
Astronomy & Astrophysics manuscript no. exorad_paper_mix ©ESO 2023
November 3, 2023

Harnessing machine learning for accurate treatment of overlapping
opacity species in GCMs

Aaron David Schneider1,2, Paul Mollière3, Gilles Louppe4, Ludmila Carone5, Uffe Gråe Jørgensen1, Leen Decin2 &
Christiane Helling5

(1) Centre for ExoLife Sciences, Niels Bohr Institute, Øster Voldgade 5, 1350 Copenhagen, Denmark
(2) Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
(3) Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
(4) Montefiore Institute, University of Liège, Liège, Belgium
(5) Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria

November 3, 2023

ABSTRACT

To understand high precision observations of exoplanets and brown dwarfs, we need detailed and complex general circulation mod-
els (GCMs) that incorporate hydrodynamics, chemistry, and radiation. In this study, we specifically examine the coupling between
chemistry and radiation in GCMs and compare different methods for mixing opacities of different chemical species in the correlated-k
assumption, when equilibrium chemistry cannot be assumed. We propose a fast machine learning method based on DeepSets (DS),
which effectively combines individual correlated-k opacities (k-tables). We evaluate the DS method alongside other published meth-
ods like adaptive equivalent extinction (AEE) and random overlap with rebinning and resorting (RORR). We integrate these mixing
methods into our GCM (expeRT/MITgcm) and assess their accuracy and performance for the example of the hot Jupiter HD 209458
b. Our findings indicate that the DS method is both accurate and efficient for GCM usage, whereas RORR is too slow. Additionally,
we observe that the accuracy of AEE depends on its specific implementation and may introduce numerical issues in achieving ra-
diative transfer solution convergence. We then apply the DS mixing method in a simplified chemical disequilibrium situation, where
we model the rainout of TiO and VO, and confirm that the rainout of TiO and VO would hinder the formation of a stratosphere. To
further expedite the development of consistent disequilibrium chemistry calculations in GCMs, we provide documentation and code
for coupling the DS mixing method with correlated-k radiative transfer solvers. The DS method has been extensively tested to be
accurate enough for GCMs, however, other methods might be needed for accelerating atmospheric retrievals.

Key words. Radiation: dynamics – Radiative transfer – Planets and satellites: atmospheres – Planets and satellites: gaseous planets
– Methods: numerical

1. Introduction

General circulation models (GCMs) have been applied with
wide success to understand the 3D nature of exoplanetary atmo-
spheres (for a review see Showman et al. 2020). These models
usually consist of a dynamical core that solves the equations of
hydrodynamics, coupled to physical parameterizations with dif-
fering complexity that describe the forcing on the temperature
and velocity field. A very common physical parameterization in
GCMs is that of heating and cooling by (gas) radiative transfer.

With the advent of detailed spectra from medium-resolution
space-based telescopes such as the JWST, we will soon have
the ability to map the spatial distribution of chemical species in
the atmospheres of hot gas giants. Ground-based high-resolution
spectroscopy already allows us to measure chemical variations
between morning and evening terminators (e.g., Ehrenreich et al.
2020; Kesseli & Snellen 2021; Kesseli et al. 2022). To com-
prehend these spatial distribution maps, we need 3D numerical
models that can couple hydrodynamics, chemistry, and radia-
tive transport. Only one GCM, the unified model (UM), cur-
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rently possesses this capability (Drummond et al. 2020; Zamy-
atina et al. 2023). Lee et al. (2023) employed a faster chemical
network, but did not incorporate a chemically consistent radia-
tive transfer solver. However, these studies consistently indicate
long runtimes.

One of the challenges of such models is the consistent cou-
pling between chemical abundances and line opacities as used
in the radiative transfer (Amundsen et al. 2017). Line opacities
of molecular species in the pressure-temperature range of warm
and hot gas giants often are a collection of millions of lines,
which must be accurately accounted for also in low resolution
(fast) radiative transfer. It has therefore been realized early on
that rapid calculations would need some simplifications. One of
these is the correlated-k method (Goody et al. 1989), which is
similar to the method of opacity distribution functions (ODFs)
introduced for stellar atmospheres (Gustafsson et al. 1975). The
correlated-k method as well as the ODF method converts the
wavelength-dependent opacity into distribution functions (called
k-tables or ODFs) by sorting opacity values within spectral bins
(see Sect. 2). This approach captures the dynamic range of the
opacity and allows radiative transfer calculations with a small
set of spectral bins (usually 5-30 for GCMs and a few hun-
dred for spectra) and an accuracy of a few percent on bolomet-
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ric fluxes (e.g., Amundsen et al. 2014; Leconte 2021; Schneider
et al. 2022b).

The main drawback of the correlated-k method is the loss of
all wavelength information in a spectral bin, when the opacity
is converted to k-tables. Since the wavelength distribution of the
opacity is depth-dependent, the loss of wavelength information
will at first-order approximation cause erroneous optical depth
calculation through the atmosphere, and hence erroneous radia-
tive transfer computation and energy balance. This can be cor-
rected for in statistical ways, as described in detail below using
the RORR method (see Sect. 2.1). In the corresponding ODF
scheme traditionally used in older stellar atmosphere computa-
tions, the problem is the same and was discussed for example
in (Saxner & Gustafsson 1984), where it was concluded that
the cost in increased computing time as function of the number
of individual opacity species made it unfeasible to continue the
ODF scheme for cooler stars. Newer stellar models are there-
fore usually computed based on the opacity sampling scheme,
as discussed for example in (Jorgensen 1992; Gustafsson & Jor-
gensen 1994; Helling & Jorgensen 1998). It is, however, not ob-
vious how one should treat the strong atomic lines correctly in
the opacity sampling scheme, and if these are important in exo-
planetary atmospheres alongside with the multitude of molecu-
lar lines, the correlated-k method may turn out superior, or a new
hybrid method may be needed.

