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ABSTRACT 

PURPOSE. To identify modifications in the gene expression profile of the ocular posterior segment in 
ovariectomized (OVX) mice with and without substitutive estradiol therapy and to select differentially expressed 
genes that could be relevant to the natural history of human age-related macular degeneration (AMD). 

METHODS. Chorioretinal tissues from two groups of 25 treated and untreated OVX mice were analyzed by using 
cDNA array technology. The expression level of selected genes was confirmed in triplicate by RT-PCR and 
related to the estrogenic status of the animals. Expression of the YKL-40 gene was further investigated in intact 
or diseased human retinas and in a murine model of experimental choroidal neovascularization (CNV), using 
laser pressure catapulting. 

RESULTS. Of the approximately 10,000 genes screened, only YKL-40 expression was significantly 
downregulated by 17-β-estradiol. YKL-40 was expressed in intact human neural retina and in the RPE. The 
expression of YKL-40 was upregulated in experimental CNV and in neovascular membranes extracted from 
patients affected by the exudative form of AMD. 

CONCLUSIONS. These observations indicate that YKL-40 expression in the retina is modulated by serum levels of 
estradiol. This protein could be relevant to the development of AMD and is also a new mediator to take into 
account when evaluating the broad consequences of hormonal replacement therapy. 

The presence of both types of estrogen receptors (ER) α and β has recently been demonstrated in the retina, 
suggesting a role for an intracellular receptor-mediated effect of estrogens in retinal biology.1,2 The protective 
role of estradiol in the development of cataract has been convincingly established on experimental3,4 and 
epidemiologic grounds.5 However, the precise effects of estrogens on the retina remain largely unexplored. 

Increasing experimental evidence suggests that estrogens are neuroprotective6-8 and that estrogen replacement 
therapy may contribute to the prevention or delay the onset of Alzheimer's disease.9 Menopause coincides also 
with the appearance or worsening of many common arthritic conditions10 that are associated with increased 
levels of proinflammatory cytokines, such as interleukin (IL)-1, IL-6, and tumor necrosis factor-α.11 

Epidemiologic studies reported conflicting results on the protective effect of hormone replacement therapy 
(HRT) in the development of the neovascular form of AMD.12,13 Others studies, however, failed to demonstrate a 
significant gender difference in the frequency of the disease.14 A large clinical trial (Women's Health Initiative 
Sight Exam Study) investigating whether HRT may influence the development and the course of macular 
degeneration is under way. 

The mechanisms by which 17-β-estradiol (E2) protects against AMD are not known. A protective effect has been 
demonstrated in the ischemia-reperfusion injury model in rat retina.15 E2 enhances the expression of vascular 
endothelial growth factor (VEGF) and its receptor (VEGFR-2) in bovine retinal endothelial cells in vitro,16 but 
this effect has recently been shown to depend on oxygen status in a murine model of retinopathy of 
prematurity.17 Ovariectomy has been suggested to disturb Bruch's membrane turnover in mice fed with a high-fat 
diet (Alexandridou A, Elliot S, Espinosa D, Hernandez E, Csaky KG, Cousins SW, ARVO Abstract 1200, 2001). 

In the present study, we used cDNA microarray technology to profile gene expression changes (~10,000 
screened genes) in intact posterior segments of ovariectomized (OVX) mice treated or not with E2 pellets. In a 
second confirmation phase, the expression of selected genes was investigated by quantitative RT-PCR on 
individual mice retinas and correlated with the estrogen status. E2 supplementation significantly reduced the 
expression of one gene, YKL-40 (also known as human cartilage glycoprotein 39, HCgρ39). YKL-40 is a 
mammalian glycoprotein member of a family of 18 glysolyl hydrolases related in sequence to chitinases but 



Published in: Investigative Ophthalmology & Visual Science (2003), vol. 44, iss.4, pp. 1740-1746 
Status: Postprint (Author’s version) 

without chitinase activity.18,19 Its function is unknown, but it is thought to be involved in tissue remodeling, 
acting as a growth factor for connective tissue cells20 and as a potent migration factor for endothelial cells.21 

Most of the studies regarding YKL-40 have focused on rheumatoid arthritis (RA), because this protein is an 
articular autoan-tigen in mice22 (with pathologic effects similar to those with immunization by collagen type II), 
and its serum levels are clinically correlated with the severity of the disease.23.24 Because this glycoprotein has 
not been previously described in the retina, we studied its expression in human normal retina, in neovascular 
choroidal membranes extracted from patients with AMD, and in a murine model of experimental choroidal 
neovascularization (CNV). 

