Polite Combination of Algebraic Datatypes

Ying Sheng • Yoni Zohar • Christophe
Ringeissen • Jane Lange • Pascal Fontaine •
Clark Barrett

the date of receipt and acceptance should be inserted later

Abstract

Algebraic datatypes, and among them lists and trees, have attracted a lot of interest in automated reasoning and Satisfiability Modulo Theories (SMT). Since its latest stable version, the SMT-LIB standard defines a theory of algebraic datatypes, which is currently supported by several mainstream SMT solvers. In this paper, we study this particular theory of datatypes and prove that it is strongly polite, showing how it can be combined with other arbitrary disjoint theories using polite combination. The combination method uses a new, simple, and natural notion of additivity, that enables deducing strong politeness from (weak) politeness ${ }^{1}$

[^0]Ying Sheng
Stanford University, Stanford, USA
Yoni Zohar
Bar Ilan University, Israel
Christophe Ringeissen
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
Jane Lange
MIT, Cambridge, USA
Pascal Fontaine
Université de Liège, Belgium
Clark Barrett
Stanford University, Stanford, USA
1 A preliminary version of this work was published in the proceedings of IJCAR 2020 [26]. The current article extends the original versions with complete proofs, as well as a discussion and results regarding existential theories (see Proposition 22). Additionally, Section 5 is extended to provide a more comprehensive treatment of axiomatizations for trees.

1 Introduction

Algebraic datatypes such as records, lists and trees are extremely common in many programming languages. Reasoning about them is therefore crucial for modeling and verifying programs. For this reason, various decision procedures for algebraic datatypes have been, and continue to be developed and employed by formal reasoning tools such as theorem provers and Satisfiability Modulo Theories (SMT) solvers. For example, the general algorithm of [6] describes a decision procedure for datatypes suitable for SMT solvers. Consistently with the SMT paradigm, 6] leaves the combination of datatypes with other theories to general combination methods, and focuses on parametric datatypes (or generic datatypes as they are called in the programming languages community), where the interpretation of the "values" is left uninterpreted.

The traditional combination method of Nelson and Oppen [22] is applicable for the combination of this theory with many other theories, as long as the other theory is stably infinite (a technical condition that intuitively amounts to the ability to extend every model to an infinite one). Some theories of interest, however, are not stably infinite, the most notable one being the theory of fixed-width bitvectors, which is commonly used for modeling and verifying both hardware and software. Further, many theories that are compounded from bit-vectors and other theories are also not stably infinite, e.g., arrays/sets of bit-vectors. Combining these theories with algebraic datatypes cannot be done using the Nelson-Oppen approach. To be able to perform combinations with such theories, a more general combination method was designed [23], which relies on polite theories. Roughly speaking, a theory is polite if: (i) every model can be arbitrarily enlarged; and (ii) there is a witness, a function that transforms any quantifier-free formula to an equivalent quantifier-free formula such that if the original formula is satisfiable, the new formula is satisfiable in a "minimal" interpretation. This notion was later strengthened to strongly polite theories [16, which also account for possible arrangements of the variables in the formula, as well as arbitrary auxiliary variables. Strongly polite theories can be combined with any other disjoint decidable theory, even if that other theory is not stably infinite. While strong politeness was already proven for several useful theories (such as equality, arrays, sets, multisets [23), strong politeness of algebraic datatypes remained an unanswered question.

The main contribution of this paper is an affirmative answer to this question. While enlarging models of algebraic datatypes is trivial, the challenge lies with finding a witness function, as well as minimal models for formulas that are produced by this function. We introduce a witness function that essentially "guesses" the right constructors of variables that do not have an explicit constructor in the formula. We show how to "shrink" any model of a formula that is the output of this function into a minimal model. The witness function, as well as the model-construction, can be used by any SMT solver for the theory of datatypes that implements polite theory combination. We introduce and use the notion of additive witnesses, that offer a sufficient condition for a polite theory to be also strongly polite. This allows us to only prove politeness using our witness function, and conclude strong politeness, since our function is indeed additive. We further study the theory of datatypes beyond politeness and extend a decision procedure for a subset of this theory presented in [11] to support the full theory.

Related Work

The theory investigated in this paper is that of algebraic datatypes, as defined by the SMT-LIB 2 standard [4]. Detailed information on this theory, including a decision procedure and related work, can be found in [6. Later work extends this procedure to handle shared selectors [25] and co-datatypes [24]. More recent approaches for solving formulas about datatypes use, e.g., theorem provers [17, variant satisfiability [14,21, and reduction-based decision procedures [15, 8, 1].

In this paper, we focus on polite theory combination. Other combination methods for non stably infinite theories include shiny theories 32], gentle theories [13], and parametric theories [19]. The politeness property was introduced in [23], and extends the stable infiniteness assumption initially used by Nelson and Oppen. Polite theories can be combined à la Nelson-Oppen with any arbitrary decidable theory. Later, a flaw in the original definition of politeness was found 16, and a corrected definition (here called strong politeness) was introduced. Polite combination is implemented in the SMT-solver cvc5 (the successor of CVC4 [3), that also includes a solver for the theory of algebraic datatypes. Strongly polite theories were further studied in [10, where the authors proved their equivalence with shiny theories. The relation between politeness and strong politeness was investigeated in [27], where it was shown that the latter is a strictly stronger notion than the former.

More recently, it was proved [11 that a general family of datatype theories extended with bridging functions is strongly polite. This includes the theories of lists/trees with length/size functions. The authors also proved that a class of axiomatizations of datatypes is strongly polite. In contrast, in this paper we focus on standard interpretations, as defined by the SMT-LIB 2 standard, without any size function, but including selectors and testers. One can notice that the theory of standard lists without the length function, and more generally the theory of finite trees without the size function, were not mentioned as polite in a recent survey [9]. Actually, it was unclear to the authors of [9] whether these theories are strongly polite. This is now clarified in the current paper.

Outline

The paper is organized as follows. Section 2 provides the necessary notions from first-order logic, algebraic datatypes, and polite theories. Section 3 discusses the difference between politeness and strong politeness, and introduces a useful condition for their equivalence. Section 4 contains the main result of this paper, namely that the theory of algebraic datatypes is strongly polite. Section 5 studies various axiomatizations of the theory of datatypes, and relates them to politeness. Section 6 concludes with directions for further research.

2 Preliminaries

2.1 Signatures and Structures

We briefly review usual definitions of many-sorted first-order logic with equality (see [12,31 for more details). Let S denote a set of sorts. An S-sorted set A associates non-empty pairwise disjoint sets to the sorts of S. That is, A is a function from S to $\mathcal{P}(X) \backslash\{\emptyset\}$ for some set X, such that $A(\sigma) \cap A\left(\sigma^{\prime}\right)=\emptyset$ whenever $\sigma \neq \sigma^{\prime}$, $\sigma, \sigma^{\prime} \in S$. We use A_{σ} to denote $A(\sigma)$ for every $\sigma \in S$. When there is no ambiguity, we sometimes treat sorted sets as sets (e.g., when writing expressions like $x \in A$ for $x \in \bigcup_{\sigma \in S} A_{\sigma}$). Given a set S (of sorts), the canonical S-sorted set, denoted [[S]], satisfies $[[S]]_{\sigma}=\{\sigma\}$ for every $\sigma \in S$. A many-sorted signature Σ consists of a set \mathcal{S}_{Σ} (of sorts), a set \mathcal{F}_{Σ} of function symbols, and a set \mathcal{P}_{Σ} of predicate symbols. Function symbols have arities of the form $\sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma$, and predicate symbols have arities of the form $\sigma_{1} \times \ldots \times \sigma_{n}$, with $\sigma_{1}, \ldots, \sigma_{n}, \sigma \in \mathcal{S}_{\Sigma}$. For each sort $\sigma \in \mathcal{S}_{\Sigma}$, the logic includes an equality symbol $=\sigma$ of arity $\sigma \times \sigma$, whose interpretation is fixed to be the identity. We denote it by $=$ when σ is clear from context. Σ is called finite if $\mathcal{S}_{\Sigma}, \mathcal{F}_{\Sigma}$, and \mathcal{P}_{Σ} are finite.

We assume an underlying \mathcal{S}_{Σ}-sorted set of variables. Terms, formulas, and literals are defined in the usual way. For a Σ-formula ϕ and a sort σ, we denote the set of free variables in ϕ of sort σ by $\operatorname{vars} \sigma(\phi)$. This notation naturally extends to $\operatorname{vars}_{S}(\phi)$ when S is a set of sorts. A sentence is a formula without free variables. We denote by $Q F(\Sigma)$ the set of quantifier-free formulas of Σ. A Σ-literal is called flat if it has one of the following forms: $x=y, x \neq y, x=f\left(x_{1}, \ldots, x_{n}\right), P\left(x_{1}, \ldots, x_{n}\right)$, or $\neg P\left(x_{1}, \ldots, x_{n}\right)$ for some variables $x, y, x_{1}, \ldots, x_{n}$, function symbol f, and predicate symbol P from Σ.

A Σ-structure is a many-sorted structure for Σ, without interpretation of variables. It consists of a \mathcal{S}_{Σ}-sorted set A that interprets the sort symbols of Σ as sets, and interpretations of the function and predicate symbols of Σ. For any Σ-term $\alpha, \alpha^{\mathcal{A}}$ denotes the interpretation of α in \mathcal{A}. In particular, every function symbol f of arity $\sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma$ is interpreted as a function in $\sigma_{1}^{\mathcal{A}} \times \ldots \times \sigma_{n}^{\mathcal{A}} \rightarrow \sigma^{\mathcal{A}}$, and every predicate symbol P of arity $\sigma_{1} \times \ldots \times \sigma_{n}$ is interpreted as a subset of $\sigma_{1}^{\mathcal{A}} \times \ldots \times \sigma_{n}^{\mathcal{A}}$.

A Σ-interpretation \mathcal{A} is an extension of a Σ-structure with interpretations to some set of variables. When α is a set of Σ-terms, $\alpha^{\mathcal{A}}=\left\{t^{\mathcal{A}} \mid t \in \alpha\right\}$. Similarly, $\sigma^{\mathcal{A}}, f^{\mathcal{A}}$ and $P^{\mathcal{A}}$ denote the interpretation of σ, f and P in \mathcal{A}. Satisfaction is defined as usual. $\mathcal{A} \models \varphi$ denotes that \mathcal{A} satisfies φ.

A Σ-theory T is a class of Σ-structures. A Σ-interpretation whose variable-free part is in T is called a T-interpretation. A Σ-formula ϕ is T-satisfiable if $\mathcal{A} \models \phi$ for some T-interpretation \mathcal{A}. Two formulas ϕ and ψ are T-equivalent if they are satisfied by the same class of T-interpretations. Let Σ_{1} and Σ_{2} be signatures, T_{1} a Σ_{1}-theory, and T_{2} a Σ_{2}-theory. The combination of T_{1} and T_{2}, denoted $T_{1} \oplus T_{2}$, is the class of $\Sigma_{1} \cup \Sigma_{2}$-structures \mathcal{A} such that $\mathcal{A}^{\Sigma_{1}}$ is in T_{1} and $\mathcal{A}^{\Sigma_{2}}$ is in T_{2}, where $\mathcal{A}^{\Sigma_{i}}$ is the restriction of \mathcal{A} to Σ_{i} for $i \in\{1,2\}$.

2.2 The SMT-LIB 2 Theory of Datatypes

In this section we formally define the SMT-LIB 2 theory of algebraic datatypes. The formalization is based on [4], but is adjusted to suit our investigation of politeness.

Definition 1 (Σ-Trees) Given a signature Σ, a set $S \subseteq \mathcal{S}_{\Sigma}$ and an S-sorted set A, the set of Σ-trees over A of sort $\sigma \in \mathcal{S}_{\Sigma}$ is denoted by $T_{\sigma}(\Sigma, A)$ and is inductively defined as follows:

- $T_{\sigma, 0}(\Sigma, A)=A_{\sigma}$ if $\sigma \in S$ and \emptyset otherwise.
$-T_{\sigma, i+1}(\Sigma, A)=T_{\sigma, i}(\Sigma, A) \cup\left\{c\left(t_{1}, \ldots, t_{n}\right) \mid c: \sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma \in \mathcal{F}_{\Sigma}, t_{j} \in\right.$ $T_{\sigma_{j}, i}(\Sigma, A)$ for $\left.j=1, \ldots, n\right\}$ for each $i \geq 0$.
Then $T_{\sigma}(\Sigma, A)=\bigcup_{i \geq 0} T_{\sigma, i}(\Sigma, A)$. The depth of a Σ-tree over A is inductively defined by depth $(a)=\overline{0}$ for every $a \in A$, $\operatorname{depth}(c)=1$ for every 0 -argument function symbol $c \in \mathcal{F}_{\Sigma}$, and $\operatorname{depth}\left(c\left(t_{1}, \ldots, t_{n}\right)\right)=1+\max \left(\operatorname{depth}\left(t_{1}\right), \ldots, \operatorname{depth}\left(t_{n}\right)\right)$ for every n-argument function symbol c of Σ.

The idea behind Definition 1 is that $T_{\sigma}(\Sigma, A)$ contains all ground σ-sorted terms constructed from the elements of A (considered as constant symbols) and the function symbols of Σ.

Example 1 Let Σ be a signature with two sorts, elem and struct, and whose function symbols are b of arity struct, and c of arity (elem \times struct \times struct) \rightarrow struct. Consider the $\{$ elem $\}$-sorted set $A=\{a\} . T_{\text {elem }}(\Sigma, A)$ is the singleton $A=\{a\}$ and the Σ-tree a is of depth $0 . T_{\text {struct }}(\Sigma, A)$ includes infinitely many Σ-trees, such as b of depth $1, c(a, b, b)$ of depth 2 , and $c(a, c(a, b, b), b)$ of depth 3 .

Definition 2 (Datatypes Signature) A finite signature Σ is called a datatypes signature if \mathcal{S}_{Σ} is the disjoint union of two sets of sorts $\mathcal{S}_{\Sigma}=\operatorname{Elem}_{\Sigma} \uplus \operatorname{Struct}_{\Sigma}$, \mathcal{F}_{Σ} is the disjoint union of two sets of function symbols $\mathcal{F}_{\Sigma}=\mathcal{C O}_{\Sigma} \uplus \mathcal{S E}_{\Sigma}$, such that every $c \in \mathcal{C O}_{\Sigma}$ has arity $\sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma$ with $\sigma \in \operatorname{Struct}_{\Sigma}, \mathcal{S E}_{\Sigma}=$ $\left\{s_{c, i} \mid c \in \mathcal{C O}_{\Sigma}, c: \sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma, 1 \leq i \leq n\right\}$ where for each $c \in \mathcal{C O} \mathcal{O}_{\Sigma}$ with $c: \sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma$ and for each $i=1, \ldots, n, s_{c, i}$ is a function symbol of arity $\sigma \rightarrow \sigma_{i}$, and $\mathcal{P}_{\Sigma}=\left\{i s_{c} \mid c \in \mathcal{C} \mathcal{O}_{\Sigma}, c: \sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma\right\}$ where for each $c \in \mathcal{C} \mathcal{O}_{\Sigma}$ with $c: \sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma, i s_{c}$ is a predicate symbol of arity σ. We denote by $\Sigma_{\mid \mathcal{C O}}$ the signature with the same sorts as $\Sigma, \mathcal{C O}_{\Sigma}$ as set of function symbols, and an empty set of predicate symbols. We further require the following well-foundedness requirement for Σ to be called a datatypes signature: $T_{\sigma}\left(\Sigma_{\mid \mathcal{C O}},\left[\left[\right.\right.\right.$ Elem $\left.\left.\left._{\Sigma}\right]\right]\right) \neq \emptyset$ for any $\sigma \in$ Struct $_{\Sigma}$.

