
SOLVEr Suite for Alkalinity-PH Equations
SOLVESAPHE, Version 2.0

—
User Manual

G. Munhoven

Dépt. d’Astrophysique, Géophysique et Océanographie,
Université de Liège,

B–4000 Liège, Belgium,
eMail: Guy.Munhoven@uliege.be

Manual Version 2.0 (31st December 2020)

Abstract

This manual describes the usage and the main technical aspects of the SOLVEr Suite for
Alkalinity-PH Equations (SOLVESAPHE), Version 2.0). The codes provide a self-contained For-
tan 90 implementation of the universal and robust algorithms for solving the total alkalinity-pH
equation variants presented in Munhoven (2021), along with new implementations of a few
other, previously published solvers, as well as some auxiliary functions and subroutines. Also
included are the original driver programs that were used to produce the results reported in
Munhoven (2021). The codes of SOLVESAPHE are free software and they are released under
the GNU Lesser General Public Licence Version 3 or later. Bug reports, reports about successful
builds on other platforms or with other compilers than those listed below, as well as contribu-
tions are welcome!

All publicly available SOLVESAPHE code versions are archived on ZENODO under the DOI

10.5281/zenodo.3752250

Contents

1 Requirements 2
1.1 Compiler and Preprocessor . 2
1.2 Contents and summary description of solvesaphe2.tar.gz 2

2 Building the test cases 3

3 Description and usage of the core modules 4
3.1 Module MOD_CHEMCONSTS . 4
3.2 Module MOD_PHSOLVERS . 5
3.3 Practical usage: typical sequence . 6
3.4 Streamlining, extensions, . 7

History of the SolveSAPHE codes 8

History of this document 8

1

1 Requirements

1.1 Compiler and Preprocessor

A standard compliant Fortran 90 compiler and a C-preprocessor or a compatible preprocessor
(such as, e.g., fpp) are required to compile the codes. Preprocessor directives are included for
enabling or disabling specific parts (debugging messages, optional code parts and variants, . . .)
in the solver modules. In the main driver programs, they are used to select among the cases
treated in the paper.

After pre-processing, the modules’ source files are strictly standard conforming Fortran 90.
The codes take advantage of the configurable precision facilities offered by Fortran 90. A single
change in the module mod_precision.f90 is thus sufficient to consistently use the codes in single
or double precision, as required by the user.

SOLVESAPHE is self-contained and does not require any external libraries.
The codes were tested with

• GNU Fortran (GCC) 5.0.4 on Ubuntu 16.04 (x86_64)

1.2 Contents and summary description of solvesaphe2.tar.gz

Core modules

mod_phsolvers.F90
module containing the solvers for the total alkalinity-pH equations; also contains the func-
tions and subroutines for the equation and its derivative

mod_chemconst.f90
module with the parametrizations for the stoichiometric constants; also holds the products
of the constants (the Πj factors in the main paper) for the considered acid systems and the
pH scale conversion factor (denoted s in the main paper) alkalinity-pH equation

mod_phsolvers_logging.F90
extended version of mod_phsolvers.F90 that does extra bookkeeping regarding the number
of iterations, types of limiting events, etc.

Configuration Modules

mod_precision.f90
module to select the working precision (REAL data type) to be used in all the source codes

Drivers and main programs

main_check.f90
program to carry out the constants’ value checks provided by the subroutine checkconstants
in mod_chemconsts.f90

driver_at_logging.F90
driver for determining the numbers of iterations and other internal information for test cases
SW1, SW2, SW3 and SW4; uses mod_phsolvers_logging

driver_at_general2.F90
driver for running the test cases SW1, SW2, SW3 and SW4; uses mod_phsolvers

driver_at_carbonate.F90
driver for calculating the complete carbonate system speciation for the test cases SW1,
SW2, SW3 and SW4 (and SW5, a reduced variant of SW3) with the AlkT-CT pair; uses
mod_phsolvers and mod_chemspeciation.f90 and is compatible with SOLVESAPHE v. 1

2

Other files

mod_chemspeciation.f90
module providing a collection of subroutines to calculate the speciation of the different acid
systems considered, as a function of pH

makefile
makefile for building the test case programs and the stoichiometric constants’ checking util-
ity

COPYING.LESSER
text of the GNU Lesser General Public Licence version 3

COPYING
text of the GNU General Public Licence version 3 (underlying the GNU Lesser General
Public Licence version 3)

manual.pdf
this manual.