METHODS 

Ovariectomized (OVX) Mice 

OVX mice (ovariectomy was performed at 6 weeks of age) were purchased from Charles River France (Lyon, 
France). In the group (n = 25) receiving substitutive hormonal therapy, estrogens were administered through 3-
mm subcutaneous pellets containing 1.7 mg E2 (Innovative Research of America, Sarasota, FL). In the control 
group, OVX mice (n = 25) received implants of a saline-containing pellet. E2 pellets provide continuous release, 
allowing for a constant level of circulating hormone. The selected pellet delivered 28 µg/d of E2, providing 
serum concentrations exceeding the usual physiological concentrations in female mice (~100 pg/mL) but lower 
than high-dose estrogen treatment (e.g., anti-tumor therapy).25 Serum levels of E2 were monitored at the end of 
the study period by radioimmunoassay, according to the manufacturer's instructions (Immunotech; Westbrook, 
ME), as previously described.2 After 30 days, mice were killed, and the ocular posterior segments (neural retina 
and RPE-choroid complex) were removed and frozen in liquid nitrogen. In the treated group, the efficiency of 
HRT was also controlled by means of uterine weight (approximate fivefold increase in the E2 treated group) and 
histologic evaluation of the endometrium (not shown). Three mice had to be removed from the study group 
because of defective pellet implantation. For experiments using RT-PCR, a second set of 20 OVX mice (10 in 
each group) was treated similarly (2 mice were not analyzed in the E2-treated group because of bad pellet 
implantation). Animal experiments were performed in compliance with the ARVO Statement for the Use of 
Animals in Ophthalmic and Vision Research. 

 

TABLE 1. Oligonucleotide Sequences 
Gene and 

(Accession No.) 
Position Oligonucleotide Sequence (5 '-3') Size of PCR 

Product 
(bp) 

Cycles (n) 

28S5 (U13369) 12403F 
12614R 

GTTCACCCACTAATAGGGAACGTGA 
GGATTCTGACTTAGAGGCGTTCAGT 

212 19 (35 for LPC)

mYKL-40 (BC005611) 345F 486R CTGTCTGTTGGAGGGTGGAAA 
CGAGATCCAGCCCATCAAA 

142 32 (45 LPC) 

mYKL-40 (BC005611) 1016F 1147R GAAGGTTCCCTTCGCTACCAA 
TCATCCAAATCCAGTGCCCA 

132 32 

hYKL-40 (M80927) 271F 382R ACACCTGGGAGTGGAATGATGT 
TGAGACCCAAAGTTCCATCCTC 

112 35 

mRBP (W83609) 174F 316R GTCCCAAAAATGCCTGTGGAC 
TGCACGATCTCTTTGTCTGGC 

143 30 

mAngiogenin 
(NM_007447) 

248F 377R CGAATGGAAGCCCTTACAGAGAA 
ACATGTCTGAACCCTGCAGAGG 

130 28 

mTransthyretin 
(AA822116) 

159F 300R GTGGTTTTCACAGCCAACGAC 
TTTGGCAAGATCCTGGTCCTC 

142 30 

m,hVEGF-A (AH001553) 1208F 1687R CCTGGTGGACATCTTCCAGGAGTA 
CTCACCGCCTCGGCTTGTCACA 

407 347 33 

mPEDF (NM_011340) 313F 569R GAGCTGAACATCGAACAGAGTCTG 
AATCTCCTGAAGGTCTACTCGAGG 

256 45 

m and h, mouse and human, respectively. 
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cDNA Array 

Total RNA was isolated from posterior segments (retina and RPE-choroid complex) from OVX control and 
OVX-E2-treated mice by using an RNA isolation protocol (TRIzol; Sigma, Belgium), as recommended by the 
manufacturer. The frozen tissues were first pulverized with a dismembrator (B. Braun Biotech International, 
GmBH, Melsungen, Germany) and homogenized in the extraction reagent. RNA quality was controlled on 1% 
agarose gel. RNA samples from each group were pooled and then processed by Incyte Genomics (St. Louis, 
MO) and hybridized to a cDNA array (Mouse UniGenel; Incyte Genomics, Inc.). This array is designed to 
provide a broad view of the mouse genome and includes targets for 9596 elements with 8985 unique annotated 
genes and expressed sequence tag (EST) clusters (list available at 
http://www.incyte.com/expression/easy_to_spot/catalog/txt_ files/mouse_unigenel_gene_list.txt).                       
Gene expression levels were measured and displayed using the manufacturer's software (GEMTools 2.5; Incyte 
Genomics). 