In order to still use the correlated-k method, GCMs often
use premixed k-tables, which tabulate the k-tables for a given
chemical mixture assuming that the gas is in chemical equilib-
rium and abundances can be constrained as a function of pres-
sure and temperature alone (e.g., Showman et al. 2009; Lee et al.
2021; Schneider et al. 2022b; Deitrick et al. 2022). The k-table
at a certain grid point is then recovered by interpolating on the
pressure-temperature dependent premixed grid of k-tables. This
approach, however, is not chemically correct when the gas is not
in chemical equilibrium, which is the case if processes such as
chemical kinetics or photochemistry are taken into account in
the model.

The UM (Amundsen et al. 2016) is, to our knowledge, cur-
rently the only hot Jupiter GCM that can handle k-table mixing
on the fly, without the need of premixed tables. Using a 1D radia-
tive transfer code, Amundsen et al. (2017) benchmarked several
numerical schemes that can approximate k-table mixing. Treat-
ing the k-table mixing on the fly rather than using pre-mixed
tables, introduces more freedom in the radiative transfer compu-
tation, but for gasses with many opacity sources only if it can be
performed sufficiently fast. We therefore extend upon Amund-
sen et al. (2017) in this paper, by introducing a new machine
learning accelerated technique, and by coupling these methods
to our GCM (expeRT/MITgcm). This paper starts by introduc-
ing the correlated-k method and several approximate methods
for k-table mixing in Sect. 2. We then discuss the setup of our
GCM in Sect. 3, show the benchmarking results in Sect. 4 and a
simple disequilibrium application in Sect. 5, where we apply our
model in a simple rainout situation, where condensation of TiO
and VO are approximated. We finally conclude and discuss the
implications of this work in Sect. 6.

2. Mixing species

According to the Lambert Beer law, the total transmission T of
light passing through a homogeneous slab of gas with density ρ
[kg m−3] opacity κ [m2 kg−1] and thickness d [m] in the spectral

window from frequency ν0 [Hz] to ν1 [Hz] is given by

T =
1

ν1 − ν0

∫ ν1
ν0

exp (−κ(ν)ρd) dν. (1)

In the correlated-k method, the integral of Eq. 1 is solved by
substituting ν,

T =
1

ν1 − ν0

∫ 1

0
exp (−κ(g)ρd) dg, (2)

such that the integration over frequency is substituted by an in-
tegration over a new independent variable g. This independent
variable g represents the cumulative opacity distribution func-
tion and is then given by the opacity distribution function f , such
that

g(κ) =
∫ κ

0
f (κ′)dκ′. (3)

The cumulative opacity distribution function g can be under-
stood as the probability to find an opacity value of less than κ
at a specific frequency ν. While both Eqs. 1 and 2 are formally
identical, since they only differ in the order in which the sum
is evaluated, they might differ significantly in the discrete limit,
where individual summation points need to represent the value of
the opacity for a certain non-zero width ∆ν or ∆g. In practice, the
correlated-k method divides the total computed frequency range
into coarse frequency bins, in which all integrals over frequency
are substituted into integrals over g. The radiative transfer equa-
tion for the intensity I(ν, g) [W m−2 sr−1 Hz−1] of the coarse fre-
quency bin between ν0 and ν1 at the discrete sub bin g in g-space
then becomes

n · ∇I(ν, g) = ρκ(ν, g)
[
S (ν, g) − I(ν, g)

]
, (4)

where S (ν, g) [W m−2 sr−1 Hz−1] is the source function and n is
the unit vector of the direction in which the intensity is measured.
Thus, in each of these coarse frequency bins, the radiative trans-
fer is solved individually for each g grid value and integrated
over g similarly to Eq. 2 afterward to obtain the intensity I of the
coarse frequency bin from ν0 to ν1. In this way, the correlated-k
method allows for rapid calculations by requiring less radiative
transfer computations for the same level of accuracy.

To obtain the correct k-tables for a mixture of individual
species, one would need to sum up the individual contributions
of the individual species, weighted with their abundance, and
construct the opacity distribution functions of the total opacity.
Several methods have been put forward to solve this issue, and
we will test some of these in this work. It is important to note
that the opacity distribution functions vary as a function of pres-
sure and temperature and mixture in the gas, thus, in order to use
the correlated-k method, one requires methods to construct these
κ(ν, g) (k-table) values accurately.

2.1. Random overlap with rebinning and resorting (RORR)

Both Saxner & Gustafsson (1984) and Lacis & Oinas (1991) in-
dependently introduced a similar method for ODFs and k-tables
respectively that treats the mixing of multiple opacity species un-
der the assumption that the distributions of the individual opacity
spices are not correlated:

ftot(κ1, ..., κNs ) = f (κ1) · ... · f (κNs ). (5)

In simple terms, this means that, for example, the line cores are
randomly distributed and do not systematically occur at the same
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frequencies. In the case of correlated-k, this method is called the
random overlap with rebinning and resorting (RORR) method.
An in depth introduction to the RORR method can be found in
Amundsen et al. (2017) and in Mollière et al. (2015), and we will
instead just briefly outline its basic function.

The core of the RORR method is the assumption that the
opacities of two species are uncorrelated. This will then im-
ply that their transmissions are also uncorrelated (Mollière et al.
2015). From Eq. 1, we can then see that the transmission of both
species can be multiplied to get the total transmission. It is then
possible to find a k-table of a mixture by convolving their prob-
ability distributions (e.g., Mollière et al. 2015; Amundsen et al.
2017). The final result of the convolution calculation can be re-
sorted and binned back to the original g grid for further com-
putations. Repeating this procedure with the combined k-table
of the two species and a third species yields the next step. This
procedure is then repeated until all opacity species are included
in the total k-table (Amundsen et al. (2017) provides a useful vi-
sualization of the procedure in their Fig. 1). From the methods
outlined in this work, RORR is the slowest but most accurate
method. Furthermore, RORR is well benchmarked against line-
by-line calculations (e.g., Amundsen et al. 2014; Mollière et al.
2015). It is therefore the method of choice for most correlated-
k 1D atmosphere models, such as ATMO (Tremblin et al. 2015),
petitRADTRANS (Mollière et al. 2019) or PICASO (Mukherjee
et al. 2023).