From now on, we omit the subscript Σ from the above notations (e.g., when writing [[Elem]] rather than $\left[\left[\operatorname{Elem}_{\Sigma}\right]\right]$ and $\mathcal{C O}$ rather than $\mathcal{C O}{ }_{\Sigma}$) whenever Σ is clear from the context. Notice that in Definition 2, the well-foundedness requirement ensures that the set of $\Sigma_{\mid \mathcal{C O}}$-trees of sort σ over [[Elem]] is not empty for every $\sigma \in \operatorname{Struct}_{\Sigma}$. The choice of $[[\mathbf{E l e m}]]$ is not essential here, and the definition remains equivalent if [[Elem]] is replaced by any Elem-sorted set that is nonempty for each sort. The set [[Elem]] has been chosen since it is a minimal such Elem-sorted set.

In accordance with SMT-LIB 2, we call the elements of $\mathcal{C O}$ constructors, the elements of $\mathcal{S E}$ selectors, and the elements of \mathcal{P} testers. Constructors that take no
arguments are called nullary. In what follows, Σ denotes an arbitrary datatypes signature.

In the next example we review some common datatypes signatures.
Example 2 The signature $\Sigma_{\text {list }}$ has two sorts, elem and list. Its function symbols are cons of arity (elem \times list) \rightarrow list, nil of arity list, car of arity list \rightarrow elem and $c d r$ of arity list \rightarrow list. Its predicate symbols are $i s_{n i l}$ and $i s_{c o n s}$, both of arity list. It is a datatypes signature, with Elem $=\{$ elem $\}$, Struct $=\{$ list $\}, \mathcal{C O}=\{$ nil, cons $\}$ and $\mathcal{S E}=\{c a r, c d r\}$. It is often used to model lisp-style linked lists. car represents the head of the list and $c d r$ represents its tail. nil represents the empty list. $\Sigma_{l i s t}$ is well-founded as $T_{\text {list }}\left(\Sigma_{\text {list } \mid \mathcal{C O}},[[\right.$ Elem $\left.]]\right)$ includes nil.

The signature $\Sigma_{\text {pair }}$ also has two sorts, elem and pair. Its function symbols are pair of arity (elem \times elem) \rightarrow pair and first and second of arity pair \rightarrow elem. Its predicate symbol is $i s_{\text {pair }}$ of arity pair. It is a datatypes signature, with Elem $=$ $\{$ elem $\}$, Struct $=\{$ pair $\}, \mathcal{C O}=\{$ pair $\}$, and $\mathcal{S E}=\{$ first, second $\}$. It can be used to model ordered pairs, together with projection functions. It is well-founded as $T_{\text {pair }}\left(\Sigma_{\text {pair } \mid \mathcal{C O}},[[\right.$ Elem $\left.]]\right)$ is not empty (as [[Elem]] is not empty).

The signature $\Sigma_{l p}$ has three sorts, elem, pair and list, with Elem $=\{$ elem $\}$ and Struct $=\{$ pair, list $\}$. Its function symbols are cons of arity (pair \times list $) \rightarrow$ list, car of arity list \rightarrow pair, as well as nil, cdr, first, second with arities as above. Its predicate symbols are $i s_{\text {pair }}, i s_{\text {cons }}$ and $i s_{n i l}$, with arities as above. It can be used to model lists of ordered pairs. Similarly to the above signatures, it is a datatypes signature.

Next, we distinguish between finite datatypes (e.g., records) and inductive datatypes (e.g., lists).

Definition 3 (Inductive and Finite Sorts) A sort $\sigma \in$ Struct is called finite if $T_{\sigma}\left(\Sigma_{\mid \mathcal{C O}},[[\mathrm{Elem}]]\right)$ is finite, and is called inductive otherwise.

We denote the set of inductive sorts in Σ by $\operatorname{Ind}(\Sigma)$ and the set of its finite sorts by $\operatorname{Fin}(\Sigma)$. Note that if σ is inductive, then according to Definitions 1 and 3 we have that for any natural number i there exists a natural number $i^{\prime}>i$ such that $T_{\sigma, i^{\prime}}\left(\Sigma_{\mid \mathcal{C O}},[[\right.$ Elem $\left.]]\right) \neq T_{\sigma, i}\left(\Sigma_{\mid \mathcal{C O}},[[\right.$ Elem $\left.]]\right)$. Further, for any natural number d and every Elem-sorted set D there exists a natural number i^{\prime} such that $T_{\sigma, i^{\prime}}\left(\Sigma_{\mid \mathcal{C O}}, D\right)$ contains an element whose depth is greater than d.

Example 3 list is inductive in $\Sigma_{l i s t}$ and $\Sigma_{l p}$. pair is finite in $\Sigma_{p a i r}$ and $\Sigma_{l p}$.
Finally, we define datatypes structures and the theory of algebraic datatypes.
Definition 4 (Datatypes Structure) Let Σ be a datatypes signature and D an Elem-sorted set. A Σ-structure \mathcal{A} is said to be a datatypes Σ-structure generated by D if:

- $\sigma^{\mathcal{A}}=T_{\sigma}\left(\Sigma_{\mid \mathcal{C O}}, D\right)$ for every sort $\sigma \in \mathcal{S}_{\Sigma}$,
$-c^{\mathcal{A}}\left(t_{1}, \ldots, t_{n}\right)=c\left(t_{1}, \ldots, t_{n}\right)$ for every $c \in \mathcal{C O}$ of arity $\left(\sigma_{1} \times \ldots \times \sigma_{n}\right) \rightarrow \sigma$ and $t_{1} \in \sigma_{1}^{\mathcal{A}}, \ldots, t_{n} \in \sigma_{n}^{\mathcal{A}}$,
$-s_{c, i}^{\mathcal{A}}\left(c\left(t_{1}, \ldots, t_{n}\right)\right)=t_{i}$ for every $c \in \mathcal{C O}$ of arity $\left(\sigma_{1} \times \ldots \times \sigma_{n}\right) \rightarrow \sigma, t_{1} \in$ $\sigma_{1}^{\mathcal{A}}, \ldots, t_{n} \in \sigma_{n}^{\mathcal{A}}$ and $1 \leq i \leq n$,

$$
\begin{aligned}
-i s_{c}^{\mathcal{A}} & =\left\{c\left(t_{1}, \ldots, t_{n}\right) \mid t_{1} \in \sigma_{1}^{\mathcal{A}}, \ldots, t_{n} \in \sigma_{n}^{\mathcal{A}}\right\} \text { for every } c \in \mathcal{C O} \text { of arity }\left(\sigma_{1} \times \ldots \times\right. \\
\left.\sigma_{n}\right) & \rightarrow \sigma .
\end{aligned}
$$

\mathcal{A} is said to be a datatypes Σ-structure if it is a datatypes Σ-structure generated by D for some Elem-sorted set D. The Σ-theory of datatypes, denoted \mathcal{T}_{Σ} is the class of datatypes Σ-structures.

Notice that the interpretation of selector functions $s_{c, i}$ when applied to terms that are constructed using a constructor different than c is not fixed and can be set arbitrarily in datatypes structures, consistently with SMT-LIB 2.

Example 4 If \mathcal{A} is a datatypes $\Sigma_{\text {list }}$-structure then list ${ }^{\mathcal{A}}$ is the set of terms constructed from elem ${ }^{\mathcal{A}}$ and cons, plus nil. If elem ${ }^{\mathcal{A}}$ is the set of natural numbers, then list ${ }^{\mathcal{A}}$ contains, e.g., nil, $\operatorname{cons}(1$, nil $)$, and $\operatorname{cons}(1, \operatorname{cons}(1, \operatorname{cons}(2$, nil $)))$. These correspond to the lists [] (the empty list), [1] and [1, 1, 2], respectively.

If \mathcal{A} is a datatypes $\Sigma_{\text {pair }}$-structure then pair ${ }^{\mathcal{A}}$ is the set of terms of the form $\operatorname{pair}(a, b)$ with $a, b \in \operatorname{elem}^{\mathcal{A}}$. If elem ${ }^{\mathcal{A}}$ is again interpreted as the set of natural numbers, pair ${ }^{\mathcal{A}}$ includes, for example, the terms pair $(1,1)$ and pair $(1,2)$, that correspond to $(1,1)$ and $(1,2)$, respectively. Notice that in this case, pair ${ }^{\mathcal{A}}$ is an infinite set even though pair is a finite sort (in terms of Definition 3).

Datatypes $\Sigma_{l p}$-structures with the same interpretation for elem include the terms nil, cons(pair (1,1), nil), and cons(pair (1, 1), cons(pair(1,2), nil)) in the interpretation for list, that correspond to [], [(1, 1)] and [$(1,1),(1,2)]$, respectively. If we rename elem in the definition of $\Sigma_{\text {list }}$ to pair, we get that $\mathcal{T}_{\Sigma_{l p}}=\mathcal{T}_{\Sigma_{\text {list }}} \oplus \mathcal{T}_{\Sigma_{\text {pair }}}$.

2.3 Polite Theories

Given two theories T_{1} and T_{2}, a combination method à la Nelson-Oppen provides a modular way to decide $T_{1} \oplus T_{2}$-satisfiability problems using the satisfiability procedures known for T_{1} and T_{2}. Assuming that T_{1} and T_{2} have disjoint signatures (except that they share sorts) is not sufficient to get a complete combination method for deciding any $T_{1} \oplus T_{2}$-satisfiability problem $\phi_{1} \wedge \phi_{2}$ where ϕ_{i} is a $T_{i^{-}}$ satisfiability problem for $i=1,2$. The reason is that T_{1} and T_{2} may share sorts, and this implies the existence of shared formulas built over the corresponding equality symbols and the finite set of variables $S V$ shared by ϕ_{1} and ϕ_{2}. To be complete, T_{1} and T_{2} must agree on the cardinality of their respective models, and there must be an agreement between T_{1} and T_{2} on the interpretation of shared formulas. These two requirements can be fulfilled, based on the following definitions:

Definition 5 (Stable Infiniteness) Given a signature Σ and a set $S \subseteq \mathcal{S}_{\Sigma}$, we say that a Σ-theory T is stably infinite with respect to S if every quantifier-free Σ formula that is T-satisfiable is also T-satisfiable by a T-interpretation \mathcal{A} in which $\sigma^{\mathcal{A}}$ is infinite for every $\sigma \in S$.

Definition 6 (Arrangement) Let Σ be a signature, $S \subseteq \mathcal{S}_{\Sigma}, V$ be a finite set of variables whose sorts are in S and $\left\{V_{\sigma} \mid \sigma \in S\right\}$ the partition of V such that V_{σ} is the set of variables of sort σ in V. We say that a formula δ is an arrangement of V if $\delta=\bigwedge_{\sigma \in S}\left(\bigwedge_{(x, y) \in E_{\sigma}}(x=y) \wedge \bigwedge_{(x, y) \notin E_{\sigma}}(x \neq y)\right)$, where E_{σ} is some equivalence relation over V_{σ} for each $\sigma \in S$.

Assume that T_{1} and T_{2} are two signature-disjoint theories with the property of being stably infinite w.r.t. their shared sorts. Under this assumption, T_{1} and T_{2} can agree on an infinite cardinality, and guessing an arrangement of the finite set of shared variables $S V$ suffices to get an agreement on the interpretation of shared formulas.

In this paper we are interested in an asymmetric disjoint combination where T_{1} and T_{2} are not both stably infinite. In this scenario, one theory can be arbitrary. As a counterpart, the other theory must be more than stably infinite: it must be strongly polite, meaning that it is always possible to increase the cardinality of a model and to have a model whose cardinality is finite.

In the following we decompose the politeness definition from [23,16] in order to distinguish between politeness and strong politeness (in terms of [10) in various levels of the definition. In what follows, Σ is an arbitrary (many-sorted) signature, $S \subseteq \mathcal{S}_{\Sigma}$, and T is a Σ-theory.

Definition 7 (Smooth) The theory T is smooth w.r.t. S if for every quantifier-free formula ϕ, T-interpretation \mathcal{A} that satisfies ϕ, and function κ from S to the class of cardinals such that $\kappa(\sigma) \geq\left|\sigma^{\mathcal{A}}\right|$ for every $\sigma \in S$ there exists a T-interpretation \mathcal{A}^{\prime} that satisfies ϕ with $\left|\sigma^{\mathcal{A}^{\prime}}\right|=\kappa(\sigma)$ for every $\sigma \in S$.

In definitions introduced above, as well as below, we often identify singletons with their single elements when there is no ambiguity (e.g., when saying that a theory is smooth w.r.t. a sort σ).

We now introduce some concepts in order to define finite witnessability.
Definition 8 (Finitely Witnessable) Let ϕ be a quantifier-free Σ-formula and \mathcal{A} a Σ-interpretation. We say that \mathcal{A} finitely witnesses ϕ for T w.r.t. S (or, is a finite witness of ϕ for T w.r.t. S), if \mathcal{A} is a T-interpretation, $\mathcal{A} \models \phi$, and $\sigma^{\mathcal{A}}=\operatorname{vars}_{\sigma}(\phi)^{\mathcal{A}}$ for every $\sigma \in S$.

We say that ϕ is finitely witnessed for T w.r.t. S if it is either T-unsatisfiable or it has a finite witness for T w.r.t. S. We say that ϕ is strongly finitely witnessed for T w.r.t. S if for any set of variables V whose sorts are in S, and any arrangement δ_{V} of $V, \phi \wedge \delta_{V}$ is finitely witnessed for T w.r.t. S.

We say that a function wtn : $Q F(\Sigma) \rightarrow Q F(\Sigma)$ is a (strong) witness for T w.r.t. S if for every $\phi \in Q F(\Sigma)$ we have that: $1 . \phi$ and $\exists \vec{w}$. $w \operatorname{tn}(\phi)$ are T-equivalent for $\vec{w}=\operatorname{vars}(w \operatorname{tn}(\phi)) \backslash \operatorname{vars}(\phi)$; and 2. $w \operatorname{tn}(\phi)$ is (strongly) finitely witnessed for T w.r.t. $S{ }^{2}$

The theory T is (strongly) finitely witnessable w.r.t. S if there exists a (strong) witness for T w.r.t. S which is computable.

Definition 9 (Polite) T is called (strongly) polite w.r.t. S if it is smooth and (strongly) finitely witnessable w.r.t. S.