Human Intact and Pathologic Retinas 

Eight consecutive submacular CNV specimens were surgically removed (performed by Carel Claes, MD, A.Z 
Middelheim, Antwerpen, Belgium) during 360° macular translocations performed on patients with exudative 
AMD (three men, five women; mean age, 77 years; range, 72-83). These patients were not eligible for 
conventional laser photodynamic therapy because of the presence of occult new vessels or submacular bleeding, 
or, in the case of one patient, because of a recurrence of the disease. The methods conformed to the Declaration 
of Helsinki for research involving human subjects. The specimens were snap frozen in liquid nitrogen and stored 
at -80°C. Ten human male and female donor eyes were also obtained from the Cornea Bank, University of Liège, 
Belgium, as a source of intact neural retina and RPE-choroid. After removal of the anterior segment structures, 
5-mm diameter punches were made in the macular region and in the peripheral retina (to estimate differential 
expression between the two regions), frozen in liquid nitrogen, and stored at -80°C. 

 
FIGURE 1. Frequency of genes exhibiting different levels of expression (in multiples of change) in OVX mice 
supplemented or not with E2 pellets (increased expressions are shown as negative values). 

 
 

Laser Pressure Catapulting 

For laser pressure catapulting (LPC), experimental CNV was induced by laser in C57BL mice (n = 12), as 
previously described,26   to evaluate the spatial and temporal pattern of YKL-40 expression. The eyes were 
enucleated at selected intervals after induction (days 3, 6, 14, and 40), embedded in mounting compound (Tissue 
Tek; Miles Laboratories, Naperville, IL), and frozen in liquid nitrogen. Serial frozen sections (n = 8-10) were 
mounted directly on 1.35-mm thin polyethylene foil (Palm, Wolfratshausen, Germany), which had been mounted 
on the glass slide using a robotic technique (Microbeam-Moment; Palm).27 The robot microbeam (Palm) focused 
the laser (337 nm) on the specimen, catapulting the selected area into the microfuge cap. The entire subretinal 
CNV area (as shown in Fig. 4C) and an adjacent intact chorioretinal zone (control) were microdissected 

http://www.incyte.com/expression/easy_to_spot/catalog/txt_
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separately on frozen sections (10 µm thick). The specimens were covered with 100 µL lysis buffer, and total 
RNA isolation was performed with an RNA isolation kit (PureScript RNA; BioZym, Landgraaf, The 
Netherlands) according to the manufacturer's protocol. Total RNA was dissolved in a 10 µL RNA hydration 
solution supplied by the manufacturer, and RT-PCR was performed. 
 
 
TABLE 2. Gene Expression in the Absence of E2 Treatment 

Gene Description Accession 
No. 

Change 
(×) 

Glutathione S-transferase like W16059 2 
YKL-40 W10705 2 
EST AI447967 2 
EST AI549666 1.9 
CDC-like kinase (cell cycle) AA684191 1.8 
Lactate dehydrogenase 1, A chain A1325819 1.7 
Transthyretin AA822116 1.7 
Ribosomal protein S16 AA624897 1.7 
Ribosomal protein L41 AI120332 1.7 
Ribosomal protein L7 W82240 1.7 
Ribosomal protein S5 AA444231 1.7 
Insulin-like growth factor-binding protein 4 AA145454 1.7 
Cathepsin S AA146437 1.7 
Small inducible cytokine A6 AA821932 1.6 
Prothymosin-β4 W09641 1.6 
Matrix γ-carboxyglutamate (gla) protein W88093 1.6 
Fas apoptotic inhibitory molecule AA623998 1.6 
Retinol binding protein, cellular W83609 1.5 
Cystatin C AA770768 1.5 
Crystallin-α AI325730 1.5 
Vitronectin AA980366 1.5 
Decorin AA755007 1.5 
Hypoxia inducible factor-1α (HIF-α) AA422602 -1.4 

cDNA microarray expression data of selected genes analyzed on RNA samples pooled from E2-treated (n = 22) or E2-untreated (n = 25) 
OVX mice. All expression changes are positive except for HIF-α.  