2 Building the test cases

After uncompressing and extracting the contents of the archive, e.g., with

$ tar xvfz solvesaphe2.tar.gz

the various provided programs can be build with

$ make target

where target may be one of

checkconsts — for compiling main_check.f90 and its dependencies;

at_general2 — for compiling driver_at_general2.F90 and its dependencies;

at_logging — for compiling driver_at_logging.F90 and its dependencies.

at_carbonate — for compiling driver_at_carbonate.F90 and its dependencies.

The generated executables have the same name as the target in each instance. Please notice that
it may be necessary to proceed to a clean build (i.e., first make clean) to consistently rebuild a
program after changes in a module. This is due to complications arising from the compilation of
Fortran 90 modules, during which two files (the *.o and the *.mod files are generated, whereas
make can only control one of them (here the *.o).

checkconsts writes its output to the file named checkconsts.log
Specific test cases and other boundary conditions (temperature, pressure, salinity) and vari-

ants (type of initialisation, etc.) are selected by adapting the precompiler directives that can be
found right after the copyright and licencing statements at the beginning of each one of the driver
files.

The optionally generated result files (when #define CREATEFILES is used, these are created)
are Fortran unformatted (binary) files which can be directly read in by some post-processing
applications (e.g., IDL).

3

3 Description and usage of the core modules

All of the solvers are implemented as FUNCTION sub-programs. The arguments to provide in-
clude the relevant alkalinity and total dissolved acid concentrations, and optionally, one argument
(p_hini) to provide an initial value to start the iterations and a second one (p_val) to retrieve the
equation residual if wanted. For floating-point calculations, all of the codes consistently use a con-
figurable REAL data type that must be selected in MOD_PRECISION (source file mod_precision.f90).
The identifier of that data type is stored in the INTEGER parameter wp. The default type is set to
DOUBLE PRECISION (wp=KIND(1D0)). The solver FUNCTION sub-programs are accordingly declared
to be of type REAL(KIND=wp) throughout.

If the optional initialisation argument is left out, the solver calls the cubic polynomial initialisa-
tion schemes described in Munhoven (2021) and its technical supplement. Each module contains
a version of that initialisation routine suitable for the respective solvers. Upon completion, the
solver functions either return the calculated [H+] value(s), or the NaN value for [H+] defined by
pp_hnan (set to −1 by default) in the respective solver module if no such root could be found or
if there is no root. In the latter case, the corresponding p_val is set to HUGE(1._wp).

All of the solvers use the thermodynamic constants’ products (Πj’s) stored in the module
MOD_CHEMCONSTS at the time of the call. These have to be initialised before calling the solver.

The convergence criterion used with all of the solvers requires that the relative extent of the
bracketing interval, which is continuously updated as iterations proceed, compared to its mid-
point falls below a given threshold. The threshold value is set by the parameter pp_rdel_ah_target
that can be found in each module. It is set to 10−8 by default.

3.1 Module MOD_CHEMCONSTS

The source code of this module is in mod_chemconsts.f90.
It provides a basic, but comprehensive set of FUNCTION sub-programs (type REAL(KIND=wp))

to calculate the stoechiometric constants for

• the self-ionization of water (id.: wat)

• the dissociation series of carbonic acid (id.: dic)

• the dissociation of boric acid (id.: bor)

• the dissociation of silicic acid (id.: sil)

• the dissociation series of phosphoric acid (id.: po4)

• the dissociation of ammonium (id.: nh4)

• the dissociation of hydrogen sulphide (id.: h2s)

• the dissociation of bisulphate (id.: so4)

• the dissociation of hydrogen fluoride (id.: flu)

as a function of temperature (in kelvin), salinity (no units) and applied pressure (in bar). All
of the concentrations are supposed to be expressed in mol/kg-solution. For some acids, several
parametrizations may be given. Calculations in the respective FUNCTION subprograms use the
same pH scale as originally published. Auxiliary functions to convert between pH scales (free,
total and seawater scales) are provided.

The solver modules interact with MOD_CHEMCCONSTS only via the api1_aaa, api2_aaa, . . . and
the aphscale variables that hold the stoichiometric constants’ products, i.e., the Πj factors in the
main paper. The aaa part in the names identify the respective acid systems on the basis of the
three-letter codes given in brackets in the list above. aphscale holds the pH scale conversion
factor s (Munhoven, 2013, eqn. (20)).

