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1 Introduction

Algebraic datatypes such as records, lists and trees are extremely common in many
programming languages. Reasoning about them is therefore crucial for modeling
and verifying programs. For this reason, various decision procedures for algebraic
datatypes have been, and continue to be developed and employed by formal rea-
soning tools such as theorem provers and Satisfiability Modulo Theories (SMT)
solvers. For example, the general algorithm of [6] describes a decision procedure
for datatypes suitable for SMT solvers. Consistently with the SMT paradigm, [6]
leaves the combination of datatypes with other theories to general combination
methods, and focuses on parametric datatypes (or generic datatypes as they are
called in the programming languages community), where the interpretation of the
“values” is left uninterpreted.

The traditional combination method of Nelson and Oppen [22] is applicable
for the combination of this theory with many other theories, as long as the other
theory is stably infinite (a technical condition that intuitively amounts to the abil-
ity to extend every model to an infinite one). Some theories of interest, however,
are not stably infinite, the most notable one being the theory of fixed-width bit-
vectors, which is commonly used for modeling and verifying both hardware and
software. Further, many theories that are compounded from bit-vectors and other
theories are also not stably infinite, e.g., arrays/sets of bit-vectors. Combining
these theories with algebraic datatypes cannot be done using the Nelson-Oppen
approach. To be able to perform combinations with such theories, a more general
combination method was designed [23], which relies on polite theories. Roughly
speaking, a theory is polite if: (i) every model can be arbitrarily enlarged; and
(ii) there is a witness, a function that transforms any quantifier-free formula to
an equivalent quantifier-free formula such that if the original formula is satisfi-
able, the new formula is satisfiable in a “minimal” interpretation. This notion was
later strengthened to strongly polite theories [16], which also account for possible
arrangements of the variables in the formula, as well as arbitrary auxiliary vari-
ables. Strongly polite theories can be combined with any other disjoint decidable
theory, even if that other theory is not stably infinite. While strong politeness was
already proven for several useful theories (such as equality, arrays, sets, multisets
[23]), strong politeness of algebraic datatypes remained an unanswered question.

The main contribution of this paper is an affirmative answer to this question.
While enlarging models of algebraic datatypes is trivial, the challenge lies with
finding a witness function, as well as minimal models for formulas that are pro-
duced by this function. We introduce a witness function that essentially “guesses”
the right constructors of variables that do not have an explicit constructor in
the formula. We show how to “shrink” any model of a formula that is the out-
put of this function into a minimal model. The witness function, as well as the
model-construction, can be used by any SMT solver for the theory of datatypes
that implements polite theory combination. We introduce and use the notion of
additive witnesses, that offer a sufficient condition for a polite theory to be also
strongly polite. This allows us to only prove politeness using our witness function,
and conclude strong politeness, since our function is indeed additive. We further
study the theory of datatypes beyond politeness and extend a decision procedure
for a subset of this theory presented in [11] to support the full theory.
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Related Work

The theory investigated in this paper is that of algebraic datatypes, as defined
by the SMT-LIB 2 standard [4]. Detailed information on this theory, including
a decision procedure and related work, can be found in [6]. Later work extends
this procedure to handle shared selectors [25] and co-datatypes [24]. More recent
approaches for solving formulas about datatypes use, e.g., theorem provers [17],
variant satisfiability [14,21], and reduction-based decision procedures [15,8,1].

In this paper, we focus on polite theory combination. Other combination meth-
ods for non stably infinite theories include shiny theories [32], gentle theories [13],
and parametric theories [19]. The politeness property was introduced in [23], and
extends the stable infiniteness assumption initially used by Nelson and Oppen.
Polite theories can be combined à la Nelson-Oppen with any arbitrary decidable
theory. Later, a flaw in the original definition of politeness was found [16], and
a corrected definition (here called strong politeness) was introduced. Polite combi-
nation is implemented in the SMT-solver cvc5 (the successor of CVC4 [3]), that
also includes a solver for the theory of algebraic datatypes. Strongly polite theories
were further studied in [10], where the authors proved their equivalence with shiny
theories. The relation between politeness and strong politeness was investigeated
in [27], where it was shown that the latter is a strictly stronger notion than the
former.

More recently, it was proved [11] that a general family of datatype theories
extended with bridging functions is strongly polite. This includes the theories
of lists/trees with length/size functions. The authors also proved that a class of
axiomatizations of datatypes is strongly polite. In contrast, in this paper we focus
on standard interpretations, as defined by the SMT-LIB 2 standard, without any
size function, but including selectors and testers. One can notice that the theory of
standard lists without the length function, and more generally the theory of finite
trees without the size function, were not mentioned as polite in a recent survey [9].
Actually, it was unclear to the authors of [9] whether these theories are strongly
polite. This is now clarified in the current paper.

Outline

The paper is organized as follows. Section 2 provides the necessary notions from
first-order logic, algebraic datatypes, and polite theories. Section 3 discusses the
difference between politeness and strong politeness, and introduces a useful condi-
tion for their equivalence. Section 4 contains the main result of this paper, namely
that the theory of algebraic datatypes is strongly polite. Section 5 studies vari-
ous axiomatizations of the theory of datatypes, and relates them to politeness.
Section 6 concludes with directions for further research.
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2 Preliminaries

2.1 Signatures and Structures

We briefly review usual definitions of many-sorted first-order logic with equality
(see [12,31] for more details). Let S denote a set of sorts. An S-sorted set A asso-
ciates non-empty pairwise disjoint sets to the sorts of S. That is, A is a function
from S to P(X) \ {∅} for some set X, such that A(σ)∩A(σ′) = ∅ whenever σ 6= σ′,
σ, σ′ ∈ S. We use Aσ to denote A(σ) for every σ ∈ S. When there is no ambiguity,
we sometimes treat sorted sets as sets (e.g., when writing expressions like x ∈ A
for x ∈

⋃
σ∈S Aσ). Given a set S (of sorts), the canonical S-sorted set, denoted [[S]],

satisfies [[S]]σ = {σ} for every σ ∈ S. A many-sorted signature Σ consists of a set
SΣ (of sorts), a set FΣ of function symbols, and a set PΣ of predicate symbols.
Function symbols have arities of the form σ1× . . .×σn → σ, and predicate symbols
have arities of the form σ1× . . .×σn, with σ1, . . . , σn, σ ∈ SΣ . For each sort σ ∈ SΣ ,
the logic includes an equality symbol =σ of arity σ×σ, whose interpretation is fixed
to be the identity. We denote it by = when σ is clear from context. Σ is called
finite if SΣ , FΣ , and PΣ are finite.

We assume an underlying SΣ-sorted set of variables. Terms, formulas, and
literals are defined in the usual way. For a Σ-formula φ and a sort σ, we denote the
set of free variables in φ of sort σ by varsσ(φ). This notation naturally extends to
varsS(φ) when S is a set of sorts. A sentence is a formula without free variables. We
denote by QF (Σ) the set of quantifier-free formulas of Σ. A Σ-literal is called flat if
it has one of the following forms: x = y, x 6= y, x = f(x1, . . . , xn), P (x1, . . . , xn), or
¬P (x1, . . . , xn) for some variables x, y, x1, . . . , xn, function symbol f , and predicate
symbol P from Σ.

A Σ-structure is a many-sorted structure for Σ, without interpretation of vari-
ables. It consists of a SΣ-sorted set A that interprets the sort symbols of Σ as sets,
and interpretations of the function and predicate symbols of Σ. For any Σ-term
α, αA denotes the interpretation of α in A. In particular, every function symbol
f of arity σ1 × . . . × σn → σ is interpreted as a function in σA1 × . . . × σAn → σA,
and every predicate symbol P of arity σ1 × . . . × σn is interpreted as a subset of
σA1 × . . .× σAn .

A Σ-interpretation A is an extension of a Σ-structure with interpretations to

some set of variables. When α is a set of Σ-terms, αA =
{
tA | t ∈ α

}
. Similarly,

σA, fA and PA denote the interpretation of σ, f and P in A. Satisfaction is defined
as usual. A |= ϕ denotes that A satisfies ϕ.

A Σ-theory T is a class of Σ-structures. A Σ-interpretation whose variable-free
part is in T is called a T -interpretation. A Σ-formula φ is T -satisfiable if A |= φ

for some T -interpretation A. Two formulas φ and ψ are T -equivalent if they are
satisfied by the same class of T -interpretations. Let Σ1 and Σ2 be signatures, T1 a
Σ1-theory, and T2 a Σ2-theory. The combination of T1 and T2, denoted T1⊕T2, is
the class of Σ1 ∪Σ2-structures A such that AΣ1 is in T1 and AΣ2 is in T2, where
AΣi is the restriction of A to Σi for i ∈ {1, 2}.
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2.2 The SMT-LIB 2 Theory of Datatypes

In this section we formally define the SMT-LIB 2 theory of algebraic datatypes.
The formalization is based on [4], but is adjusted to suit our investigation of
politeness.

Definition 1 (Σ-Trees) Given a signature Σ, a set S ⊆ SΣ and an S-sorted set
A, the set of Σ-trees over A of sort σ ∈ SΣ is denoted by Tσ(Σ,A) and is inductively
defined as follows:

– Tσ,0(Σ,A) = Aσ if σ ∈ S and ∅ otherwise.
– Tσ,i+1(Σ,A) = Tσ,i(Σ,A) ∪ {c(t1, . . . , tn) | c : σ1 × . . . × σn → σ ∈ FΣ , tj ∈
Tσj ,i(Σ,A) for j = 1, . . . , n} for each i ≥ 0.

Then Tσ(Σ,A) =
⋃
i≥0 Tσ,i(Σ,A). The depth of a Σ-tree over A is inductively

defined by depth(a) = 0 for every a ∈ A, depth(c) = 1 for every 0-argument function
symbol c ∈ FΣ , and depth(c(t1, . . . , tn)) = 1 + max(depth(t1), . . . , depth(tn)) for
every n-argument function symbol c of Σ.