 

RT-PCR Analysis 

The frozen tissues were pulverized in a dismembrator (B. Braun Biotech International), and total RNA was 
extracted with a kit (RNeasy; Qiagen, Paris, France), according to the manufacturer's protocol. 28S rRNA was 
amplified with an aliquot of 10 ng total RNA (for tissues) or 1 µL total RNA (LPC samples), by using an RNA 
PCR kit (GeneAmp with Thermostable rTth reverse transcriptase; Applied Biosystems, Foster City, CA) and two 
pairs of primers (Eurogentec, Liège, Belgium). Oligonucleotide sequences are shown in Table 1. Reverse 
transcription was performed at 70°C for 15 minutes followed by 2 minutes incubation at 95°C for denaturation of 
RNA-DNA heteroduplexes. Amplification was performed in cycles of 15 seconds at 94°C, 20 seconds at 60°C, 
and 10 seconds at 72°C. RT-PCR products were resolved on 2% agarose gels and analyzed by fluorescence 
imager (Fluor-S Multilmager; BioRad, Richmond, CA), after staining with ethidium bromide (FMC 
BioProducts, Philadelphia, PA). 

Statistics 

Gene expression levels in both groups were compared on computer by t-test (Prism 3.0; GraphPad, San Diego, 
CA). 
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RESULTS 

Effects of E2 on Chorioretinal mRNA Profile 

The mean E2 serum level was 15.08 ± 4.2 pg/mL in OVX-untreated mice and 537 ± 79.7 pg/mL in E2-treated 
mice, indicating that ovariectomy reduced endogenous circulating E2 concentrations, whereas supplementation 
with 1.7-mg estradiol pellets restored circulating concentrations of E2 moderately over the physiological range 
(100 pg/mL).25 Only a minority of the genes tested on the cDNA array showed a noticeable change of their 
expression after 30 days of substitutive E2 therapy. Less than 1% of tested genes displayed a differential 
expression ratio of 1.5 or more, and most of them appeared to be upregulated by E2 deficiency (Fig. 1). The 
cDNA microarray expression data of selected genes are shown in Table 2. The largest difference in expression 
(ratio = 2) was seen for the YKL-40 gene with lower expression in OVX E2-treated mice. The influence of E2 
supplementation on YKL-40 expression was confirmed by semiquantitative RT-PCR (in triplicate and with two 
different couples of oligonucleotides normalized to 28S signal) performed on a second set of animals and related 
to the presence or absence of E2 supplementation (Fig. 2). Several genes showing similar expression levels in the 
E2-treated and untreated groups were assessed in parallel by RT-PCR and used as the negative control (Fig. 3).  

 
FIGURE 2. Influence of E2 treatment on YKL-40 gene expression in OVX mice. (A) Representative example of 
YKL-40 mRNA expression in the eye of individual mice. (B) Relative levels of YKL-40 mRNA (den-sitometric 
quantification and normalization to the 28S signal) in the E2-treated (+E2) and untreated (-E2) group. 
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FIGURE 3. Confirmation by RT-PCR of the cDNA array results for selected genes (used as negative control). 
Transthyretin, retinol binding protein (RBP), angiogenin, and VEGF-A mRNA expression levels (densito-metric 
quantification and normalization to 28S signal) in ocular posterior segments of individual mice. There was no 
statistically significant difference between mean mRNA expression in the E2-treated or untreated OVX mice (P > 
0.05, t-test). 

 
 

Table 3 shows the relative expression (signal intensity) of several groups of genes potentially involved in 
chorioretinal diseases in the untreated and E2-treated group. 

It is interesting to note the relatively high level of expression of CD59a (an inhibitor of complement 
activation28), in view of the recent reports of complement involvement as a drusen component29 and as a 
mediator of CNV (Bora PS, Sohn JH, Kang SG, Bora NS, Kaplan HJ, ARVO Abstract 1291, 2002). Elevated 
expression of β-crystallin in the retina has been reported previously, without explanation of its potential role.30 

Membrane-type matrix metaËoproteinases (MT1-MMP) and tissue inhibitor of matrix metalloproteinase 
(TIMP)-3 also had a relatively high level of expression. Angiopoietin-like 2 had the highest level of expression 
in the angiogenesis regulator group,31 whereas some members of the VEGF family were weakly expressed 
(placental growth factor) or absent (VEGF-B and -C). 

