# Aerostructural modeling for preliminary aircraft design

### Adrien Crovato





Paris, November 2023



# About me



### Professional

- MSc in Aerospace Eng., 2015
- PhD in Aerospace Eng., 2020
- Post-doc in Aerospace Eng., since 2020
- Teaching activities, since 2015
- ULiège with Embraer

### Personal

- Martial artist
- Private pilot









# **Reducing fuel burn**



# Aeroelasticity in aircraft design

### Static aeroelasticity

- Divergence
- Wing shapes





### **Dynamic aeroelasticity**

- Flutter
- Buffeting, LCO, etc.





Flutter on AGARD wing – D. Thomas

## **Aerostructural optimization**



# Aircraft design process

•W



ERJ-190-300-STD © C. Hines (airliners.net)

# Outline

### Modeling

- Optimization formulation
- Aerodynamic models
- Numerical methods

### Static aeroelasticity

- Framework
- DART code
- Applications

### **Dynamic aeroelasticity**

- Framework
- SDPM and NIPK codes
- Applications

# **Optimization formulation**

#### **Gradient-based approach**

 $d_x F(u; x) \to 0$ s.t.  $\frac{R(u; x) = 0}{C(u; x) = 0}$ 



# **Methods based on perturbation**

#### **Finite differences**

$$\begin{cases} R(u(x)) = 0\\ R(u^{+}(x + \delta x)) = 0\\ d_{x}F = \frac{F(u^{+}) - F(u)}{\delta x} + O(\delta x) \end{cases}$$

#### Cost

Solve equations:  $n_x \times n_s \times t_s$ Evaluate gradients:  $n_x \times n_f \times t_f$ Total:  $n_x \times (n_s \times t_s + n_f \times t_f)$ 

#### **Complex step**

$$\begin{cases} R(u(x)) = 0\\ R(u^{+}(x + i\delta x)) = 0\\ d_{x}F = \operatorname{Im}\left\{\frac{F(u^{+})}{\delta x}\right\} + O(\delta x^{2}) \end{cases}$$

 $n_{\chi}$ : n.o. design variables  $n_{s}$ : n.o. nonlinear iterations  $n_{f}$ : n.o. functionals  $t_{s}$ : time to solve linear equations  $t_{f}$ : time to compute functional

# Methods based on chain rule

### **Direct and adjoint**

$$\begin{cases} R(u(x)) = 0\\ d_x F = \partial_x F - \overline{\partial_u F} \overline{\partial_u R^{-1}} \overline{\partial_x R}\\ \partial_u R^T \lambda = \partial_u F^T & \partial_u R \lambda = \partial_x R\\ \text{Adjoint} & \text{Direct} \end{cases}$$
  
Cost (adjoint)  
Solve adjoint:  $n_f \times t_s$   
Evaluate gradients:  $(n_u + n_x) \times (n_f \times t_f + t_r)$   
Total:  $((n_u + n_x) \times (n_f \times t_f + t_r) + n_f \times t_s)$ 

 $n_{x}: n.o. \text{ design variables}$   $n_{u}: n.o. \text{ variables}$   $n_{s}: n.o. \text{ nonlinear iterations}$   $n_{f}: n.o. \text{ functionals}$   $+ t_{r}) \quad t_{s}: \text{ time to solve linear equations}$   $t_{f}: \text{ time to compute functional}$   $t_{f}: \text{ time to compute residuals}$ 

Nearly independent on number of design variables

# **Computation of the gradients**



### Hand differentiation

- ✓ Most effective
- × Difficult, sometimes not feasible



### **Finite differences**

- ✓ Very easy
- × Inaccurate

### **Complex step**

- ✓ Accurate
- × Complex arithmetic



### **Automatic differentiation**

- ✓ Straightforward
- × Increased memory usage

# **High-fidelity aerodynamic modeling**



# Aerodynamic models for aircraft design

| <ul> <li>RANS</li> <li>equations</li> <li>Subsonic</li> <li>Supersonic</li> <li>Transonic</li> <li>Viscous</li> </ul> | Euler<br>equations<br>• Subsonic<br>• Supersonic<br>• Transonic<br>• Inviscid | <ul> <li>Full potential<br/>equation</li> <li>Subsonic</li> <li>Supersonic</li> <li>~Transonic</li> <li>Inviscid</li> </ul> | Linear potential<br>equation<br>• ~Subsonic<br>• ~Supersonic<br>• Transonic<br>• Inviscid |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| -                                                                                                                     | nviscid Ise                                                                   | entropic l                                                                                                                  | inear                                                                                     |
|                                                                                                                       |                                                                               |                                                                                                                             |                                                                                           |

Mach number

# Shock and boundary layer interaction



### No friction in inviscid flow

- stronger shock ← higher total pressure gradient
- aft location ← later compression

**Boundary layer** must be taken into account for **accurate predictions** 



## **Viscous-inviscid interaction**



# **Numerical methods**

### **Boundary element method**

- Only boundary is discretized
- Linear equations only
- Panel/lattice/particle methods

### **Field method**

- Whole field is discretized
- Linear and nonlinear equations
- Finite volume/element methods