2.2. Premixed k-tables

Assuming equilibrium chemistry, one can create k-tables as
lookup tables of pressure and temperature, which can be interpo-
lated on during the radiative transfer calculations. It is important
to note that these premixed tables are subject to the exact input to
the equilibrium chemistry calculations (e.g., metallicity or C/O
ratio) and need to be recomputed if the atmosphere is expected to
deviate from these. Premixed tables can be computed in multiple
ways. Showman et al. (2009) calculated premixed tables by cal-
culating the distribution functions of the mixture. In Schneider
et al. (2022b), we have calculated these k-tables using RORR
on the individual k-tables. As already pointed out in Amund-
sen et al. (2017), the accuracy of this approach is subject to the
pressure and temperature resolution of the lookup table, since
the equilibrium abundances are expected to vary by many orders
of magnitude, much more than the individual opacities them-
selves. In Schneider et al. (2022b), we have therefore computed
the lookup tables, such that they match the pressure grid used in
the GCM, removing the need to interpolate in pressure and al-
lowing for a fine grid in temperature (1000 temperature points).
While these lookup tables can be very precise, if resolved suf-
ficiently, they come at the cost of flexibility, since they require
assumptions on the abundances as a function of temperature and
pressure.

2.3. Summation

In fact, the easiest way to calculate the mixed k-table from a
mixture of different opacity species is to approximate the convo-
lution by a sum:

κtot(ν, g) =
Ns∑
i=1

κi(ν, g), (6)

where Ns is the number of species and the subscript κi is the
individual k-table of species i, weighted with its mass mixing

ratio. While there is no logical justification for this approach,
the approach is certainly the fastest method, as it only requires
the evaluation of the sum of k-tables. This approach is certainly
attractive, it will, however, naturally underestimate κtot at small g
and overestimate κtot at large g. This can be best seen in RORR1,
where the evaluation of the convolution would add κi values from
larger g as well as those of smaller g to the κtot values at small
g. This is particularly important, since the small g values, which
encode the small κtot values, decide the depth up to which stellar
irradiation can be absorbed.

2.4. Adaptive equivalent extinction

Adaptive equivalent extinction (AEE) is a variation of equiva-
lent extinction Edwards & Slingo (1996) introduced by Amund-
sen et al. (2017). The idea is to determine the most important
species and then treat all other species as gray within the spec-
tral band. To obtain the major absorber, one first calculates semi-
gray opacities for each species. The semi-gray opacity of species
i is calculated as an average of the k-table in a given spectral bin
and is weighted with a function w that depends on the value of
g:

κav,i(ν) =

∫ 1
0 κi(ν, g)w(ν, g)dg∫ 1

0 w(ν, g)dg
. (7)

We show below that the choice of the weighting function w has
a significant impact on the accuracy of the AEE method. A good
measure for the importance of the opacity at a given g value on
the accuracy of the radiative transfer calculation is the magnitude
of the flux at that value of g (Amundsen et al. 2017). We thus
chose to use the absolute values of the stellar and planetary fluxes
through a g value as a weighting function. However, since we can
only know the fluxes, once we have already mixed the k-tables
and calculated the radiative transfer, we need to rely on the value
of the planetary and stellar flux from a previous radiative transfer
calculation, which would be the previous radiative time step in
the case of GCMs.

Using these κav,i(ν) values, a major absorber is found by ver-
tically integrating the transmission (Eq. 1) from the top of the
atmosphere down to an optical depth of one for each species.
The first species to reach an optical depth of one is then used as
the major absorber in the vertical column. The final total opacity
in each spectral bin is then given as

κtot(ν, g) = κm(ν, g) +
Ns∑

i,m

κav,i(ν), (8)

where m is the species, which has been identified as the major
absorber. We note that the UM uses a slightly different and less
sophisticated method (called equivalent extinction or EE), where
the major absorber is determined locally and without integrating
over the atmospheric column. A detailed introduction of the AEE
method can be found in Amundsen et al. (2017).

2.5. DeepSet approach

The RORR mixing approach has three important attributes.
Firstly, the method stays the same, no matter how many species
are mixed with each other and in what order. RORR is thus
invariant to permutations in the set of opacities that are to be

1 for a visualization, see Fig. 1 of Amundsen et al. (2017)
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Fig. 1: The neural network used in the DeepSet (DS) approach.

mixed. Secondly, to a first approximation RORR can be approx-
imated by a simple sum as mentioned in Sect. 2.3 and verified be-
low. Lastly, although RORR is computationally expensive com-
pared to the other outlined approaches, in its core for each fre-
quency bin, it only consists of a convolution, a sorting step and
an interpolation step, which is repeated Ns−1-times. These three
attributes greatly constrain a possible emulation of RORR by a
machine learning algorithm, since only algorithms with fast in-
ference, versatile input size and permutation invariance can be
used.

We tested several architectures, such as a U-net like convo-
lutional network (Ronneberger et al. 2015), gradient boosted re-
gression trees using the abundances as input and the mixed opac-
ities as output using XGboost (Chen & Guestrin 2016). With
the U-net we ended up needing too many convolution blocks
and with XGboost, we needed structures that were too deep and
therefore too memory consuming to get reasonable accuracy.
One of the reasons for the poor performance of these methods
in our context is that they are too different from a simple sum
(see Sect. 2.3). We have therefore settled with a DeepSet ap-
proach (Zaheer et al. 2017). A DeepSet for our case of k-table
mixing can be written as

y = ℵ

 Ns⊕
i=1

ℶ (Xi)

 , (9)

where y is the response of the DeepSet (the mixed k-tables, see
below Eq. 13), X = {X1, ..., XNs } is the set of input vectors (the
individual k-tables, see below Eq. 12), and ℵ and ℶ are functions.