Finally, we recall the following theorem from [16.
Theorem 1 ([16]) Let Σ_{1} and Σ_{2} be signatures and let $S=\mathcal{S}_{\Sigma_{1}} \cap \mathcal{S}_{\Sigma_{2}}$. If T_{1} is a Σ_{1}-theory strongly polite w.r.t. $S_{1} \subseteq \mathcal{S}_{\Sigma_{1}}, T_{2}$ is a Σ_{2}-theory strongly polite w.r.t. $S_{2} \subseteq \mathcal{S}_{\Sigma_{2}}$, and $S \subseteq S_{2}$, then $T_{1} \oplus T_{2}$ is strongly polite w.r.t. $S_{1} \cup\left(S_{2} \backslash S\right)$.

[^1]
3 Additive Witnesses

It was shown in [16] that politeness is not sufficient for the proof of the polite combination method from [23]. Strong politeness was introduced to fix the problem. In this section we offer a simple (yet useful) criterion for the equivalence of the two notions. Throughout this section, unless stated otherwise, Σ and S denote an arbitrary signature and a subset of its set of sorts, and T, T_{1}, T_{2} denote arbitrary Σ-theories.

The following example, which is based on [16] using notions of the current paper, shows that strong and non-strong witnesses are different. Let Σ_{0} be a signature with a single sort σ and no function or predicate symbols (except $=\sigma$), and T_{0} the Σ_{0}-theory consisting of all Σ_{0}-structures \mathcal{A} with $\left|\sigma^{\mathcal{A}}\right| \geq 2$. It was shown in [16] that the function $w \operatorname{tn}$ defined by $w \operatorname{tn}(\phi)=\left(\phi \wedge w_{1}=w_{1} \wedge w_{2}=w_{2}\right)$ for fresh w_{1}, w_{2} is a witness for T_{0} w.r.t. σ, but not a strong one. In fact, T_{0} is also strongly polite since the function $w \operatorname{tn}^{\prime}(\phi)=\phi \wedge w_{1} \neq w_{2}$ for fresh w_{1}, w_{2} is a strong witness for T_{0} w.r.t. σ. This was shown in 16 .

We introduce the notion of additivity, which ensures that the witness is able to "absorb" arrangements and thus lift politeness to strong politeness.

Definition 10 (Additivity) Let $f: Q F(\Sigma) \rightarrow Q F(\Sigma)$. We say that f is S-additive for T if $f(f(\phi) \wedge \varphi)$ and $f(\phi) \wedge \varphi$ are T-equivalent and have the same set of S-sorted variables for every $\phi, \varphi \in Q F(\Sigma)$, provided that φ is a conjunction of flat literals such that every term in φ is a variable whose sort is in S. When T is clear from the context, we say that f is S-additive. We say that T is additively finitely witnessable w.r.t. S if there exists a witness for T w.r.t. S which is both computable and S additive. T is said to be additively polite w.r.t. S if it is smooth and additively finitely witnessable w.r.t. S.

We show that additive witnesses are strong:
Proposition 1 Let wtn be a witness for T w.r.t. S. If wtn is S-additive then it is a strong witness for T w.r.t. S.

Proof: Let $\phi \in Q F(\Sigma)$. We prove that $w \operatorname{tn}(\phi)$ is strongly finitely witnessed for T w.r.t. S. Let V be a set of variables of sorts in S and δ_{V} an arrangement of V. We prove that $w \operatorname{tn}(\phi) \wedge \delta_{V}$ is finitely witnessed for T w.r.t. S. Suppose it is T satisfiable. Then since $w t n$ is S-additive and δ_{V} is a conjunction of flat literals that contains only variables of sorts in S as terms, $w \operatorname{tn}\left(w \operatorname{tn}(\phi) \wedge \delta_{V}\right)$ is also T-satisfiable. $w t n$ is a witness for T w.r.t. S, and hence $w \operatorname{tn}\left(w \operatorname{tn}(\phi) \wedge \delta_{V}\right)$ has a finite witness \mathcal{A} for T w.r.t. S. By T-equivalence, $\mathcal{A} \vDash w \operatorname{tn}(\phi) \wedge \delta_{V}$. Since both formulas have the same set of S-variables, \mathcal{A} is also a finite witness of $\operatorname{wtn}(\phi) \wedge \delta_{V}$.

Corollary 1 An additively polite theory w.r.t. S is strongly polite w.r.t. S.
The theory T_{0} from above is additively finitely witnessable w.r.t. σ, even though $w t n^{\prime}$ is not σ-additive. However, it is possible to define a new witness for T_{0} w.r.t. σ, say $w t n^{\prime \prime}$, which is σ-additive. $w t n^{\prime \prime}$ is defined by: $w t n^{\prime \prime}(\phi)=\phi$ if ϕ is a conjunction that includes some disequality $x \neq y$ for some x, y. Otherwise, $w \operatorname{tn}^{\prime \prime}(\phi)=w n^{\prime}(\phi)$.

The following definition generalizes the theory T_{0}.

Definition 11 (Existential Theory) We say a Σ-theory T is existential if there exists a sentence of the form $\phi=\exists \bar{x} . \varphi$ where φ is quantifier-free, such that T consists of all the Σ-structures that satisfy ϕ.
T_{0} is an existential theory, with the sentence $\exists x, y . x \neq y$. Similarly, minimal finite cardinality constraints can be axiomatized with an existential sentence. The construction of $w t n^{\prime \prime}$ above can be generalized to any existential theory. Such theories are also smooth w.r.t. any set of sorts and so existential theories are additively (and thus strongly) polite:

Proposition 2 If T is existential then it is strongly polite w.r.t. S.
Proof: Let φ be the formula whose existential closure defines T. Define a function $w t n_{T}$ by

$$
w t n_{T}(\phi)= \begin{cases}\phi & \text { if } \phi=\phi^{\prime} \wedge \varphi^{\prime} \\ \phi \wedge \varphi^{\prime \prime} & \text { otherwise }\end{cases}
$$

where ϕ^{\prime} is a quantifier-free formula, φ^{\prime} is obtained from φ by replacing its variables with variables not in $\operatorname{vars}\left(\phi^{\prime}\right)$, and $\varphi^{\prime \prime}$ is obtained from φ by replacing its variables with variables not in $\operatorname{vars}(\phi)$. By construction, $w t n_{T}$ is S-additive: once an instance of φ^{\prime} was added to the formula, further applications of $w t n_{T}$ will not change the input formula. $w t n_{T}$ is also a witness for T w.r.t. S : if $w t n_{T}(\phi)=\phi$ then the equivalence requirement is trivial. Otherwise, ϕ is T-equivalent to $\exists \bar{w} \cdot w t n_{T}(\phi)$, where \bar{w} are the fresh variables that were introduced, since the latter only adds an existential formula that is T-valid. Further, if we restrict the domain of a T interpretation that satisfies $w n_{T}(\phi)$, we still obtain a T-interpretation, as the existential closure of φ logically follows from any instance of φ.

For smoothness, let ϕ be a quantifier-free formula, \mathcal{A} a T-interpretation that satisfies ϕ, and κ a function as in Definition 7. Since T is defined by the existential closure of a quantifier-free formula φ, augmenting $\sigma^{\mathcal{A}}$ for each $\sigma \in S$ so that its cardinality matches $\kappa(\sigma)$ results in another T-interpretation satisfying ϕ.

The notion of additive witnesses is useful for proving that a polite theory is strongly polite. In particular, the witnesses for the theories of equality, arrays, sets and multisets from [23] are all additive, and so strong politeness of these theories follows from their politeness. The same will hold later, when we conclude strong politeness of theories of algebraic datatypes from their politeness.

4 Politeness for the SMT-LIB 2 Theory of Datatypes

Let Σ be a datatypes signature with $\mathcal{S}_{\Sigma}=\mathbf{E l e m} \uplus \operatorname{Struct}$ and $\mathcal{F}_{\Sigma}=\mathcal{C O} \uplus \mathcal{S E}$. In this section, we prove that \mathcal{T}_{Σ} is strongly polite with respect to Elem. In Section 4.1 we consider theories with only inductive sorts, and consider theories with only finite sorts in Section 4.2. We combine them in Section 4.3. where arbitrary theories of datatypes are considered. This separation is only needed for finite witnessability, but not for smoothness:

Lemma $1 \mathcal{T}_{\Sigma}$ is smooth w.r.t. Elem.

Proof: Let ϕ be a quantifier-free Σ formula, and let \mathcal{A} be a \mathcal{T}_{Σ}-interpretation that satisfies ϕ. Let κ be a function from Elem to the class of cardinals such that $\kappa(\sigma) \geq\left|\sigma^{\mathcal{A}}\right|$ for every $\sigma \in$ Elem. Then let \mathcal{A}^{\prime} be augmented from \mathcal{A} by adding elements to $\sigma^{\mathcal{A}}$ to match $\kappa(\sigma)$. This is possible because the sorts of Elem are never the range of any constructor. Such an \mathcal{A}^{\prime} exists so that the interpretations of variables and selectors in ϕ remain intact, and for such \mathcal{A}^{\prime}, we have $\mathcal{A}^{\prime} \models \phi$.

4.1 Inductive Datatypes

In this section, we assume that all sorts in Struct are inductive.
To prove finite witnessability, we now introduce an additive witness function. Following arguments from [23], it suffices to define the witness only for conjunctions of flat literals. A complete witness can then use the restricted one by first transforming the input formula to flat DNF form and then creating a disjunction where each disjunct is the result of applying the witness on the corresponding disjunct. Similarly, it suffices to show that $w \operatorname{tn}(\phi)$ is finitely witnessed for ϕ which is a conjunction of flat literals. Essentially, our witness guesses possible constructors for variables whose constructors are not explicit in the input formula.

Definition 12 (A Witness for \mathcal{T}_{Σ}) Let ϕ be a quantifier-free conjunction of flat Σ-literals. $w n_{i}(\phi)$ is obtained from ϕ by performing the following steps:

1. For any literal of the form $y=s_{c, i}(x)$ such that $x=d\left(\overrightarrow{u_{d}}\right)$ does not occur in ϕ for any d and $\overrightarrow{u_{d}}$, we conjunctively add $x=c\left(\overrightarrow{u_{1}}, y, \overrightarrow{u_{2}}\right) \vee\left(\bigvee_{d \neq c, d \in \mathcal{C O}} x=d\left(\overrightarrow{u_{d}}\right)\right)$ where u_{1} is a list of $i-1$ fresh variables, u_{2} is a list of $n-i$ fresh variables with n being the number of arguments of c, u_{d} is a list of m fresh variables with m being the number of arguments of d for each d, and y is a fresh variable. All fresh variables are sorted according to the arities of c and the d 's.
2. For any literal of the form $i s_{c}(x)$ such that $x=c(\vec{u})$ does not occur in ϕ for any \vec{u}, we conjunctively add $x=c(\vec{u})$ with fresh \vec{u}.
3. For any literal of the form $\neg i s_{c}(x)$ such that $x=d\left(\overrightarrow{u_{d}}\right)$ does not occur in ϕ for any $d \neq c$ and $\overrightarrow{u_{d}}$, we conjunctively add $\bigvee_{d \neq c} x=d\left(\overrightarrow{u_{d}}\right)$, with fresh $\overrightarrow{u_{d}}$.
4. For any sort $\sigma \in$ Elem such that ϕ does not include a variable of sort σ we conjunctively add a literal $x=x$ for a fresh variable x of sort σ.

Example 5 Let ϕ be the $\Sigma_{\text {list }}$-formula $y=c d r(x) \wedge y^{\prime}=c d r(x) \wedge i s c o n s^{\text {con }}(y) . w n_{i}(\phi)$ is $\phi \wedge(x=\operatorname{nil} \vee x=\operatorname{cons}(e, y)) \wedge\left(x=\operatorname{nil} \vee x=\operatorname{cons}\left(e^{\prime}, y^{\prime}\right)\right) \wedge y=\operatorname{cons}\left(e^{\prime \prime}, z\right) \wedge e^{\prime \prime \prime}=e^{\prime \prime \prime}$ where $e, e^{\prime}, e^{\prime \prime}, e^{\prime \prime \prime}, z$ are fresh.

In Definition 12, Item 1 guesses the constructor of the argument for the selector. Items 2 and 3 correspond to the semantics of testers. Item 4 is meant to ensure that we can construct a finite witness with non-empty domains. The requirement for absence of literals before adding literals or disjunctions to ϕ is used to ensure additivity of $w t n_{i}$. And indeed:

Lemma 2 wtn $_{i}$ is Elem-additive for T_{Σ}.

Proof: For input formulas that are conjunctions of flat literals, this follows from the construction of $w t n_{i}$. For arbitrary quantifier-free formulas, as mentioned before Definition 12, $w n_{i}$ is extended from conjunctions of flat literals to arbitrary quantifier-free formulas by transforming the input formula to flat DNF form and then applying the witness on each disjunct of the DNF, taking the disjunction of these applications. We prove that this extension preserves additivity.

Let ϕ be a quantifier-free Σ-formula, $D_{1} \vee \ldots \vee D_{m}$ its flat-DNF form, and φ a conjunction of flat literals such that every term in φ is a variable whose sort is in Elem. By the above, $w \operatorname{tn}_{i}\left(w n_{i}(\phi) \wedge \varphi\right)=w n_{i}\left(w t n_{i}\left(D_{1} \vee \ldots \vee D_{m}\right) \wedge \varphi\right)=$ $w n_{i}\left(\left(\operatorname{tn}_{i}\left(D_{1}\right) \vee \ldots \vee w \operatorname{tn}\left(D_{m}\right)\right) \wedge \varphi\right)$. For each $1 \leq i \leq m$, let $E_{i}^{1} \vee \ldots \vee E_{i}^{k_{i}}$ be the flat DNF form of $w n_{i}\left(D_{i}\right)$. Since $w t n_{i}$ does not introduce non-flat literals, no new variables are introduced in the transformation from $w \operatorname{tn}_{i}\left(D_{i}\right)$ to $E_{i}^{1} \vee \ldots \vee E_{i}^{k_{i}}$, but only propositional transformations are employed. The equation list above can continue with $w n_{i}\left(\left(E_{1}^{1} \wedge \varphi\right) \vee \ldots \vee\left(E_{m}^{k_{m}} \wedge \varphi\right)\right)=w n_{i}\left(E_{1}^{1} \wedge \varphi\right) \vee \ldots \vee w n_{i}\left(E_{m}^{k_{m}} \wedge \varphi\right)$. Now, for each $1 \leq i \leq m$ and $1 \leq j \leq k_{i}, E_{i}^{j}$ is a conjunction of flat literals in the DNF-form of $w t n_{i}\left(D_{i}\right)$. By the construction of $w t n_{i}$, each such $E_{i}^{j} \wedge \varphi$ does not satisfy any of the preconditions in $w t n_{i}$ for the addition of any formula: the literals already exist in E_{i}^{j} after the first application of $w t n_{i}$ over D_{i}. In addition, φ does not contain any constructors and testers. Also, each conjunction in the DNF includes at least one variable of each Elem-sort. Thus $w n_{i}\left(E_{i}^{j} \wedge \varphi\right)=E_{i}^{j} \wedge \varphi$. This means that $\operatorname{wtn}_{i}\left(w n_{i}(\phi) \wedge \varphi\right)=\left(E_{1}^{1} \wedge \varphi\right) \vee \ldots \vee\left(E_{m}^{k_{m}} \wedge \varphi\right)$.

