles [13,20]. An example of
antibubble formation, obtained with a high speed camera, is
depicted in the inset of Fig. 2. The drop of radius R ¼
760 μm impacts the bath with a speed U0 ¼ 0.56 m=s that
provides sufficient kinetic energy for the drop to cross the
interface and form a cylindrical cavity. The cavity pinches
off at about 20 ms after the impact due to the Rayleigh-
Plateau instability [21], such as the impacting drop is

encapsulated by an air shell, forming a thermal antibubble.
A satellite antibubble is also formed in this case, and is seen
to grow considerably faster than the main antibubble, a
size-dependent behavior that will be rationalized in this
Letter.
Thermal antibubbles are only obtained for a specific

range of impact speeds, which varies with the superheat
ΔT ¼ Tb − Tsat. The corresponding phase diagram appears
to be nonuniversal [22], hence different than the one found
by Nosoko and Mori [13] for a drop of fluorocarbon
refrigerant R113 into a bath of ethylene glycol. Typical
evolution of the thermal antibubble after its formation is
also shown in Fig. 2. It first sinks because the density ρd of
HFE is larger than the density ρb of the oil. Then, the
generation of HFE vapor in the antibubble implies the
inflation of the time-dependent antibubble volume VðtÞ,
hence the decrease of the antibubble downward velocity
down to the point it becomes neutrally buoyant. Neglecting
the vapor density as compared to the liquid densities,
this buoyancy match gives the following volume ratio
V=ð4

3
πR3Þ ≈ ρd=ρb ¼ 1.72, as verified experimentally at

t¼203ms for which the antibubble changes direction [22].
Next, the buoyancy force becomes larger than the weight of
the remaining HFE drop, and the antibubble goes back up.
Eventually, the antibubble ends its life by popping up at the
free surface of the bath.
Figure 3 presents the time evolutions of antibubble

volume for three superheats, i.e. ΔT ¼ 59, 79 and 99 K,
and different initial radii (see inset for the non-normalized
data). The volume was reconstructed by assuming that
the antibubbles were axisymmetric. The initial antibubble
volume Vð0Þ ¼ V0 was determined by averaging the
antibubble volume over the first 5 ms, to smooth out the
variability intrinsic to the antibubble deformations right
after the pinch-off. When the antibubble volume is

FIG. 3. Normalized thermal antibubble volume as a function of
time for different ΔT. Thick dashed lines represent the model
output, adjusted to the particular experiment represented with
filled circles. The thin crosses correspond to additional experi-
ments. Thick dotted lines are the model output without the
thermalization term (Λ ¼ 0). Inset: all of the non-normalized
experimental data for ΔT ¼ 59 and 79 K.

FIG. 2. Snapshot series every 24 ms presenting the motion of a
thermal antibubble made of an HFE-7100 droplet released into a
bath of V20 silicone oil heated at Tb ¼ 120 °C. The change of
direction occurs 203 ms after the first image, i.e. between the
ninth and the tenth snapshots. Inset: snapshot series presenting
the formation of the thermal antibubble in the same conditions.
A satellite thermal antibubble is seen to be formed within the
“tail” of the main one. The scale bar applies to all snapshots.
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normalized by the initial volume, the volume inflation rate
clearly increases with increasing ΔT, despite the dispersion
of the data that comes from variations in the velocity of
the drop into the bath [22], and most importantly from
variations of the drop radius, a dependence that is explained
below. Filled circles data points for each ΔT in Fig. 3 are
those corresponding to a representative mean radius,
chosen for fitting the model.
We model the thermal antibubble by assuming the vapor

shell to drain axisymmetrically along the polar coordinate
θ, whose origin is taken at the bottom of the antibubble.
Because of the large contrast of density between the vapor
and the liquid drop, it is assumed that the radius of the drop
remains constant during the time the thermal antibubble
takes to reach the surface of the liquid bath. As sketched in
Fig. 1, hðθ; tÞ is the thickness of the vapor film, ûðθ; tÞ is
the average vapor velocity over the film thickness, and
Jðθ; tÞ is the evaporation mass flux from the drop, t being
the time. The conservation equation for the flow in the
vapor film then reads

∂thþ∇ · ðhûÞ ¼ J
ρv

; ð1Þ

where ∂t is the partial derivative operator with respect to t,
∇ is the nabla operator, and ρv is the vapor density. The
local evaporation flux at the interface is expressed as

J ¼ −
qþ − q−

L
; ð2Þ

where L is the latent heat of vaporization, qþ is the heat
flux brought by the bath through the vapor film at the drop
surface, while q− is the heat flux lost to thermalize the drop,
initially at the ambient temperature T0.
First, the average velocity is obtained in the frame of the

lubrication theory, valid for h=R ≪ 1, as performed in [31]
for isothermal antibubbles. Assuming no-slip at the liquid/
vapor interfaces, as commonly considered in Leidenfrost
problems (see e.g. [11]), it yields

