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Abstract. The Greenland Ice Sheet (GrIS) has been con-
tributing directly to sea level rise, and this contribution is
projected to accelerate over the next decades. A crucial tool
for studying the evolution of surface mass loss (e.g., sur-
face mass balance, SMB) consists of regional climate models
(RCMs), which can provide current estimates and future pro-
jections of sea level rise associated with such losses. How-
ever, one of the main limitations of RCMs is the relatively
coarse horizontal spatial resolution at which outputs are cur-
rently generated. Here, we report results concerning the sta-
tistical downscaling of the SMB modeled by the Modèle At-
mosphérique Régional (MAR) RCM from the original spatial
resolution of 6 km to 100 m building on the relationship be-
tween elevation and mass losses in Greenland. To this goal,
we developed a geospatial framework that allows the par-
allelization of the downscaling process, a crucial aspect to
increase the computational efficiency of the algorithm. Us-
ing the results obtained in the case of the SMB, surface and
air temperature are assessed through the comparison of the
modeled outputs with in situ and satellite measurement. The
downscaled products show a considerable improvement in
the case of the downscaled product with respect to the origi-
nal coarse output, with the coefficient of determination (R2)

increasing from 0.868 for the original MAR output to 0.935
for the SMB downscaled product. Moreover, the value of the
slope and intercept of the linear regression fitting modeled
and measured SMB values shifts from 0.865 for the origi-

nal MAR to 1.015 for the downscaled product in the case of
the slope and from the value−235 mm w.e. yr−1 (original) to
−57 mm w.e. yr−1 (downscaled) in the case of the intercept,
considerably improving upon results previously published in
the literature.

1 Introduction

The Greenland Ice Sheet (GrIS) has been contributing di-
rectly to sea level rise since the beginning of the century
through meltwater runoff and ice mass loss. Hörhold et
al. (2022) found that modern temperatures over northern and
central Greenland are 1.5 ◦C warmer than the 20th century
and that meltwater run off, a major contributor to sea level
rise, has been consequently enhanced. The duration of sur-
face melting and melt extent have also been increasing since
1979, as measured by passive microwave satellite observa-
tions (e.g., Tedesco et al., 2013; Colosio et al., 2021). More-
over, Hanna et al. (2021) found that over the 1972–2018 pe-
riod each 1 ◦C of summer warming corresponds to 116 Gt of
surface mass loss and 26 Gt of solid-ice discharge increase. A
key tool for studying the evolution of surface mass loss (e.g.,
surface mass balance, SMB) over the GrIS is represented by
(polar) regional climate models (RCMs), which, in contrast
to remote sensing observations (that can provide informa-
tion about surface height changes but are unable to attribute
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height change to a mass change without more information
about snow and firn compaction, e.g., Smith et al., 2023), can
provide information on the mass loss and represent an irre-
placeable tool to provide future projections of such losses.
A widely used model in this regard is the Modèle Atmo-
sphérique Régional (MAR, Fettweis et al., 2013, 2017, 2020;
Tedesco et al., 2013), a coupled surface–atmospheric model
forced at its boundaries with reanalysis data. However, one
of the limitations of MAR (and of RCMs in general) lies in
the horizontal spatial resolution at which outputs can be gen-
erated. This is due to computational considerations and to the
physics behind the models. Currently, MAR simulations over
Greenland are generated at a horizontal spatial resolution of
6 km (e.g., Colosio et al., 2021). Such spatial resolution does
not allow capturing fine-scale processes occurring in areas
characterized by complex topography (e.g., glaciers termi-
nating in fjords) or small glaciated surface (e.g., ice caps).
Moreover, the knowledge of mass loss at a horizontal spa-
tial resolution higher than the one currently available (e.g.,
hundreds of meters) might allow a better characterization of
the spatial inputs of runoff and freshwater to the surrounding
oceans.

To address the limitations associated with the current hori-
zontal spatial resolution of the MAR model, statistical down-
scaling can be used to enhance the spatial resolution of the
modeled outputs. For example, Hanna et al. (2005, 2008,
2011) statistically downscaled reanalysis data over the GrIS.
A statistical downscaling technique based on elevation cor-
rection was also applied by Franco et al. (2012) to the
25 km MAR outputs to reconstruct GrIS SMB at 15 km spa-
tial resolution. Following that, Noël et al. (2016) applied
an elevation-dependent statistical downscaling technique to
SMB components simulated by the Regional Atmospheric
Climate Model (RACMO2) at 11 km resolution to recon-
struct a daily dataset of SMB over the GrIS over a 1 km reso-
lution grid. Here, we build upon the approach proposed by
Noël et al. (2016) to generate a 100 m statistically down-
scaled output of MAR SMB over the whole GrIS. In ad-
dition to applying the approach to a different set of mod-
eled outs (MAR instead of RACMO) and the enhanced spa-
tial resolution with respect to Noël et al. (2016), we devel-
oped a geospatial framework that allows the parallelization
of the downscaling process, which increases the computa-
tional efficiency of the algorithm. In the following, we first
describe the datasets used for our approach (Sect. 2), and we
then introduce the methodology (Sect. 3), followed by the
results (Sect. 4), and finally our conclusions and future work
(Sect. 5).

2 Datasets

2.1 MAR model

Modeled quantities to be downscaled are obtained from the
regional climate model MAR (Colosio et al., 2021; Alexan-
der et al., 2014; Fettweis et al., 2013, 2017; Tedesco et al.,
2013). MAR is a modular atmospheric model that uses the
sigma-vertical coordinate to simulate airflow over complex
terrain and the Soil Ice Snow Vegetation Atmosphere Trans-
fer scheme (SISVAT) (e.g., De Ridder and Galleìe, 1998)
as the surface model. The snow model in MAR, which is
based on the CROCUS model of Brun et al. (1992), calcu-
lates albedo for snow and ice as a function of snow grain
properties, which in turn depend on energy and mass fluxes
within the snowpack. Lateral and lower boundary conditions
are prescribed from reanalysis datasets. Sea surface tempera-
ture and sea ice cover are prescribed over the ocean using the
same reanalysis data. The atmospheric model within MAR
interacts dynamically with SISVAT. MAR outputs have been
assessed over the GrIS by many authors (e.g., Fettweis et al.,
2017, 2020; Alexander et al., 2014).