The idea behind Definition 1 is that Tσ(Σ,A) contains all ground σ-sorted
terms constructed from the elements of A (considered as constant symbols) and
the function symbols of Σ.

Example 1 Let Σ be a signature with two sorts, elem and struct, and whose
function symbols are b of arity struct, and c of arity (elem× struct× struct)→
struct. Consider the {elem}-sorted set A = {a}. Telem(Σ,A) is the singleton
A = {a} and the Σ-tree a is of depth 0. Tstruct(Σ,A) includes infinitely many
Σ-trees, such as b of depth 1, c(a, b, b) of depth 2, and c(a, c(a, b, b), b) of depth 3.

Definition 2 (Datatypes Signature) A finite signature Σ is called a datatypes

signature if SΣ is the disjoint union of two sets of sorts SΣ = ElemΣ ] StructΣ ,
FΣ is the disjoint union of two sets of function symbols FΣ = COΣ ] SEΣ , such
that every c ∈ COΣ has arity σ1 × . . . × σn → σ with σ ∈ StructΣ , SEΣ =
{sc,i | c ∈ COΣ , c : σ1 × . . . × σn → σ, 1 ≤ i ≤ n} where for each c ∈ COΣ with
c : σ1 × . . . × σn → σ and for each i = 1, . . . , n, sc,i is a function symbol of arity
σ → σi, and PΣ = {isc | c ∈ COΣ , c : σ1 × . . . × σn → σ} where for each c ∈ COΣ
with c : σ1× . . .× σn → σ, isc is a predicate symbol of arity σ. We denote by Σ|CO
the signature with the same sorts as Σ, COΣ as set of function symbols, and an
empty set of predicate symbols. We further require the following well-foundedness

requirement for Σ to be called a datatypes signature: Tσ(Σ|CO, [[ElemΣ ]]) 6= ∅ for
any σ ∈ StructΣ .

From now on, we omit the subscript Σ from the above notations (e.g., when
writing [[Elem]] rather than [[ElemΣ ]] and CO rather than COΣ) whenever Σ is
clear from the context. Notice that in Definition 2, the well-foundedness require-
ment ensures that the set of Σ|CO-trees of sort σ over [[Elem]] is not empty for
every σ ∈ StructΣ . The choice of [[Elem]] is not essential here, and the definition
remains equivalent if [[Elem]] is replaced by any Elem-sorted set that is non-
empty for each sort. The set [[Elem]] has been chosen since it is a minimal such
Elem-sorted set.

In accordance with SMT-LIB 2, we call the elements of CO constructors, the
elements of SE selectors, and the elements of P testers. Constructors that take no
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arguments are called nullary. In what follows, Σ denotes an arbitrary datatypes
signature.

In the next example we review some common datatypes signatures.

Example 2 The signature Σlist has two sorts, elem and list. Its function symbols
are cons of arity (elem× list)→ list, nil of arity list, car of arity list→ elem and
cdr of arity list→ list. Its predicate symbols are isnil and iscons , both of arity list.
It is a datatypes signature, with Elem = {elem}, Struct = {list}, CO = {nil , cons}
and SE = {car , cdr}. It is often used to model lisp-style linked lists. car represents
the head of the list and cdr represents its tail. nil represents the empty list. Σlist

is well-founded as Tlist(Σlist |CO, [[Elem]]) includes nil .
The signature Σpair also has two sorts, elem and pair. Its function symbols are

pair of arity (elem× elem)→ pair and first and second of arity pair→ elem. Its
predicate symbol is ispair of arity pair. It is a datatypes signature, with Elem =
{elem}, Struct = {pair}, CO = {pair}, and SE = {first , second}. It can be used
to model ordered pairs, together with projection functions. It is well-founded as
Tpair(Σpair |CO, [[Elem]]) is not empty (as [[Elem]] is not empty).

The signature Σlp has three sorts, elem, pair and list, with Elem = {elem}
and Struct = {pair, list}. Its function symbols are cons of arity (pair×list)→ list,
car of arity list → pair, as well as nil , cdr ,first , second with arities as above. Its
predicate symbols are ispair , iscons and isnil , with arities as above. It can be used
to model lists of ordered pairs. Similarly to the above signatures, it is a datatypes
signature.

Next, we distinguish between finite datatypes (e.g., records) and inductive
datatypes (e.g., lists).

Definition 3 (Inductive and Finite Sorts) A sort σ ∈ Struct is called finite if
Tσ(Σ|CO, [[Elem]]) is finite, and is called inductive otherwise.

We denote the set of inductive sorts in Σ by Ind(Σ) and the set of its finite sorts
by Fin(Σ). Note that if σ is inductive, then according to Definitions 1 and 3 we
have that for any natural number i there exists a natural number i′ > i such that
Tσ,i′(Σ|CO, [[Elem]]) 6= Tσ,i(Σ|CO, [[Elem]]). Further, for any natural number d and

every Elem-sorted set D there exists a natural number i′ such that Tσ,i′(Σ|CO, D)
contains an element whose depth is greater than d.

Example 3 list is inductive in Σlist and Σlp . pair is finite in Σpair and Σlp .

Finally, we define datatypes structures and the theory of algebraic datatypes.

Definition 4 (Datatypes Structure) Let Σ be a datatypes signature and D an
Elem-sorted set. A Σ-structure A is said to be a datatypes Σ-structure generated by

D if:

– σA = Tσ(Σ|CO, D) for every sort σ ∈ SΣ ,

– cA(t1, . . . , tn) = c(t1, . . . , tn) for every c ∈ CO of arity (σ1 × . . . × σn) → σ and
t1 ∈ σA1 , . . . , tn ∈ σAn ,

– sAc,i(c(t1, . . . , tn)) = ti for every c ∈ CO of arity (σ1 × . . . × σn) → σ, t1 ∈
σA1 , . . . , tn ∈ σAn and 1 ≤ i ≤ n,
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– isAc =
{
c(t1, . . . , tn) | t1 ∈ σA1 , . . . , tn ∈ σAn

}
for every c ∈ CO of arity (σ1× . . .×

σn)→ σ.

A is said to be a datatypes Σ-structure if it is a datatypes Σ-structure generated by
D for some Elem-sorted set D. The Σ-theory of datatypes, denoted TΣ is the class
of datatypes Σ-structures.

Notice that the interpretation of selector functions sc,i when applied to terms
that are constructed using a constructor different than c is not fixed and can be
set arbitrarily in datatypes structures, consistently with SMT-LIB 2.

Example 4 If A is a datatypes Σlist -structure then listA is the set of terms con-
structed from elemA and cons, plus nil . If elemA is the set of natural numbers,
then listA contains, e.g., nil , cons(1,nil), and cons(1, cons(1, cons(2,nil))). These
correspond to the lists [] (the empty list), [1] and [1, 1, 2], respectively.

If A is a datatypes Σpair -structure then pairA is the set of terms of the form
pair(a, b) with a, b ∈ elemA. If elemA is again interpreted as the set of natural
numbers, pairA includes, for example, the terms pair(1, 1) and pair(1, 2), that
correspond to (1, 1) and (1, 2), respectively. Notice that in this case, pairA is an
infinite set even though pair is a finite sort (in terms of Definition 3).

Datatypes Σlp-structures with the same interpretation for elem include the
terms nil , cons(pair(1, 1),nil), and cons(pair(1, 1), cons(pair(1, 2),nil)) in the inter-
pretation for list, that correspond to [], [(1, 1)] and [(1, 1), (1, 2)], respectively. If
we rename elem in the definition of Σlist to pair, we get that TΣlp

= TΣlist
⊕TΣpair

.

2.3 Polite Theories

Given two theories T1 and T2, a combination method à la Nelson-Oppen provides
a modular way to decide T1 ⊕ T2-satisfiability problems using the satisfiability
procedures known for T1 and T2. Assuming that T1 and T2 have disjoint signatures
(except that they share sorts) is not sufficient to get a complete combination
method for deciding any T1 ⊕ T2-satisfiability problem φ1 ∧ φ2 where φi is a Ti-
satisfiability problem for i = 1, 2. The reason is that T1 and T2 may share sorts, and
this implies the existence of shared formulas built over the corresponding equality
symbols and the finite set of variables SV shared by φ1 and φ2. To be complete, T1
and T2 must agree on the cardinality of their respective models, and there must be
an agreement between T1 and T2 on the interpretation of shared formulas. These
two requirements can be fulfilled, based on the following definitions:

Definition 5 (Stable Infiniteness) Given a signature Σ and a set S ⊆ SΣ , we
say that a Σ-theory T is stably infinite with respect to S if every quantifier-free Σ-
formula that is T -satisfiable is also T -satisfiable by a T -interpretation A in which
σA is infinite for every σ ∈ S.

Definition 6 (Arrangement) Let Σ be a signature, S ⊆ SΣ , V be a finite set of
variables whose sorts are in S and {Vσ | σ ∈ S} the partition of V such that Vσ is
the set of variables of sort σ in V . We say that a formula δ is an arrangement of V

if δ =
∧
σ∈S(

∧
(x,y)∈Eσ (x = y) ∧

∧
(x,y)/∈Eσ (x 6= y)), where Eσ is some equivalence

relation over Vσ for each σ ∈ S.
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Assume that T1 and T2 are two signature-disjoint theories with the property
of being stably infinite w.r.t. their shared sorts. Under this assumption, T1 and T2
can agree on an infinite cardinality, and guessing an arrangement of the finite set
of shared variables SV suffices to get an agreement on the interpretation of shared
formulas.

In this paper we are interested in an asymmetric disjoint combination where T1
and T2 are not both stably infinite. In this scenario, one theory can be arbitrary.
As a counterpart, the other theory must be more than stably infinite: it must be
strongly polite, meaning that it is always possible to increase the cardinality of a
model and to have a model whose cardinality is finite.

In the following we decompose the politeness definition from [23,16] in order to
distinguish between politeness and strong politeness (in terms of [10]) in various
levels of the definition. In what follows, Σ is an arbitrary (many-sorted) signature,
S ⊆ SΣ , and T is a Σ-theory.