ûðθ; tÞ ¼ −
h2

12μvR
∂θp; ð3Þ

where μv is the dynamic viscosity of the vapor, and

∂θp ¼ −ρdgR sin θ − γb∂θð∇ · ∇hÞ ð4Þ

is the pressure gradient governing the drainage of the vapor,
g being the gravitational acceleration, and γb the interfacial
tension of the oil-vapor interface. The first term in (4)
represents the hydrostatic pressure difference along the
film and the second one represents the capillary pressure
gradient due to deformations of the outer interface—the
sphericity of the inner interface being ensured by the excess
of Laplace pressure inside the drop.

Second, the heat transfer in the vapor film is assumed to
be purely conductive, implying a constant temperature
gradient ΔT=h across the vapor film, as commonly used
in Leidenfrost problems (see e.g. [11]), such that

qþ ¼ −kv
ΔT
h

; ð5Þ

with kv the thermal conductivity of the vapor. Note that the
constant temperature at the bath interface is ensured by the
convective heat transfer induced by the buoyant motion of
the antibubble into the bath [22].
Third, the heat transfer in a spherical drop with a

constant surface temperature has an analytical solution in
the form of error-function series [23], which converges
rapidly at short time, namely for t ≪ τd, where τd ¼ R2=χd
is the diffusion timescale in the liquid drop and χd is its
thermal diffusivity. The temperature gradient at the drop
surface can thus be straightforwardly obtained by deriving
once the solution given in [23] truncated at the first term,
yielding [22]

q− ¼ −kd
ΔTd

R

� ffiffiffiffiffi
τd
πt

r
− 1

�
; ð6Þ

withΔTd ¼ Tsat − T0, and kd is the thermal conductivity of
the liquid drop.
Combining Eqs. (2)–(6) with (1), scaling h with the

initial uniform film thickness h0, t with the viscous-gravity
drainage time τ ¼ μvR=ðρdgh20Þ, and writing the divergence
operator in spherical coordinates, finally lead to the
dimensionless time-evolution equation of the vapor shell
nourished by the evaporation flux:

∂t̄h̄þ
1

sinθ
∂θ

�
sinθ

h̄3

12

�
sinθþ 1

Bo
∂θ

�
1

sinθ
∂θðsinθ∂θh̄Þ

���

¼E

�
1

h̄
−Λ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πFoðt̄þ t̄cÞ
p −1

��
; ð7Þ

where bars denote dimensionless variables, and where the
dimensionless numbers are defined as follows:

Bo¼ρdgR3

γbh0
; E¼ kvμvRΔT

ρvρdgLh40
; Λ¼kdh0ΔTd

kvRΔT
; Fo¼ τ

τd
:

The Bond number Bo quantifies the capillary pressure
effect as compared to the hydrostatic pressure difference
driving the drainage, i.e. 2Rρdg. The evaporation number E
represents the dimensionless evaporation rate. The thermal-
ization number Λ compares the heat flux directed to the
drop with the heat flux coming from the bath. The Fourier
number Fo compares the drainage timescale in the film to
the thermal diffusion timescale in the drop. Notice that the
validity of the thermalization heat flux in (7) is ensured as
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long as Fo ≪ 1, which is verified in Table I. The novelty in
Eq. (7) holds in the incorporation of the drop thermalization
heat flux gauged by Λ. A dimensionless offset time t̄c ¼
tc=τ is necessary to regularize the thermalization term that
diverges at t̄ ¼ 0. We set tc ¼ 1 ms for all computations,
which has been found to be small enough to have no
influence on the results [22]. For the initial uniform film
thickness, we set h0 ¼ 4 μm, corresponding to the average
thickness for isothermal antibubbles [4]. The drop radius
was then calculated as R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3V0=4π
3
p

− h0. Equation (7) is
closed with symmetry conditions imposed at each pole, i.e.
∂θh̄ ¼ ∂θθθh̄ ¼ 0 at θ ¼ f0; πg, and with h̄ ¼ 1 as the initial
condition. The model has been solved using COMSOL
Multiphysics with fixed and temperature-dependent param-
eters given in Table I. The time evolution of the anti-
bubble volume has been reconstructed from the solution
h̄ðθ; tÞ using