In this study, we use the output from MAR version v3.11.5
characterized by an enhanced computational efficiency and
improved snow model parameters (Fettweis et al., 2020; Del-
hasse et al., 2020). The model is 6-hourly forced at the
boundaries from 1950 using ERA5 reanalysis (Hersbach et
al., 2020), the newest generation of global atmospheric re-
analysis data that superseded ERA-Interim (Dee et al., 2011),
and output is produced at a horizontal spatial resolution of
6 km. Specifically, we focus our attention on daily air tem-
perature (TT variable, being the temperature above 2 m from
the surface), surface temperature (ST variable) and surface
mass balance (SMB) outputs.

2.2 Digital elevation model

For the digital elevation model (DEM), we adopt the Arc-
ticDEM data product (Porter et al., 2018; Fig. 1). Arctic-
DEM is a National Geospatial-Intelligence Agency (NGA)
and National Science Foundation (NSF) public–private ini-
tiative to produce high-quality DEM of the Arctic applying
stereo auto-correlation techniques to high-resolution optical
satellite images and adopting the SETSM open-source pho-
togrammetric software (Noh and Howat, 2015). Further in-
formation about the dataset can be found at https://www.pgc.
umn.edu/data/arcticdem/ (last access: 15 November 2023).
Specifically, we use a DEM provided at the spatial resolution
of 100 m. The data are projected to the National Snow and
Ice Data Center (NSIDC) Sea Ice Polar Stereographic North
and referenced to WGS84 datum. The overall dataset is com-
posed of 403 920 000 cells and is distributed as a GeoTIFF
with a total size of approximately 1.6 Gb.

The Cryosphere, 17, 5061–5074, 2023 https://doi.org/10.5194/tc-17-5061-2023

https://www.pgc.umn.edu/data/arcticdem/
https://www.pgc.umn.edu/data/arcticdem/


M. Tedesco et al.: A 100 m resolution MAR product for Greenland 5063

Table 1. PROMICE surface mass balance measurements information for the selected glaciers and measurement sites.

ID Glacier/site name Latitude (◦) Longitude (◦) Measurement years Points Readings

126 Qaanaaq Ice Cap 77◦30′36′′ N 69◦9′0′′W 2012–2015 6 12
128 Petermann 80◦41′2′′ N 60◦17′35′′W 2002–2013 2 4
130 Hans Tausen Ice Cap 82◦29′24” 37◦30′0′′W 1995 and earlier 5 13
140 Hare Glacier 82◦50′24′′ N 36◦40′12′′W 1994–1995 29 62
170 Kronprins Christian Land 79◦46′48′′ N 25◦11′24′′W 1993–1994, 2008–2013 20 62
180 Nioghalfvjerdsfjorden 79◦30′0′′ N 21◦36′0′′W 1996–1997 13 13
215 Storstrømmen 77◦30′0′′ N 23◦0′0′′W 1989–1994 22 113
220 A. P. Olsen Ice Cap 74◦38′24′′ N 21◦26′60′′W 2008–2013 17 56
230 Freya Glacier 74◦22′48′′ N 20◦49′12′′W 2008–2013 29 93
232 Violin Glacier 72◦20′60′′ N 26◦58′48′′W 2008–2013 2 12
254 Helheim 66◦24′36′′ N 38◦20′24′′W 2008–2010 21 118
270 Isertoq 65◦42′0′′ N 38◦53′24′′W 2007–2013 2 15
315 Nordbo Glacier 61◦30′0′′ N 45◦22′12′′W 1977–1983 41 200
412 Isortuarssup Sermia 63◦47′60′′ N 49◦47′60′′W 1983–1988 3 9
414 Qamanarssup Sermia 64◦30′0′′ N 49◦23′60′′W 1979-1988, 2007–2013 20 164
416 Kangilinnguata Sermia 64◦52′48′′ N 49◦17′60′′W 2010–2013 1 3
420 Qapiarfiup 65◦34′48′′ N 52◦12′36′′W 1980–1989 5 75
440 Amitsuloq Ice Cap 66◦8′24′′ N 50◦19′12′′W 1981–1990 26 422
450 Tasersiaq 66◦15′36′′ N 51◦23′60′′W 1982–1989 6 111
454 K-transect 67◦5′60′′ N 48◦51′36′′W 1990–2013 11 193
456 Paakitsoq, JAR 69◦29′24′′ N 49◦51′36′′W 1982–1992, 1996–2013 22 220
458 Swiss Camp/ST2 69◦33′53′′ N 49◦19′51′′W 1990–2014 2 12

Figure 1. Map of the Greenland Ice Sheet. The digital elevation
model (DEM) at 100 m resolution is represented in greyscale, the
GC-Net air temperature locations are plotted as red triangles, and
the PROMICE surface mass balance measurement locations are
shown as blue dots. The two rectangles indicate the Jakobshavn
(blue) and Helheim (black) regions.