Definition 7 (Smooth) The theory T is smooth w.r.t. S if for every quantifier-free
formula φ, T -interpretation A that satisfies φ, and function κ from S to the class

of cardinals such that κ(σ) ≥
∣∣∣σA∣∣∣ for every σ ∈ S there exists a T -interpretation

A′ that satisfies φ with
∣∣∣σA′

∣∣∣ = κ(σ) for every σ ∈ S.

In definitions introduced above, as well as below, we often identify singletons
with their single elements when there is no ambiguity (e.g., when saying that a
theory is smooth w.r.t. a sort σ).

We now introduce some concepts in order to define finite witnessability.

Definition 8 (Finitely Witnessable) Let φ be a quantifier-free Σ-formula and A
a Σ-interpretation. We say that A finitely witnesses φ for T w.r.t. S (or, is a finite

witness of φ for T w.r.t. S), if A is a T -interpretation, A |= φ, and σA = varsσ(φ)A

for every σ ∈ S.
We say that φ is finitely witnessed for T w.r.t. S if it is either T -unsatisfiable or

it has a finite witness for T w.r.t. S. We say that φ is strongly finitely witnessed for

T w.r.t. S if for any set of variables V whose sorts are in S, and any arrangement
δV of V , φ ∧ δV is finitely witnessed for T w.r.t. S.

We say that a function wtn : QF (Σ)→ QF (Σ) is a (strong) witness for T w.r.t.

S if for every φ ∈ QF (Σ) we have that: 1. φ and ∃−→w . wtn(φ) are T -equivalent for
−→w = vars (wtn(φ)) \ vars (φ); and 2. wtn(φ) is (strongly) finitely witnessed for T
w.r.t. S.2

The theory T is (strongly) finitely witnessable w.r.t. S if there exists a (strong)
witness for T w.r.t. S which is computable.

Definition 9 (Polite) T is called (strongly) polite w.r.t. S if it is smooth and
(strongly) finitely witnessable w.r.t. S.

Finally, we recall the following theorem from [16].

Theorem 1 ([16]) Let Σ1 and Σ2 be signatures and let S = SΣ1
∩ SΣ2

. If T1 is

a Σ1-theory strongly polite w.r.t. S1 ⊆ SΣ1
, T2 is a Σ2-theory strongly polite w.r.t.

S2 ⊆ SΣ2
, and S ⊆ S2, then T1 ⊕ T2 is strongly polite w.r.t. S1 ∪ (S2 \ S).

2 We note that in practice, the new variables in wtn(φ) are assumed to be fresh not only
with respect to φ, but also with respect to the formula from the second theory being combined.
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3 Additive Witnesses

It was shown in [16] that politeness is not sufficient for the proof of the polite com-
bination method from [23]. Strong politeness was introduced to fix the problem.
In this section we offer a simple (yet useful) criterion for the equivalence of the
two notions. Throughout this section, unless stated otherwise, Σ and S denote an
arbitrary signature and a subset of its set of sorts, and T, T1, T2 denote arbitrary
Σ-theories.

The following example, which is based on [16] using notions of the current
paper, shows that strong and non-strong witnesses are different. Let Σ0 be a
signature with a single sort σ and no function or predicate symbols (except =σ),

and T0 the Σ0-theory consisting of all Σ0-structures A with
∣∣∣σA∣∣∣ ≥ 2. It was shown

in [16] that the function wtn defined by wtn(φ) = (φ ∧ w1 = w1 ∧ w2 = w2) for
fresh w1, w2 is a witness for T0 w.r.t. σ, but not a strong one. In fact, T0 is also
strongly polite since the function wtn ′(φ) = φ∧w1 6= w2 for fresh w1, w2 is a strong
witness for T0 w.r.t. σ. This was shown in [16].

We introduce the notion of additivity, which ensures that the witness is able
to “absorb” arrangements and thus lift politeness to strong politeness.

Definition 10 (Additivity) Let f : QF (Σ)→ QF (Σ). We say that f is S-additive
for T if f(f(φ)∧ϕ) and f(φ)∧ϕ are T -equivalent and have the same set of S-sorted
variables for every φ, ϕ ∈ QF (Σ), provided that ϕ is a conjunction of flat literals
such that every term in ϕ is a variable whose sort is in S. When T is clear from the
context, we say that f is S-additive. We say that T is additively finitely witnessable
w.r.t. S if there exists a witness for T w.r.t. S which is both computable and S-
additive. T is said to be additively polite w.r.t. S if it is smooth and additively
finitely witnessable w.r.t. S.

We show that additive witnesses are strong:

Proposition 1 Let wtn be a witness for T w.r.t. S. If wtn is S-additive then it is a

strong witness for T w.r.t. S.

Proof : Let φ ∈ QF (Σ). We prove that wtn(φ) is strongly finitely witnessed for T
w.r.t. S. Let V be a set of variables of sorts in S and δV an arrangement of V .
We prove that wtn(φ) ∧ δV is finitely witnessed for T w.r.t. S. Suppose it is T -
satisfiable. Then since wtn is S-additive and δV is a conjunction of flat literals that
contains only variables of sorts in S as terms, wtn(wtn(φ)∧δV ) is also T -satisfiable.
wtn is a witness for T w.r.t. S, and hence wtn(wtn(φ) ∧ δV ) has a finite witness A
for T w.r.t. S. By T -equivalence, A |= wtn(φ) ∧ δV . Since both formulas have the
same set of S-variables, A is also a finite witness of wtn(φ) ∧ δV . ut

Corollary 1 An additively polite theory w.r.t. S is strongly polite w.r.t. S.

The theory T0 from above is additively finitely witnessable w.r.t. σ, even though
wtn ′ is not σ-additive. However, it is possible to define a new witness for T0 w.r.t. σ,
say wtn ′′, which is σ-additive. wtn ′′ is defined by: wtn ′′(φ) = φ if φ is a conjunction
that includes some disequality x 6= y for some x, y. Otherwise, wtn ′′(φ) = wtn ′(φ).

The following definition generalizes the theory T0.
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Definition 11 (Existential Theory) We say a Σ-theory T is existential if there
exists a sentence of the form φ = ∃x.ϕ where ϕ is quantifier-free, such that T

consists of all the Σ-structures that satisfy φ.

T0 is an existential theory, with the sentence ∃x, y . x 6= y. Similarly, minimal
finite cardinality constraints can be axiomatized with an existential sentence. The
construction of wtn ′′ above can be generalized to any existential theory. Such theo-
ries are also smooth w.r.t. any set of sorts and so existential theories are additively
(and thus strongly) polite:

Proposition 2 If T is existential then it is strongly polite w.r.t. S.

Proof : Let ϕ be the formula whose existential closure defines T . Define a function
wtnT by

wtnT (φ) =

{
φ if φ = φ′ ∧ ϕ′

φ ∧ ϕ′′ otherwise

where φ′ is a quantifier-free formula, ϕ′ is obtained from ϕ by replacing its variables
with variables not in vars (φ′), and ϕ′′ is obtained from ϕ by replacing its variables
with variables not in vars (φ). By construction, wtnT is S-additive: once an instance
of ϕ′ was added to the formula, further applications of wtnT will not change the
input formula. wtnT is also a witness for T w.r.t. S: if wtnT (φ) = φ then the
equivalence requirement is trivial. Otherwise, φ is T -equivalent to ∃w.wtnT (φ),
where w are the fresh variables that were introduced, since the latter only adds
an existential formula that is T -valid. Further, if we restrict the domain of a T -
interpretation that satisfies wtnT (φ), we still obtain a T -interpretation, as the
existential closure of ϕ logically follows from any instance of ϕ.

For smoothness, let φ be a quantifier-free formula, A a T -interpretation that
satisfies φ, and κ a function as in Definition 7. Since T is defined by the existential
closure of a quantifier-free formula ϕ, augmenting σA for each σ ∈ S so that its
cardinality matches κ(σ) results in another T -interpretation satisfying φ. ut

The notion of additive witnesses is useful for proving that a polite theory is
strongly polite. In particular, the witnesses for the theories of equality, arrays, sets
and multisets from [23] are all additive, and so strong politeness of these theories
follows from their politeness. The same will hold later, when we conclude strong
politeness of theories of algebraic datatypes from their politeness.

4 Politeness for the SMT-LIB 2 Theory of Datatypes

Let Σ be a datatypes signature with SΣ = Elem]Struct and FΣ = CO]SE. In this
section, we prove that TΣ is strongly polite with respect to Elem. In Section 4.1, we
consider theories with only inductive sorts, and consider theories with only finite
sorts in Section 4.2. We combine them in Section 4.3, where arbitrary theories of
datatypes are considered. This separation is only needed for finite witnessability,
but not for smoothness:

Lemma 1 TΣ is smooth w.r.t. Elem.
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Proof : Let φ be a quantifier-free Σ formula, and let A be a TΣ-interpretation that
satisfies φ. Let κ be a function from Elem to the class of cardinals such that

κ(σ) ≥
∣∣∣σA∣∣∣ for every σ ∈ Elem. Then let A′ be augmented from A by adding

elements to σA to match κ(σ). This is possible because the sorts of Elem are
never the range of any constructor. Such an A′ exists so that the interpretations
of variables and selectors in φ remain intact, and for such A′, we have A′ |= φ. ut

4.1 Inductive Datatypes

In this section, we assume that all sorts in Struct are inductive.

To prove finite witnessability, we now introduce an additive witness function.
Following arguments from [23], it suffices to define the witness only for conjunc-
tions of flat literals. A complete witness can then use the restricted one by first
transforming the input formula to flat DNF form and then creating a disjunction
where each disjunct is the result of applying the witness on the corresponding dis-
junct. Similarly, it suffices to show that wtn(φ) is finitely witnessed for φ which is
a conjunction of flat literals. Essentially, our witness guesses possible constructors
for variables whose constructors are not explicit in the input formula.

