The Crystal Structure of Natural Lipscombite

Frédéric HATERT ${ }^{1}$ \& Pietro VIGNOLA ${ }^{2}$

Introduction

- The name "lipscombite" was first given for a synthetic tetragonal iron phosphate of composition $\mathrm{Fe}^{2+} \mathrm{Fe}^{3+}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2}$, stable above $290^{\circ} \mathrm{C}$.
- Its low-temperature monoclinic polymorph is known as barbosalite.
- Natural lipscombite has been described in the Sapucaia pegmatite, Brazil, but the crystal structure of this mineral was never determined on a natural sample.
- We report here the first structure refinement of a natural lipscombite sample, which was collected in the Eduardo pegmatite, Minas Gerais, Brazil.

Mineralogical characterization

[^0]- Chemical composition (EMPA):
$\left(\mathrm{Fe}^{2+}{ }_{0.93} \mathrm{Mn}_{0.14}\right) \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot 0.23 \mathrm{H}_{2} \mathrm{O}$

Bond-valence table					
	Fe1	Fe2	P	Sum	Attribution
01	$0.392(\times 2 \downarrow)$	0.510	1.086	1.99	0^{2-}
02	-	0.625	1.189	1.81	0^{2-}
03	-	0.461	1.482	1.95	0^{2-}
04	$0.391(\times 2 \downarrow)$	0.787	-	1.18	$0 \mathrm{O}^{-}$
05	$0.433(\times 2 \downarrow)$	0.332	1.222	1.99	0^{2-}
06	-	-	-	0.00	$\mathrm{H}_{2} \mathrm{O}$
Sum	$\mathbf{2 . 4 3}$	$\mathbf{2 . 7 2}$	$\mathbf{4 . 9 8}$	-	-
$\% \mathrm{Fe}^{2+}$	57	28.5	-	-	-
$\% \mathrm{Fe}^{3+}$	43	71.5	-	-	-

- Trimers of face-sharing octahedra, connected to similar trimers by corners
- Octahedral chains aligned along the [110] and [1-10] directions - Octahedral planes perpendicular to the c axis
- Chains connected by corner-sharing PO_{4} tetrahedra

Conclusions

- The crystal structure of natural lipscombite has been determined for the first time.
- A bond-valence analysis shows that Fe^{2+} and Fe^{3+} are disordered over the Fe 1 and Fe 2 positions. However, Fe^{2+} shows a significant preference for the Fe 1 site, and Fe^{3+} for the Fe 2 site.
- The position O6 corresponds to a water molecule, which was not observed previously in synthetic equivalents.
- The ideal formula of lipscombite should consequently be revised as: $\mathrm{Fe}^{2+} \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

[^0]: - Black pseudo-cubic crystals
 - Associated with hureaulite and jahnsite