Simply put, the idea is to use a function ℶ to encode each
vector Xi of a set into a hidden representation ℶ(Xi). These rep-
resentations are then summed up2, and subsequently decoded
by function ℵ to get the output. We illustrate the concept of
DeepSets (Zaheer et al. 2017) for the problem of k-table mixing
in Fig. 1. We used

ℶ(Xi) = max(a1 · Xi, 0) (10)

and

ℵ(z) = a2 · z, (11)

2 Note that any permutation invariant operation could be used in this
step.

with weights a1 and a2, which are matrices of size Ng × Ng.
Whereas ℵ is a linear function, ℶ is non-linear due to the in-
clusion of a rectified linear activation (ReLU). Different, more
complex functions could also be used, but we found that the ac-
curacy reached by using these simple functions is already good
enough. More complex functions, would thus only result in a
slower performance. The weights a1 and a2 of the functions ℵ
and ℶ are then learned by a neural network.

To train the neural network, we chose to implement the net-
work in Keras (Chollet et al. 2015). The weights are learned by
minimizing the mean squared error using the Adam optimizer
(Kingma & Ba 2014). We then performed a Bayesian hyperpa-
rameter search using hyperopt (Bergstra et al. 2012) to find the
best amount of features for the hidden representation and to de-
termine the optimal learning rate of the optimizer. The loss did
not improve significantly by the use of more than Ng features in
the hidden representation, and we therefore chose to use Ng fea-
tures. Additionally, we found that a learning rate of α = 1×10−3

seems to perform best.
The neural network acts on each frequency bin individually

and therefore does not care about the frequency resolution. To
generate the training and test data, we computed the mixed k-
tables with RORR from ≈ 8×105 sets of 14 k-tables each. These
14 k-tables were taken from the 11-bin resolution (S1) of the 14
opacity species taken into account in expeRT/MITgcm Schneider
et al. (2022b) (see Sec. 3 for details on the species) and were uni-
formly randomly weighted with reasonable abundance ranges.3.
The input for the network is not the plain individual k-tables, but
instead we scale them with the sum of the k-tables as

Xi(ν, g) = log

 κi(ν, g)∑Ns
j=1 κ j(ν, g)

 . (12)

Similarly, we scale the targets (e.g., the predictions of the net-
work) by

y(ν, g) = log

 κtot(ν, g)∑Ns
j=1 κ j(ν, g)

 . (13)

The advantage of this input and output scaling comes three-fold.
Foremost, we are interested in minimizing the error of the small
values in the k-table, as those are the ones that generate win-
dows in the spectrum, which are very important for the temper-
ature structure, hence taking the logarithm is useful because it
pronounces relatively large deviations of small k-table values in
the loss. Secondly, we find that the sum of the k-tables is already
a reasonable approximation for the mixed k-tables (see Sec. 4).
Thirdly, the output scaling nicely captures the positivity of the
problem, prohibiting the possibility of negative predictions when
reversing the output scaling. It is also important to stress that all
species κi(g) are fed individually through the same function ℶ
(with the same weight) to create a unique non-linear representa-
tion for each species.

The main advantage of the DeepSet method is its flexi-
bility, because trained on the individual frequency bins of k-
tables, it operates independent of chemical composition or opac-
ity species. It can by construction of the training set operate on
any composition and metallically. Furthermore, we think that it
can in principle work on any set of k-tables with shapes that are
similar enough to those of the training set. We have tested this by
changing the frequency resolution of the training set. Doing so,

3 We note that the network can, by construction, deal with any number
of species without retraining needed
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we found that this did not significantly affect the accuracy, when
applied to a different frequency resolution than the one being
trained on. We therefore think that it would be only necessary to
retrain the network, if the discretization of g values changes. We
discuss further numerical considerations of this mixing method
in Appendix A.

3. Methods

To test the individual mixing methods, we use the 3D GCM
expeRT/MITgcm (Carone et al. 2020; Schneider et al. 2022b).
expeRT/MITgcm builds on the dynamical core of the MITgcm
(Adcroft et al. 1997, 2004), which solves the hydrostatic prim-
itive equations of hydrodynamics on a cubed-sphere grid. In
order to accurately account for radiative heating and cooling,
expeRT/MITgcm solves the radiative transfer using the Feautrier
method (Feautrier 1964) with approximate Lambda iteration
(Olson et al. 1986) and Ng-acceleration (Ng 1974). The rou-
tine that solves the radiative transfer is an adapted version of the
flux routine in petitRADTRANS (Mollière et al. 2019, 2020). We
have incorporated the radiative transfer solver and benchmarked
it in expeRT/MITgcm. We found in Schneider et al. (2022b), that
the combination of 5 frequency bins and 16 g values achieves
good enough accuracy for long term convergence studies such as
those in Schneider et al. (2022a) and Sainsbury-Martinez et al.
(2023). In this work, we use 11 frequency bins, with each 16 g
values, which is good enough for comparisons of GCMs to ob-
servations. We note that other hot Jupiter GCMs typically use 8
g values, with sometimes a higher frequency resolution of ≈ 30
frequency bins (Showman et al. 2009; Amundsen et al. 2016;
Lee et al. 2021). The line opacity species used in this work are
identical to the ones used in Schneider et al. (2022b) and in-
clude H2O (Polyansky et al. 2018), CO2(Yurchenko et al. 2020),
CH4 (Yurchenko et al. 2017), NH3 (Coles et al. 2019), CO (Li
et al. 2015), H2S (Azzam et al. 2016), HCN (Barber et al. 2014),
PH3 (Sousa-Silva et al. 2015), TiO (McKemmish et al. 2019),
VO (McKemmish et al. 2016), FeH (Wende et al. 2010), Na
(Piskunov et al. 1995), and K (Piskunov et al. 1995).