Definition 12 (A Witness for TΣ) Let φ be a quantifier-free conjunction of flat
Σ-literals. wtni(φ) is obtained from φ by performing the following steps:

1. For any literal of the form y = sc,i(x) such that x = d(−→ud) does not occur in φ

for any d and −→ud, we conjunctively add x = c(−→u1, y,−→u2)∨ (
∨
d 6=c,d∈CO x = d(−→ud))

where u1 is a list of i-1 fresh variables, u2 is a list of n− i fresh variables with
n being the number of arguments of c, ud is a list of m fresh variables with m

being the number of arguments of d for each d, and y is a fresh variable. All
fresh variables are sorted according to the arities of c and the d’s.

2. For any literal of the form isc(x) such that x = c(−→u ) does not occur in φ for
any −→u , we conjunctively add x = c(−→u ) with fresh −→u .

3. For any literal of the form ¬isc(x) such that x = d(−→ud) does not occur in φ for
any d 6= c and −→ud, we conjunctively add

∨
d6=c x = d(−→ud), with fresh −→ud.

4. For any sort σ ∈ Elem such that φ does not include a variable of sort σ we
conjunctively add a literal x = x for a fresh variable x of sort σ.

Example 5 Let φ be the Σlist -formula y = cdr(x)∧y′ = cdr(x)∧iscons(y). wtni(φ) is
φ∧(x = nil ∨x = cons(e, y))∧(x = nil ∨x = cons(e′, y′))∧y = cons(e′′, z)∧e′′′ = e′′′

where e, e′, e′′, e′′′, z are fresh.

In Definition 12, Item 1 guesses the constructor of the argument for the selector.
Items 2 and 3 correspond to the semantics of testers. Item 4 is meant to ensure
that we can construct a finite witness with non-empty domains. The requirement
for absence of literals before adding literals or disjunctions to φ is used to ensure
additivity of wtni. And indeed:

Lemma 2 wtni is Elem-additive for TΣ .
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Proof : For input formulas that are conjunctions of flat literals, this follows from
the construction of wtni. For arbitrary quantifier-free formulas, as mentioned be-
fore Definition 12, wtni is extended from conjunctions of flat literals to arbitrary
quantifier-free formulas by transforming the input formula to flat DNF form and
then applying the witness on each disjunct of the DNF, taking the disjunction of
these applications. We prove that this extension preserves additivity.

Let φ be a quantifier-free Σ-formula, D1 ∨ . . . ∨Dm its flat-DNF form, and ϕ

a conjunction of flat literals such that every term in ϕ is a variable whose sort
is in Elem. By the above, wtni(wtni(φ) ∧ ϕ) = wtni(wtni(D1 ∨ . . . ∨ Dm) ∧ ϕ) =
wtni((wtni(D1) ∨ . . . ∨ wtni(Dm)) ∧ ϕ). For each 1 ≤ i ≤ m, let E1

i ∨ . . . ∨ E
ki
i be

the flat DNF form of wtni(Di). Since wtni does not introduce non-flat literals, no
new variables are introduced in the transformation from wtni(Di) to E1

i ∨ . . .∨E
ki
i ,

but only propositional transformations are employed. The equation list above can
continue with wtni((E

1
1 ∧ϕ)∨ . . .∨ (Ekmm ∧ϕ)) = wtni(E

1
1 ∧ϕ)∨ . . .∨wtni(E

km
m ∧ϕ).

Now, for each 1 ≤ i ≤ m and 1 ≤ j ≤ ki, E
j
i is a conjunction of flat literals in

the DNF-form of wtni(Di). By the construction of wtni, each such Eji ∧ ϕ does
not satisfy any of the preconditions in wtni for the addition of any formula: the
literals already exist in Eji after the first application of wtni over Di. In addition, ϕ
does not contain any constructors and testers. Also, each conjunction in the DNF
includes at least one variable of each Elem-sort. Thus wtni(E

j
i ∧ϕ) = Eji ∧ϕ. This

means that wtni(wtni(φ) ∧ ϕ) = (E1
1 ∧ ϕ) ∨ . . . ∨ (Ekmm ∧ ϕ).

Similarly, wtni(φ)∧ϕ = (wtni(D1)∨ . . .wtni(Dm))∧ϕ, which is logically equiv-
alent to (E1

1 ∨ . . . ∨ Ekmm ) ∧ ϕ, and hence to (E1
1 ∧ ϕ) ∨ . . . ∨ (Ekmm ∧ ϕ), which by

the above is equivalent to wtni(wtni(φ)∧ϕ). Further, since the second application
of wtni does not introduce anything new, the set of Elem-variables is the same in
both formulas.

ut

Further, the equivalence constraint is satisfied:

Lemma 3 Let φ be a conjunction of flat literals. φ and ∃−→w . Γ are TΣ-equivalent,

where Γ = wtni(φ) and −→w = vars (Γ ) \ vars (φ).

Proof : Each variable in −→w occurs exactly once in Γ . Let Γ ′ be obtained from ∃−→w .Γ
by pushing each existential quantifier to the literal that contains its corresponding
quantified variable. Clearly, ∃−→wΓ and Γ ′ are logically equivalent, and in particular
they are TΣ-equivalent. Γ ′ contains all the conjuncts of φ as top-level conjuncts.
Hence clearly every TΣ-interpretation that satisfies Γ ′ also satisfies φ. For the
converse, let A be a TΣ-interpretation that satisfies φ and ∆ a top-level conjunct
of Γ ′.

– If ∆ is also a literal of φ then A |= ∆.
– If ∆ corresponds to a formula that was added by Item 1 of Definition 12, then

it has the form (∃−→u1y−→u2.x = c(−→u1, y,−→u2))∨ (
∨
d6=c ∃

−→ud.x = d(−→ud)) and y = sc,i(x)
is a literal of φ. A |= y = sc,i(x). If A |= isc(x) then it must satisfy the first
disjunct of ∆. Otherwise, A must satisfy one of the other disjuncts. In both
cases A |= ∆.

– If ∆ corresponds to a formula that was added by Item 2 of Definition 12 then
it has the form ∃−→u .x = c(−→u ) and isc(x) is a literal of φ. Since A |= isc(x), we
must have A |= ∆.
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– If ∆ corresponds to a formula that was added by Item 3 of Definition 12 then
it has the form

∨
d6=c ∃

−→u .x = d(−→u ) and ¬isc(x) is in φ. Since A 6|= isc(x), we
must have A |= ∆.

– If ∆ corresponds to a formula that was added by Item 4 then it is trivially
satisfied.

ut

The remainder of this section is dedicated to the proof of the following lemma:

Lemma 4 (Finite Witnessability) Let φ be a conjunction of flat literals. Then,

Γ = wtni(φ) is finitely witnessed for TΣ with respect to Elem.

Suppose that Γ is TΣ-satisfiable, and let A be a satisfying TΣ-interpretation.
We define a TΣ-interpretation B as follows, and then show that B is a finite witness
of Γ for TΣ w.r.t. Elem.

4.1.1 Construction of B

We start by defining an interpretation B. For every σ ∈ Elem we set:

σB = varsσ(Γ )A (1)

For every variable e ∈ varsσ(Γ ) with σ ∈ Elem we set:

eB = eA (2)

The interpretations of Struct-sorts, testers and constructors are uniquely deter-
mined by the theory, as they are generated by the signature and the interpretation
of Elem in A.

It is therefore left to define new values for the interpretations of Struct-
variables in B, as well as the interpretation of the selectors. For the former, they
might have been interpreted in A using (discarded) constructors. For the latter,
their interpretations need to correspond to the new interpretations in B. We do
this in several steps:

Step 1 – Simplifying Γ : since φ is a conjunction of flat literals, Γ is a conjunction
whose conjuncts are either flat literals or disjunctions of flat literals (introduced
in Items 1 and 3 of Definition 12). Since A |= Γ , A satisfies at least one disjunct
of each such disjunction. By the definition of wtni, exactly one such disjunct is
satisfied. We can thus obtain a formula Γ1 from Γ by replacing every disjunction
with the unique disjunct that is satisfied by A. Notice that A |= Γ1 and that it is a
conjunction of flat literals. Let Γ2 be obtained from Γ1 by removing any literal of
the form isc(x) and any literal of the form ¬isc(x). Let Γ3 be obtained from Γ2 by
removing any literal of the form x = sc,i(y). For convenience, we denote Γ3 by Γ ′.
Note that the predicate and selector terms are redundant for Γ since they have
been expanded to constructor terms by the witness function. Obviously, A |= Γ ′,
and Γ ′ is a conjunction of flat literals without selectors and testers.

Step 2 – Working with Equivalence Classes: We would like to preserve equali-
ties between Struct-variables from A. To this end, we group all variables in vars (Γ )
to equivalence classes according to their interpretation in A. Let ≡A denote the
equivalence relation over vars (Γ ) such that x ≡A y iff xA = yA. We denote by [x]
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the equivalence class of x. Let α be an equivalence class, thus αA =
{
xA | x ∈ α

}
is a singleton. Identifying this singleton with its only element, we have that αA

denotes aA for an arbitrary element a of the equivalence class α.

Step 3 – Ordering Equivalence Classes: We would also like to preserve dise-
qualities between Struct-variables from A. Thus we introduce a relation ≺ over
the equivalence classes: α ≺ β if y = c(w1, . . . , wn) occurs as one of the conjuncts
in Γ ′ for some w1, . . . , wn and c ∈ CO such that wk ∈ α for some k ∈ [1, n] and
y ∈ β. An equivalence class α is nullary if A |= isc(x) for some x ∈ α and nullary
constructor c. An equivalence class α is minimal if β 6≺ α for every β. Notice
that each nullary equivalence class is minimal. The relation ≺ induces a directed
acyclic graph (DAG), denoted G. The vertices are the equivalence classes. When-
ever α ≺ β, we draw an edge from vertex α to β.