Similarly, $w \operatorname{tn}_{i}(\phi) \wedge \varphi=\left(w n_{i}\left(D_{1}\right) \vee \ldots w n_{i}\left(D_{m}\right)\right) \wedge \varphi$, which is logically equivalent to $\left(E_{1}^{1} \vee \ldots \vee E_{m}^{k_{m}}\right) \wedge \varphi$, and hence to $\left(E_{1}^{1} \wedge \varphi\right) \vee \ldots \vee\left(E_{m}^{k_{m}} \wedge \varphi\right)$, which by the above is equivalent to $w \operatorname{tn}_{i}\left(w n_{i}(\phi) \wedge \varphi\right)$. Further, since the second application of $w t n_{i}$ does not introduce anything new, the set of Elem-variables is the same in both formulas.

Further, the equivalence constraint is satisfied:
Lemma 3 Let ϕ be a conjunction of flat literals. ϕ and $\exists \vec{w} . \Gamma$ are \mathcal{T}_{Σ}-equivalent, where $\Gamma=w \operatorname{tn}_{i}(\phi)$ and $\vec{w}=\operatorname{vars}(\Gamma) \backslash \operatorname{vars}(\phi)$.
Proof: Each variable in \vec{w} occurs exactly once in Γ. Let Γ^{\prime} be obtained from $\exists \vec{w} . \Gamma$ by pushing each existential quantifier to the literal that contains its corresponding quantified variable. Clearly, $\exists \vec{w} \Gamma$ and Γ^{\prime} are logically equivalent, and in particular they are \mathcal{T}_{Σ}-equivalent. Γ^{\prime} contains all the conjuncts of ϕ as top-level conjuncts. Hence clearly every \mathcal{T}_{Σ}-interpretation that satisfies Γ^{\prime} also satisfies ϕ. For the converse, let \mathcal{A} be a \mathcal{T}_{Σ}-interpretation that satisfies ϕ and Δ a top-level conjunct of Γ^{\prime}.

- If Δ is also a literal of ϕ then $\mathcal{A} \models \Delta$.
- If Δ corresponds to a formula that was added by Item 1 of Definition 12 then it has the form $\left(\exists \overrightarrow{u_{1}} y \overrightarrow{u_{2}} \cdot x=c\left(\overrightarrow{u_{1}}, y, \overrightarrow{u_{2}}\right)\right) \vee\left(\bigvee_{d \neq c} \exists \overrightarrow{u_{d}} \cdot x=d\left(\overrightarrow{u_{d}}\right)\right)$ and $y=s_{c, i}(x)$ is a literal of $\phi . \mathcal{A} \models y=s_{c, i}(x)$. If $\mathcal{A} \models i s_{c}(x)$ then it must satisfy the first disjunct of Δ. Otherwise, \mathcal{A} must satisfy one of the other disjuncts. In both cases $\mathcal{A} \models \Delta$.
- If Δ corresponds to a formula that was added by Item 2 of Definition 12 then it has the form $\exists \vec{u} \cdot x=c(\vec{u})$ and $i s_{c}(x)$ is a literal of ϕ. Since $\mathcal{A} \models i s_{c}(x)$, we must have $\mathcal{A} \vDash \Delta$.
- If Δ corresponds to a formula that was added by Item 3 of Definition 12 then it has the form $\bigvee_{d \neq c} \exists \vec{u} \cdot x=d(\vec{u})$ and $\neg i s_{c}(x)$ is in ϕ. Since $\mathcal{A} \not \vDash i s_{c}(x)$, we must have $\mathcal{A} \vDash \Delta$.
- If Δ corresponds to a formula that was added by Item 4 then it is trivially satisfied.

The remainder of this section is dedicated to the proof of the following lemma:
Lemma 4 (Finite Witnessability) Let ϕ be a conjunction of flat literals. Then, $\Gamma=w n_{i}(\phi)$ is finitely witnessed for \mathcal{T}_{Σ} with respect to Elem.

Suppose that Γ is \mathcal{T}_{Σ}-satisfiable, and let \mathcal{A} be a satisfying \mathcal{T}_{Σ}-interpretation. We define a \mathcal{T}_{Σ}-interpretation \mathcal{B} as follows, and then show that \mathcal{B} is a finite witness of Γ for \mathcal{T}_{Σ} w.r.t. Elem.

4.1.1 Construction of \mathcal{B}

We start by defining an interpretation \mathcal{B}. For every $\sigma \in$ Elem we set:

$$
\begin{equation*}
\sigma^{\mathcal{B}}=\operatorname{vars}_{\sigma}(\Gamma)^{\mathcal{A}} \tag{1}
\end{equation*}
$$

For every variable $e \in \operatorname{vars}_{\sigma}(\Gamma)$ with $\sigma \in$ Elem we set:

$$
\begin{equation*}
e^{\mathcal{B}}=e^{\mathcal{A}} \tag{2}
\end{equation*}
$$

The interpretations of Struct-sorts, testers and constructors are uniquely determined by the theory, as they are generated by the signature and the interpretation of Elem in \mathcal{A}.

It is therefore left to define new values for the interpretations of Structvariables in \mathcal{B}, as well as the interpretation of the selectors. For the former, they might have been interpreted in \mathcal{A} using (discarded) constructors. For the latter, their interpretations need to correspond to the new interpretations in \mathcal{B}. We do this in several steps:
Step 1 - Simplifying Γ : since ϕ is a conjunction of flat literals, Γ is a conjunction whose conjuncts are either flat literals or disjunctions of flat literals (introduced in Items 1 and 3 of Definition 12). Since $\mathcal{A} \models \Gamma, \mathcal{A}$ satisfies at least one disjunct of each such disjunction. By the definition of $w t n_{i}$, exactly one such disjunct is satisfied. We can thus obtain a formula Γ_{1} from Γ by replacing every disjunction with the unique disjunct that is satisfied by \mathcal{A}. Notice that $\mathcal{A} \models \Gamma_{1}$ and that it is a conjunction of flat literals. Let Γ_{2} be obtained from Γ_{1} by removing any literal of the form $i s_{c}(x)$ and any literal of the form $\neg i s_{c}(x)$. Let Γ_{3} be obtained from Γ_{2} by removing any literal of the form $x=s_{c, i}(y)$. For convenience, we denote Γ_{3} by Γ^{\prime}. Note that the predicate and selector terms are redundant for Γ since they have been expanded to constructor terms by the witness function. Obviously, $\mathcal{A} \vDash \Gamma^{\prime}$, and Γ^{\prime} is a conjunction of flat literals without selectors and testers.
Step 2 - Working with Equivalence Classes: We would like to preserve equalities between Struct-variables from \mathcal{A}. To this end, we group all variables in $\operatorname{vars}(\Gamma)$ to equivalence classes according to their interpretation in \mathcal{A}. Let $\equiv_{\mathcal{A}}$ denote the equivalence relation over $\operatorname{vars}(\Gamma)$ such that $x \equiv_{\mathcal{A}} y$ iff $x^{\mathcal{A}}=y^{\mathcal{A}}$. We denote by $[x]$
the equivalence class of x. Let α be an equivalence class, thus $\alpha^{\mathcal{A}}=\left\{x^{\mathcal{A}} \mid x \in \alpha\right\}$ is a singleton. Identifying this singleton with its only element, we have that $\alpha^{\mathcal{A}}$ denotes $a^{\mathcal{A}}$ for an arbitrary element a of the equivalence class α.
Step 3 - Ordering Equivalence Classes: We would also like to preserve disequalities between Struct-variables from \mathcal{A}. Thus we introduce a relation \prec over the equivalence classes: $\alpha \prec \beta$ if $y=c\left(w_{1}, \ldots, w_{n}\right)$ occurs as one of the conjuncts in Γ^{\prime} for some w_{1}, \ldots, w_{n} and $c \in \mathcal{C O}$ such that $w_{k} \in \alpha$ for some $k \in[1, n]$ and $y \in \beta$. An equivalence class α is nullary if $\mathcal{A} \vDash i s_{c}(x)$ for some $x \in \alpha$ and nullary constructor c. An equivalence class α is minimal if $\beta \nprec \alpha$ for every β. Notice that each nullary equivalence class is minimal. The relation \prec induces a directed acyclic graph (DAG), denoted G. The vertices are the equivalence classes. Whenever $\alpha \prec \beta$, we draw an edge from vertex α to β.
Step 4 - Interpretation of Equivalence Classes: We next define $\alpha^{\mathcal{B}}$ for every equivalence class α. Then, for every Struct-variable x, we set:

$$
\begin{equation*}
x^{\mathcal{B}}=[x]^{\mathcal{B}} \tag{3}
\end{equation*}
$$

The idea for defining $\alpha^{\mathcal{B}}$ goes as follows. Nullary classes are assigned according to \mathcal{A}, because nullary constructors are interpreted as themselves, and hence there is only one way to interpret them. Other minimal classes are assigned arbitrarily, but it is important to assign different classes to terms whose depths are far enough from each other to ensure that the disequalities in \mathcal{A} are preserved. Non-minimal classes are uniquely determined after minimal ones are assigned.

Formally, let m be the number of equivalence classes, l the number of minimal equivalence classes, r the number of nullary equivalence classes, and $\alpha_{1}, \ldots, \alpha_{m}$ a topological sort of G, such that all minimal classes occur before all others, and the first r classes are nullary. Let d be the length of the longest path in G. We define $\alpha_{i}^{\mathcal{B}}$ by induction on i. In the definition, we use $\mathcal{B}_{\text {Elem }}$ to denote the Elem-sorted set assigning $\sigma^{\mathcal{B}}$ to every $\sigma \in$ Elem.

1. If $0<r$ and $i \leq r$ then α_{i} is a nullary class and so we set:

$$
\begin{equation*}
\alpha_{i}^{\mathcal{B}}=\alpha_{i}^{\mathcal{A}} \tag{4}
\end{equation*}
$$

2. If $r<i \leq l$ then α_{i} is minimal and not nullary. Let σ be the sort of variables in α_{i}. If $\sigma \in$ Elem, then all variables in the class have already been defined. Otherwise, $\sigma \in$ Struct. In this case, we set:

$$
\begin{equation*}
\alpha_{i}^{\mathcal{B}}=a \tag{5}
\end{equation*}
$$

such that a is some arbitrary element of $T_{\sigma}\left(\Sigma_{\mid \mathcal{C O}}, \mathcal{B}_{\text {Elem }}\right)$ that has depth strictly greater than $\max \left\{\operatorname{depth}\left(\alpha_{j}^{\mathcal{B}}\right) \mid 0<j<i\right\}+d($ here $\max \emptyset=0)$.
3. If $i>l$ then we set:

$$
\begin{equation*}
\alpha_{i}^{\mathcal{B}}=c\left(\beta_{1}^{\mathcal{B}}, \ldots, \beta_{n}^{\mathcal{B}}\right) \tag{6}
\end{equation*}
$$

for the unique equivalence classes $\beta_{1}, \ldots, \beta_{n} \subseteq\left\{\alpha_{1}, \ldots, \alpha_{i-1}\right\}$ and c such that $y=c\left(x_{1}, \ldots, x_{n}\right)$ occurs in Γ^{\prime} for some $y \in \alpha_{i}$ and $x_{1} \in \beta_{1}, \ldots, x_{n} \in \beta_{n}$.

Example 6 Let Γ be the following $\Sigma_{\text {list }}$-formula: $x_{1}=\operatorname{cons}\left(e_{1}, x_{2}\right) \wedge x_{3}=\operatorname{cons}\left(e_{2}, x_{4}\right) \wedge$ $x_{2} \neq x_{4}$. Then $\Gamma^{\prime}=\Gamma$. We have the following satisfying interpretation \mathcal{A} : elem $^{\mathcal{A}}=$ $\{1,2,3,4\}, e_{1}^{\mathcal{A}}=1, e_{2}^{\mathcal{A}}=2, x_{1}^{\mathcal{A}}=[1,2,3], x_{2}^{\mathcal{A}}=[2,3], x_{3}^{\mathcal{A}}=[2,2,4], x_{4}^{\mathcal{A}}=[2,4]$.

The construction above yields the following interpretation \mathcal{B} : elem $^{\mathcal{B}}=\{1,2\}$, $e_{1}^{\mathcal{B}}=1, e_{2}^{\mathcal{B}}=2$. For list-variables, we proceed as follows. The equivalence classes of list-variables are $\left[x_{1}\right],\left[x_{2}\right],\left[x_{3}\right],\left[x_{4}\right]$, with $\left[x_{2}\right] \prec\left[x_{1}\right]$ and $\left[x_{4}\right] \prec\left[x_{3}\right]$. The length of the longest path in G is 1 .

Assuming $\left[x_{2}\right]$ comes before $\left[x_{4}\right]$ in the topological sort, $x_{2}^{\mathcal{B}}$ will get an arbitrary list over $\{1,2\}$ with length greater than 1 (the depth of $e_{2}^{\mathcal{B}}$ plus the length of the longest path), say, $[1,1,1] . x_{4}^{\mathcal{B}}$ will then get an arbitrary list of length greater than 4 (the depth of $x_{2}^{\mathcal{B}}$ plus the length of the longest path). Thus we could have $x_{4}^{\mathcal{B}}=[1,1,1,1,1]$. Then, $x_{1}^{\mathcal{B}}=[1,1,1,1]$ and $x_{3}^{\mathcal{B}}=[2,1,1,1,1,1]$.

Lemma $5 \alpha_{i}^{\mathcal{B}}$ is well-defined.
Proof: The case of nullary and minimal constructors is clearly well-defined. Suppose α_{i} is not minimal. Then the sort of its variables is in Struct. We prove that there is a unique list $\beta_{1}, \ldots, \beta_{n}$, of equivalence classes, all elements of $\left\{\alpha_{1}, \ldots, \alpha_{i-1}\right\}$ and a unique constructor c such that $y=c\left(x_{1}, \ldots, x_{n}\right)$ occurs in Γ^{\prime} for some $y \in \alpha_{i}$ and $x_{1} \in \beta_{1}, \ldots, x_{n} \in \beta_{n}$. Existence: α_{i} is not minimal. Hence there exists some β_{1} such that $\beta_{1} \prec \alpha_{i}$. Hence w.l.g. there exists some $y \in \alpha_{i}$ and some $x_{1} \in \beta_{1}$ such that $y=c\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is in Γ^{\prime} for some x_{2}, \ldots, x_{n} and c. By definition, this means that $\left[x_{2}\right], \ldots,\left[x_{n}\right] \prec \alpha_{i}$ as well, and thus $\left[x_{j}\right]$ must occur before α_{i} in the topological ordering for every $1 \leq j \leq n$, hence $\left[x_{j}\right] \in\left\{\alpha_{1}, \ldots, \alpha_{i-1}\right\}$ for each j. Uniqueness: Suppose there are also equivalence classes $\beta_{1}^{\prime}, \ldots, \beta_{m}^{\prime}$, all elements of $\left\{\alpha_{1}, \ldots, \alpha_{i-1}\right\}$ and a constructor c^{\prime} such that $y^{\prime}=c^{\prime}\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$ occurs in Γ^{\prime} for some $y^{\prime} \in \alpha_{i}$ and $x_{1}^{\prime} \in \beta_{1}^{\prime}, \ldots, x_{m}^{\prime} \in \beta_{m}^{\prime}$. Since $y^{\prime}=c^{\prime}\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$ and $y=c\left(x_{1}, \ldots, x_{n}\right)$ both occur in Γ^{\prime} and are thus satisfied by \mathcal{A}, and $[y]=\left[y^{\prime}\right]$, we must have $c=c^{\prime}, n=m$, and $\mathcal{A} \vDash x_{j}=x_{j}^{\prime}$ for every j, otherwise it would contradict $[y]=\left[y^{\prime}\right]$. Hence $\left[x_{j}\right]=\left[x_{j}^{\prime}\right]$, so that $\beta_{j}^{\gamma}=\beta_{j}$ for every j.