YKL-40 Expression Profile in Human and Mouse Neovascular Membranes 

YKL-40 expression was detected in normal human posterior segments from different donors (Fig. 4A). YKL-40 
was detected in ocular tissues from patients of different age and gender, regardless of the region of the sample 
(inside or outside the macula, retina or RPE-choroid complex). YKL-40 mRNA was also detected in all CNV 
specimens obtained during surgery (Fig. 4B). Although sharing in common the unfeasibility of conventional 
treatment, these neovascular membranes had a documented different natural history (size of the lesion, duration 
of symptoms, previous treatment). To evaluate more precisely the spatial (lesion versus intact adjacent regions) 
and temporal pattern of YKL-40 expression, RT-PCR analysis was applied to laser-induced murine neovascular 
choroidal membranes microdissected (Fig. 4C, left) by LPC at different time end points (days 3-40 after laser-
induced CNV). When compared with intact adjacent regions, upregulation of YKL-40 mRNA expression was 
evident in CNV lesions at all end points (Fig. 4C). 



Published in: Investigative Ophthalmology & Visual Science (2003), vol. 44, iss.4, pp. 1740-1746 
Status: Postprint (Author’s version) 

DISCUSSION 

DNA microarrays are powerful tools that allow for genome-wide gene expression profiling of cells or tissues.32 
In this study, we used a cDNA array testing for approximately 10,000 genes to identify modification of the gene 
expression profile of pooled ocular posterior segments in ovariectomized mice rescued or not by substitutive E2 
therapy. In this experimental setting, less than 1% of the genes tested showed noticeable expression changes. 
Among them, the YKL-40 gene showed the largest expression change, with lower values in OVX E2-treated 
mice. This observation was confirmed by semiquantitative RT-PCR in a second set of experiments performed on 
individual mice tissues. YKL-40 gene expression was further studied in normal and pathologic human retinas. 

YKL-40 expression has been reported in human RPE, with serial analysis of gene expression technology 
(SAGE).33 In the current study, YKL-40 was consistently expressed in normal human eyes both in neural retina 
and in the RPE-choroid complex. High concentrations of YKL-40 in serum correlates with morbidity in different 
human diseases such as active rheumatoid arthritis and hepatic fibrosis, as well as with death of recurrent 
colorectal cancer.34-36 YKL-40 is produced by monocytes in the media of arteritic vessels, in inflamed synovial 
membranes, and in atherosclerotic plaques, suggesting a role for YKL-40 in tissue remodeling.37,38 In vitro, 
YKL-40 is one of the most abundant proteins secreted by cultured chondrocytes.39 The regulation of YKL-40 
expression, however, is largely unknown. In this study YKL-40 was significantly down-regulated by estrogen 
supplementation in the ocular posterior segment of OVX mice. Furthermore, YKL-40 expression was 
upregulated both in pathologic human and experimental CNV, although we cannot exclude bias caused by our 
selecting specimens from patients for whom standard laser therapy could not be used. Taken together with the 
migratory properties of YKL-40 in endothelial cells,21 these data suggest a proangiogenic role of YKL-40 in the 
development of exudative AMD and could at least partly verify a protective role for estrogen replacement 
therapy.12,13 A direct effect of YKL-40 on angiogenesis in other in vitro and in vivo models, such as corneal 
pellets or aortic rings, has yet to be evaluated. If a similar regulation were to be demonstrated in the synovium, 
our results could also provide a putative explanation for the protective effect of estrogens in rheumatoid arthritis, 
because YKL-40 has been proposed as a candidate autoantigen in this disease,23 and its serum levels are related 
to disease activity.25 It is of interest that, in our model of OVX mice, only a limited number of genes were 
affected by estrogen therapy in the retina. This could be explained by the pooling of samples for cDNA array, 
which selected only for strong and constant differences of gene expression and minimized individual variations. 
In particular, the expression of cathepsin D, an aspartic protease highly expressed in human retinal pigment 
epithelial lysosomes40 with transcription classically regulated by estrogens in breast cancer,41 was not influenced 
in vivo in the murine retina. Experimental impairment of cathepsin D results in accumulation of rod outer 
segment debris in the RPE and as been suggested as a murine model of dry AMD.42 A similar discrepancy has 
been reported for endometrial cells and attributed to differential tissue-dependent regulation.43 Individual 
variations in the level of mRNA expression for a specific gene are evident from the confirmation phase of our 
study, especially in the OVX untreated group. There was up to a 15-fold modulation of VEGF-A expression 
between mice of the same group. This could be explained by variations in very low level E2 concentrations 
(picomolar range), which have been demonstrated to enhance gene expression in different models.44 It is also 
known that for some genes, the mechanism of regulation by estrogens is posttranscriptional rather than at the 
transcriptional level. This was indeed demonstrated for hepatic apolipoprotein E.45 Finally, because the levels of 
ER-α and -β mRNA were weak in murine posterior segment, we cannot exclude the possibility that HRT could 
modify other genes in the human retina, in which these receptors are expressed at a higher level.2