Step 4 – Interpretation of Equivalence Classes: We next define αB for every
equivalence class α. Then, for every Struct-variable x, we set:

xB = [x]B (3)

The idea for defining αB goes as follows. Nullary classes are assigned according
to A, because nullary constructors are interpreted as themselves, and hence there
is only one way to interpret them. Other minimal classes are assigned arbitrarily,
but it is important to assign different classes to terms whose depths are far enough
from each other to ensure that the disequalities in A are preserved. Non-minimal
classes are uniquely determined after minimal ones are assigned.

Formally, let m be the number of equivalence classes, l the number of minimal
equivalence classes, r the number of nullary equivalence classes, and α1, . . . , αm a
topological sort of G, such that all minimal classes occur before all others, and the
first r classes are nullary. Let d be the length of the longest path in G. We define
αBi by induction on i. In the definition, we use BElem to denote the Elem-sorted
set assigning σB to every σ ∈ Elem.

1. If 0 < r and i ≤ r then αi is a nullary class and so we set:

αBi = αAi (4)

2. If r < i ≤ l then αi is minimal and not nullary. Let σ be the sort of variables
in αi. If σ ∈ Elem, then all variables in the class have already been defined.
Otherwise, σ ∈ Struct. In this case, we set:

αBi = a (5)

such that a is some arbitrary element of Tσ(Σ|CO,BElem) that has depth strictly

greater than max
{

depth(αBj ) | 0 < j < i
}

+ d (here max ∅ = 0).

3. If i > l then we set:

αBi = c(βB1 , . . . , β
B
n ) (6)

for the unique equivalence classes β1, . . . , βn ⊆ {α1, . . . , αi−1} and c such that
y = c(x1, . . . , xn) occurs in Γ ′ for some y ∈ αi and x1 ∈ β1, . . . , xn ∈ βn.
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Example 6 Let Γ be the following Σlist -formula: x1 = cons(e1, x2)∧x3 = cons(e2, x4)∧
x2 6= x4. Then Γ ′ = Γ . We have the following satisfying interpretation A: elemA =
{1, 2, 3, 4}, eA1 = 1, eA2 = 2, xA1 = [1, 2, 3], xA2 = [2, 3], xA3 = [2, 2, 4], xA4 = [2, 4].

The construction above yields the following interpretation B: elemB = {1, 2},
eB1 = 1, eB2 = 2. For list-variables, we proceed as follows. The equivalence classes
of list-variables are [x1], [x2], [x3], [x4], with [x2] ≺ [x1] and [x4] ≺ [x3]. The length
of the longest path in G is 1.

Assuming [x2] comes before [x4] in the topological sort, xB2 will get an arbitrary
list over {1, 2} with length greater than 1 (the depth of eB2 plus the length of the
longest path), say, [1, 1, 1]. xB4 will then get an arbitrary list of length greater
than 4 (the depth of xB2 plus the length of the longest path). Thus we could have
xB4 = [1, 1, 1, 1, 1]. Then, xB1 = [1, 1, 1, 1] and xB3 = [2, 1, 1, 1, 1, 1].

Lemma 5 αBi is well-defined.

Proof : The case of nullary and minimal constructors is clearly well-defined. Sup-
pose αi is not minimal. Then the sort of its variables is in Struct. We prove that
there is a unique list β1, . . . , βn, of equivalence classes, all elements of {α1, . . . , αi−1}
and a unique constructor c such that y = c(x1, . . . , xn) occurs in Γ ′ for some y ∈ αi
and x1 ∈ β1, . . . , xn ∈ βn. Existence: αi is not minimal. Hence there exists some
β1 such that β1 ≺ αi. Hence w.l.g. there exists some y ∈ αi and some x1 ∈ β1
such that y = c(x1, x2, . . . , xn) is in Γ ′ for some x2, . . . , xn and c. By definition,
this means that [x2], . . . , [xn] ≺ αi as well, and thus [xj ] must occur before αi
in the topological ordering for every 1 ≤ j ≤ n, hence [xj ] ∈ {α1, . . . , αi−1} for
each j. Uniqueness: Suppose there are also equivalence classes β′1, . . . , β

′
m, all el-

ements of {α1, . . . , αi−1} and a constructor c′ such that y′ = c′(x′1, . . . , x
′
m) occurs

in Γ ′ for some y′ ∈ αi and x′1 ∈ β′1, . . . , x
′
m ∈ β′m. Since y′ = c′(x′1, . . . , x

′
m) and

y = c(x1, . . . , xn) both occur in Γ ′ and are thus satisfied by A, and [y] = [y′],
we must have c = c′, n = m, and A |= xj = x′j for every j, otherwise it would
contradict [y] = [y′]. Hence [xj ] = [x′j ], so that β′j = βj for every j. ut

Step 5 – Interpretation of Selectors: Let sc,i ∈ SE for c : σ1 × . . . × σn → σ,
1 ≤ i ≤ n and a ∈ σB. If a ∈ isBc , we must have a = c(a1, . . . , an) for some
a1 ∈ σB1 , . . . , an ∈ σBn . We then set:

sBc,i(a) = ai (7)

Otherwise, we consider two cases. If xB = a for some x ∈ vars (Γ ) such that
y = sc,i(x) occurs in Γ2 for some y, we set:

sBc,i(a) = yB (8)

Otherwise, sBc,i(a) is set arbitrarily.

4.1.2 B is a Finite Witness of Γ

Now that B is defined using equations 1–8, we show that it is a finite witness of Γ
for TΣ w.r.t. Elem. By construction, σB = varsσ(Γ )B for every σ ∈ Elem. Hence
it is left to show that B |= Γ . We start by showing that B preserves the equalities
and disequalities in A:
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Lemma 6 xA = yA iff xB = yB for every x, y ∈ vars (Γ ).

Proof : The left-to-right direction follows directly from the definition of B, that
does not distinguish distinct elements inside a single equivalence class of ≡A. For
the converse, we prove that αB1 , . . . , α

B
p are pairwise distinct for every 1 ≤ p ≤ m

by induction on p. From this the claim follows: if xA 6= yA, then [x] = αp and
[y] = αq for some p 6= q, and therefore xB = [x]B 6= [y]B = yB.

The induction base corresponds to the first l classes (minimal classes).

1. For all the equivalence classes of Elem-sorted variables, as they are also min-
imal, and the definition is the same as in A, their interpretations are distinct
by definition.

2. For the nullary classes, the definition is also the same as in A, thus they have
distinct interpretations.

3. For the equivalence classes of minimal non-nullary Struct-sorted variables,
they have different interpretations with the nullary classes, as their interpre-
tations all have the depth more than d. And among themselves, the depths of
the interpretations of these classes is a strongly increasing monotonic sequence
by definition.

For the induction step, assume the claim for p (l ≤ p < m) vertices. It is
sufficient to prove that αp+1 has a different interpretation from all the previous
vertices. Assume otherwise, and let i ≤ p with αBi = αBp+1. αp+1 is not minimal.

Since αp+1 cannot be nullary, αBi = αBp+1 cannot be nullary, thus we have i > r.
Recall that the first r classes are nullary as defined in Step 4. Then let us consider
two cases.

1. αi is not minimal: There must be a constructor c such that αBi = c(βB1 , . . . , β
B
n )

and αBp+1 = c(β̂B1 , . . . , β̂
B
n ) for some equivalence classes β1, . . . , βn and β̂1, . . . , β̂n.

Then from αBi = αBp+1, we have βBk = β̂Bk for k = 1, . . . , n. Also, note that

β1, . . . , βn, β̂1, . . . , β̂n ∈ {α1, . . . , αp}. Let 1 ≤ k ≤ n. By the induction hypothe-
sis, either βk = β̂k or βBk 6= β̂Bk . By the above, the former must hold. So that
βAk = β̂Ak for k = 1, . . . , n, thus we get αAi = αAp+1. Since the equivalence classes
are defined by ≡A, we have [αi] = [αp+1], thus i = p+ 1. This contradicts the
fact that i < p+ 1.

2. αi is minimal: An equivalence class β is said to be a source of αp+1, if there is
a path from β to αp+1 in G and β is minimal.
If αp+1 has a source vertex β such that depth(βB) ≥ depth(αBi ), then we have
depth(αBp+1) > depth(βB) ≥ depth(αBi ).

Otherwise depth(αBi ) > 0 since by construction, αi is not an Elem-sorted
variable, and for any other minimal class α′, either depth(α′B) > depth(αBi )
or depth(α′B) < depth(αBi ) − d. So for any source vertex β of αp+1, we have
depth(βB) < depth(αBi )− d. Since d is the length of the longest path, we obtain
depth(αBp+1) ≤ depth(βB) + d < depth(αBi ). Therefore, αBi 6= αBp+1, which makes
the contradiction.

ut

By considering every shape of a literal in Γ ′ we can prove that B |= Γ ′. Then,
our interpretation of the selectors ensures the following:

Lemma 7 B |= Γ .
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Proof : We start by proving that B |= Γ ′. Γ ′ is a conjunction of flat literals without
selectors and testers. We consider each type of conjunct separately.

– Literals of the form x = y or x 6= y: By Lemma 6, and the fact that A |= Γ ′,
these literals hold in interpretation B.

– Literals of the form x = c, where c is a nullary constructor: In this case, xB is
defined as xA, see Equation (4). Since A |= Γ ′, we have B |= x = c.

– Literals of the form x = c(w1, . . . , wn) for some constructor c: Since A |= Γ ′,
c is the only constructor that construct x in Γ ′. From the definition of B,
xB = c(dB1 , . . . , d

B
n) for some d1, . . . , dn, see Equation (6). And by Lemma 5, we

have [wk] = [dk] for k = 1, . . . , n. So we have xB = c(wB1 , . . . , w
B
n ).