# **Field panel method**

### **Boundary element method**

- Linear part
- On the wing surface

### **Field method**

- Nonlinear partIn the field



#### **Advantages**

- Extension to panel method
- Simple grid generation

### Disadvantages

- High memory requirement
- **Disagreement in literature**

### **Combination**

# Outline

### Modeling

- Optimization formulation
- Aerodynamic models
- Numerical methods

### Static aeroelasticity

- Framework
- DART code
- Applications

### **Dynamic aeroelasticity**

- Framework
- SDPM and NIPK codes
- Applications

# **Optimization framework**





https://openmdao.org



https://github.com/openmdao/mphys

### DART



### **Discrete Adjoint for Rapid Transonic Flows**

- Steady full potential formulation
- Finite element discretization
- Unstructured tetrahedral grid
- Analytical discrete adjoint
- Mesh morphing
- Viscous-inviscid interaction
- C++ with Python API

### Performance (712Ke – 4. 3GB @ 3. 4GHz)

- Solution 100 s
- Morphing 25 s
- Gradient 45 s

#### https://gitlab.uliege.be/am-dept/dartflo 20

## Acknowledgements

#### Lead developer



Adrien Crovato

#### **Former collaborators**



Amaury Bilocq



Guillaume Brian



Guillem Batlle i Capa

#### **Current developers**



Paul Dechamps



Romain Boman

### **Two-dimensional viscous analysis**



# **Three-dimensional viscous analysis**



# **Three-dimensional aeroelastic analysis**

### NASA CRM

#### Cruise

 $M_{\infty} = 0.85 - FL 370$  $n = 1.0 (C_L = 0.5)$ 

#### Maneuver

$$M_{\infty} = 0.85 - FL 200$$
  
 $n = 2.5$ 





# **Two-dimensional shape optimization**



 $M_{\infty} = 0.8$ 

#### NACA 0012

min drag w.r.t. AoA, shape s.t. lift internal volume

# **Two-dimensional shape optimization**



# **Three-dimensional shape optimization**



 $M_{\infty} = 0.83$ 

#### **ONERA M6**

min drag w.r.t. AoA, shape, twist s.t. lift internal volume

# **Three-dimensional shape optimization**



# **Three-dimensional aeroelastic optimization**



s.t.

RAE

#### Cruise

 $M_{\infty} = 0.82 - FL 350$ Maneuver

 $M_{\infty} = 0.78 - FL 200$ 

- min fuel = Breguet(lift, drag, weight)
- w.r.t. AoA, shape, twist, structural thickness
  - load factor internal volume structural adjacency structural failure

# **Fuel burn**



30

# **Lift distribution – cruise**



### **Pressure coefficient – cruise**



32

## **Thickness and failure index – maneuver**



# Outline

### Modeling

- Optimization formulation
- Aerodynamic models
- Numerical methods

### Static aeroelasticity

- Framework
- DART code
- Applications

### **Dynamic aeroelasticity**

- Framework
- SDPM and NIPK codes
- Applications

# **Optimization framework**





https://openmdao.org

### **SDPM**



#### Source and Doublet Panel Method

- Unsteady potential formulation
- Panel discretization
- Unstructured quadrangular grid
- Reverse automatic differentiation
- C++ with Python API



### Performance (2Ke – 56GB @ 4.2GHz)

- Solution 134 s
- Gradient 40 s

# **Flutter solution**

### **Flutter equation**

$$\left(\frac{u_{\infty}^2}{l_{\text{ref}}^2}p^2M + K - \frac{1}{2}\rho_{\infty}u_{\infty}^2Q(k)\right)q = 0$$
$$p = gk + ik$$

### Frequency matching (p-k)

- 1. Guess  $k = \omega_N \frac{l_{\text{ref}}}{u_{\infty}}$
- 2. Compute Q(k)
- 3. Solve eigenvalue problem for p
- 4. Compute  $k = \Im(p)$
- 5. Repeat 2-4 until k has converged



# Non-iterative p-k method

### Algorithm

- 1. Compute  $Q_i(k_i)$  from a set of  $k_i$
- 2. Solve eigenvalue problem for  $p_i$
- 3. Interpolate  $k_{\rm m}$  such that  $\Im(p_{\rm m}) k_{\rm m} = 0$



## **Flutter-constrained optimization**



#### Pitch-plunge flat plate

- minmassw.r.t.torsion center position, thickness
- s.t. flutter

# **Optimization path in parameter space**



# **Frequency-damping plots**



# Conclusion

### **Main points**

- Aerostructural optimization is performed in preliminary aircraft design; choosing the appropriate numerical models and methods is of paramount importance
- Developed DART and interfaced with OpenMDAO; relevant results for static aerostructural calculations can be obtained within a day
- Implemented NIPK and interfaced with OpenMDAO; can effectively suppress flutter for dynamic aerostructural calculations

#### **Next steps**

- Integrate viscous-inviscid interaction in static optimization
- Integrate SDPM in dynamic optimization
- Use full aircraft configuration and realistic composite structure

#### **CNAM** seminar

### Aerostructural modeling for preliminary aircraft design Adrien Crovato – Paris, November 2023





https://acrovato.github.io