4

The FUNCTION sub-programs for calculating the individual constants are kept PRIVATE in the
module. This helps to avoid potential misuse. A specific SUBROUTINE should be used to initialize
the relevant api1_aaa, api2_aaa, . . . and aphscale variables. Special attention must be paid to
consistently use a common pH scale for the set of constants, and convert where necessary. Two
sample subroutines, SETUP_API4PHTOT and SETUP_API4PHSWS respectively based upon the total
and seawater scales are provided in mod_chemconsts.f90. For the exact names and detailed char-
acteristics (references, pH scale, units, etc.), please refer to the source code file and the comments
included.

mod_chemconsts.f90 further contains FUNCTION sub-programs to calculate

• the solubility of CO2 gas

• the solubility product of calcite

• the solubility product of aragonite

• the concentrations of some conservative seawater solutes as a function of salinity (calcium,
boron, fluoride, sulphate)

• the density of seawater as a function of temperature, salinity and pressure.

For further information, please refer to the detailed comments in the source code.

3.2 Module MOD_PHSOLVERS

The source code of this module is in mod_phsolvers.F90. It provides the following solvers, suit-
able for solving the different variants of the alkalinity-pH equation obtained for the CT, CO2,
HCO−

3 and CO2−
3 as the characteristic variable for quantifying the carbonate system (eqn.(2) in

combination with either one of eqns. (3)–(6) in Munhoven (2021)):

SOLVE_AT_GENERAL2
the algorithm from Munhoven (2021) based upon Newton-Raphson, regula falsi and bisec-
tion iterations;

SOLVE_AT_GENERAL
a wrapper around SOLVE_AT_GENERAL2 to replicate the API of SOLVESAPHE v. 1 – uses the
AlkT-CT pair;

SOLVE_AT_GENERAL2_SEC
the variant of SOLVE_AT_GENERAL2 that uses secant instead of Newton-Raphson iterations;

SOLVE_AT_GENERAL_SEC
a wrapper around SOLVE_AT_GENERAL2_SEC to replicate the API of SOLVESAPHE v. 1 – uses
the AlkT-CT pair;

The module furthermore contains the following auxiliary sub-programs:

ANW
a function sub-program to calculate the total alkalinity component not related to water self-
ionization and optionally also its derivative;

ANW_INFSUP
a subroutine to calculate the infimum and the supremum of AlknW([H+]), i.e., of the total
alkalinity component not related to water self-ionization — these are required to calculate
the safe bounds;

EQUATION_AT
a function sub-program to evaluate the rational function form of the total alkalinity-pH
equation and optionally also its derivative – requires ANW;

5

HINFSUPINI
a subroutine that returns the number of roots of the problem being solved, the upper and
lower bounds for each root, if any, and an estimate for the initial value for the iterative
solver. This subroutine actually only selects the specific subroutine for the type of input
data being used:

• HINFSUPINI_DIC for AlkT & CT — further uses HINI_ACB_DIC to determine the initial
value;

• HINFSUPINI_CO2 for AlkT & CO2 — further uses HINI_ACB_CO2 to determine the initial
value;

• HINFSUPINI_HCO3 for AlkT & HCO−
3 — further uses HINI_ACBW_HCO3 to determine the

initial value;

• HINFSUPINI_CO3 for AlkT & CO2−
3 — further uses HINI_ACBW_CO3 to determine the

initial value;

The module offers a few customization options:

• the pre-compiler directive SAFEGEOMEAN_INIT allows to bypass the initialisation of the it-
erations based upon the cubic polynomial approximations: if it is define’d, the geometric
mean of the upper and lower root bounds is used instead. By default, it is not define’d
and th standard initialisation is used. Please notice that if initial values are provided when
calling a solver, these are unconditionally used, and only brought within brackets.

• the maximum number of iterations allowed for each method is controlled by the parameters
jp_maxniter_idmethod, where the method identificator idmethod should be substituted by

– atgen for SOLVE_AT_GENERAL

– atsec for SOLVE_AT_GENERAL_SEC

All of these are set to 100 by default.

After the call, the number of iterations actually performed to determine each of the roots can be
retrieved from the niter_idmethod variable (a DIMENSION(2) array) related to the used solver,
and that is provided in the module (with idmethod as above). For other details, such as the
number, order, type and shape of the arguments in the solver function sub-programs, please refer
to the comments in the source code.

3.3 Practical usage: typical sequence

After the user has chosen a suitable solver from mod_phsolvers.F90, the steps required to include
it into their own program are as follows.

1. Select an adequate precision in the MOD_PRECISION module (mod_precision.f90).

2. Make your choice for the stoichiometric constants (i.e., chose pH scale, etc.): either use
one of the SETUP_API_... routines that are provided in mod_chemconsts.f90, adapt one
of them or create a new one – make sure it initializes all of the required api_... variables in
mod_chemconsts.f90 and, if necessary, also the aphscale variable for the pH scale conver-
sion.

