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Abstract With the emerging deregulated electricity markets, a part of the electricity trading takes
place in day-ahead markets where producers and retailers place bids in order to maximize their profit.
We present a price-maker model for strategic bidding from the perspective of a producer in Price Coupled
Regions (PCR) considering a capacitated transmission network between local day-ahead markets. The
aim for the bidder is to establish a production plan and set its bids taking into consideration the reaction
of the market. We consider the problem as deterministic, that is, the bids of the competitors are known
in advance. We are facing a bilevel optimization problem where the first level is a Unit Commitment
problem, modeled as a Mixed Integer Linear Program (MILP), and the second level models a market
equilibrium problem through a Linear Program.

The problem is first reformulated as a single level problem. Properties of the optimal spot prices are
studied to obtain an extended formulation that is linearized and tightened using new valid inequalities.
Several properties of the spot prices allow to reduce significantly the number of binary variables. Two
novel heuristics are proposed, the first applicable in PCR, the second for general formulations with
Special Ordered Sets (SOS) of type 1.

Our computational experiments highlights the risk of a loss for the bidder if some aspects usually not
considered in the literature, such as Price Coupled Regions, or an accurate UC problem, are not taken
into account. They also show that the reformulation techniques, combined with new valid inequalies,
allow to solve much larger instances than the current state-of-the-art. Finally, our experiments also show
that the proposed heuristics deliver very high quality solutions in a short computation time.

Keywords Strategic bidding · Bilevel optimization · MPEC · Extended formulations · MILP
reformulation

1 Introduction

Electricity markets evolved in recent years to a deregulated system where Generation Companies (GC)
and retailers compete and place hourly bids in day-ahead markets. Hourly spot prices for the next day
are determined by a Market Operator (MO) that selects bids in order to maximize the global welfare.
In order to maximize its profit, a GC competing in day-ahead markets needs an accurate evaluation
of the hourly spot price of electricity in order to establish an appropriate production plan. In Europe,
several day-ahead markets have been grouped through an international transmission network in the
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Price Coupling of Regions1 (PCR) project. The global market equilibrium is determined by the MO
who maximizes the global welfare of all markets in order to increase competitivity between the actors.
The MO determines the market equilibrium and the resulting hourly spot prices for electricity as well as
the quantities of electricity traded in each day-ahead market of the PCR. Coupling day-ahead markets
makes it harder for GCs to evaluate the spot prices as they are influenced by local bids, bids from other
markets and transmission constraints.

In this paper, we consider the Bidding Problem (BP) of a GC maximizing its profit in coupled
day-ahead markets. A price-maker perspective is taken, in the sense that the production of the GC is
considered high enough to impact the market prices. Our model integrates a detailed Unit Commitment
(UC) formulation of the production planning problem. The Bidding Problem is a hierarchical sequential
Stackelberg game, where one player, defined as the leader, can make a decision and commit a strategy
taking into account the reaction of other players, defined as followers. In the problem considered in this
paper, the leader is a GC that determines a production schedule and a bidding price for its production,
while the follower is the MO which fixes the prices induced by the market equilibrium. In order to
compute its optimal bidding strategy, the GC must take into consideration the impact of its bid on the
market equilibrium. We focus here on a GC, but our models and methods could easily be adapted for
the case of a bidding retailer.

We assume that the GC bids at the spot price and sells the whole quantity it offers. Furthermore,
we consider that the GC has a full knowledge of other bids in the market. This information is typically
estimated through statistical (Morales et al., 2014) or machine learning (Chen et al., 2018) methods.
The UC problem consists in establishing a minimum cost production plan for a fixed demand. It involves
characteristics such as quadratic production costs, start-up and shut-down costs, ramping up and down
constraints, minimum on and off time and transmission network constraints (Koltsaklis et al., 2018).
This problem has been widely studied in the literature (Tahanan et al., 2015), and is challenging by itself
as it is a non-convex optimization problem. Adding market equilibrium conditions increases significantly
the complexity of the problem as the demand is not fixed anymore but depends on the bids proposed by
competitors and the resulting the market equilibrium. The study of the UC problem is out of the scope
of this paper, but the methods presented here can be adapted to any UC formulation.