We chose to use HD 209458 b as a planet and the setup
is identical to the setup in Schneider et al. (2022b), where the
models in this work only differ by the method with which opac-
ities are mixed. The different mixing methods and their corre-
sponding labels are laid out in Table 1. To this end, we have
implemented each of the above-mentioned mixing methods.
expeRT/MITgcm can now run in two modes by either mixing
k-tables on the fly (utilizing one of the aforementioned methods)
or using premixed k-tables. To incorporate on-the-fly mixing in
the GCM, we updated our preprocessing toolkit to additionally
output a pressure-temperature grid of equilibrium abundances
(taken from the easyCHEM (Mollière et al. 2017) interface to
petitRADTRANS (Mollière et al. 2019)), along with a pressure-
temperature grid of k-tables for the individual absorbers. In the
on-fly mixing mode, abundances and k-tables of each of the con-
sidered absorbers are linearly interpolated to the pressure and
temperature in the GCM, weighted by their abundance and then
mixed by one of the above-mentioned methods.

The weighting in the adaptive equivalent extinction method
induces the need for more scattering iterations, because the k-
table becomes dependent on the bolometric flux from the previ-
ous time-step, effectively inserting a time dependent perturbation
into the opacities, because the scattering source function will be
subject to these opacity perturbations as well, rendering its guess
from the previous time-step less accurate. For performance rea-
sons, we thus found that the weighted adaptive equivalent extinc-

tion method required us to limit the amount of maximum scat-
tering iterations per radiative time step to two instead of 500,
which is generally enough for a HD 209458 b like planet with
only Rayleigh scattering, since the source function is reused as
initial guess in the next radiative time-step (see Schneider et al.
2022b, for an explanation of scattering in expeRT/MITgcm) and
the source function is thereby naturally iterated on during model
convergence. To be consistent in all models, we have thus chosen
to generally limit the amount of scattering iterations per radiative
time-step to two, if not otherwise stated.

All models have been integrated up to 2000 days with a
radiative time-step of 100 s and a dynamical time-step of 25 s,
which are typical values for hot Jupiter GCMs (e.g., Showman
et al. 2009; Lee et al. 2021; Schneider et al. 2022b). All models
use equilibrium chemistry to constrain the abundances. In prac-
tice, the code interpolates the abundances on a grid of pressure
and temperature. In Section 5, we show a model, where we use
the DeepSet mixing of k-tables, but removed all of TiO and VO,
whenever TiO and VO would reappear in equilibrium chemistry
in the gas phase, although it is condensed out further down in
the atmosphere. This method is similar to the methods of rainout
described elsewhere (e.g., Lodders & Fegley 2002; Marley et al.
2021), but less sophisticated compared to 3D models that include
proper chemical transport schemes (e.g., Parmentier et al. 2013;
Lee et al. 2023; Drummond et al. 2018). A more detailed de-
scription of the algorithm for the detection of rainout is outlined
in Appendix C.

4. Results

In this work, we compare the mixing methods introduced in
Sect. 2 to the slow RORR method. An additional comparison
between the premixed method (PRE) used in our GCM, as in-
troduced and used in Schneider et al. (2022b), and the RORR
method can be found in Appendix B. Mixing opacities on the fly
in a GCM requires a tradeoff between accuracy, performance,
and flexibility. When comparing the accuracy of mixing meth-
ods, it is important to keep in mind that the low spectral resolu-
tion of the k-tables used in GCMs induces an error of a few per-
cent on bolometric fluxes (e.g., Amundsen et al. 2014; Leconte
2021; Schneider et al. 2022b). It is therefore pointless to aim for
accuracies of less than one percent, since the overall error will
be governed by the chosen spectral resolution. Comparing the
individual mixing methods with each other thus needs to con-
sider all of these perspectives. In order to have a fair comparison
between the individual methods, we chose to compare all simu-
lations in two aspects: The accuracy on the resulting atmospheric
state and the computational time. We include further diagnostics
of the accuracy in Appendix D, by looking at fluxes and heating
rates.

In order to qualitatively compare the mixing methods, we
show the atmospheric state at two pressure layers (0.01 bar and
0.1 bar) together with the zonal wind speed in Fig. 2. Aside
from the adaptive equivalent extinction (AEE) model without
flux weighting, all models look similar at a first glimpse. The
jet strength and day-night temperature contrasts are not signif-
icantly affected by these different methods. However, the AEE
method seems to produce a significantly higher day-night tem-
perature contrast and a faster jet. These differences are more pro-
nounced at lower pressure, but are still notable at higher pres-
sures of 0.1 bar.

Since most methods produce the same qualitative trend in
winds and temperatures, it can be useful to calculate spatial tem-
perature averages and compare those to the RORR models. For
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Table 1: Simulations

label mixing method reference
RORR random overlap with rebinning and resorting (RORR) Sect. 2.1
PRE premixed k-tables Sect. 2.2
DS DeepSet approach Sect. 2.5
AEE_we adaptive equivalent extinction with flux weighting Sect. 2.4
AEE adaptive equivalent extinction without flux weighting Sect. 2.4
ADD sum of all k-tables Sect. 2.3

Notes: Explanation of the mixing methods used in the individual simulations, as labeled in the figures of this work.
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Fig. 2: Zonally averaged eastward winds (first row) and temperature slices at 0.01 bar (second row) and 0.1 bar (third row) for the
different models considered. All colors are normalized to the first column (RORR).

visual reasons, we have split these comparisons into two fig-
ures, where Fig. 3 compares the DeepSet (DS) and summation
(ADD) method to the RORR method and Fig. 4 compares both
the weighted and non-weighted adaptive equivalent extinction
methods to the RORR method. It was surprising to see that the
ADD method performs well, given its simplicity and method-
ological flaws. However, the temperature is often slightly cooler
at higher pressures, which might be related to the underestima-
tion of κtot at small g and the overestimation at large g. The
overestimation of κtot at large g can lead to an enhancement of
the absorption of the stellar flux in the upper layers, which can-
not penetrate deep enough to cause heating in the deeper layers.
These flaws of the ADD method do not seem to persist in the DS
mixing, which uses the ADD method in its preprocessing (see
Sect. 2.5). Instead, we find that the DS mixing performs very
well.