VðtÞ ¼ 2

3
πR3

Z
π

0

�
1þ h0

R
h̄

�
3

sin θ dθ: ð8Þ

Results in thick dashed line in Fig. 3 show that the
experimental trend is recovered with the model. The
volume increase is accelerated with respect to a purely
diffusion-limited growth (that should result in a square-root
dependence of the volume to time [22]), which is a
signature of the drainage: as the vapor drains upwards,
the film thins at the bottom, increasing the evaporation flux
∝ 1=h̄. The modeling curves correspond to our best fits
using the thermal conductivity of the vapor phase kv as the
fitting parameter, and denoted kvfit in Table I (values in

bold). Each fit is obtained by minimizing the root mean
square difference between the experimental curve and the
modeling curve for varying kv. Note that for a given ΔT,
the fitting has only been applied to one of the experimental
curves chosen to have a representative radius. The rationale
behind our fitting approach is that kv is not precisely known
a priori as it is sensitive to temperature. Yet, the fitting
values kvfit are very close to the values taken at the mean
temperature Tsat þ ΔT=2 as usually considered in
Leidenfrost problems (see the italic values for kv in
Table I), which is a good indication that the model
represents the system correctly at leading order. This is
confirmed in Fig. 3 where the modeling curves have been
plotted in absence of thermalization, i.e. for Λ ¼ 0, and
depict an order-of-magnitude faster volume growth than in
the experimental cases. It is actually found that approx-
imately 95% of the heat provided by the conductive flux
between the bath and the droplet is pumped by the latter in
the form of sensible heat. These results demonstrate the
predominance of thermalization effect for systems featur-
ing lifetimes well below the diffusive timescale τd. This is
further evidenced by observing the evolution of the satellite
antibubble formed at pinch-off, as observed in the last five
snapshots of the inset of Fig. 2 for ΔT ¼ 59 K, where the
satellite antibubble is seen to inflate about 50 times faster
than the main antibubble, meaning that the same amount of
vapor produced in 7 ms for the satellite is produced in about
360 ms for the main antibubble. Since the initial radius for
this satellite is one order of magnitude smaller than the
radius of the main antibubble, the thermalization arises two
orders of magnitude faster, such that the evaporation is also
at least one order of magnitude more intense, as it is much
less hindered by the drop thermalization effect. The
influence of the antibubble size is illustrated in Fig. 4 that
shows the computed volume inflation for ΔT ¼ 79 K and
kv ¼ 14.4 mW=m=K for different initial radii. The volume
growth measured for a main antibubble of 787 μm radius
and a satellite antibubble of 118 μm radius are super-
imposed to the modeling curves. The model is thus shown

FIG. 4. Evolution of the thermal antibubble volume computed
for ΔT ¼ 79 K, kv ¼ 14.4 mW=m=K, and varying initial radius.
Symbols are experimental results for two different radii.

TABLE I. Values of the parameters used in this work. Proper-
ties for the liquid drop (index d) are those for HFE-7100 at
T0 [32]. Properties for the vapor (index v) are those for HFE-7100
at average temperature Tsat þ ΔT=2 [24]. Properties of the bath
(index b) are those for silicone oil V20 at Tb [33]. See Ref. [22]
for details on the temperature dependence of parameters.

Fixed parameters: T-dependent parameters:

Tsat (°C) 61 Tb (°C) 120 140 160
T0 (°C) 25 ΔT (K) 59 79 99
ΔTd (°C) 36 γb (mN=m) 15 14 13
L (kJ=kg) 112 ρv (kg=m3) 8.38 8.15 7.94
kd (mW=K=m) 69 μv (μPa s) 14.3 15.2 16.0
ρd (kg=m3) 1510 kv (mW=K=m) 13.8 14.7 15.5
χd (mm2=s) 0.04 kvfit (mW=K=m) 13.2 14.4 12.7

Measured parameter: V0 (μl) 1.41 2.03 1.07

Calculated parameter: R (μm) 692 781 630

Dimensionless numbers: Foð×10−3Þ 3.4 3.2 4.1
Boð×101Þ 8.2 12.6 7.1
Λð×10−2Þ 1.8 1.1 1.3
Eð×103Þ 2.2 3.9 3.8
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to rationalize the size dependence of the volume inflation
thanks to the thermalization term.
To conclude, we presented surfactant-free thermal anti-

bubbles relying on the vapor feeding of the gas shell given
that the liquid bath temperature is higher than the saturation
temperature of the liquid drop. We implemented an addi-
tional term in the classical film equation for Leidenfrost
problems to account for the thermalization of the evapo-
rating liquid drop. We then demonstrated that this term is
essential to quantitatively compare with the experimental
data when the drop is initially cold and that the transient
matters, namely, that the observation timescale is smaller
than the thermal diffusion timescale τd in the encapsulated
Leidenfrost drop. For a radius of 700 μm, it corresponds to
10 s, but for a radius of 100 μm, it would only be 100 ms.
Inversely, by suppressing the thermalization term, we found
that the evaporation rate increases by at least an order of
magnitude. Thermal antibubbles are therefore shown to be
unique in monitoring the evaporation rates and thermal-
ization effects of encapsulated volatile drops under various
thermal conditions, as enabled by a direct visualization of
their inflating volumes.
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