2.3 PROMICE surface mass balance measurements

The main objective of this work is to obtain a high-resolution
SMB dataset from the downscaling of the MAR model suit-
able for local (i.e., glacier scale) studies. Consequently, we
carried out a validation of our results by comparing the orig-
inal SMB outputs from MAR at a spatial resolution of 6 km
and the downscaled outputs at 100 m with in situ SMB mea-
surements. For this purpose, we used the dataset collected by
Machguth et al. (2016), containing 2955 SMB measurements
from 46 sites, reported in Fig. 1 as blue dots and available on
GEUS Dataverse portal (Machguth, 2022). This comprehen-
sive dataset spans from 1892 to 2015. From the 123 years,
we focused our attention to the period 1980–2015 when the
largest portion of the dataset is temporally located and the
MAR outputs are available. From the 2955 measurements
we obtained 1982 suitable SMB measurements to be used for
validation. The SMB measurements are carried out by com-
puting the difference in stake readings between two dates.
The observations are identified by the measuring site (i.e.,
the area or location, containing at least one measuring point),
measuring point (i.e., specific stakes, associated with multi-
ple readings), and the actual readings (i.e., the SMB mea-
surement). In Table 1 we report the number of readings for
each measuring site considered, together with its coordinates
(WGS 84) and time period when the measurements were
collected. Measurement periods are various, covering spe-
cific seasons (summer or winter SMB) or an entire year (an-
nual SMB). In some cases, short-term (at least 1 month) and
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multi-year measurements are also present. We reconstructed
the SMB in correspondence with the measurement location
as an algebraic sum of the daily simulated SMB between the
start and end dates of the measurement. As a metric to assess
the performance of the downscaled product, we compute the
root-mean-square error (RMSE) and the least-square linear
regression parameters (slope and intercept) between model
outputs (SMB original and downscaled) and measurements
(in that order).

2.4 GC-Net air temperature

To test the results of the applied downscaling procedure at
local scale we also compare the values of near-surface air
temperature obtained from MAR with in situ measurements.
We use data from the Greenland Climate Network (GC-Net;
Steffen et al., 1996), a set of Automatic Weather Stations
(AWSs) located all around the GrIS that continuously mea-
sure air temperature, wind speed, wind direction, humidity,
pressure, and other parameters. Since direct measurements of
surface temperature are not available as continuous records at
multiple sites around Greenland, we use the air temperature
records measured at 3 m a.g.l. Specifically, we consider 17
selected stations, reported in Fig. 1 as red triangles. Specific
locations and elevations for each station are also reported in
Table 2 in Sect. 3. The AWS thermometers collect air temper-
ature measurements at sub-daily temporal scale, while MAR
outputs are provided at daily temporal resolution. Conse-
quently, we compute daily average air temperatures for the
comparison with the modeled and downscaled near-surface
temperatures (TT variable).

2.5 Landsat-8 surface temperature

As in situ measurements are only available at point scale,
it is not possible to assess the potential improvement of
the downscaling approach on spatially distributed fields. In
the absence of spatially distributed, high spatial resolution
SMB outputs, we use surface temperature fields from seven
different Landsat-8 (Collection 2 Landsat 8-9 OLI, 2023)
scenes covering the Jakobshavn and the Helheim glaciers,
acquired on 5 and 30 June 2015 (two images), 9 July 2015
(two images), and 16 and 18 July 2015. The Landsat-8 sur-
face temperature product has been available at 30 m spatial
resolution since April 2013 and is generated from Landsat
Collection 2 Level-1 thermal infrared bands and other pa-
rameters obtained from satellite observations and reanalysis
data. The images were downloaded from the USGS Earth
Explorer data portal (https://earthexplorer.usgs.gov/, last ac-
cess: 17 January 2023). We compared the Landsat-8 obser-
vations with the original and downscaled MAR outputs of
surface temperature (ST variable).

Figure 2. Elevation downscaling procedure example for a generic
variable. (a) The considered MAR pixel (red) and the surround-
ing pixels (green) adopted for the local linear regression are repre-
sented. The blue dot represents 100 m pixel location centered within
the considered MAR pixel. (b) The variable value of each consid-
ered pixel is reported as a numbered circle. The dashed red line rep-
resents the linear regression computed for such pixels, the blue cir-
cle represents the downscaled variable for the blue pixel in (a), and
the grey circles represent the downscaled variable for a group of
100 m pixels randomly picked within the considered MAR pixel,
the locations of which are represented as black dots in (a).

2.6 Methods

2.7 Downscaling methodology

We adopted the approach used by Noël et al. (2016), in which
a statistical downscaling method was applied to RACMO to
achieve a 1 km horizontal resolution. Here, we use a simi-
lar methodology applied to MAR but instead downscale the
product to 100 m horizontal resolution. The method exploits
the potential dependency of the modeled variables (e.g., sur-
face temperature, runoff) with elevation. In order to over-
come the large number of cells and reduce the computational
time, we parallelized the procedure through a combination
of geospatial tools (in the software R) so that our approach
can also be used for near-real-time generation of downscaled
maps over a specific region of the GrIS.
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Table 2. Root-mean-square error and R2 computed comparing MAR6 km and MAR100 m with air temperature measurements from the
considered GC-Net stations. Longitude, latitude, and elevation of the station are also reported.

Station Latitude (◦) Longitude (◦) Elevation (m) R2MAR6 km R2MAR100 m RMSE MAR6 km RMSE MAR100 m

Swiss Camp 69◦34′06′′ N 49◦18′57′′W 1149 0.945 0.945 2.37 2.36
Crawford Pt.1 69◦52′47′′ N 46◦59′12′′W 2022 0.872 0.873 3.95 3.95
NASA-U 73◦50′31′′ N 49◦29′54′′W 2369 0.788 0.789 5.35 5.34
GITS 77◦08′16′′ N, 61◦02′28′′W 1887 0.915 0.915 3.4 3.4
Humboldt 78◦31′36′′ N 56◦49′50′′W 1995 0.801 0.801 5.64 5.64
Summit 72◦34′47′′ N 38◦30′16′′W 3254 0.837 0.84 4.62 4.58
Tunu-N 78◦01′0′′ N 33◦59′38′′W 2113 0.937 0.936 3.17 3.2
DYE2 66◦28′48′′ N 46◦16′44′′W 2165 0.94 0.94 2.72 2.72
JAR1 69◦29′54′′ N 49◦40′54′′W 962 0.787 0.786 4.37 4.38
Saddle 66◦00′02′′ N 44◦30′05′′W 2559 0.935 0.935 2.77 2.77
South Dome 63◦08′56′′ N 44◦49′00′′W 2922 0.915 0.915 2.76 2.77
NASA-E 75◦00′00′′ N 29◦59′59′′W 2631 0.882 0.881 3.94 3.97
Crawford Pt.2 69◦54′48′′ N 46◦51′17′′W 1990 0.893 0.894 3.62 3.61
NASA-SE 66◦28′47′′ N 42◦30′00′′W 2425 0.86 0.86 3.83 3.83
KAR 69◦41′58′′ N 33◦00′21′′W 2579 0.935 0.936 2.6 2.57
JAR2 69◦25′12′′ N 50◦03′27′′W 568 0.706 0.709 4.79 4.76
KULU 65◦45′30′′ N 39◦36′06′′W 878 0.59 0.595 5.22 5.19