Looking at the adaptive equivalent mixing method with and
without weighting, we find that the AEE_we method is almost as
accurate as the DS mixing. The weighting certainly helps to find
a good estimate of the major absorber and drastically increases
the accuracy of this approach. Looking at the residuals, we see
a strong correlation between the error of the weighted and non-
weighted method, which points to a general issue of the method
instead of an issue with the major absorber. Unlike in the case
of simply summing up k-tables, the AEE method tends to not
overestimate κtot at large g but instead to underestimate it. This
might be explained by the minor absorbers, which flatten a k-
table by offsetting κtot at the small g and decreasing the impact
of the high g values. Similar to the overestimation of κtot at small

Table 2: Runtime

label time [h] relative to PRE
PRE 3.91 1.00
ADD 7.20 1.84
AEE 7.44 1.90
AEE_we 13.37 3.42
DS 10.88 2.78
RORR 25.12 6.43

Notes: Runtime of the GCM needed for the first 100 days
of the simulation. The node used to run the model includes
2x Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz, and we
utilized all 48 cores.

g values, the underestimation of κtot at large g values also shifts
the location at which irradiation is absorbed, in this case into the
opposite direction by leading to less absorption in the uppermost
layers.

We thus conclude that both the ADD method and AEE
method, with and without weighting, introduce systematic noise
to κtot at both small and large g values. This noise can amplify
the errors of the AEE and ADD methods (see Appendix D). In
contrast, the DS method exhibits no systematic error but instead
uniformly distributed random noise. The overall error in temper-
ature estimation is thereby not significantly effected. Therefore,
we do not recommend using the ADD method or unweighted
AEE method and instead recommend the use of the DS method.
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Fig. 3: Temperature profiles for different parts of the atmosphere of the RORR, DS and ADD simulations from Fig. 2. The different
colors represent different simulations, whereas the different line-types represent different parts of the atmosphere. The left panel
shows the temperature profile and the right panel shows the absolute difference between the temperature profile to the temperature
profile of the RORR simulation.
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Fig. 4: Temperature profiles for different parts of the atmosphere of the RORR, AEE and weighted AEE (AEE_we) simulations
from Fig. 2. The panels and their meaning are identical to Fig. 3.

In terms of computational costs, one needs to consider two
general computational overheads during runtime, compared to
using a premixed grid. The first overhead comes from the han-
dling of the individual k-tables, such as the interpolation, as com-
pared to handling of just one premixed k-table. Secondly, obvi-
ously the computation of the mixing itself. We show the compu-
tation time needed to run the initial 100 days of the simulation in
Table 2. The performance of the summation (ADD) method, in
which individual k-tables are simply added up, is mainly con-
strained by the handling of the individual k-tables, since the
cost of the summation can be neglected, whereas all the other
methods are also subject to the computational cost of the mix-
ing. Therefore, a significant fraction of the computational cost in
the AEE, AEE_we and DS simulations can be explained by the
overhead of handling individual k-tables.

The slow runtime of the RORR mixing, renders the on-the-
fly use of the RORR technique impossible. Even when using

an optimized sorting algorithm, which is now the standard in
petitRADTRANS, and which significantly speeds up RORR, the
RORR technique performs at least 6 times slower compared to
the premixed case. One of the main reasons for the poor perfor-
mance of RORR in our specific setup is the quadratic computa-
tional dependence on the number of g values. GCMs that use 8
g values instead of 16 could therefore (at the cost of accuracy)
have faster performance of the RORR method (for a discussion
see Amundsen et al. 2017).

Due to the increased amount of scattering iterations, the
adaptive equivalent extinction with weighting (AEE_we) is gen-
erally the slowest of all the approaches. The poor convergence
behavior of the AEE_we method makes this method less reli-
able and less performant. This will be an even bigger issue, when
scattering becomes non-negligible, which could be the case for
lower temperatures or if clouds and hazes are included. However,
when limiting the maximum amount of scattering iterations to
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Fig. 5: The RORR model from Fig. 2 compared to a model with
rainout of TiO and VO. The stratosphere disappears if rainout is
included in the model.

two, as we have done here, it is fast enough to compete with the
other methods and if the weighting were to be neglected (AEE),
it would even be similarly fast as the ADD method and faster
than the DS mixing. Performance-wise, we thus think that ei-
ther of the ADD, AEE (with and without flux weighing), or DS
mixing approach could be equally used in a setup that requires
on-the-fly mixing. In our multi-stream setup, which requires us
to iterate over the source function, we would however not rec-
ommend the use of the AEE_we method, due to its numerical
issues with the convergence of the source function.

5. Rainout

On-the-fly mixing is only relevant in GCMs if the chemical
abundances are to be changed from chemical equilibrium. A
sufficiently well resolved premixed table, will in most cases of
chemical equilibrium be the fastest and most reliable method of
choice. However, in the case of chemical disequilibrium, which
is the case if photochemistry or chemical kinetics were to be con-
sidered, we can not simply premix k-tables, because the abun-
dances of the relevant opacity species need to be changed dur-
ing runtime. Another very simple scenario for such a situation
could be the rainout of heavy refractory species such as TiO and
VO. Due to their strong absorption in the UV, they absorb a sig-
nificant fraction of the stellar flux at high altitude, thus heat-
ing the upper atmosphere significantly. Such a strong heating
in the upper atmosphere can lead to a thermal inversion, where
the atmosphere becomes hotter towards the top (e.g., Showman
et al. 2009). However, due to vertical mixing and advection, con-
densed TiO and VO could gravitationally settle and therefore not
be available in the gas phase at higher altitudes (e.g., Parmentier
et al. 2013).