Next, we prove that B |= Γ2. Γ2 is a conjunction of the literals of Γ ′, together
with literals of the form y = sc,i(x) from Γ . Let y = sc,i(x) be such a conjunct of
Γ2. Then by the definition of wtni and Γ ′, there are two cases:

– x = c(. . . , y, . . .) is in Γ ′. Thus [y] ≺ [x] and xB = c(. . . , yB, . . .) by the definition
of B. In particular, xB ∈ isBc . In this case, sc,i(x)B is set to yB by the definition
of B.

– x = d(. . .) is in Γ ′ for some d 6= c. We consider the following sub-cases.
– If d is nullary then [x] is nullary. In this case, xB = xA. A |= Γ ′ and hence
xA ∈ isAd , which means that xB ∈ isBd as well. In particular, xB /∈ isBc . Since
y = sc,i(x) occurs in Γ2, sc,i(x)B is set to be yB.

– If d is not nullary then [x] cannot be minimal, and hence xB ∈ isBd by the
definition of B. In particular, xB /∈ isBc . Since y = sc,i(x) occurs in Γ2,
sc,i(x)B is set to be yB in this case.

Hence B |= Γ2.
Next, we show that B |= Γ1, which is obtained from Γ2 by the addition of

conjunctions of the form isc(x) and ¬isc(x). Let isc(x) be such a literal in Γ1.
Then it is also a literal of Γ . Then by the definition of wtni and of Γ ′, this means
that Γ ′ contains a literal of the form x = c(y1, . . . , yn). Since B |= Γ ′, we have
B |= isc(x). Now let ¬isc(x) be a literal of Γ1. Then it is also a literal of Γ . By the
definition of wtni and Γ ′, the latter contains a literal of the form x = d(t1, . . . , tn)
for some d 6= c. Since B |= Γ ′, we have B |= ¬isc(x).

Finally, we have seen that B satisfies a disjunct in every disjunction of Γ , as
well as all of the top-level literals of Γ , which means that B |= Γ . ut

Lemmas 3 and 7, together with the definition of the domains of B, give us that
B is a finite witness of Γ for TΣ w.r.t. Elem, and so Lemma 4 is proven. As a
consequence of Lemmas 1, 2 and 4, strong politeness is obtained.

Theorem 2 If Σ is a datatypes signature and all sorts in StructΣ are inductive, then

TΣ is strongly polite w.r.t. ElemΣ .

4.2 Finite Datatypes

In this section, we assume that all sorts in Struct are finite.
For finite witnessability, we define the following witness, that guesses the con-

struction of each Struct-variables until a fixpoint is reached.
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Definition 13 (A Witness for TΣ) For every quantifier-free conjunction of
flat Σ-literals φ, define the sequence φ0, φ1, . . ., such that φ0 = φ, and for ev-
ery i ≥ 0, φi+1 is obtained from φi by conjuncting it with a disjunction

∨
c∈CO x =

c(wc1, . . . , w
c
nc) for fresh wc1, . . . , w

c
nc , where x is some arbitrary Struct-variable in

φi such that there is no literal of the form x = c(y1, . . . , yn) in φi for any con-
structor c ∈ CO and variables y1, . . . , yn. Since Struct only has finite sorts, there
is necessarily a minimal k such that φk = φk+1 and wtnf (φ) is defined to be φk.

Example 7 Let φ be the Σpair -formula x = first(y)∧x′ = first(y′)∧x 6= x′. wtnf (φ)
is φ ∧ y = pair(e1, e2) ∧ y′ = pair(e3, e4).

Similarly to the case of inductive datatypes presented in Section 4.1, we have:

Lemma 8 wtnf is Elem-additive for TΣ .

Proof : We proceed just like in the proof of Lemma 2. Let ϕ be a conjunction
of flat literals such that every term in ϕ is a variable whose sort is in Elem.
By construction of wtnf , wtnf (φ) ∧ ϕ does not satisfy the precondition in wtnf
for the addition of any formula since ϕ does not contain any constructors. Thus,
wtnf (wtnf (φ) ∧ ϕ) = wtnf (φ) ∧ ϕ. ut

Lemma 9 φ and ∃−→w .wtnf (φ) are TΣ-equivalent, where −→w = vars (wtnf (φ))\vars (φ).

Proof : Similarly to the proof of Lemma 3, we know that ∃−→wi . φi and ∃−−−→wi+1 . ∃φi+1

are TΣ-equivalent, where −→wi = vars (wtnf (φi))\vars (φ), −−−→wi+1 = vars (wtnf (φi+1))\
vars (φ). Also since φ0 = φ, we have that φ and ∃−→w . φk are TΣ-equivalent, where
−→w = vars (φk) \ vars (φ), for the minimal k such that φk = φk+1. ut

We now prove the following lemma:

Lemma 10 (Finite Witnessability) Let φ be a conjunction of flat literals. Then,

wtnf (φ) is finitely witnessed for TΣ with respect to Elem.

Proof : Suppose Γ = wtnf (φ) is TΣ-satisfiable, and let A be a satisfying TΣ-
interpretation. We define a TΣ-interpretation B which is a finite witness of Γ
for TΣ w.r.t. Elem. We set σB = varsσ(Γ )A for every σ ∈ Elem, eB = eA, for
every variable e ∈ varsElem(Γ ) and xB = xA for every variable x ∈ varsStruct(Γ ).
Selectors are also interpreted as they are interpreted in A. This is well-defined:
for any Struct-variable x, every element in σA for σ ∈ Elem that occurs in xA

has a corresponding variable e in Γ such that eA is that element. This holds by
the finiteness of the sorts in Struct and the definition of wtnf . Further, for any
Struct-variable x such that sc,i(x) occurs in Γ , we must have that it occurs in
some literal of the form y = sc,i(x) of Γ . Similarly to the above, all elements that
occur in yA and xA have corresponding variables in Γ . Therefore, B |= Γ is a
trivial consequence of A |= Γ . By the definition of its domains, B is a finite witness
of Γ for TΣ w.r.t. Elem. ut

By Lemmas 1, 8, 9 and 10, strong politeness is obtained.

Theorem 3 If Σ is a datatypes signature and all sorts in StructΣ are finite, then

TΣ is strongly polite w.r.t. ElemΣ .
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4.3 Combining Finite and Inductive Datatypes

Now we consider the general case. Let Σ be an arbitrary datatypes signature. We
prove that TΣ is strongly polite w.r.t. Elem. We show that there are datatypes
signatures Σ1, Σ2 ⊆ Σ such that TΣ = TΣ1

⊕TΣ2
, and then use Theorem 1. In Σ1,

inductive sorts are excluded, while in Σ2, finite sorts are considered to be element
sorts:

Theorem 4 If Σ is a datatypes signature then TΣ is strongly polite w.r.t. ElemΣ .

Proof : Set Σ1 as follows: ElemΣ1
= ElemΣ and StructΣ1

= Fin(Σ). FΣ1
=

COΣ1
] SEΣ1

, where COΣ1
= {c : σ1 × . . . × σn → σ | c ∈ COΣ , σ ∈ StructΣ1

}
and SEΣ1

and PΣ1
are the corresponding selectors and testers. Notice that if σ is

finite and c : σ1 × . . . × σn → σ is in COΣ , then σi must be finite or in ElemΣ

for every 1 ≤ i ≤ n. Next, we set Σ2 as follows: SΣ2
= ElemΣ2

] StructΣ2
, where

ElemΣ2
= ElemΣ ∪ Fin(Σ) and StructΣ2

= Ind(Σ). FΣ2
= COΣ2

] SEΣ2
, where

COΣ2
= {c : σ2× . . .×σn → σ | c ∈ COΣ , σ ∈ StructΣ2

} and SEΣ2
and PΣ2

are the
corresponding selectors and testers. Thus, TΣ = TΣ1

⊕ TΣ2
.

Now set S = ElemΣ ∪Fin(Σ), S1 = ElemΣ , S2 = ElemΣ ∪Fin(Σ), T1 = TΣ1
,

and T2 = TΣ2
. By Theorem 3, T1 is strongly polite w.r.t. S1 and by Theorem 2, T2

is strongly polite w.r.t. S2. By Theorem 1, TΣ is strongly polite w.r.t. ElemΣ . ut

Remark 1 A concrete witness for TΣ in the general case, that we call wtnΣ , is
obtained by first applying the witness from Definition 12 and then applying the
witness from Definition 13 on the literals that involve finite sorts. A direct finite
witnessability proof can be obtained by using the same arguments from the proofs
of Lemmas 4 and 10. This witness is simpler than the one produced in the proof
from [16] of Theorem 1, that involves purification and arrangements. In our case,
we do not consider arrangements, but instead notice that the resulting function is
additive, and hence ensures strong finite witnessability.

5 Axiomatizations

In this section, we discuss the possible connections between TΣ and some axioma-
tizations of trees. We show how to get a reduction of any TΣ-satisfiability problem
into a satisfiability problem modulo an axiomatized theory of trees. The latter can
be decided using syntactic unification.