Step 5 - Interpretation of Selectors: Let $s_{c, i} \in \mathcal{S E}$ for $c: \sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma$, $1 \leq i \leq n$ and $a \in \sigma^{\mathcal{B}}$. If $a \in i s_{c}^{\mathcal{B}}$, we must have $a=c\left(a_{1}, \ldots, a_{n}\right)$ for some $a_{1} \in \sigma_{1}^{\mathcal{B}}, \ldots, a_{n} \in \sigma_{n}^{\mathcal{B}}$. We then set:

$$
\begin{equation*}
s_{c, i}^{\mathcal{B}}(a)=a_{i} \tag{7}
\end{equation*}
$$

Otherwise, we consider two cases. If $x^{\mathcal{B}}=a$ for some $x \in \operatorname{vars}(\Gamma)$ such that $y=s_{c, i}(x)$ occurs in Γ_{2} for some y, we set:

$$
\begin{equation*}
s_{c, i}^{\mathcal{B}}(a)=y^{\mathcal{B}} \tag{8}
\end{equation*}
$$

Otherwise, $s_{c, i}^{\mathcal{B}}(a)$ is set arbitrarily.

4.1.2 \mathcal{B} is a Finite Witness of Γ

Now that \mathcal{B} is defined using equations 1 8 , we show that it is a finite witness of Γ for \mathcal{T}_{Σ} w.r.t. Elem. By construction, $\sigma^{\mathcal{B}}=\operatorname{vars}_{\sigma}(\Gamma)^{\mathcal{B}}$ for every $\sigma \in$ Elem. Hence it is left to show that $\mathcal{B} \models \Gamma$. We start by showing that \mathcal{B} preserves the equalities and disequalities in \mathcal{A} :

Lemma $6 x^{\mathcal{A}}=y^{\mathcal{A}}$ iff $x^{\mathcal{B}}=y^{\mathcal{B}}$ for every $x, y \in \operatorname{vars}(\Gamma)$.
Proof: The left-to-right direction follows directly from the definition of \mathcal{B}, that does not distinguish distinct elements inside a single equivalence class of $\equiv_{\mathcal{A}}$. For the converse, we prove that $\alpha_{1}^{\mathcal{B}}, \ldots, \alpha_{p}^{\mathcal{B}}$ are pairwise distinct for every $1 \leq p \leq m$ by induction on p. From this the claim follows: if $x^{\mathcal{A}} \neq y_{\mathcal{B}}^{\mathcal{A}}$, then $[x]=\alpha_{p}$ and $[y]=\alpha_{q}$ for some $p \neq q$, and therefore $x^{\mathcal{B}}=[x]^{\mathcal{B}} \neq[y]^{\mathcal{B}}=y^{\mathcal{B}}$.

The induction base corresponds to the first l classes (minimal classes).

1. For all the equivalence classes of Elem-sorted variables, as they are also minimal, and the definition is the same as in \mathcal{A}, their interpretations are distinct by definition.
2. For the nullary classes, the definition is also the same as in \mathcal{A}, thus they have distinct interpretations.
3. For the equivalence classes of minimal non-nullary Struct-sorted variables, they have different interpretations with the nullary classes, as their interpretations all have the depth more than d. And among themselves, the depths of the interpretations of these classes is a strongly increasing monotonic sequence by definition.
For the induction step, assume the claim for $p(l \leq p<m)$ vertices. It is sufficient to prove that α_{p+1} has a different interpretation from all the previous vertices. Assume otherwise, and let $i \leq p$ with $\alpha_{i}^{\mathcal{B}}=\alpha_{p+1}^{\mathcal{B}} \cdot \alpha_{p+1}$ is not minimal. Since α_{p+1} cannot be nullary, $\alpha_{i}^{\mathcal{B}}=\alpha_{p+1}^{\mathcal{B}}$ cannot be nullary, thus we have $i>r$. Recall that the first r classes are nullary as defined in Step 4. Then let us consider two cases.
4. α_{i} is not minimal: There must be a constructor c such that $\alpha_{i}^{\mathcal{B}}=c\left(\beta_{1}^{\mathcal{B}}, \ldots, \beta_{n}^{\mathcal{B}}\right)$ and $\alpha_{p+1}^{\mathcal{B}}=c\left(\hat{\beta}_{1}^{\mathcal{B}}, \ldots, \hat{\beta}_{n}^{\mathcal{B}}\right)$ for some equivalence classes $\beta_{1}, \ldots, \beta_{n}$ and $\hat{\beta}_{1}, \ldots, \hat{\beta}_{n}$. Then from $\alpha_{i}^{\mathcal{B}}=\alpha_{p+1}^{\mathcal{B}}$, we have $\beta_{k}^{\mathcal{B}}=\hat{\beta}_{k}^{\mathcal{B}}$ for $k=1, \ldots, n$. Also, note that $\beta_{1}, \ldots, \beta_{n}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{n} \in\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$. Let $1 \leq k \leq n$. By the induction hypothesis, either $\beta_{k}=\hat{\beta}_{k}$ or $\beta_{k}^{\mathcal{B}} \neq \hat{\beta}_{k}^{\mathcal{B}}$. By the above, the former must hold. So that $\beta_{k}^{\mathcal{A}}=\hat{\beta}_{k}^{\mathcal{A}}$ for $k=1, \ldots, n$, thus we get $\alpha_{i}^{\mathcal{A}}=\alpha_{p+1}^{\mathcal{A}}$. Since the equivalence classes are defined by $\equiv_{\mathcal{A}}$, we have $\left[\alpha_{i}\right]=\left[\alpha_{p+1}\right]$, thus $i=p+1$. This contradicts the fact that $i<p+1$.
5. α_{i} is minimal: An equivalence class β is said to be a source of α_{p+1}, if there is a path from β to α_{p+1} in G and β is minimal.
If α_{p+1} has a source vertex β such that $\operatorname{depth}\left(\beta^{\mathcal{B}}\right) \geq \operatorname{depth}\left(\alpha_{i}^{\mathcal{B}}\right)$, then we have $\operatorname{depth}\left(\alpha_{p+1}^{\mathcal{B}}\right)>\operatorname{depth}\left(\beta^{\mathcal{B}}\right) \geq \operatorname{depth}\left(\alpha_{i}^{\mathcal{B}}\right)$.
Otherwise $\operatorname{depth}\left(\alpha_{i}^{\mathcal{B}}\right)>0$ since by construction, α_{i} is not an Elem-sorted variable, and for any other minimal class α^{\prime}, either $\operatorname{depth}\left(\alpha^{\prime \mathcal{B}}\right)>\operatorname{depth}\left(\alpha_{i}^{\mathcal{B}}\right)$ or $\operatorname{depth}\left(\alpha^{\prime \mathcal{B}}\right)<\operatorname{depth}\left(\alpha_{i}^{\mathcal{B}}\right)-d$. So for any source vertex β of α_{p+1}, we have $\operatorname{depth}\left(\beta^{\mathcal{B}}\right)<\operatorname{depth}\left(\alpha_{i}^{\mathcal{B}}\right)-d$. Since d is the length of the longest path, we obtain $\operatorname{depth}\left(\alpha_{p+1}^{\mathcal{B}}\right) \leq \operatorname{depth}\left(\beta^{\mathcal{B}}\right)+d<\operatorname{depth}\left(\alpha_{i}^{\mathcal{B}}\right)$. Therefore, $\alpha_{i}^{\mathcal{B}} \neq \alpha_{p+1}^{\mathcal{B}}$, which makes the contradiction.

By considering every shape of a literal in Γ^{\prime} we can prove that $\mathcal{B} \models \Gamma^{\prime}$. Then, our interpretation of the selectors ensures the following:
Lemma $7 \mathcal{B} \models \Gamma$.

Proof: We start by proving that $\mathcal{B} \models \Gamma^{\prime} . \Gamma^{\prime}$ is a conjunction of flat literals without selectors and testers. We consider each type of conjunct separately.

- Literals of the form $x=y$ or $x \neq y$: By Lemma 6 and the fact that $\mathcal{A} \vDash \Gamma^{\prime}$, these literals hold in interpretation \mathcal{B}.
- Literals of the form $x=c$, where c is a nullary constructor: In this case, $x^{\mathcal{B}}$ is defined as $x^{\mathcal{A}}$, see Equation (4). Since $\mathcal{A} \models \Gamma^{\prime}$, we have $\mathcal{B} \vDash x=c$.
- Literals of the form $x=c\left(w_{1}, \ldots, w_{n}\right)$ for some constructor c : Since $\mathcal{A} \vDash \Gamma^{\prime}$, c is the only constructor that construct x in Γ^{\prime}. From the definition of \mathcal{B}, $x^{\mathcal{B}}=c\left(d_{1}^{\mathcal{B}}, \ldots, d_{n}^{\mathcal{B}}\right)$ for some d_{1}, \ldots, d_{n}, see Equation (6). And by Lemma 5 , we have $\left[w_{k}\right]=\left[d_{k}\right]$ for $k=1, \ldots, n$. So we have $x^{\mathcal{B}}=c\left(w_{1}^{\mathcal{B}}, \ldots, w_{n}^{\mathcal{B}}\right)$.
Next, we prove that $\mathcal{B} \models \Gamma_{2} . \Gamma_{2}$ is a conjunction of the literals of Γ^{\prime}, together with literals of the form $y=s_{c, i}(x)$ from Γ. Let $y=s_{c, i}(x)$ be such a conjunct of Γ_{2}. Then by the definition of $w t n_{i}$ and Γ^{\prime}, there are two cases:
$-x=c(\ldots, y, \ldots)$ is in Γ^{\prime}. Thus $[y] \prec[x]$ and $x^{\mathcal{B}}=c\left(\ldots, y^{\mathcal{B}}, \ldots\right)$ by the definition of \mathcal{B}. In particular, $x^{\mathcal{B}} \in i s_{c}^{\mathcal{B}}$. In this case, $s_{c, i}(x)^{\mathcal{B}}$ is set to $y^{\mathcal{B}}$ by the definition of \mathcal{B}.
$-x=d(\ldots)$ is in Γ^{\prime} for some $d \neq c$. We consider the following sub-cases.
- If d is nullary then $[x]$ is nullary. In this case, $x^{\mathcal{B}}=x^{\mathcal{A}} . \mathcal{A} \models \Gamma^{\prime}$ and hence $x^{\mathcal{A}} \in i s_{d}^{\mathcal{A}}$, which means that $x^{\mathcal{B}} \in i s_{d}^{\mathcal{B}}$ as well. In particular, $x^{\mathcal{B}} \notin i s_{c}^{\mathcal{B}}$. Since $y=s_{c, i}(x)$ occurs in $\Gamma_{2}, s_{c, i}(x)^{\mathcal{B}}$ is set to be $y^{\mathcal{B}}$.
- If d is not nullary then $[x]$ cannot be minimal, and hence $x^{\mathcal{B}} \in i s_{d}^{\mathcal{B}}$ by the definition of \mathcal{B}. In particular, $x^{\mathcal{B}} \notin i s_{c}^{\mathcal{B}}$. Since $y=s_{c, i}(x)$ occurs in Γ_{2}, $s_{c, i}(x)^{\mathcal{B}}$ is set to be $y^{\mathcal{B}}$ in this case.

Hence $\mathcal{B} \models \Gamma_{2}$.
Next, we show that $\mathcal{B} \vDash \Gamma_{1}$, which is obtained from Γ_{2} by the addition of conjunctions of the form $i s_{c}(x)$ and $\neg i s_{c}(x)$. Let $i s_{c}(x)$ be such a literal in Γ_{1}. Then it is also a literal of Γ. Then by the definition of $w t n_{i}$ and of Γ^{\prime}, this means that Γ^{\prime} contains a literal of the form $x=c\left(y_{1}, \ldots, y_{n}\right)$. Since $\mathcal{B} \models \Gamma^{\prime}$, we have $\mathcal{B} \models i s_{c}(x)$. Now let $\neg i s_{c}(x)$ be a literal of Γ_{1}. Then it is also a literal of Γ. By the definition of $w n_{i}$ and Γ^{\prime}, the latter contains a literal of the form $x=d\left(t_{1}, \ldots, t_{n}\right)$ for some $d \neq c$. Since $\mathcal{B} \models \Gamma^{\prime}$, we have $\mathcal{B} \models \neg i s_{c}(x)$.

Finally, we have seen that \mathcal{B} satisfies a disjunct in every disjunction of Γ, as well as all of the top-level literals of Γ, which means that $\mathcal{B} \models \Gamma$.

Lemmas 3 and 7, together with the definition of the domains of \mathcal{B}, give us that \mathcal{B} is a finite witness of Γ for \mathcal{T}_{Σ} w.r.t. Elem, and so Lemma 4 is proven. As a consequence of Lemmas 1,2 and 4 , strong politeness is obtained.

Theorem 2 If Σ is a datatypes signature and all sorts in $\boldsymbol{S t r u c t}_{\Sigma}$ are inductive, then \mathcal{T}_{Σ} is strongly polite w.r.t. Elem $_{\Sigma}$.

4.2 Finite Datatypes

In this section, we assume that all sorts in Struct are finite.
For finite witnessability, we define the following witness, that guesses the construction of each Struct-variables until a fixpoint is reached.

Definition 13 (A Witness for \mathcal{T}_{Σ}) For every quantifier-free conjunction of flat Σ-literals ϕ, define the sequence $\phi_{0}, \phi_{1}, \ldots$, such that $\phi_{0}=\phi$, and for every $i \geq 0, \phi_{i+1}$ is obtained from ϕ_{i} by conjuncting it with a disjunction $\bigvee_{c \in \mathcal{C O}} x=$ $c\left(w_{1}^{c}, \ldots, w_{n_{c}}^{c}\right)$ for fresh $w_{1}^{c}, \ldots, w_{n_{c}}^{c}$, where x is some arbitrary Struct-variable in ϕ_{i} such that there is no literal of the form $x=c\left(y_{1}, \ldots, y_{n}\right)$ in ϕ_{i} for any constructor $c \in \mathcal{C O}$ and variables y_{1}, \ldots, y_{n}. Since Struct only has finite sorts, there is necessarily a minimal k such that $\phi_{k}=\phi_{k+1}$ and $w n_{f}(\phi)$ is defined to be ϕ_{k}.

Example 7 Let ϕ be the $\Sigma_{\text {pair }}$-formula $x=\operatorname{first}(y) \wedge x^{\prime}=\operatorname{first}\left(y^{\prime}\right) \wedge x \neq x^{\prime} . w_{t n_{f}}(\phi)$ is $\phi \wedge y=\operatorname{pair}\left(e_{1}, e_{2}\right) \wedge y^{\prime}=\operatorname{pair}\left(e_{3}, e_{4}\right)$.