The first step involves the calculation of the local depen-
dency of the MAR outputs with respect to the elevation. For
this step we refer to the methodology proposed by Noël et
al. (2016). Accordingly, we compute the local linear regres-
sion (least squares) between the specific variable and the el-
evation (obtained from the MAR DEM) obtaining the val-
ues of slope (m6 km) and intercept (q6 km). The linear regres-
sion is carried out for each pixel of the MAR 6 km resolution
DEM using the values of the adjacent pixels with a mini-
mum of six points used for the regression. In the case of pix-
els with fewer than five adjacent pixels (e.g., margins of the
ice sheet), we compute m and q for that pixel by interpola-
tion. Such regression is carried out for every day and pixel
of the region of interest. Figure 2 provides an example of
such a procedure. Parallelizing this procedure for each MAR
pixel, we obtain the daily maps of m6 km and q6 km for the
considered MAR output variable. Differently from Noël et
al. (2016), we downscale the SMB output of MAR directly,
rather than downscaling the components of the SMB (runoff
and sublimation) and then approximating SMB as the sum of
its components. We opted for this choice because we found
that downscaling SMB directly provides better performance
in terms of the downscaling when compared with in situ mea-
surements. Following this, the m6 km and q6 km maps are re-
projected to the Polar Stereographic coordinate system used
by the DEM. The original MAR data are distributed by pro-
viding only the coordinates for the center of each grid cell.
To create a continuous grid and avoid introducing errors, the
coordinates for the four corners of each MAR grid are com-
puted, and they are then transformed into the Polar Stereo-
graphic coordinate system. The result is a shapefile that con-
tains a polygon for each MAR grid. Additionally, the new
shapefile contains metadata to ease computations, such as a

unique MAR grid ID, the Polar Stereographic coordinates for
the center of the grid, and the corresponding coordinates in
longitude and latitudes for the center of the grid. The next
step consists of fragmenting the high-resolution DEM into a
series of smaller files, specifically one for each polygon of
the reprojected MAR cells generated in the previous steps.
There are a total of 55 144 files generated through each step,
which is less than the total number of cells in the original
MAR output. This discrepancy is due to the fact that the
DEM is limited to only areas covered by the ice sheet, and
it thus does not cover all the locations of where MAR output
is generated. While it might seem counterintuitive that main-
taining over 55 000 small files is more efficient than main-
taining a single file, the answer lies in the fact that this pre-
processing step translates our problem into a parallelization
one that can be efficiently solved using multi-core and multi-
node infrastructure. Because the DEM is required for down-
scaling each grid cell, which are computed simultaneously in
parallel, each task needs to read only a small file of a few
kilobytes, rather than one larger file, and it also avoids file
system bottlenecks when multiple processes try accessing the
same file. Most file systems do not allow for concurrent ac-
cess to the same file, and therefore if hundreds of tasks try to
read the same file, each task would have to idle in a queue for
the file access to become available. This problem is prevented
by generating a DEM file for each MAR grid so that input
and output transfer rate and file access are both optimized.
Furthermore, because the DEM is segmented using the origi-
nal Polar Stereographic projection, which matches the repro-
jected MAR grid, no further transformation is required, fur-
ther speeding up the downscaling process. The final step con-
sists of obtaining the high-resolution maps of slope and in-
tercept (m100 m and q100 m) by bilinear interpolation of m6 km
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and q6 km over the high-resolution DEM grid. While this pro-
cess was not parallelized in the current version, it is possible
to speed it up using a parallel solution. Finally, the down-
scaled variable is obtained by applying the high-resolution
linear regression coefficients to the high-resolution DEM as

VAR100 m =m100 mH100 m+ q100 m, (1)

where VAR is the generic downscaled variable computed as
a linear function of high-resolution elevation of the DEM
(H100 m) through the coefficients previously obtained (m100 m
and q100 m). Since the origins of the MAR DEM and the high-
resolution DEM are different, errors in terms of mass conser-
vation can arise. For example, within a MAR pixel the av-
erage elevation of the high-resolution DEM might be higher
than the original MAR elevation, possibly leading to the pre-
viously mentioned mass conservation error (e.g., the original
MAR pixel suggests for a day a lower mass loss than the
ensemble of the high-resolution pixels). For this reason, in
contrast with Noël et al. (2016), we decided to provide phys-
ical constraints (SMB mass conservation within each pixel
at the original MAR spatial resolution) to be satisfied as the
very final step of the downscaling procedure.

In this research, we apply the downscaling methodology
to daily near-surface temperature, surface temperature, and
SMB MAR outputs.

2.8 Spatial autocorrelation analysis and variograms

Beside RMSE, slope, and intercept, we also focus on evalu-
ating the potential improvements of the downscaled product
with respect to the original coarser-resolution MAR outputs
in terms of capability to describe the spatial distribution of
the considered variable. To this end, we perform a spatial
autocorrelation analysis using variograms. Variogram anal-
ysis is generally adopted in geostatistical analyses to evalu-
ate autocorrelation of spatial data (Edward et al., 1989; Web-
ster and Oliver, 2001). Autocorrelation and variogram anal-
ysis are geostatistical tools that can be used to quantify spa-
tial variability using metrics such as the spatial correlation
length (hereafter simply referred to as correlation length).
Though these techniques were mainly designed to support
the prediction of values at locations where measurements are
not available, they can be used for characterizing processes
across the scale spectrum (Herzfeld, 1993). Once process
scales are known, the scale ranges over which process rela-
tionships (and thus spatial pattern) are consistent must be de-
termined. This can support the identification of spatial scales
at which the process interactions change (e.g., scale breaks),
as such scales are critical for measurement or model interests
(Mark and Aronson, 1984; Vedyushkin, 1994). Geostatisti-
cal methods such as spatial covariance, variogram analysis,
and spectral analysis (Webster and Oliver, 2001) quantify the
spatial pattern of variability of an observed property over a
scale range from the minimum sample separation to the dis-
tance at which the variable becomes spatially independent.

