

The Crystal Structure of Natural Lipscombite

Frédéric HATERT¹ & Pietro VIGNOLA²

Introduction

- The name "lipscombite" was first given for a synthetic tetragonal iron phosphate of composition Fe²⁺Fe³⁺₂(PO₄)₂(OH)₂, stable above 290°C.
- Its low-temperature monoclinic polymorph is known as barbosalite.
- Natural lipscombite has been described in the Sapucaia pegmatite, Brazil, but the crystal structure of this mineral was never determined on a natural sample.
- We report here the first structure refinement of a natural lipscombite sample, which was collected in the Eduardo pegmatite, Minas Gerais, Brazil.

Occurrence

- Eduardo claim (or « Boa Vista »)
- LCT-type pegmatite
- Conseilhero Pena
- Minas Gerais, Brazil

- Black pseudo-cubic crystals
- Associated with hureaulite and jahnsite
- Chemical composition (EMPA): (Fe²⁺_{0.93}Mn_{0.14})Fe³⁺₂(PO₄)₂(OH)₂·0.23H₂O

Addresses: 1. Laboratoire de Minéralogie, Université de Liège, B-4000 Liège, Belgium. 2. CNR-Istituto per la dinamica dei processi ambiantali, I-20131 Milan, Italy.

Bond-valence table					
	Fe1	Fe2	Р	Sum	Attribution
01	0.392 (x2↓)	0.510	1.086	1.99	O ²⁻
02	-	0.625	1.189	1.81	O ²⁻
03	-	0.461	1.482	1.95	O ²⁻
04	0.391 (x2↓)	0.787	-	1.18	OH
05	0.433 (x2↓)	0.332	1.222	1.99	O ²⁻
06	-	-	-	0.00	H ₂ O
Sum	2.43	2.72	4.98	-	-
% Fe ²⁺	57	28.5	-	-	-
% Fe ³⁺	43	71.5	-	-	-

Crystal structure description

- Trimers of face-sharing octahedra, connected to similar trimers by corners
 Octahedral chains aligned along the [110] and [1-10] directions
 Octahedral planes perpendicular to the *c*
- axis • Chains connected by corner-sharing PO₄ tetrahedra

Conclusions

- The crystal structure of natural lipscombite has been determined for the first time.
- A bond-valence analysis shows that Fe²⁺ and Fe³⁺ are disordered over the Fe1 and Fe2 positions. However, Fe²⁺ shows a significant preference for the Fe1 site, and Fe³⁺ for the Fe2 site.
- The position O6 corresponds to a water molecule, which was not observed previously in synthetic equivalents.
- The ideal formula of lipscombite should consequently be revised as: $Fe^{2+}Fe^{3+}_{2}(PO_{4})_{2}(OH)_{2}$ ·H₂O