3. In the scoping unit of your code that requires pH calculation, include the Fortran directives

USE MOD_PRECISION
USE MOD_CHEMCONSTS
USE MOD_PHSOLVERS

If the exact speciation of the acid systems are also required, one may furthermore include

USE MOD_CHEMSPECIATION

6

4. Before each call of the solver, make sure that the set of chemical constants (for the de-
sired temperature, salinity and pressure) is correctly initialized by calling the adequate
SETUP_API... subroutine.

5. Call the chosen solver function.

6. If required, call the relevant SPECIATION_aaa(...) subroutines from MOD_CHEMSPECIATION
to calculate the actual speciations (where the aaa parts in the subroutine names identify
the respective acid systems on the basis of the three-letter codes given in brackets in sec-
tion 3.1 above). Notice that the SPECIATION_aaa(...) subroutines rely upon the api1_aaa,
api2_aaa, . . . values that were used to calculate pH. Their values must therefore not be
changed before the speciation calculations for the sake of consistency.

3.4 Streamlining, extensions, . . .

Recommended streamlining

In case a large number of pH calculations for many different temperature, salinity and pressure
conditions are required, it is recommended to restrict the SETUP_API_... routine to the strict
minimal set of stoichiometric constants required to solve the problem. Because of the exponential
or power function evaluations required for the calculation of each single of the chemical constants,
calculating even the bare minimum set of constants may take a significant fraction of the total time
needed to complete one pH determination.

How to extend it

SOLVESAPHE is obviously extensible: users may add extra acid systems if needed. This task is
not complicated, but requires changes at different places.

1. First, decide to which extent the dissociation of considered acid is going to be taken into
account (define the number of dissociations n and the integer m that sets the zero proton
level of the system — see Munhoven (2013, 2021) for more details).

2. Add function subprograms in mod_chemconsts.f90 to make available the required chemical
constants. All of the routines in SOLVESAPHE expect concentrations to be expressed in
mol/kg. The arguments of the subroutine functions should adhere to the common structure
t_k, s, p_bar (in this order), where t_k is the temperature in kelvin, s is salinity and p_bar
the applied pressure in bar. It is recommended to keep the actual functions that evaluate
the parametrizations private in the module.

3. Add the api1_aaa, api2_aaa, . . . variables to mod_chemconsts.f90, chosing a unique iden-
tificator aaa for the new contributing acid system.

4. Add a new speciation subroutine SPECIATION_aaa(...) to mod_chemspeciation.f90 if re-
quired, distinguished by the unique identificator aaa for the new contributing acid system.

5. Prepare a SETUP_API_... routine to initialize all of the api* variables of all the acid systems
considered (incl water self-ionization and the pH scale conversion factor aphscale.

6. Amend mod_at_phsolvers.F90 to take the effect of the additional acid system into account
by amending ANW_INFSUP and ANW (add the dummy p_aaatot to the argument lists and
adapt the code), then include p_aaatot in the argument list of the solver function sub-
program and adapt the calls to ANW_INFSUP and each of the four HINFSUPINI_ccc and in
HINFSUPINI, as well as in the two solver routines.

7. Change the calls to the new SETUP_API_... (only if its name has changed, the argument
list should have remained the same) and adapt the list of arguments wherever the solver is
called in the main program to make it conforming with the changes made in the module.

7

History of the SOLVESAPHE v. 2 codes

31st December 2020
initial release

History of this document

31st December 2020 (version 2.0 of the manual)
initial release

References

Munhoven, G.: Mathematics of the total alkalinity-pH equation – pathway to robust and uni-
versal solution algorithms: the SolveSAPHE package v1.0.1, Geosci. Model Dev., 6, 1367–1388,
https://doi.org/10.5194/gmd-6-1367-2013, 2013.

Munhoven, G.: SolveSAPHE-r2: revisiting and extending the Solver Suite for Alkalinity-PH
Equations for usage with CO2, bicarbonate or carbonate concentrations instead of CT, Geosci.
Model Dev. Discuss., 2021.

8

	Requirements
	Compiler and Preprocessor
	Contents and summary description of solvesaphe2.tar.gz

	Building the test cases
	Description and usage of the core modules
	Module MOD_CHEMCONSTS
	Module MOD_PHSOLVERS
	Practical usage: typical sequence
	Streamlining, extensions, …

	History of the SolveSAPHE codes
	History of this document