This quantified variability can then be used for spatial esti-
mation based on a finite number of data points. In our case,
we fit the experimental variogram with a circular model, as
this is the model that provided us with the highest R2 when
fitting the experimental data. The formal expression of the
experimental variogram can be written as follows:

γ (δ)=
1

2N(δ)

∑
i,j∈N(δ)

(xi − xj )
2, (2)

where γ is the semi-variance, N(δ) is the number of data
pairs (ith and j th) distanced by d , while xi and xj are the
corresponding variable values. The fitting spherical function
is then used to compute the three main parameters character-
izing the variogram: the sill, the range, and the nugget effect.
The sill is defined as the maximum value at which the fit-
ted curve becomes flat; such a variance value is reached at
a certain distance called range, beyond which the data are
no longer autocorrelated. The range can be seen as a scale
break (where data are no longer correlated). Of course, there
can also be several scale breaks before the sill is reached,
depending on the drivers controlling the modeled process.
The nugget corresponds to γ (0) and it should ideally be
0. The departure from 0 can be interpreted as the result of
measurement errors or highly localized variability (Webster
and Oliver, 2001). Following Colosio et al. (2021), we focus
our attention on the range, the descriptor of the correlation
length, comparing the range values computed for the origi-
nal MAR temperature outputs, the downscaled temperature,
and the surface temperature observed by Landsat-8.

To further investigate and quantify possible improvements
in terms of spatial description of the variable of interest by
the downscaled product, we also compute the so-called struc-
tural similarity index measure (SSIM). Such an index has
been introduced by Wang et al. (2004) to provide a similar-
ity measure between two images. This index can objectively
quantify a qualitative aspect such as the similarity between
two images. Considering a pair of images (X,Y) to be com-
pared, the values assumed by the SSIM are bounded by a
unique maximum (SSIM(X,Y)= 1) in case X=Y, otherwise
SSIM(X,Y)< 1. We compute such a similarity index for both
original and downscaled MAR ST outputs, considering as
reference the Landsat-8 surface temperature image.

3 Results and discussion

3.1 Surface and near-surface temperature

We first tested the downscaling algorithm with the MAR
near-surface temperature outputs. We compared the results
obtained with air temperature measurements from 17 AWS
of the GC-Net. We performed the comparison by comput-
ing RMSE and R2 between the modeled (original and down-
scaled) and the observed variable. The results obtained for
the original MAR and the downscaled temperatures are re-
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ported in Table 2. BothR2 and RMSE obtained for the down-
scaled temperatures do not exhibit significant improvements
or worsening with respect to the original coarser-resolution
output. The difference between the 6 km and 100 m resolu-
tion is on the order of 10−3 for R2 and 10−2 ◦C for RMSE,
with improvements in some stations (Swiss Camp, Craw-
ford Pt. 1, NASA-U, Summit, Crawford Pt. 2, KAR, JAR2,
and KULU) and worsening in others (Tunu-N, JAR1, South
Dome, and NASA-E). However, such small differences ap-
pear to be randomly distributed in space, without any clear
correlation with elevation, latitude, or longitude. Such results
demonstrate that the applied downscaling methodology does
not introduce errors in the case of the TT variable at point
scale.

To evaluate the results over a wider area, we considered
two Landsat-8 surface temperature images collected over two
different areas of the ice sheet. The two selected areas are
located on the eastern and western coasts of Greenland and
show a variable topography. In Fig. 3 we report the surface
temperature image from Landsat-8 (Fig. 3a), the original ST
output at 6 km spatial resolution (Fig. 3b), and the down-
scaled ST at 100 m resolution (Fig. 3c) for one of the se-
lected Landsat-8 scenes. In Fig. 4 we report the histograms
of the difference between Landsat-8 surface temperature and
the original ST (Fig. 4a) and the downscaled one (Fig. 4b) for
the same image. The results show no change in terms of mean
difference (µ), with an average difference of 2.7 ◦C in both
cases, similar to the AWS comparison. In addition, the stan-
dard deviation (σ) remains unvaried at 2.6 ◦C. Similar results
have been obtained for all the compared Landsat-8 images,
with mean differences ranging between −0.59 and 3.44 ◦C
for the downscaled product (2.09 ◦C on average) and be-
tween−0.62 and 3.43 ◦C for the original MAR data (2.07 ◦C
on average). The similarity in mean differences is not sur-
prising considering the physical constraints imposed for the
ST to maintain the average ST constant for each MAR pixel
as the final step of the downscaling procedure. These results
indicate that in case of ST the downscaling algorithm does
not introduce significant improvements or errors in terms of
overall difference with observed temperature (expressed as
RMSE for the AWS case and spatial average difference for
the Landsat-8 image).