In Fig. 5 we show a model, in which all TiO and VO is
removed by a simple rainout prescription (see Appendix C for
details), which removes all TiO and VO from the gas phase, if
it is condensed further down in the atmosphere. Using a pre-
mixed table, we would not be able to calculate the radiative ef-
fect of the rainout on the atmospheric structure, however, by us-
ing on-the-fly mixing we can trace the effect of the change in
chemical abundances on the temperature. The lack of the strong

UV absorbers TiO and VO in the upper layers means that the
upper layers get cooler, because less of the stellar flux is ab-
sorbed in those layers, whereas the intermediate pressure layers
get warmer, where the bulk of the stellar flux is absorbed instead.
As expected, we find that the thermal inversion caused by TiO
and VO, as seen for example in Fig. 3, is self-consistently re-
moved. By advection, this tendency swaps over to the night side.

6. Discussion and Conclusion

The correlated-k method is a useful approximation for rapid ra-
diative transfer calculations with accuracies of a few percent
(e.g., Amundsen et al. 2014; Leconte 2021; Schneider et al.
2022b), when used with resolutions typical for GCMs. We have
demonstrated the performance and accuracy of several methods
that could be used in GCMs to calculate the total opacity in the
correlated-k assumption. We extended the work of Amundsen
et al. (2017), who performed a similar analysis for the adap-
tive equivalent extinction (AEE) method. Furthermore, we have
introduced two additional methods: The DeepSet (DS) mixing
and a simple method in which k-tables are simply summed up
(ADD). Whereas the work of Amundsen et al. (2017) only con-
sidered the accuracy of heating rates and fluxes, we incorporated
the RORR, ADD, DS and AEE mixing methods into our GCM to
demonstrate the performance in a real application. The DeepSet
method turns out to be fairly accurate and flexible, leveraging
machine learning, to calculate k-tables of gas mixtures. Overall,
we find that

1. The random overlap with resorting and rebinning (RORR)
method is too slow to be used in GCMs for on-the-fly mixing.

2. The AEE method requires a proper weighting to be accurate.
Such a weighting, however, affects the numerical stability
of the radiative transfer calculation, which will be especially
important if scattering is non-negligible.

3. The ADD method and the AEE method are prone to system-
atic errors. This is especially problematic for the unweighted
AEE and the ADD method, rendering a use of these methods
questionable.

4. The DS method has minor statistical errors on fluxes and
heating rates that do not seem to enhance the overall error,
which seems to be an advantage of the DS method.

The DS mixing method provided by this work is accurate
and open source4, and can be easily implemented in any radiative
transfer package with no need to use complex libraries, as it only
requires two matrix multiplications. Once trained, the network
can perform on any composition and any set of opacity species.
Although not strictly needed, we recommend training the net-
work for a specific frequency resolution to maximize the accu-
racy. The amount of training data needed is small, and training
can be performed within minutes on a standard personal com-
puter. The provided open source package currently works with
binned down petitRADTRANS-format k-tables, but can be eas-
ily extended to load any k-table format, and documentation is
provided for how to achieve this.

The methods tested in this work, have been tested in terms
of accuracy on the atmospheric structure and we think that these
methods provided here will be key, when moving forward to-
wards self-consistent transport of chemicals in the atmospheres
of planets. We note, however, that these methods, do not translate
to models that predict spectra. Future work is thus needed to test,
if similar methods could also be used for atmospheric retrievals.
4 https://github.com/AaronDavidSchneider/opacmixer
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By implementing a simple chemical rainout procedure, we
mimic the gravitational settling of TiO and VO, to demonstrate
the DS method in a use-case of disequilibrium chemistry. By ac-
counting for rainout in this way, we find that TiO and VO can be
trapped in the deeper atmosphere, thus hindering the formation
of a stratosphere. We note, that this approach is fairly simpli-
fied, and hope that our work enables future models to treat cold
trapping self-consistently.
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Appendix A: Numerical considerations for the
DeepSet implementation

One of the advantages of the DeepSet is its simplicity, which al-
lows an easy naive implementation, since it only requires two
matrix multiplication operations and one summation. There are
several considerations regarding the performance of this ap-
proach. The first consideration is the use of the logarithm and,
to reverse back to k-tables, the use of the exponential function.
Both of these operations are unfortunately quite slow, albeit be-
ing needed as described in Sect. 2.5. Profiling the FORTRAN
code used in the GCM shows that approximately half of the CPU
time is spent on calculating the logarithm for the input scaling7.
The other half of the CPU time is spent on the matrix multipli-
cation, which can be optimized using hardware dependent com-
piler optimizations. For our architecture (using ifort on an in-
tel CPU), we found that the build in MATMUL delivers the best
performance compared to MKL DGEMM, OpenBLAS DGEMM and a
manual implementation. The reason for the missing performance
increase from the highly optimized DGEMM can most likely be
found in the overhead of calling DGEMM compared to the small
size of the matrix that is to be multiplied (16 × 16).

We note that faster and more efficient implementations could
also be achieved by stacking the computations and deploying the
computations to a GPU.

Appendix B: Benchmarking RORR against PRE

In this work, we benchmarked several approximate k-table mix-
ing methods to the RORR method (see Sect. 2.1). As discussed in
Sect. 2.2, if the atmosphere is in chemical equilibrium, the abun-
dances can be directly constrained as a function of pressure and
temperature. It is then possible to use these abundances to create
a grid of k-tables using the RORR method. This step can be done
as a preprocessing step, so that the grid can be used as a lookup
table to interpolate on during runtime. As mentioned in Amund-
sen et al. (2017), the accuracy of this approach will be greatly de-
pendent on the resolution of the grid. We match the pressure co-
ordinates with our premixed tables in expeRT/MITgcm, remov-
ing the need for interpolation in pressure and thereby resulting
in a higher accuracy and faster runtime. We then use 1000 tem-
perature grid points in this work and in Schneider et al. (2022b)
to further maximize the accuracy.