Similarly to the case of inductive datatypes presented in Section 4.1. we have:
Lemma 8 wtn $_{f}$ is Elem-additive for T_{Σ}.
Proof: We proceed just like in the proof of Lemma 2. Let φ be a conjunction of flat literals such that every term in φ is a variable whose sort is in Elem. By construction of $w t n_{f}, w t n_{f}(\phi) \wedge \varphi$ does not satisfy the precondition in $w t n_{f}$ for the addition of any formula since φ does not contain any constructors. Thus, $w t n_{f}\left(w t n_{f}(\phi) \wedge \varphi\right)=w t n_{f}(\phi) \wedge \varphi$.

Lemma 9ϕ and $\exists \vec{w} \cdot w n_{f}(\phi)$ are \mathcal{T}_{Σ}-equivalent, where $\vec{w}=\operatorname{vars}\left(w t n_{f}(\phi)\right) \backslash \operatorname{vars}(\phi)$.
Proof: Similarly to the proof of Lemma 3, we know that $\exists \vec{w}_{i} . \phi_{i}$ and $\exists \overrightarrow{w_{i+1}} \cdot \exists \phi_{i+1}$ are \mathcal{T}_{Σ}-equivalent, where $\overrightarrow{w_{i}}=\operatorname{vars}\left(w_{n}\left(\phi_{i}\right)\right) \backslash \operatorname{vars}(\phi), \overrightarrow{w_{i+1}}=\operatorname{vars}\left(w n_{f}\left(\phi_{i+1}\right)\right) \backslash$ $\operatorname{vars}(\phi)$. Also since $\phi_{0}=\phi$, we have that ϕ and $\exists \vec{w} \cdot \phi_{k}$ are \mathcal{T}_{Σ}-equivalent, where $\vec{w}=\operatorname{vars}\left(\phi_{k}\right) \backslash \operatorname{vars}(\phi)$, for the minimal k such that $\phi_{k}=\phi_{k+1}$.

We now prove the following lemma:
Lemma 10 (Finite Witnessability) Let ϕ be a conjunction of flat literals. Then, $w_{t n_{f}}(\phi)$ is finitely witnessed for \mathcal{T}_{Σ} with respect to Elem.

Proof: Suppose $\Gamma=w \operatorname{tn}_{f}(\phi)$ is $\mathcal{T}_{\Sigma^{-}}$-satisfiable, and let \mathcal{A} be a satisfying $\mathcal{T}_{\Sigma^{-}}$ interpretation. We define a \mathcal{T}_{Σ}-interpretation \mathcal{B} which is a finite witness of Γ for \mathcal{T}_{Σ} w.r.t. Elem. We set $\sigma^{\mathcal{B}}=\operatorname{vars}_{\sigma}(\Gamma)^{\mathcal{A}}$ for every $\sigma \in$ Elem, $e^{\mathcal{B}}=e^{\mathcal{A}}$, for every variable $e \in \operatorname{vars}_{\text {Elem }}(\Gamma)$ and $x^{\mathcal{B}}=x^{\mathcal{A}}$ for every variable $x \in \operatorname{vars}_{\text {Struct }}(\Gamma)$. Selectors are also interpreted as they are interpreted in \mathcal{A}. This is well-defined: for any Struct-variable x, every element in $\sigma^{\mathcal{A}}$ for $\sigma \in$ Elem that occurs in $x^{\mathcal{A}}$ has a corresponding variable e in Γ such that $e^{\mathcal{A}}$ is that element. This holds by the finiteness of the sorts in Struct and the definition of $w t n_{f}$. Further, for any Struct-variable x such that $s_{c, i}(x)$ occurs in Γ, we must have that it occurs in some literal of the form $y=s_{c, i}(x)$ of Γ. Similarly to the above, all elements that occur in $y^{\mathcal{A}}$ and $x^{\mathcal{A}}$ have corresponding variables in Γ. Therefore, $\mathcal{B} \models \Gamma$ is a trivial consequence of $\mathcal{A} \models \Gamma$. By the definition of its domains, \mathcal{B} is a finite witness of Γ for \mathcal{T}_{Σ} w.r.t. Elem.

By Lemmas 1, 8, 9 and 10, strong politeness is obtained.
Theorem 3 If Σ is a datatypes signature and all sorts in $\operatorname{Struct}_{\Sigma}$ are finite, then \mathcal{T}_{Σ} is strongly polite w.r.t. Elem $_{\Sigma}$.
4.3 Combining Finite and Inductive Datatypes

Now we consider the general case. Let Σ be an arbitrary datatypes signature. We prove that \mathcal{T}_{Σ} is strongly polite w.r.t. Elem. We show that there are datatypes signatures $\Sigma_{1}, \Sigma_{2} \subseteq \Sigma$ such that $\mathcal{T}_{\Sigma}=\mathcal{T}_{\Sigma_{1}} \oplus \mathcal{T}_{\Sigma_{2}}$, and then use Theorem 1 . In Σ_{1}, inductive sorts are excluded, while in Σ_{2}, finite sorts are considered to be element sorts:

Theorem 4 If Σ is a datatypes signature then \mathcal{T}_{Σ} is strongly polite w.r.t. Elem Σ.
Proof: Set Σ_{1} as follows: $\operatorname{Elem}_{\Sigma_{1}}=\operatorname{Elem}_{\Sigma}$ and $\operatorname{Struct}_{\Sigma_{1}}=\operatorname{Fin}(\Sigma) . \mathcal{F}_{\Sigma_{1}}=$ $\mathcal{C} \mathcal{S}_{\Sigma_{1}} \uplus \mathcal{S E}_{\Sigma_{1}}$, where $\mathcal{C O}_{\Sigma_{1}}=\left\{c: \sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma \mid c \in \mathcal{C O}_{\Sigma}, \sigma \in\right.$ Struct $\left._{\Sigma_{1}}\right\}$ and $\mathcal{S E} \mathcal{E}_{\Sigma_{1}}$ and $\mathcal{P}_{\Sigma_{1}}$ are the corresponding selectors and testers. Notice that if σ is finite and $c: \sigma_{1} \times \ldots \times \sigma_{n} \rightarrow \sigma$ is in $\mathcal{C O}_{\Sigma}$, then σ_{i} must be finite or in Elem ${ }_{\Sigma}$ for every $1 \leq i \leq n$. Next, we set Σ_{2} as follows: $\mathcal{S}_{\Sigma_{2}}=\operatorname{Elem}_{\Sigma_{2}} \uplus \operatorname{Struct}_{\Sigma_{2}}$, where $\operatorname{Elem}_{\Sigma_{2}}=\operatorname{Elem}_{\Sigma} \cup \operatorname{Fin}(\Sigma)$ and $\operatorname{Struct}_{\Sigma_{2}}=\operatorname{Ind}(\Sigma) . \mathcal{F}_{\Sigma_{2}}=\mathcal{C} \mathcal{O}_{\Sigma_{2}} \uplus \mathcal{S E}_{\Sigma_{2}}$, where $\mathcal{C} \mathcal{O}_{\Sigma_{2}}=\left\{c: \sigma_{2} \times \ldots \times \sigma_{n} \rightarrow \sigma \mid c \in \mathcal{C} \mathcal{O}_{\Sigma}, \sigma \in \operatorname{Struct}_{\Sigma_{2}}\right\}$ and $\mathcal{S E}_{\Sigma_{2}}$ and $\mathcal{P}_{\Sigma_{2}}$ are the corresponding selectors and testers. Thus, $\mathcal{T}_{\Sigma}=\mathcal{T}_{\Sigma_{1}} \oplus \mathcal{T}_{\Sigma_{2}}$.

Now set $S=\operatorname{Elem}_{\Sigma} \cup \operatorname{Fin}(\Sigma), S_{1}=\operatorname{Elem}_{\Sigma}, S_{2}=\operatorname{Elem}_{\Sigma} \cup \operatorname{Fin}(\Sigma), T_{1}=\mathcal{T}_{\Sigma_{1}}$, and $T_{2}=\mathcal{T}_{\Sigma_{2}}$. By Theorem 3, T_{1} is strongly polite w.r.t. S_{1} and by Theorem $2, T_{2}$ is strongly polite w.r.t. S_{2}. By Theorem $1 \mathcal{T}_{\Sigma}$ is strongly polite w.r.t. Elem \boldsymbol{I}_{Σ}.

Remark 1 A concrete witness for \mathcal{T}_{Σ} in the general case, that we call $w n_{\Sigma}$, is obtained by first applying the witness from Definition 12 and then applying the witness from Definition 13 on the literals that involve finite sorts. A direct finite witnessability proof can be obtained by using the same arguments from the proofs of Lemmas 4 and 10 . This witness is simpler than the one produced in the proof from [16] of Theorem 1, that involves purification and arrangements. In our case, we do not consider arrangements, but instead notice that the resulting function is additive, and hence ensures strong finite witnessability.

5 Axiomatizations

In this section, we discuss the possible connections between \mathcal{T}_{Σ} and some axiomatizations of trees. We show how to get a reduction of any \mathcal{T}_{Σ}-satisfiability problem into a satisfiability problem modulo an axiomatized theory of trees. The latter can be decided using syntactic unification.

Let Σ be a datatypes signature. The set $T R E E_{\Sigma}^{*}$ of axioms is defined as the union of all the sets of axioms in Figure 1 (where upper case letters denote implicitly universally quantified variables). Let $T R E E_{\Sigma}$ be the set obtained from $T R E E_{\Sigma}^{*}$ by dismissing $E x t_{1}$ and $E x t_{2}$. Note that because of $A c y c$, we have that $T R E E_{\Sigma}$ is infinite (that is, consists of infinitely many axioms) unless all sorts in Struct are finite. $T R E E_{\Sigma}$ is a generalization of the theory of Absolutely Free Data Structures (AFDS) from 11 to many-sorted signatures with selectors and testers. In what follows we identify $T R E E_{\Sigma}$ (and $T R E E_{\Sigma}^{*}$) with the class of structures that satisfy them when there is no ambiguity. It is routine to verify that the axioms are sound, and hence we have:
Proposition 3 Every $T R E E_{\Sigma}^{*}$-unsatisfiable formula is \mathcal{T}_{Σ}-unsatisfiable.

(Inj) (Dis) (Proj) ($I s_{1}$) ($I s_{2}$) (Acyc) $\left(E x t_{1}\right)$ $\left(E x t_{2}\right)$	

Fig. 1 Axioms for $T R E E_{\Sigma}$ and $T R E E_{\Sigma}^{*}$

5.1 A Satisfiability Procedure for $T R E E_{\Sigma}$

Using an approach à la Shostak [28, 5, 20, 18, 33, 11, it is possible to get a satisfiability procedure for the $\Sigma_{\mid \mathcal{C O}}$-reduct of $T R E E_{\Sigma}$. Consider the $\Sigma_{\mid \mathcal{C O}}$-theory $F T$ defined from $T R E E_{\Sigma}$ by dismissing $P r o j, I s_{1}$ and $I s_{2}$. As shown below, $F T$ is a Shostak theory for which there exists a solver computing solved forms. A conjunction of equalities Γ of the form $\bigwedge_{k \in K} x_{k}=t_{k}$ is said to be a solved form if for each $k \in K, x_{k}$ is a variable occurring only once in Γ. A theory T whose signature does not contain any predicate symbol is said to be a Shostak theory if

- T is convex, meaning that for any conjunction of literals φ over the signature of $T, T \cup\{\varphi\}$ does not entail any disjunction of equalities without entailing one of the equalities itself.
- T admits a solver solve $_{T}$ and a canonizer canon $_{T}$:
- solve $_{T}$ computes, for any conjunction of equalities Φ, a formula Γ such that Γ is a solved form T-equivalent to Φ if Φ is T-satisfiable; otherwise Γ is the unsatisfiable formula \perp.
- canon_{T} is a computable idempotent mapping from terms to terms such that $T \models s=t$ iff $\operatorname{canon}_{T}(s)=\operatorname{canon}_{T}(t)$.

A substitution can be associated to any solved form. Formally, a substitution is defined in the usual way as an endomorphism of the structure of terms with only finitely many variables not mapped to themselves. In the case of a solved form $\Gamma=\left(\bigwedge_{k \in K} x_{k}=t_{k}\right)$, the associated substitution is $\mu=\left\{x_{k} \mapsto t_{k}\right\}_{k \in K}$. Application of the substitution μ to a term t is the term written $\mu(t)$ which is obtained from t by replacing x_{k} with t_{k} for each $k \in K$. The substitution associated to a solved form is useful to express a T-satisfiability procedure for a Shostak theory T.

Lemma 11 ([33]) Let T be a Shostak theory. Assume Φ is any conjunction of equalities and Δ is any conjunction of disequalities such that $\Phi \wedge \Delta$ is built over the signature of $T . \Phi \wedge \Delta$ is T-satisfiable iff

- solve T_{T} computes, for the input Φ, a solved form $\Gamma=\left(\bigwedge_{k \in K} x_{k}=t_{k}\right)$,
- and for the substitution $\mu=\left\{x_{k} \mapsto t_{k}\right\}_{k \in K}$ and any $v \neq w$ in Δ, we have canon $_{T}(\mu(v)) \neq \operatorname{canon}_{T}(\mu(w))$.

A solver for $F T$ is given by a syntactic unification algorithm [2], which can be viewed as a satisfiability procedure for the $\Sigma_{\mid \mathcal{C O}}$-structure of $\Sigma_{\mid \mathcal{C O}}$-trees over a countable \mathcal{S}_{Σ}-sorted set of variables V (cf. Definition 1), also denoted by $T\left(\Sigma_{\mid \mathcal{C O}}, V\right)$.

Given any conjunction of $\Sigma_{\mid \mathcal{C O}}$-equalities Φ, a syntactic unification algorithm computes a formula Γ such that $T\left(\Sigma_{\mid \mathcal{C O}}, V\right) \models \Phi \Leftrightarrow \Gamma$ and Γ is either the unsatisfiable formula \perp or a solved form.

Lemma $12 F T$ is a Shostak theory where the solver is provided by a syntactic unification algorithm and the canonizer is the identity mapping.

Proof: Theories defined by Horn clauses are known to be convex [30]. Consequently, $F T$ is convex.

Consider any conjunction of $\Sigma_{\mid \mathcal{C O}}$-equalities Φ. A syntactic unification algorithm with Φ as input computes a formula Γ such that $T\left(\Sigma_{\mid \mathcal{C O}}, V\right) \models \Phi \Leftrightarrow \Gamma$. The formula Γ can be obtained by a sequence of inferences, where each of these inferences corresponds to an equivalence that holds both in $T\left(\Sigma_{\mid \mathcal{C O}}, V\right)$ and in $F T$. Hence, $F T \models \Phi \Leftrightarrow \Gamma$. If Γ is a solved form, then both Γ and Φ are $F T$-satisfiable; otherwise Γ is the unsatisfiable formula \perp and both Γ and Φ are $F T$-unsatisfiable.