Considering such results in terms of difference at point
scale and spatially averaged difference, we evaluated pos-
sible improvements in terms of spatial information content
and spatial description obtained in the downscaled product.
In Fig. 5 we report the results of the variogram analysis
performed for two sub-regions of interest within the same
Landsat-8 image shown in Fig. 3. The two areas have been
selected because of the strong differences in topography and
elevation gradients. Concerning the results obtained over the
topographically more complex area, we observe that the scale
break of the downscaled temperature (blue line) is 13.5 km,
better capturing the one from Landsat-8 data (11.5 km, red
line) with respect to the original MAR outputs (24.1 km,

Figure 3. Maps of temperature from (a) Landsat-8,
(b) MAR6 kmv2, and (c) MAR100 m over the area covered by
the Landsat-8 selected image on 30 June 2015.

black line, Fig. 5). On the other hand, the same analysis
performed over an area in a more interior region of the ice
sheet, where downscaling might lead to less improvement in
view of the reduced topography, does not present improve-
ments in terms of spatial autocorrelation (Fig. 5b), and all
three datasets do not reach the variogram plateau within the
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Figure 4. Histograms of the difference (a) between the 6 km MAR temperature and Landsat-8 temperature and (b) between 100 m MAR
temperature and Landsat-8 temperature.

considered distance. In order to extend the comparison to an-
other area of the ice sheet, we performed the same variogram-
based analysis for another Landsat-8 scene in the surround-
ings of Jakobshavn glacier collected on 11 June (Fig. 6a).
The map also shows the two regions of interest (ROIs) se-
lected for the analysis. We selected ROI1 as this area is char-
acterized by a large topographic gradient within a relatively
small distance and to understand the potential improvement
of the downscaling procedure over regions that are outside
the main ice sheet (e.g., smaller glaciers). On the other hand,
ROI2 contains both strong and mild elevation gradients (e.g.,
nunataks and ice sheet elevation gently increasing as mov-
ing towards the interior). In the case of ROI1 (Fig. 6b), the
variogram analysis indicates that the scale break distance for
Landsat-8 when considering only the pixels where the DEM
is available is 7.5 km. This value becomes 14.6 km for the
high-resolution map of ST and 24.7 km in the case of the
original MAR outputs, suggesting that the downscaled prod-
uct is able to perform better than the original one in terms
of spatial-scale similarity with respect to the Landsat-8 data.
The mean difference between Landsat-8 and the downscaled
(original MAR) surface temperature, considering only the
pixels where the DEM is available, is 1.69 ◦C (1.7 ◦C) with
a standard deviation of 2.02 ◦C (2.14 ◦C), with differences of
the same order of magnitude obtained in the previous analy-
sis for the other Landsat-8 image. When considering all pix-
els within the ROI (e.g., also where no DEM is available), the
mean difference between Landsat-8 and downscaled (orig-
inal) MAR surface temperature becomes 1.89 ◦C (2.12 ◦C)
with a standard deviation of 2.15 ◦C (2.23 ◦C). In this case,
the scale breaks for the original and the downscaled MAR
versions are similar, i.e., ∼ 25 km (∼ 16 km in the case of
Landsat-8). We point out that the scale breaks are sensitive to
the different physical processes driving the spatial properties.
The ROI2 contains both strong and mild elevation gradients
given the presence of nunataks and the slow ice sheet increas-

ing elevation after the ice cliff begins. The area mostly covers
the portion containing the ice sheet (right of the image) in the
DEM, which is however absent in the case of the left portion
of the ROI, which contains fjords and the ocean. The scale
breaks for the Landsat-8 and downscaled and original MAR
cases for the portion of the ROI2 where the DEM is available
are close to each other, on the order of ∼ 25 km. We observe
an improvement in the SSIM in the case of the downscaled
data by 30 % (from 0.33 in the case of the original MAR
resolution to 0.43 in the case of downscaled MAR). Unex-
pectedly, despite the mean and standard deviation of the dis-
tribution of the differences between the Landsat-8 data and
the simulated quantities remaining similar, we notice a re-
duction in both the mean (from 0.86 ◦C for original MAR
to 0.83 ◦C for the downscaled product) and the standard de-
viation (from 0.71 ◦C for original MAR to 0.63 ◦C for the
downscaled product) when downscaling the MAR output.
We further note that when considering all pixels (including
those with no DEM), the SSIM of the two products improves
from 0.11 (original) and 0.14 (downscaled) and that the scale
break of the original MAR products is larger (∼ 63 km) than
the one of the Landsat-8 data (∼ 21 km). In synthesis, the
downscaling does not introduce any considerable bias on the
original value, preserves the total integrated quantity of en-
ergy within each area, and improves the spatial performance
of the MAR outputs by generating a product that has a spa-
tial structure that is closer to the one of the observed remote
sensing dataset.

3.2 Surface mass balance

After applying the downscaling algorithm to surface temper-
ature, we applied it to MAR SMB outputs of SMB and as-
sessed the results obtained with in situ measurements from
the dataset collected by Machguth et al. (2016). As men-
tioned, we compared 1982 SMB measurements carried out
between 1980 and 2015 and localized in the ablation area
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Figure 5. Modeled semi variograms for the Landsat-8, MAR6 km
and MAR100 m computed over two regions of interest reported in
the inset.

of the GrIS (Table 1). Figure 7 shows the scatterplots of
the comparison of modeled SMB from the original MAR
(Fig. 7a) and the downscaled product (Fig. 7b) with in situ
measured SMB. Our results show that the downscaled prod-
uct better estimates the measured SMB, exhibiting an in-
creased R2 from an already relatively high value of 0.868
for the original MAR to 0.935 for the downscaled product.
As a comparison, Noël et al. (2016) obtained an increase in
R2 from the downscaling of SMB outputs of the RACMO
regional climate model from 0.47 in the case of the origi-
nal 11 km spatial resolution outputs to 0.78 in the case of
the downscaled SMB (1 km resolution). As explained in Fet-
tweis et al. (2020), the SMB was extrapolated (interpolated
plus corrected) to the common 1 km grid by applying an ele-
vation gradient as has been done in this study. One of the key
issues raised by the first SMB model intercomparison per-
formed by Vernon et al. (2013) was the high dependency of
modeled integrated SMB values on the ice sheet mask used.
To mitigate this problem, we interpolate all model outputs
to the same 1 km grid used in the Ice Sheet Model Inter-
comparison Project for CMIP6 (ISMIP6). This resolution is
chosen because the highest-resolution model outputs (e.g.,
RACMO2.3p2) are available at 1 km and choosing a coarser
resolution could compromise their quality. A common grid
also allows a comparison on two common ice sheet masks:

the contiguous Greenland Ice Sheet, which is common to all
the models, and the Greenland Ice Sheet plus peripheral ice
caps and mountain glaciers, common to all the models ex-
cept the two positive degree day (PDD) models. Unless oth-
erwise indicated, the SMB components have been interpo-
lated to 1 km using a simple linear interpolation metric of
the four nearest inverse-distance-weighted model grid cells.
Moreover, as done in Le Clec’h et al. (2019), the interpolated
1 km SMB and runoff fields have been corrected for eleva-
tion differences between the model native topography and
the GIMP 250 m topography (upscaled to 1 km here), using
time- and space-varying SMB–elevation gradients, similar to
Franco et al. (2012) and Noël et al. (2016). No correction was
applied to precipitation after interpolation to 1 km. We point
out that in our case the starting value of R2 for the original
MAR product already exceeds the value obtained in the case
of the downscaled RACMO outputs.