In Fig. B.1 we show the temperature pressure profiles of the
RORR simulation compared to the premixed (PRE) simulation.
We find that both methods result in temperature profiles that
overlap very well, with an error of less than 0.5%. Premixed ta-
bles will therefore stay the method of choice for setups, where
equilibrium chemistry can be assumed, given their much faster
performance (see Table 2).

Appendix C: A simple algorithm to calculate rainout

In this work, we consider the rainout of TiO and VO in order to
demonstrate a possible use case of the DS method (Sect. 5). We
consider a species rained out, if, going upwards from the bottom
of the computational domain, the species has, in local chemi-
cal equilibrium, first become available in the gas phase and has
then disappeared further up in the atmosphere. If the species be-
came more abundant in the gas in local chemical equilibrium, we
would not allow this and instead keep the fixed abundance from

7 The input scaling needs to be calculated Ns times more often than the
reverse output scaling, see Fig. 1

Algorithm 1 Procedure that takes in the pressure layers p (sorted
from bottom to top) and mass mixing ratios η of an opacity
species and returns the altered mass mixing ratios, under con-
sideration of rainout.

procedure do_rainout(p, η)
η̃← copy(η)
species_appearing← False
species_cond← False
for i← 2 to length(p) − 1 do ▷ Loop from bottom to top

grad← −0.5 ×
(
ηi−1−ηi
pi−1−pi

+
ηi−ηi+1
pi−pi+1

)
if (grad > 0) then ▷ abundance increases

species_appearing← True
end if
if (species_appearing) then

if (grad < 0) then ▷ abundance decreases again
species_cond← True

end if
end if
if (species_cond) then ▷ Do the rainout

if (η̃i−1 < η̃i) then
η̃i ← η̃i−1

end if
end if

end for
if (species_cond) then ▷ Treat the boundary

if (η̃−2 < η̃−1) then
η̃−1 ← η̃−2

end if
end if
return η̃

end procedure

the layers below. These calculations are in practice performed
by looking at the gradient of the mass mixing ratios, and we out-
line the algorithm used in this work in Algorithm 1. We would
like to note that the algorithm presented here is likely oversim-
plified. Nevertheless, it provides mass mixing ratios that deviate
from chemical equilibrium, and thus serves for demonstration
purpose.

Appendix D: Accuracy of fluxes and heating rates

The thermal forcing in the GCM is given by the thermodynamic
heating rate H, which is calculated as (e.g., Amundsen et al.
2014; Showman et al. 2009)

H = −
dF
dz
=

gp
RsT

dF
dp
, (D.1)

where F is the net flux integrated over frequency, consisting of
the bolometric stellar and planetary fluxes, g, p, z, and Rs are
the surface gravity, pressure, geometric height, and specific gas
constant respectively. For a deeper understanding of the accu-
racy of the different approaches, we compare the accuracy of the
resulting fluxes and heating rates of the individual methods in
comparison to the RORR method. Since all the simulations lead
to different atmospheric states, we opted to compare the fluxes
and heating rates in a separate set of models. These models start
from the final output of the RORR models at 2000 d and run for
10 radiative time-steps (a total of 1000 seconds). Unlike in the
2000-day-long simulations mentioned above, we did not limit
the amount of scattering iterations in these extra runs. Using one
radiative time-step for the comparison is not good enough, since
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Fig. B.1: Temperature profiles of the RORR simulation compared to a simulation with premixing. The figure is in the same style as
Figs. 3 and 4.
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Fig. D.1: Total fluxes integrated over frequency at the substellar
point (left) and difference to the RORR simulation (right).

the AEE_we method needs the flux from the previous time-step.
The advantage of this approach is that the temperature profiles
are identical in these models. The comparison of fluxes and heat-
ing rates is thus fairer. We show the fluxes and heating rates for
the substellar point in Figs. D.1 and D.2 respectively, and those
of the antistellar point in Figs. D.3 and D.4 respectively.

Looking at the day side (substellar point), we can see that
AEE_we and DS result in equally accurate heating rates and
fluxes, followed by the ADD simulation, which also results in
reasonable fluxes and heating rates. On the other hand, the non-
weighted AEE simulations result in completely wrong fluxes and
thus heating rates. The total flux at the substellar point is dom-
inated by the stellar flux. We can see that the AEE method re-
sults in larger negative values of the stellar flux, again hinting
to too little absorption in the upper parts of the atmosphere, as
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Fig. D.2: Heating rates (see Eq. D.1) at the substellar point (left)
and differences to the RORR simulation (right).

discussed in Sect. 4. Conversely, due to the overestimation of κtot
at small g, almost all radiation is absorbed within a fine pressure
range. While these trends can also be seen in the weighted AEE
method, it seems to cause much less of an error, if the major
absorber is wisely picked.

Overall, we find that considering the substellar and antistel-
lar fluxes and heating rates, the DS and AEE_we method repro-
duce similarly accurate results. One of the reasons, why the DS
method yields an overall better accuracy on the final atmospheric
state might be found in the systematic error of the AEE method,
which enhances κtot at small g and decreases κtot at large g, which
is not found in the DS method, which exhibits a random noise on
the different g values in each frequency bin. These diagnostics
reinforce that adaptive equivalent extinction should only be used
together with a weighted average opacity.
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Fig. D.3: Total fluxes integrated over frequency at the antistellar
point (left) and difference to the RORR simulation (right). The
black dashed line in the right panel indicates the zero, which
would mean no difference to RORR.
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Fig. D.4: Heating rates (see Eq. D.1) at the antistellar point (left)
and differences to the RORR simulation (right).
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