Let Σ be a datatypes signature. The set TREE∗Σ of axioms is defined as the
union of all the sets of axioms in Figure 1 (where upper case letters denote implic-
itly universally quantified variables). Let TREEΣ be the set obtained from TREE∗Σ
by dismissing Ext1 and Ext2. Note that because of Acyc, we have that TREEΣ is
infinite (that is, consists of infinitely many axioms) unless all sorts in Struct are
finite. TREEΣ is a generalization of the theory of Absolutely Free Data Structures
(AFDS) from [11] to many-sorted signatures with selectors and testers. In what
follows we identify TREEΣ (and TREE∗Σ) with the class of structures that satisfy
them when there is no ambiguity. It is routine to verify that the axioms are sound,
and hence we have:

Proposition 3 Every TREE∗Σ-unsatisfiable formula is TΣ-unsatisfiable.
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(Inj ) {c(X1, . . . , Xn) = c(Y1, . . . , Yn)→
∧n
i=1Xi = Yi | c ∈ CO}

(Dis) {c(X1, . . . , Xn) 6= d(Y1, . . . , Ym) | c, d ∈ CO, c 6= d}
(Proj ) {sc,i(c(X1, . . . , Xn)) = Xi | c ∈ CO, i ∈ [1, n]}
(Is1) {isc(c(X1, . . . , Xn)) | c ∈ CO}
(Is2) {¬isc(d(X1, . . . , Xn)) | c, d ∈ CO, c 6= d}
(Acyc) {X 6= t[X] | t is a non-variable Σ|CO-term that contains X }
(Ext1) {

∨
c:σ1×...×σn→σ∈CO isc(X) | σ ∈ Struct}

(Ext2) {∃−→y . isc(X)→ X = c(−→y ) | c ∈ CO}

Fig. 1 Axioms for TREEΣ and TREE∗Σ

5.1 A Satisfiability Procedure for TREEΣ

Using an approach à la Shostak [28,5,20,18,33,11], it is possible to get a satisfi-
ability procedure for the Σ|CO-reduct of TREEΣ . Consider the Σ|CO-theory FT

defined from TREEΣ by dismissing Proj , Is1 and Is2. As shown below, FT is a
Shostak theory for which there exists a solver computing solved forms. A conjunc-
tion of equalities Γ of the form

∧
k∈K xk = tk is said to be a solved form if for each

k ∈ K, xk is a variable occurring only once in Γ . A theory T whose signature does
not contain any predicate symbol is said to be a Shostak theory if

– T is convex, meaning that for any conjunction of literals ϕ over the signature
of T , T ∪{ϕ} does not entail any disjunction of equalities without entailing one
of the equalities itself.

– T admits a solver solveT and a canonizer canonT :

– solveT computes, for any conjunction of equalities Φ, a formula Γ such that
Γ is a solved form T -equivalent to Φ if Φ is T -satisfiable; otherwise Γ is the
unsatisfiable formula ⊥.

– canonT is a computable idempotent mapping from terms to terms such that
T |= s = t iff canonT (s) = canonT (t).

A substitution can be associated to any solved form. Formally, a substitution is
defined in the usual way as an endomorphism of the structure of terms with only
finitely many variables not mapped to themselves. In the case of a solved form
Γ = (

∧
k∈K xk = tk), the associated substitution is µ = {xk 7→ tk}k∈K . Application

of the substitution µ to a term t is the term written µ(t) which is obtained from
t by replacing xk with tk for each k ∈ K. The substitution associated to a solved
form is useful to express a T -satisfiability procedure for a Shostak theory T .

Lemma 11 ([33]) Let T be a Shostak theory. Assume Φ is any conjunction of equali-

ties and ∆ is any conjunction of disequalities such that Φ∧∆ is built over the signature

of T . Φ ∧∆ is T -satisfiable iff

– solveT computes, for the input Φ, a solved form Γ = (
∧
k∈K xk = tk),

– and for the substitution µ = {xk 7→ tk}k∈K and any v 6= w in ∆, we have

canonT (µ(v)) 6= canonT (µ(w)).

A solver for FT is given by a syntactic unification algorithm [2], which can
be viewed as a satisfiability procedure for the Σ|CO-structure of Σ|CO-trees over a
countable SΣ-sorted set of variables V (cf. Definition 1), also denoted by T (Σ|CO, V ).
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Given any conjunction of Σ|CO-equalities Φ, a syntactic unification algorithm com-
putes a formula Γ such that T (Σ|CO, V ) |= Φ⇔ Γ and Γ is either the unsatisfiable
formula ⊥ or a solved form.

Lemma 12 FT is a Shostak theory where the solver is provided by a syntactic unifi-

cation algorithm and the canonizer is the identity mapping.

Proof : Theories defined by Horn clauses are known to be convex [30]. Consequently,
FT is convex.

Consider any conjunction of Σ|CO-equalities Φ. A syntactic unification algo-
rithm with Φ as input computes a formula Γ such that T (Σ|CO, V ) |= Φ ⇔ Γ .
The formula Γ can be obtained by a sequence of inferences, where each of these
inferences corresponds to an equivalence that holds both in T (Σ|CO, V ) and in FT .
Hence, FT |= Φ⇔ Γ . If Γ is a solved form, then both Γ and Φ are FT -satisfiable;
otherwise Γ is the unsatisfiable formula ⊥ and both Γ and Φ are FT -unsatisfiable.

Let us now show that FT |= s = t iff s = t. The “if” direction is obvious.
For the “only-if” direction, we use that T (Σ|CO, V ) |= FT . Thus, FT |= s = t

implies T (Σ|CO, V ) |= s = t. Then, it suffices to remark that T (Σ|CO, V ) |= s = t

iff s = t. ut

TREEΣ is not a Shostak theory because Σ includes some predicate symbols.
However, TREEΣ and FT coincide on Σ|CO-sentences.

Lemma 13 For any Σ|CO-sentence ϕ, TREEΣ |= ϕ iff FT |= ϕ.

Proof : The “if” direction is a consequence of the fact that TREEΣ |= FT . For the
“only-if” direction, it is easy to show that any model of FT falsifying ϕ can be
extended to a model of TREEΣ falsifying ϕ. ut

As a direct application of Lemmas 11, 12 and 13, it is possible to decide the
TREEΣ-satisfiability of any conjunction of Σ|CO-literals:

Lemma 14 Assume Φ is any conjunction of Σ|CO-equalities and ∆ is any conjunction

of Σ|CO-disequalities. If a syntactic unification algorithm computes, for the input Φ, the

unsatisfiable formula ⊥, then Φ∧∆ is TREEΣ-unsatisfiable. Otherwise, it computes a

solved form Γ = (
∧
k∈K xk = tk) and we have that:

1. Γ ∧∆ is TREEΣ-equivalent to Φ ∧∆,

2. Γ ∧ ∆ is TREEΣ-satisfiable iff for the substitution µ = {xk 7→ tk}k∈K and any

v 6= w in ∆, we have µ(v) 6= µ(w).

Remark 2 Along the lines of [1], a superposition calculus can be also applied to
get a TREEΣ-satisfiability procedure. Such a calculus has been used in [8,11] for
a theory of trees with selectors but no testers. To handle testers, one can use a
classical encoding of predicates into first-order logic with equality, by representing
an atom isc(x) as a flat equality Isc(x) = T where Isc is now a unary function
symbol and T is a constant. Then, a superposition calculus dedicated to TREEΣ

can be obtained by extending the standard superposition calculus [1] with some
expansion rules, one for each axiom of TREEΣ [11]. For the axioms Is1 and Is2,
the corresponding expansion rules are respectively x = c(x1, . . . , xn) ` Isc(x) =
T if c ∈ CO, and x = d(x1, . . . , xn) ` Isc(x) 6= T if c, d ∈ CO, c 6= d.
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We do not detail further the above superposition-based satisfiability procedure.
Actually, Lemma 14 is sufficient to get a TΣ-satisfiability procedure based on a
reduction to TREEΣ-satisfiability of conjunctions of Σ|CO-literals.

5.2 A Satisfiability Procedure for TΣ

In the following, we show that any TΣ-satisfiability problem can be reduced to a
TREEΣ-satisfiability problem. Using a TREEΣ-satisfiability procedure, this leads
to a TΣ-satisfiability procedure.

Lemma 15 Let Σ be a datatypes signature and ϕ any conjunction of flat Σ-literals

including an arrangement over the variables in ϕ. Then, there exists a Σ-formula ϕ′

such that:

1. ϕ and ∃−→w . ϕ′ are TΣ-equivalent, where −→w = vars (ϕ′)\vars (ϕ).

2. ϕ′ is TΣ-satisfiable iff ϕ′ is TREEΣ-satisfiable.

Proof :
The proof is divided in two parts. First, we show how to construct the for-

mula ϕ′. Second, we prove the equivalence between TΣ-satisfiability and TREEΣ-
satisfiability for ϕ′. To prove this equivalence, we construct a TΣ-interpretation
satisfying ϕ′ when ϕ′ is TREEΣ-satisfiable.

1. Construction of a TΣ-equivalent formula. To define ϕ′, let us first introduce the
notion of is-constraint. Given a finite set of Struct-sorted variables V , an is-
constraint over V is a conjunction ρ of literals isc(x) such that x ∈ V , c : σ1 ×
. . . × σn → σ ∈ CO if x is of sort σ; and for every x ∈ V , there exists a unique c
for which isc(x) occurs in ρ. The set of is-constraints over V is denoted by IS(V ).
Given an is-constraint ρ, ρeq denotes a conjunction of equalities x = c(y1, . . . , yn)
such that isc(x) occurs in ρ; all the variables y1, . . . , yn are distinct and fresh; and
for every isc(x) in ρ, there exists a unique equality of the form x = c(. . . ) in ρeq.

Assume ϕ is any conjunction of flat Σ-literals including an arrangement over
the variables in ϕ. Consider the set of variables GV (ϕ) defined as

{x | isc(x) ∈ ϕ} ∪ {x | ¬isc(x) ∈ ϕ} ∪ {y | x = sc,i(y) ∈ ϕ, sc,i ∈ SE}

excluding all the variables in

{y | x = sc,i(y), y = d(. . . ) ∈ ϕ, sc,i ∈ SE , d ∈ CO, d 6= c}.

We want to build a formula equivalent to ϕ but including at least one σ-sorted
variable for each σ ∈ Elem. For this reason, let us denote ϕte a conjunction of
trivial equalities xσ = xσ, one for every σ ∈ Elem such that varsσ(ϕ) = ∅, xσ
being a fresh σ-sorted variable. If GV (ϕ) = ∅, define ϕ1 = ϕ ∧ ϕte. Otherwise,
define ϕ1 as follows:

ϕ1 =
∨

ρ∈IS(GV (ϕ))

w(ϕ, ρeq) ∧ ρeq ∧ ϕte

where w(ϕ, ρeq) is built in a inductive way by first considering the case of any
Σ-literal l:
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1. if l = isc(x) and x = c(y1, . . . , yn) occurs in ρeq, then w(l, ρeq) = >;
2. if l = ¬isc(x) and x = c(y1, . . . , yn) occurs in ρeq, then w(l, ρeq) = ⊥;
3. if l = isd(x), x = c(y1, . . . , yn) occurs in ρeq and c 6= d, then w(l, ρeq) = ⊥;
4. if l = ¬isd(x), x = c(y1, . . . , yn) occurs in ρeq and c 6= d, then w(l, ρeq) = >;
5. if l = (y = sc,i(x)) and x = c(y1, . . . , yn) occurs in ρeq, then w(l, ρeq) = (y = yi);
6. otherwise, w(l, ρeq) = l.