The values of slope and intercept of the best-fitting line
improve as well when considering the downscaled product.
The value of the slope shifts from 0.865 for the original MAR
to 1.015 for the downscaled product; similarly, the intercept
increases from the value −235 mm w.e. yr−1 of the coarse-
resolution outputs to −57 mm w.e. yr−1 of the downscaled
SMB, closer to its optimal value (i.e., null intercept). As a
comparison, the downscaling algorithm of Noël et al. (2016)
applied to RACMO improved the estimate of SMB in terms
of slope from 0.72 to 1.03, with a slight increase in the in-
tercept (from 70 to 100 mm w.e. yr−1). The RMSE between
modeled and measured SMB also decreases in the case of the
downscaled product from 669 mm w.e. yr−1 for the 6 km out-
puts to 511 mm w.e. yr−1 for the 100 m case, significantly im-
proving the estimate of SMB at local scale. Noël et al. (2016)
obtained a reduction in the RMSE passing from a value of
1200 mm w.e. yr−1 for the 11 km RACMO outputs to a value
of 740 mm w.e. yr−1 for the 1 km case. Fettweis et al. (2020)
compared MAR and RACMO, among 13 models of four
types (positive degree day models, energy balance mod-
els, regional climate models, and general circulation mod-
els), and SMB estimates with the same PROMICE in situ
measurements within the GrIS SMB model intercomparison
project (GrSMBMIP). They considered only the measure-
ments collected between 1980 and 2012 and with measure-
ment periods longer than 3 months. They also excluded the
records located outside the 1 km ice mask they used for the
intercomparison of the models, for a total of 1438 SMB mea-
surements. The model versions in this case are MARv3.9.6,
an older version than the one we adopted and at the spatial
resolution of 15 km, and RACMO2.3p2 (Noël et al., 2019),
a new version of the one adopted in Noël et al. (2016) and
with a spatial resolution of 5.5 km. From the comparison,
they obtained a RMSE of 480 mm w.e. yr−1 for MAR and
630 mm w.e. yr−1 for RACMO. In both cases, the RMSE is
lower than the one obtained in this work for MAR (both orig-
inal and downscaled) and by Noël et al. (2016) for RACMO.
The difference can be related to the differences in spatial res-
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olution and model versions and most probably to the sub-
sampling of the SMB measurements discarding short-term
records (i.e., measurement period lower than 3 months), sug-
gesting that the bias might be dissipated for longer observa-
tion periods.

To further investigate our results, we compute the vari-
ation in RMSE between the 6 km spatial resolution MAR
outputs and the downscaled product for different elevation
classes, longitude and latitude ranges, and each specific
glacier or location (i.e., for each station ID; see Table 1)
of the PROMICE in situ SMB dataset. The RMSE differ-
ence is computed as 1RMSE=RMSE100 km−RMSE6 km
(i.e., improvements are characterized by negative values of
1RMSE) and the results obtained are reported in Fig. 8
grouped by location (Fig. 8a), elevation (Fig. 8b), latitude
(Fig. 8c), and longitude (Fig. 8d). The results exhibit im-
provements in the estimate of SMB at all the altitudes be-
sides the 100–200, 200–300, and 1300–1400 m a.s.l. eleva-
tion classes, with the best performance obtained at 700–800
and 800–900 m a.s.l. elevation classes. The results grouped
by latitudinal bands show the highest improvements in south-
ern Greenland; a decrease in performance has been recorded
in the latitudinal band 67.5–70◦ N, where the only Paakitsoq
JAR (1RMSE= 181 mm w.e. yr−1, worst result obtained)
and Swiss Camp/ST2 (1RMSE=−127 mm w.e. yr−1) mea-
surement sites are located, and the improvement obtained
in case of Swiss Camp is strongly counterbalanced by the
reduced performances in Paakitsoq JAR. However, the lon-
gitudinal classes do not present any decrease in perfor-
mance, indicating that the worsening in the spotted criti-
cal stations is counterbalanced by the improvements mea-
sured in the others. We obtained a decrease in performance
in 6 out of 22 considered cases, with the worst result ob-
tained for the already presented Paakitsoq JAR case. In
the five other cases (i.e., Hans Tausen Ice Cap, Nioghalfv-
jerdsfjorden, Isortoq, Nordbo Glacier, and K-transect) we
recorded an average 1RMSE of 26 mm w.e. yr−1 (ranging
from 6 to 80 mm w.e. yr−1). On the other hand, we ob-
tained an improvement in 16 out of 22 measurement sites,
with the best performances in the case of A. P. Olsen
Ice Cap (1RMSE=−611 mm w.e. yr−1). In the other 15
cases (i.e., Qaanaaq Ice Cap, Petermann, Hare Glacier, Kro-
nprins Christian Land, Storstrømmen, Freya Glacier, Vi-
olin Glacier, Helheim, Isortuarssup Sermia, Qamanarssup
Sermia, Kangilinnguata Sermia, Qapiarfiup, Amitsuloq Ice
Cap, Tasersiaq, and Swiss Camp/ST2) we found an average
decrease in RMSE of 183 mm w.e. yr−1 (ranging between
59 mm w.e. yr−1 and 371 mm w.e. yr−1). Even if such reduc-
tion in performance in terms of SMB estimate accounts for
27 % of the considered stations, it does not compromise the
overall improvement, being smaller in terms of average, min-
imum, and maximum absolute values of1RMSE than the re-
sults obtained for the stations where improvement occurred.