Let us now show that $F T \models s=t$ iff $s=t$. The "if" direction is obvious. For the "only-if" direction, we use that $T\left(\Sigma_{\mid \mathcal{C O}}, V\right) \models F T$. Thus, $F T \models s=t$ implies $T\left(\Sigma_{\mid \mathcal{C O}}, V\right) \vDash s=t$. Then, it suffices to remark that $T\left(\Sigma_{\mid \mathcal{C O}}, V\right) \models s=t$ iff $s=t$.
$T R E E_{\Sigma}$ is not a Shostak theory because Σ includes some predicate symbols. However, $T R E E_{\Sigma}$ and $F T$ coincide on $\Sigma_{\mid C O}$-sentences.

Lemma 13 For any $\Sigma_{\mid \mathcal{C O}}$-sentence $\varphi, T R E E_{\Sigma} \vDash \varphi$ iff $F T \models \varphi$.
Proof: The "if" direction is a consequence of the fact that $T R E E_{\Sigma} \vDash F T$. For the "only-if" direction, it is easy to show that any model of $F T$ falsifying φ can be extended to a model of $\operatorname{TREE}_{\Sigma}$ falsifying φ.

As a direct application of Lemmas 11,12 and 13 it is possible to decide the $T R E E_{\Sigma^{-}}$-satisfiability of any conjunction of $\Sigma_{\mid \mathrm{CO}^{-}}$-literals:

Lemma 14 Assume Φ is any conjunction of $\Sigma_{\mid \mathcal{C O}}$-equalities and Δ is any conjunction of $\Sigma_{\mid \mathcal{C O}^{\prime}}$-disequalities. If a syntactic unification algorithm computes, for the input Φ, the unsatisfiable formula \perp, then $\Phi \wedge \Delta$ is $T R E E_{\Sigma}$-unsatisfiable. Otherwise, it computes a solved form $\Gamma=\left(\bigwedge_{k \in K} x_{k}=t_{k}\right)$ and we have that:

1. $\Gamma \wedge \Delta$ is $T R E E_{\Sigma}$-equivalent to $\Phi \wedge \Delta$,
2. $\Gamma \wedge \Delta$ is $T R E E_{\Sigma}$-satisfiable iff for the substitution $\mu=\left\{x_{k} \mapsto t_{k}\right\}_{k \in K}$ and any $v \neq w$ in Δ, we have $\mu(v) \neq \mu(w)$.

Remark 2 Along the lines of [1, a superposition calculus can be also applied to get a $T R E E_{\Sigma}$-satisfiability procedure. Such a calculus has been used in [8, 11 for a theory of trees with selectors but no testers. To handle testers, one can use a classical encoding of predicates into first-order logic with equality, by representing an atom $i s_{c}(x)$ as a flat equality $I s_{c}(x)=\mathbb{T}$ where $I s_{c}$ is now a unary function symbol and \mathbb{T} is a constant. Then, a superposition calculus dedicated to $T R E E_{\Sigma}$ can be obtained by extending the standard superposition calculus [1] with some expansion rules, one for each axiom of $T R E E_{\Sigma}$ [11]. For the axioms $I s_{1}$ and $I s_{2}$, the corresponding expansion rules are respectively $x=c\left(x_{1}, \ldots, x_{n}\right) \vdash I s_{c}(x)=$ \mathbb{T} if $c \in \mathcal{C O}$, and $x=d\left(x_{1}, \ldots, x_{n}\right) \vdash I s_{c}(x) \neq \mathbb{T}$ if $c, d \in \mathcal{C O}, c \neq d$.

We do not detail further the above superposition-based satisfiability procedure. Actually, Lemma 14 is sufficient to get a \mathcal{T}_{Σ}-satisfiability procedure based on a reduction to $T R E E_{\Sigma}$-satisfiability of conjunctions of $\Sigma_{\mid \mathcal{C O}}$-literals.

5.2 A Satisfiability Procedure for \mathcal{T}_{Σ}

In the following, we show that any \mathcal{T}_{Σ}-satisfiability problem can be reduced to a $T R E E_{\Sigma^{-}}$-satisfiability problem. Using a $T R E E_{\Sigma^{-}}$-satisfiability procedure, this leads to a \mathcal{T}_{Σ}-satisfiability procedure.

Lemma 15 Let Σ be a datatypes signature and φ any conjunction of flat Σ-literals including an arrangement over the variables in φ. Then, there exists a Σ-formula φ^{\prime} such that:

1. φ and $\exists \vec{w} . \varphi^{\prime}$ are \mathcal{T}_{Σ}-equivalent, where $\vec{w}=\operatorname{vars}\left(\varphi^{\prime}\right) \backslash \operatorname{vars}(\varphi)$.
2. φ^{\prime} is \mathcal{T}_{Σ}-satisfiable iff φ^{\prime} is $\operatorname{TREE}_{\Sigma}$-satisfiable.

Proof:
The proof is divided in two parts. First, we show how to construct the formula φ^{\prime}. Second, we prove the equivalence between $\mathcal{T}_{\Sigma^{-}}$-satisfiability and $T R E E_{\Sigma^{-}}$ satisfiability for φ^{\prime}. To prove this equivalence, we construct a \mathcal{T}_{Σ}-interpretation satisfying φ^{\prime} when φ^{\prime} is $T R E E_{\Sigma}$-satisfiable.

1. Construction of a \mathcal{T}_{Σ}-equivalent formula. To define φ^{\prime}, let us first introduce the notion of $i s$-constraint. Given a finite set of Struct-sorted variables V, an $i s$ constraint over V is a conjunction ρ of literals $i s_{c}(x)$ such that $x \in V, c: \sigma_{1} \times$ $\ldots \times \sigma_{n} \rightarrow \sigma \in \mathcal{C O}$ if x is of sort σ; and for every $x \in V$, there exists a unique c for which $i s_{c}(x)$ occurs in ρ. The set of $i s$-constraints over V is denoted by $I S(V)$. Given an $i s$-constraint $\rho, \rho_{e q}$ denotes a conjunction of equalities $x=c\left(y_{1}, \ldots, y_{n}\right)$ such that $i s_{c}(x)$ occurs in ρ; all the variables y_{1}, \ldots, y_{n} are distinct and fresh; and for every $i s_{c}(x)$ in ρ, there exists a unique equality of the form $x=c(\ldots)$ in $\rho_{e q}$.

Assume φ is any conjunction of flat Σ-literals including an arrangement over the variables in φ. Consider the set of variables $G V(\varphi)$ defined as

$$
\left\{x \mid i s_{c}(x) \in \varphi\right\} \cup\left\{x \mid \neg i s_{c}(x) \in \varphi\right\} \cup\left\{y \mid x=s_{c, i}(y) \in \varphi, s_{c, i} \in \mathcal{S E}\right\}
$$

excluding all the variables in

$$
\left\{y \mid x=s_{c, i}(y), y=d(\ldots) \in \varphi, s_{c, i} \in \mathcal{S E}, d \in \mathcal{C O}, d \neq c\right\} .
$$

We want to build a formula equivalent to φ but including at least one σ-sorted variable for each $\sigma \in$ Elem. For this reason, let us denote $\varphi_{t e}$ a conjunction of trivial equalities $x_{\sigma}=x_{\sigma}$, one for every $\sigma \in$ Elem such that $\operatorname{vars}_{\sigma}(\varphi)=\emptyset, x_{\sigma}$ being a fresh σ-sorted variable. If $G V(\varphi)=\emptyset$, define $\varphi_{1}=\varphi \wedge \varphi_{t e}$. Otherwise, define φ_{1} as follows:

$$
\varphi_{1}=\bigvee_{\rho \in I S(G V(\varphi))} w\left(\varphi, \rho_{e q}\right) \wedge \rho_{e q} \wedge \varphi_{t e}
$$

where $w\left(\varphi, \rho_{e q}\right)$ is built in a inductive way by first considering the case of any Σ-literal l :

1. if $l=i s_{c}(x)$ and $x=c\left(y_{1}, \ldots, y_{n}\right)$ occurs in $\rho_{e q}$, then $w\left(l, \rho_{e q}\right)=\mathrm{T}$;
2. if $l=\neg i s_{c}(x)$ and $x=c\left(y_{1}, \ldots, y_{n}\right)$ occurs in $\rho_{e q}$, then $w\left(l, \rho_{e q}\right)=\perp$;
3. if $l=i s_{d}(x), x=c\left(y_{1}, \ldots, y_{n}\right)$ occurs in $\rho_{e q}$ and $c \neq d$, then $w\left(l, \rho_{e q}\right)=\perp$;
4. if $l=\neg i s_{d}(x), x=c\left(y_{1}, \ldots, y_{n}\right)$ occurs in $\rho_{e q}$ and $c \neq d$, then $w\left(l, \rho_{e q}\right)=\mathrm{T}$;
5. if $l=\left(y=s_{c, i}(x)\right)$ and $x=c\left(y_{1}, \ldots, y_{n}\right)$ occurs in $\rho_{e q}$, then $w\left(l, \rho_{e q}\right)=\left(y=y_{i}\right)$;
6. otherwise, $w\left(l, \rho_{e q}\right)=l$.

If φ is any non-empty conjunction of Σ-literals of the form $l \wedge \varphi_{r}$ where l is a Σ-literal, then $w\left(\varphi, \rho_{e q}\right)$ is obtained from $w\left(l, \rho_{e q}\right) \wedge w\left(\varphi_{r}, \rho_{e q}\right)$ by simplifying the latter thanks to the properties that \perp is absorbing for \wedge and T is the identity for \wedge. Otherwise, φ is the empty conjunction T, and $w\left(\varphi, \rho_{e q}\right)=T$.

Note that the above construction is similar to the one given in [11] (see Proposition 4 in [11]). One can observe that $\varphi \wedge \rho_{e q}$ and $w\left(\varphi, \rho_{e q}\right) \wedge \rho_{e q}$ are $T R E E_{\Sigma^{-}}^{*}$ equivalent. In particular, for the case (5.) above, it follows from the projection axiom Proj in TREE Σ_{Σ}^{*}. In addition the guessing of $i s$-constraint preserves the $T R E E_{\Sigma}^{*}$-equivalence since $T R E E_{\Sigma}^{*}$ includes the extensionality axioms $E x t_{1}$ and $E x t_{2}$. Thus φ and $\exists \vec{w} \cdot \varphi_{1}$ are $T R E E_{\Sigma}^{*}$-equivalent for $\vec{w}=\operatorname{vars}\left(\varphi_{1}\right) \backslash \operatorname{vars}(\varphi)$.

For any conjunction of literals ϕ, let us define

$$
\operatorname{Min}(\phi)=\operatorname{vars}(\phi) \backslash\{x \mid x=c(\ldots) \text { occurs in } \phi\} .
$$

Starting from φ_{1}, consider the following sequences of formulas, obtained by guessing $i s$-constraints for "minimal" variables of finite sorts:

$$
\varphi_{j+1}=\bigvee_{\rho \in I S\left(\cup_{\sigma \in \operatorname{Fin}(\Sigma)} \operatorname{Min}_{\sigma}\left(\varphi_{j}\right)\right)} \varphi_{j} \wedge \rho_{e q}
$$

By definition of $\operatorname{Fin}(\Sigma)$, there exists necessarily some j^{\prime} such that the set of variables $\bigcup_{\sigma \in \operatorname{Fin}(\Sigma)} \operatorname{Min} n_{\sigma}\left(\varphi_{j^{\prime}}\right)$ is empty. In that case, let us define $\varphi^{\prime}=\varphi_{j^{\prime}}$.

It is routine to show that φ and $\exists \vec{w} \cdot \varphi^{\prime}$ are \mathcal{T}_{Σ}-equivalent for the set of fresh variables $\vec{w}=\operatorname{vars}\left(\varphi^{\prime}\right) \backslash \operatorname{vars}(\varphi)$, using the following facts:

- all the sentences in $T R E E_{\Sigma}^{*}$ are true in all the \mathcal{T}_{Σ}-interpretations,
- as shown above, φ and $\exists \vec{w} \cdot \varphi_{1}$ are $T R E E_{\Sigma}^{*}$-equivalent for the set of fresh variables $\vec{w}=\operatorname{vars}\left(\varphi_{1}\right) \backslash \operatorname{vars}(\varphi)$,
$-\varphi_{j}$ and $\exists \vec{w} \cdot \varphi_{j+1}$ are $T R E E_{\Sigma^{*}}^{*}$-equivalent, for $\vec{w}=\operatorname{vars}\left(\varphi_{j+1}\right) \backslash \operatorname{vars}\left(\varphi_{j}\right)$ and any $j=1, \ldots, j^{\prime}-1$, since $T R E E_{\Sigma}^{*}$ includes the extensionality axioms $E_{1} t_{1}$ and Ext ${ }_{2}$.

2. Construction of a \mathcal{T}_{Σ}-interpretation. Let us now show that φ^{\prime} is \mathcal{T}_{Σ}-satisfiable iff φ^{\prime} is $\operatorname{TREE}_{\Sigma}$-satisfiable.
(\Rightarrow) directly follows from Proposition 3 .
(\Leftarrow) If φ^{\prime} is $T R E E_{\Sigma}$-satisfiable, there exists a $T R E E_{\Sigma}$-interpretation \mathcal{A} and a disjunct ψ of φ^{\prime} such that $\mathcal{A} \models \psi$. By construction of φ^{\prime}, ψ is a conjunction $\psi_{\mathcal{C O}} \wedge \psi_{\mathcal{S E}}$ where

- $\psi_{\mathcal{C O}}$ is a conjunction of $\Sigma_{\mid \mathcal{C O}}$-literals,
$-\psi_{\mathcal{S E}}$ is a conjunction of equalities of the form $x=s_{c, i}(y)$.

Since ψ holds in a $T R E E_{\Sigma}$-interpretation, the conjunction of $\Sigma_{\mid \mathcal{C O}}$-equalities in $\psi_{\mathcal{C O}}$ has a most general unifier. By Lemma 14, $\psi_{\mathcal{C O}}$ is $T R E E_{\Sigma^{-}}$-equivalent to a conjunction of literals $\Gamma \wedge \Delta$ such that

- Γ is a conjunction of equalities $\bigwedge_{k \in K} x_{k}=t_{k}$ such that for each $k \in K, x_{k}$ is a variable occurring only once in Γ,
$-\Delta$ is the conjunction of disequalities in ψ,
- given the substitution $\mu=\left\{x_{k} \mapsto t_{k}\right\}_{k \in K}$, for any $v \neq w$ in $\Delta, \mu(v) \neq \mu(w)$.