This study is obviously a preliminary phase in the understanding of the potential influences of HRT on AMD, 
and it would be of great interest to evaluate by cDNA microarray HRT-treated and untreated patients, as well as 
to compare intact and AMD tissue specimens. Our data nevertheless identify for the first time the YKL-40 gene 
as a potential mediator of estrogens effects both in the normal eye and during the development of CNV. 
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TABLE 3. Relative Expression of Selected Groups of Genes 
Relative Level of Expression Gene Description Accession No. 
Untreated E2-Treated 

Apolipoproteins 
   Apolipoprotein E AI325603 3500 2436 
   Apolipoprotein D AI120641 2294 2211 
   Apolipoprotein CII AA617232 1938 1880 
   Apolopoprotein AII AA051684 1056 902 
   Apolipoprotein AI AA822098 393 408 
Cathepsins 
   Cathepsin F AA726152 3590 3464 
   Cathepsin D W16244 3103 2096 
   Cathepsin J AA013726 2585 2535 
   Cathepsin E AA839435 1421 1144 
   Cathepsin Z AI892501 1301 1089 
   Cathepsin M AA024360 921 1047 
MMPs/ΓIMPS 
   TIMP-3 AI197159 6979 6220 
   MMP-14 (MT1-MMP) AA727488 2486 2565 
   MMP-24(MT5-MMP) AA726203 935 753 
   MMP-2 AA756126 419 347 
   MMP-7 AA689037 173 182 
Serine proteases 
   uPA receptor (uPAR) W82324 3557 3547 
   Plasminogen activator inhibitor l(PAI-l) AA600496 511 354 
   Plasminogen AA106793 318 255 
   Urokinase plasminogen activator (uPA) AA510298 190 142 
   Tissue plasminogen activator (tPA) AA426892 155 125 
Angiogenesis 
   Angiopoietin-like 2 AA755981 2630 2672 
   Prothymosin beta 4 W09641 2067 1277 
   PEDF AA727967 2031 1509 
   VEGF-A AA793036 2030 2275 
   Angiogenin AI121741 1076 1232 
   Placenta growth factor (PIGF) AA982549 329 299 
Complement 
   CD59a antigen AA162378 8903 8824 
   Complement receptor 2 AA254235 1548 1639 
   C1q-α AA145122 743 731 
   C1q-β AI182838 340 306 
   C9 AA237324 592 673 
Others 
   Hyaluronidase 1 AA688635 13474 14120 
   Rod outer segment membrane protein 1 AA444932 8774 6569 
   ATP-binding cassette D, member 4 AA105879 8065 8493 
   Crystallin α-1 AI323082 7555 5914 
   Integrin-α4 (CD49d) AA152636 5800 6426 
   Clusterin AA210481 2413 1814 
   YKL-40 W10705 774 388 
cDNA microarray relative expression data normalized to microarray, internal control signals, and analyzed on RNA samples pooled from 
E2-treated (n = 22) or E2-untreated (n = 25) OVX mice. PEDF. (pigmented epithelium-derived growth factor). 
 
 
 
 
 
 
 



Published in: Investigative Ophthalmology & Visual Science (2003), vol. 44, iss.4, pp. 1740-1746 
Status: Postprint (Author’s version) 

FIGURE 4. Expression of YKL-40 mRNA in human retina and in CNV. (A) YKL-40 mRNA was present in human 
normal neural retina (R) and in the RPE-choroid complex (Ch), both in the macular region (I) and in the 
periphery (O). Age of the donors is given in years with gender. (B) Representative example of YKL-40 mRNA 
expression in surgically extracted choroidal neovascular membranes of four patients with exudative AMD. Total 
RNA (10 ng) was subjected to RT-PCR. (C) LPC followed by RT-PCR analysis of YKL-40 expression (with 
pigmented epithelium-derived growth factor [PEDF] used as an additional control gene on microdissected new 
choroidal vessels growing in the subretinal space (CNV, delineated by dotted line) and on adjacent (control) 
intact chorioretinal tissue (R) from days 3 to 40. Multiple bands under YKL-40 or PEDF signals represent 
multimers of primers. Molecular weights are shown at left (expected size for 28S product is 212 bp; for PEDF, 
256 bp; for human YKL-40, 112 bp; and for murine YKL-40 142 bp). 
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