If ϕ is any non-empty conjunction of Σ-literals of the form l ∧ ϕr where l is a
Σ-literal, then w(ϕ, ρeq) is obtained from w(l, ρeq) ∧ w(ϕr, ρeq) by simplifying the
latter thanks to the properties that ⊥ is absorbing for ∧ and > is the identity for
∧. Otherwise, ϕ is the empty conjunction >, and w(ϕ, ρeq) = >.

Note that the above construction is similar to the one given in [11] (see Propo-
sition 4 in [11]). One can observe that ϕ ∧ ρeq and w(ϕ, ρeq) ∧ ρeq are TREE∗Σ-
equivalent. In particular, for the case (5.) above, it follows from the projection
axiom Proj in TREE∗Σ . In addition the guessing of is-constraint preserves the
TREE∗Σ-equivalence since TREE∗Σ includes the extensionality axioms Ext1 and
Ext2. Thus ϕ and ∃−→w .ϕ1 are TREE∗Σ-equivalent for −→w = vars (ϕ1)\vars (ϕ).

For any conjunction of literals φ, let us define

Min(φ) = vars (φ)\{x | x = c(. . . ) occurs in φ}.

Starting from ϕ1, consider the following sequences of formulas, obtained by guess-
ing is-constraints for “minimal” variables of finite sorts:

ϕj+1 =
∨

ρ∈IS(
⋃
σ∈Fin(Σ)Minσ(ϕj))

ϕj ∧ ρeq

By definition of Fin(Σ), there exists necessarily some j′ such that the set of vari-
ables

⋃
σ∈Fin(Σ)Minσ(ϕj′) is empty. In that case, let us define ϕ′ = ϕj′ .

It is routine to show that ϕ and ∃−→w .ϕ′ are TΣ-equivalent for the set of fresh
variables −→w = vars (ϕ′)\vars (ϕ), using the following facts:

– all the sentences in TREE∗Σ are true in all the TΣ-interpretations,
– as shown above, ϕ and ∃−→w .ϕ1 are TREE∗Σ-equivalent for the set of fresh vari-

ables −→w = vars (ϕ1)\vars (ϕ),
– ϕj and ∃−→w .ϕj+1 are TREE∗Σ-equivalent, for −→w = vars (ϕj+1)\vars (ϕj) and

any j = 1, . . . , j′−1, since TREE∗Σ includes the extensionality axioms Ext1 and
Ext2.

2. Construction of a TΣ-interpretation. Let us now show that ϕ′ is TΣ-satisfiable iff
ϕ′ is TREEΣ-satisfiable.

(⇒) directly follows from Proposition 3.
(⇐) If ϕ′ is TREEΣ-satisfiable, there exists a TREEΣ-interpretation A and

a disjunct ψ of ϕ′ such that A |= ψ. By construction of ϕ′, ψ is a conjunction
ψCO ∧ ψSE where

– ψCO is a conjunction of Σ|CO-literals,
– ψSE is a conjunction of equalities of the form x = sc,i(y).
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Since ψ holds in a TREEΣ-interpretation, the conjunction of Σ|CO-equalities
in ψCO has a most general unifier. By Lemma 14, ψCO is TREEΣ-equivalent to a
conjunction of literals Γ ∧∆ such that

– Γ is a conjunction of equalities
∧
k∈K xk = tk such that for each k ∈ K, xk is

a variable occurring only once in Γ ,
– ∆ is the conjunction of disequalities in ψ,
– given the substitution µ = {xk 7→ tk}k∈K , for any v 6= w in ∆, µ(v) 6= µ(w).

Consider the set of variables MV = {x ∈ varsStruct(ϕ
′) | µ(x) = x}. Since the

sorts of variables in MV are all inductive, there exists a substitution α from MV

to T (Σ|CO, varsElem(ϕ′)) such that for any x, y ∈ MV , α(x)A = α(y)A iff x = y.
According to this substitution α, we have for any terms t, u ∈ T (Σ|CO,MV ∪
varsElem(ϕ′)), α(t)A = α(u)A iff t = u. In particular, we have for any k, k′ ∈ K,

α(µ(xk))A = α(µ(xk′))
A iff µ(xk) = µ(xk′).

It is always possible to choose α such that for any x, y ∈MV , x 6= y, we have

|depth(α(x))− depth(α(y))| > max{depth(tk)}k∈K .

According to the assumption on α, it is impossible to have α(µ(xk))A = α(µ(x))A

for some k ∈ K and some x ∈MV . Consequently, we have for any x, y ∈ varsStruct(ϕ
′),

α(µ(x))A = α(µ(y))A iff µ(x) = µ(y).

Let us now consider B ∈ TΣ such that

– for any σ ∈ Elem, σB = {eA | e ∈ varsσ(ϕ′)},
– for any x ∈ varsStruct(ϕ

′), xB = α(µ(x))A,
– for any e ∈ varsElem(ϕ′), eB = eA.

One can observe that B |= Γ ∧∆ since

– for any xk = tk in Γ , µ(xk) = µ(tk) and so xBk = tBk ,
– for any v 6= w in ∆, µ(v) 6= µ(w) and so vB 6= wB.

Since all the sentences in TREE∗Σ are true in all the TΣ-interpretations and
Γ ∧∆ is TREEΣ-equivalent to ψCO, we have B |= ψCO.

Let us now consider the conjunction ψSE that contains only equalities of the
form x = sc,i(y). By construction of ϕ′, the term µ(y) is necessarily rooted by a
constructor d ∈ CO, d 6= c. Thus sBc,i can be defined arbitrarily on yB since yB is a
standard tree rooted by some constructor d different from c. In particular, we can
define sBc,i such that sBc,i(y

B) = xB. Using this interpretation B for the selectors,
we have B |= ψSE .

Since B |= ψCO and B |= ψSE , we get B |= ψ. Since ψ is some disjunct of ϕ′, we
can conclude that B |= ϕ′. ut

Lemma 15 can be easily lifted to any quantifier-free Σ-formula thanks to the
following transformations:

– computation of a disjunctive normal form, that is, a disjunction of conjunctions
of Σ-literals;

– flattening of each conjunction of Σ-literals;
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– for each resulting conjunction of flat Σ-literals, guessing all the possible ar-
rangements over its variables.

Therefore, Lemma 15 leads to:

Theorem 5 Let Σ be a datatypes signature and ϕ any quantifier-free Σ-formula.

Then, there exists a Σ-formula ϕ′ such that:

1. ϕ and ∃−→w . ϕ′ are TΣ-equivalent, where −→w = vars (ϕ′)\vars (ϕ).

2. ϕ′ is TΣ-satisfiable iff ϕ′ is TREEΣ-satisfiable.

In both Lemma 15 and Theorem 5, ∃−→w .ϕ′ and ϕ are not only TΣ-equivalent but
also TREE∗Σ-equivalent. As a consequence, both Lemma 15 and Theorem 5 also
hold when stated using TREE∗Σ instead of TΣ . This shows that any quantifier-free
Σ-formula is TΣ-satisfiable iff it is TREE∗Σ-satisfiable.

5.3 Politeness and Axiomatization

We conclude this section with a short discussion on the connection to Section 4.
Both the current section and Section 4 rely on two constructions: (i) A formula
transformation (wtnΣ in Remark 1 of Section 4, ϕ 7→ ϕ′ in Lemma 15 of the current
section); and (ii) A small model construction (finite witnessability in Section 4,
equisatisfiability between TΣ and TREE in Lemma 15). While these constructions
are similar in both sections, they are not the same. A nice feature of the con-
structions of Section 4 is that they clearly separate between steps (i) and (ii).
The witness is very simple, and amounts to adding to the input formula literals
and disjunctions that trivially follow from the original formula in TΣ . Then, the
resulting formula is post-processed in step (ii), according to a given satisfying in-
terpretation. Having a satisfying interpretation allows us to greatly simplify the
formula, and the simplified formula is useful for the model construction. In con-
trast, the satisfying TREEΣ-interpretation that we start with in step (ii) of the
current section is not necessarily a TΣ-interpretation, which makes the approach
of Section 4 incompatible, compared to the syntactic unification approach that we
employ here. For that, some of the post-processing steps of Section 4 are employed
in step (i) itself, in order to eliminate all testers and as much selectors as possible.
In addition, a pre-processing is applied in order to include an arrangement. The
constructed interpretation finitely witnesses ϕ′ and so this technique can be used
to produce an alternative proof of strong politeness.

6 Conclusion

In this paper we have studied the theory of algebraic datatypes, as it is defined
by the SMT-LIB 2 standard. Our investigation included both finite and inductive
datatypes. For this theory, we have proved that it is strongly polite, making it
amenable for combination with other theories by the polite combination method.
Our proofs used the notion of additive witnesses, also introduced in this paper.
We concluded by extending existing axiomatizations and a decision procedure for
trees to support this theory of datatypes.
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There are several directions for further research that we plan to explore. First,
we plan to continue to prove that more important theories are strongly polite, with
an eye to recent extensions of the datatypes theory, namely datatypes with shared
selectors [25] and co-datatypes [24]. Second, we envision to further investigate the
possibility to prove politeness using superposition-based satisfiability procedures.
Third, we plan to study extensions of the theory of datatypes corresponding to
finite trees including function symbols with some equational properties such as
associativity and commutativity to model data structures such as multisets [29].
We want to focus on the politeness of such extensions. Initial work in that direction
has been done in [7], that we plan to build on.
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