Consider the set of variables $M V=\left\{x \in \operatorname{var} \boldsymbol{S t r u c t}^{\text {Stru }}\left(\varphi^{\prime}\right) \mid \mu(x)=x\right\}$. Since the sorts of variables in $M V$ are all inductive, there exists a substitution α from $M V$ to $T\left(\Sigma_{\mid \mathcal{C O}}, \operatorname{var} S_{\text {Elem }}\left(\varphi^{\prime}\right)\right)$ such that for any $x, y \in M V, \alpha(x)^{\mathcal{A}}=\alpha(y)^{\mathcal{A}}$ iff $x=y$. According to this substitution α, we have for any terms $t, u \in T\left(\Sigma_{\mid \mathcal{C O}}, M V \cup\right.$ $\left.\operatorname{vars}_{\text {Elem }}\left(\varphi^{\prime}\right)\right), \alpha(t)^{\mathcal{A}}=\alpha(u)^{\mathcal{A}}$ iff $t=u$. In particular, we have for any $k, k^{\prime} \in K$,

$$
\alpha\left(\mu\left(x_{k}\right)\right)^{\mathcal{A}}=\alpha\left(\mu\left(x_{k^{\prime}}\right)\right)^{\mathcal{A}} \text { iff } \mu\left(x_{k}\right)=\mu\left(x_{k^{\prime}}\right) .
$$

It is always possible to choose α such that for any $x, y \in M V, x \neq y$, we have

$$
|\operatorname{depth}(\alpha(x))-\operatorname{depth}(\alpha(y))|>\max \left\{\operatorname{depth}\left(t_{k}\right)\right\}_{k \in K} .
$$

According to the assumption on α, it is impossible to have $\alpha\left(\mu\left(x_{k}\right)\right)^{\mathcal{A}}=\alpha(\mu(x))^{\mathcal{A}}$ for some $k \in K$ and some $x \in M V$. Consequently, we have for any $x, y \in \operatorname{vars}_{\text {Struct }}\left(\varphi^{\prime}\right)$,

$$
\alpha(\mu(x))^{\mathcal{A}}=\alpha(\mu(y))^{\mathcal{A}} \text { iff } \mu(x)=\mu(y) .
$$

Let us now consider $\mathcal{B} \in \mathcal{T}_{\Sigma}$ such that

- for any $\sigma \in$ Elem, $\sigma^{\mathcal{B}}=\left\{e^{\mathcal{A}} \mid e \in \operatorname{vars}_{\sigma}\left(\varphi^{\prime}\right)\right\}$,
- for any $x \in \operatorname{vars}_{\text {Struct }}\left(\varphi^{\prime}\right), x^{\mathcal{B}}=\alpha(\mu(x))^{\mathcal{A}}$,
- for any $e \in \operatorname{vars}_{\text {Elem }}\left(\varphi^{\prime}\right), e^{\mathcal{B}}=e^{\mathcal{A}}$.

One can observe that $\mathcal{B} \models \Gamma \wedge \Delta$ since

- for any $x_{k}=t_{k}$ in $\Gamma, \mu\left(x_{k}\right)=\mu\left(t_{k}\right)$ and so $x_{k}^{\mathcal{B}}=t_{k}^{\mathcal{B}}$,
- for any $v \neq w$ in $\Delta, \mu(v) \neq \mu(w)$ and so $v^{\mathcal{B}} \neq w^{\mathcal{B}}$.

Since all the sentences in $T R E E_{\Sigma}^{*}$ are true in all the \mathcal{T}_{Σ}-interpretations and $\Gamma \wedge \Delta$ is $T R E E_{\Sigma}$-equivalent to $\psi_{\mathcal{C O}}$, we have $\mathcal{B} \models \psi_{\mathcal{C O}}$.

Let us now consider the conjunction $\psi_{\mathcal{S E}}$ that contains only equalities of the form $x=s_{c, i}(y)$. By construction of φ^{\prime}, the term $\mu(y)$ is necessarily rooted by a constructor $d \in \mathcal{C O}, d \neq c$. Thus $s_{c, i}^{\mathcal{B}}$ can be defined arbitrarily on $y^{\mathcal{B}}$ since $y^{\mathcal{B}}$ is a standard tree rooted by some constructor d different from c. In particular, we can define $s_{c, i}^{\mathcal{B}}$ such that $s_{c, i}^{\mathcal{B}}\left(y^{\mathcal{B}}\right)=x^{\mathcal{B}}$. Using this interpretation \mathcal{B} for the selectors, we have $\mathcal{B} \models \psi_{\mathcal{S E}}$.

Since $\mathcal{B} \models \psi_{\mathcal{C O}}$ and $\mathcal{B} \models \psi_{\mathcal{S E}}$, we get $\mathcal{B} \models \psi$. Since ψ is some disjunct of φ^{\prime}, we can conclude that $\mathcal{B} \models \varphi^{\prime}$.

Lemma 15 can be easily lifted to any quantifier-free Σ-formula thanks to the following transformations:

- computation of a disjunctive normal form, that is, a disjunction of conjunctions of Σ-literals;
- flattening of each conjunction of Σ-literals;
- for each resulting conjunction of flat Σ-literals, guessing all the possible arrangements over its variables.

Therefore, Lemma 15 leads to:
Theorem 5 Let Σ be a datatypes signature and φ any quantifier-free Σ-formula. Then, there exists a Σ-formula φ^{\prime} such that:

1. φ and $\exists \vec{w} . \varphi^{\prime}$ are \mathcal{T}_{Σ}-equivalent, where $\vec{w}=\operatorname{vars}\left(\varphi^{\prime}\right) \backslash \operatorname{vars}(\varphi)$.
2. φ^{\prime} is \mathcal{T}_{Σ}-satisfiable iff φ^{\prime} is $T R E E_{\Sigma}$-satisfiable.

In both Lemma 15 and Theorem $5, \exists \vec{w} \cdot \varphi^{\prime}$ and φ are not only \mathcal{T}_{Σ}-equivalent but also $T R E E_{\Sigma}^{*}$-equivalent. As a consequence, both Lemma 15 and Theorem 5 also hold when stated using $T R E E_{\Sigma}^{*}$ instead of \mathcal{T}_{Σ}. This shows that any quantifier-free Σ-formula is \mathcal{T}_{Σ}-satisfiable iff it is $T R E E_{\Sigma}^{*}$-satisfiable.

5.3 Politeness and Axiomatization

We conclude this section with a short discussion on the connection to Section 4. Both the current section and Section 4 rely on two constructions: (i) A formula transformation ($w t_{\Sigma}$ in Remark 1 of Section $4 \varphi \mapsto \varphi^{\prime}$ in Lemma 15 of the current section); and (ii) A small model construction (finite witnessability in Section 4 , equisatisfiability between \mathcal{T}_{Σ} and TREE in Lemma 15). While these constructions are similar in both sections, they are not the same. A nice feature of the constructions of Section 4 is that they clearly separate between steps (i) and (ii). The witness is very simple, and amounts to adding to the input formula literals and disjunctions that trivially follow from the original formula in \mathcal{T}_{Σ}. Then, the resulting formula is post-processed in step (ii), according to a given satisfying interpretation. Having a satisfying interpretation allows us to greatly simplify the formula, and the simplified formula is useful for the model construction. In contrast, the satisfying $T R E E_{\Sigma}$-interpretation that we start with in step (ii) of the current section is not necessarily a \mathcal{T}_{Σ}-interpretation, which makes the approach of Section 4 incompatible, compared to the syntactic unification approach that we employ here. For that, some of the post-processing steps of Section 4 are employed in step (i) itself, in order to eliminate all testers and as much selectors as possible. In addition, a pre-processing is applied in order to include an arrangement. The constructed interpretation finitely witnesses φ^{\prime} and so this technique can be used to produce an alternative proof of strong politeness.

6 Conclusion

In this paper we have studied the theory of algebraic datatypes, as it is defined by the SMT-LIB 2 standard. Our investigation included both finite and inductive datatypes. For this theory, we have proved that it is strongly polite, making it amenable for combination with other theories by the polite combination method. Our proofs used the notion of additive witnesses, also introduced in this paper. We concluded by extending existing axiomatizations and a decision procedure for trees to support this theory of datatypes.

There are several directions for further research that we plan to explore. First, we plan to continue to prove that more important theories are strongly polite, with an eye to recent extensions of the datatypes theory, namely datatypes with shared selectors [25] and co-datatypes [24]. Second, we envision to further investigate the possibility to prove politeness using superposition-based satisfiability procedures. Third, we plan to study extensions of the theory of datatypes corresponding to finite trees including function symbols with some equational properties such as associativity and commutativity to model data structures such as multisets [29]. We want to focus on the politeness of such extensions. Initial work in that direction has been done in [7, that we plan to build on.

References

1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Trans. Comput. Log. 10(1), 4:1-4:51 (2009)
2. Baader, F., Snyder, W., Narendran, P., Schmidt-Schauß, M., Schulz, K.U.: Unification theory. In: J.A. Robinson, A. Voronkov (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 445-532. Elsevier and MIT Press (2001)
3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of the 23rd International Conference on Computer Aided Verification, CAV'11, pp. 171-177. Springer-Verlag (2011). URL http://dl.acm. org/citation.cfm?id=2032305.2032319
4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech. rep., Department of Computer Science, The University of Iowa (2017). Available at www.SMT-LIB. org
5. Barrett, C.W., Dill, D.L., Stump, A.: A generalization of shostak's method for combining decision procedures. In: A. Armando (ed.) Frontiers of Combining Systems, 4th International Workshop, FroCoS 2002, Santa Margherita Ligure, Italy, April 8-10, 2002, Proceedings, Lecture Notes in Computer Science, vol. 2309, pp. 132-146. Springer (2002)
6. Barrett, C.W., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory of inductive data types. Journal on Satisfiability, Boolean Modeling and Computation 3(1-2), 21-46 (2007)
7. Berthon, R., Ringeissen, C.: Satisfiability modulo free data structures combined with bridging functions. In: T. King, R. Piskac (eds.) Proceedings of SMT@IJCAR 2016, CEUR Workshop Proceedings, vol. 1617, pp. 71-80. CEUR-WS.org (2016)
8. Bonacina, M.P., Echenim, M.: Rewrite-based satisfiability procedures for recursive data structures. Electron. Notes Theor. Comput. Sci. 174(8), 55-70 (2007)
9. Bonacina, M.P., Fontaine, P., Ringeissen, C., Tinelli, C.: Theory combination: Beyond equality sharing. In: C. Lutz, U. Sattler, C. Tinelli, A. Turhan, F. Wolter (eds.) Description Logic, Theory Combination, and All That - Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday, Lecture Notes in Computer Science, vol. 11560, pp. 57-89. Springer (2019)
10. Casal, F., Rasga, J.: Many-sorted equivalence of shiny and strongly polite theories. J. Autom. Reasoning 60(2), 221-236 (2018)
11. Chocron, P., Fontaine, P., Ringeissen, C.: Politeness and combination methods for theories with bridging functions. J. Autom. Reasoning 64(1), 97-134 (2020)
12. Enderton, H.B.: A mathematical introduction to logic. Academic Press (2001)
13. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic. In: S. Ghilardi, R. Sebastiani (eds.) Frontiers of Combining Systems, 7th International Symposium, FroCoS 2009, Trento, Italy, September 16-18, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5749, pp. 263-278. Springer (2009)
14. Gutiérrez, R., Meseguer, J.: Variant-based decidable satisfiability in initial algebras with predicates. In: F. Fioravanti, J.P. Gallagher (eds.) Logic-Based Program Synthesis and Transformation - 27th International Symposium, LOPSTR 2017, Namur, Belgium, October 10-12, 2017, Revised Selected Papers, Lecture Notes in Computer Science, vol. 10855, pp. 306-322. Springer (2017)
15. Hojjat, H., Rümmer, P.: Deciding and interpolating algebraic data types by reduction. In: T. Jebelean, V. Negru, D. Petcu, D. Zaharie, T. Ida, S.M. Watt (eds.) 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2017, Timisoara, Romania, September 21-24, 2017, pp. 145-152. IEEE Computer Society (2017)
16. Jovanovic, D., Barrett, C.W.: Polite theories revisited. In: C.G. Fermüller, A. Voronkov (eds.) Logic for Programming, Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6397, pp. 402-416. Springer (2010). Extended technical report is available at http://theory.stanford.edu/~barrett/pubs/JB10-TR.pdf
17. Kovács, L., Robillard, S., Voronkov, A.: Coming to terms with quantified reasoning. In: G. Castagna, A.D. Gordon (eds.) Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, pp. 260-270. ACM (2017)
18. Krstic, S., Conchon, S.: Canonization for disjoint unions of theories. Inf. Comput. 199(12), 87-106 (2005)
19. Krstic, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo parametric theories. In: O. Grumberg, M. Huth (eds.) Tools and Algorithms for the Construction and Analysis of Systems, 13th International Conference, TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4424, pp. 602-617. Springer (2007)
20. Manna, Z., Zarba, C.G.: Combining decision procedures. In: B.K. Aichernig, T.S.E. Maibaum (eds.) Formal Methods at the Crossroads. From Panacea to Foundational Support, 10th Anniversary Colloquium of UNU/IIST, the International Institute for Software Technology of The United Nations University, Lisbon, Portugal, March 18-20, 2002, Revised Papers, Lecture Notes in Computer Science, vol. 2757, pp. 381-422. Springer (2002)
21. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program. 154, 3-41 (2018)
22. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245-257 (1979)
23. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably infinite theories using many-sorted logic. In: B. Gramlich (ed.) Frontiers of Combining Systems, 5th International Workshop, FroCoS 2005, Vienna, Austria, September 19-21, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3717, pp. 48-64. Springer (2005). Extended technical report is available at https://hal.inria.fr/inria-00070335/
24. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT solvers. J. Autom. Reasoning 58(3), 341-362 (2017)
25. Reynolds, A., Viswanathan, A., Barbosa, H., Tinelli, C., Barrett, C.W.: Datatypes with shared selectors. In: D. Galmiche, S. Schulz, R. Sebastiani (eds.) Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Lecture Notes in Computer Science, vol. 10900, pp. 591-608. Springer (2018)
26. Sheng, Y., Zohar, Y., Ringeissen, C., Lange, J., Fontaine, P., Barrett, C.W.: Politeness for the theory of algebraic datatypes. In: IJCAR (1), Lecture Notes in Computer Science, vol. 12166, pp. 238-255. Springer (2020)
27. Sheng, Y., Zohar, Y., Ringeissen, C., Reynolds, A., Barrett, C.W., Tinelli, C.: Politeness and stable infiniteness: Stronger together. In: CADE, Lecture Notes in Computer Science, vol. 12699, pp. 148-165. Springer (2021)
28. Shostak, R.E.: A practical decision procedure for arithmetic with function symbols. J. ACM 26(2), 351-360 (1979)
29. Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with bridging functions. In: R.A. Schmidt (ed.) Automated Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5663, pp. 67-83. Springer (2009)
30. Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue sharing. J. Autom. Reason. 30(1), 1-31 (2003)
31. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In: J.J. Alferes, J.A. Leite (eds.) Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings, Lecture Notes in Computer Science, vol. 3229, pp. 641-653. Springer (2004)
32. Tinelli, C., Zarba, C.G.: Combining nonstably infinite theories. J. Autom. Reasoning 34(3), 209-238 (2005)
33. Tran, D., Ringeissen, C., Ranise, S., Kirchner, H.: Combination of convex theories: Modularity, deduction completeness, and explanation. J. Symb. Comput. 45(2), 261-286 (2010)

[^0]: This project was partially supported by a grant from the Defense Advanced Research Projects Agency (N66001-18-C-4012), the Stanford CURIS program, and Jasmin Blanchette's European Research Council (ERC) starting grant Matryoshka (713999).

[^1]: 2 We note that in practice, the new variables in $w \operatorname{tn}(\phi)$ are assumed to be fresh not only with respect to ϕ, but also with respect to the formula from the second theory being combined.