4 Conclusions and future work

We applied a statistical downscaling technique to increase
the horizontal spatial resolution of the outputs of the MAR
regional climate model from 6 km to 100 m for the surface
temperature and SMB quantities. The approach builds on the
dependency of such quantities on elevation, as originally pro-
posed in Noël et al. (2016). Here, however, the technique was
applied to the output of a different climate model (RACMO),
and the spatial resolution of the downscaled product was
1 km rather than 100 m. Moreover, differently from Noël et
al. (2016), we imposed mass conservation so that the overall
mass obtained for each pixel at high resolution nested within
a coarse-resolution pixel is preserved. To address the compu-
tational issues associated with the relatively high spatial res-
olution, we developed a geospatial, parallelized framework
that allows us to perform the downscaling over the whole ice
sheet in an efficient way.

We first tested our approach by applying it to surface tem-
perature data and assessing the outputs using both in situ and
satellite data. Our results showed no significant improvement
or deterioration of the downscaled product with respect to
the original MAR outputs. This confirms that our approach
was not introducing any bias and was properly implemented.
However, we found improvement in the downscaled surface
temperature when analyzing the skills of the downscaled
product to capture the spatial scales (e.g., scale breaks) of
the observed surface temperature fields. The results obtained
in the case of the SMB show a considerable improvement in
the case of the downscaled product with respect to the origi-
nal coarse output. In the case of the downscaled MAR prod-
uct, the R2 value increases from 0.868 for the original MAR
to 0.935 for the SMB product, with the value of the slope and
intercept shifting from 0.865 for the original MAR to 1.015
for the downscaled product in the case of the intercept and
from the value −235 mm w.e. yr−1 of the coarse-resolution
outputs to −57 mm w.e. yr−1 in the case of the slope. As a
reference, Noël et al. (2016) obtained an increase in R2 from
the downscaling of SMB outputs of the RACMO regional cli-
mate model from 0.47 in the case of the original 11 km spa-
tial resolution outputs to 0.78 in case of the downscaled SMB
(1 km resolution) and a shift in the slope and intercept from
0.72 to 1.03 (slope) and from 70 to 100 mm w.e. yr−1 (in-
tercept). An analysis of the performance of the downscaled
product for different elevation classes, longitude and latitude
ranges, and each specific glacier or location where SMB in
situ data are available shows that the downscaled product
does not perform as expected for 27 % of the stations. How-
ever, we point out that the deterioration of the performance
over those stations (expressed in terms of changes on the av-
erage error 1RMSE) is much smaller than the improvement
obtained in the remaining cases.
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Figure 6. (a) Landsat-8 temperature captured on 11 June 2015 over areas around the Jakobshavn Glacier and (b, c) modeled semi-variograms
for the Landsat-8 (black), MAR6 km (blue), and MAR100 m (red) computed over (b) the first region of interest (ROI1) and (b) the second
region of interest (ROI2).

Figure 7. Comparison between measured and modeled surface mass balance from (a) the original 6 km MAR and (b) the downscaled 100 m
MAR.

The next step is to implement a similar approach for down-
scaling MAR outputs over both the Greenland and Antarctic
ice sheets using machine learning (ML)-based approaches.
Indeed, the approach proposed here cannot be easily ex-
tended to Antarctica, where surface melting does not ex-
hibit a strong dependency on elevation, as most of it occurs
over ice shelves, at sea level, and where only small eleva-
tion gradients exist. Moreover, improvements to the down-
scaling of the SMB can be obtained by either considering
complementary inputs that can improve estimates of losses
(e.g., remotely sensed albedo) or of mass gains (e.g., accu-
mulation). ML tools can help in this regard. ML tools have
indeed been used for improving predictions beyond that of
state-of-the-art physical models or for improving parameter-
ization in models. In particular, conditional generative ad-
versarial networks (C-GANs or simply GANs in the follow-
ing) can be successfully applied to the problems discussed
above (Goodfellow et al., 2014). GANs is a class of ML tools
in which two neural networks compete with each other in
a minimum–maximum optimization problem. The first net-

work, called the generator, aims to generate new data samples
that are indistinguishable from the training data (e.g., high-
resolution melting maps obtained from the remote sensing
observations) by the other network, called the discriminator.
In our case, the GAN aims to generate high-resolution melt-
ing maps that are indistinguishable by the second network
from high-resolution remote sensing observations or numeri-
cal model outputs. We have already started to build the archi-
tecture for this framework, are in the phase of collecting the
necessary datasets, and are building the proper data frame-
work to perform such work.

Code and data availability. The MAR v3.11.5 code and outputs
are available at https://www.mar.cnrs.fr/ (last access: 16 Novem-
ber 2023) and ftp://climato.be/fettweis/MARv3.11 (last access:
15 October 2023). Automatic weather station data are available
on EnviDat portal (https://doi.org/10.16904/envidat.1, Steffen et
al., 2020). Surface mass balance measurements are available on
GEUS Dataverse portal (https://doi.org/10.22008/FK2/5VNBQA,
Machguth, 2022). Landsat-8 images are available on the USGS
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Figure 8. Difference between original and downscaled MAR modeled surface mass balance RMSE with respect to the measured surface mass
balance data (RMSE100 m−RMSE6 km) by (a) glacier, (b) elevation, (c) latitude, and (d) longitude. In the bubble chart map the contour lines
are plotted every 500 m (original MAR6 km DEM), and positive values (worsening) of 1RMSE are reported in magenta, while negative
values (improvement) are reported in cyan.

Earth Explorer portal (https://earthexplorer.usgs.gov/, last
access: 16 February 2023). Downscaled data are available
at https://doi.org/10.5281/zenodo.7803611 (Tedesco et al.,
2023). Downscaling code is available upon request to mt-
edesco@ldeo.columbia.edu.
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