As described above, we assume that the GC is a price makers since it can influence the hourly spot
prices. On the other hand, if a GC has a small market share, it has a negligible influence on the market
price and is considered as a price-taker. In this case, spot prices are considered as given beforehand.

The literature on bidding strategies mostly focuses on the price-taker case. The resulting problems
are usually modeled as a UC problem with a couple of additional constraints (Li et al., 2011; Steeger
et al., 2014). Price-taker formulations are easier to solve than price-maker ones since the reaction of the
market to the bids of the GC can be ignored. The drawback of such formulations is the risk of obtaining
suboptimal solutions because of a wrong estimation of the spot prices, resulting in a loss of profit or
leading to an infeasible production plan.

In contrast, price-maker formulations, as considered in this paper, make an accurate evaluation of
spot prices by taking into consideration the reaction of the market to the bids of the GC. The resulting
problems are single-round Stackelberg games that are typically modeled as bilevel optimization problems.

A deterministic formulation of the price-maker bidding problem was proposed by de la Torre et al.
(2002). The first level is a UC model and the GC bids at the spot prices. The spot prices are discretized
to the set of bidding prices of competitors and the spot price at each time period is represented as a
stepwise function in the offered quantity. This allows to formulate the problem as a MILP with a limited
number of binary variables. Other deterministic price-maker problems consider stepwise bidding curves
(Bakirtzis et al., 2007; Dalby, 2017; Ruiz and Conejo, 2009) or bidding at marginal costs (Dalby, 2017;
Kardakos et al., 2014). The bilevel formulations proposed in these papers are reformulated by using
Karush–Kuhn–Tucker (KKT) first order optimality conditions to obtain a single level Mathematical
Program with Equilibrium Constraints (MPEC) (Luo et al., 1996). In all these models, the KKT condi-
tions are linearized through classical techniques, resulting in computationally challenging formulations.
In most papers, a general UC formulations is used containing general electricity productions constraints.
Some papers focus on bidding with a specific type of generators that strongly influence the UC model
and the resulting bidding strategy (Cruz et al., 2016).

1 https://www.belpex.be/wp-content/uploads/PB102-7.6.1-PCR-Standard-Presentation detailed last 1.pdf
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A single day-ahead market is considered by Bakirtzis et al. (2007), for a single time period. The GC
maximizes its profit by finding an optimal bidding curve with steps without specific restrictions on offered
prices. A discretization of the prices through a binary expansion (Pereira et al., 2005) is performed to
eliminate products of continuous variables and linearize the formulation. The large size of the resulting
formulation limits the size of the instances considered. The aim in Dalby (2017) is to minimize the
difference between the profit and the production costs in order to recover start-up costs based on market
equilibrium constraints from Bakirtzis et al. (2007).

Formulations with various types of transmission constraints have also been proposed (Ruiz and
Conejo, 2009; Kardakos et al., 2014) where several day-ahead markets are coupled. Transmission con-
straints in these models make the model very complex. To compensate the difficulty added by the
transmission network, Ruiz and Conejo (2009) consider a UC problem composed of only ramping up and
down constraints, avoiding start-up and shut-down cost, and Kardakos et al. (2014) consider that local
demands are fixed in advance and do not consider ramping constraints in their UC model.

Strong hypotheses are always made in price-maker formulations due to the inherent complexity of
such an approach. Only a limited proportion of market regulations are considered in state-of-the-art
studies and the UC formulation is generally simplified.

In this paper, we propose a bilevel formulation for BP. We reformulate it as an MPEC by applying
KKT conditions on the market equilibrium subproblem. General properties of this problem are studied to
derive new valid inequalities and heuristic methods. A novel extended formulation (Conforti et al., 2010)
describing the spot prices by using special ordered sets of type 1 (SOS) (Beale and Forrest, 1976) allows
to consider only a limited number of possible spot prices in an optimal bidding strategy. An analysis
of the impact of the transmission network reduces the number of spot sprices to consider even more.
The SOS used to represent the possible spot prices leads to new valid inequalities using RLT (Sherali
and Adams, 1999). These new inequalities improve significantly the quality of the linear programming
relaxation of the formulation. The resultinr MILP formulation can also easily be adapted for the case of
bidding at marginal costs.

Two heuristic methods are proposed to solve large size instances in moderate CPU times. The prop-
erties of the primal and dual formulations of the market equilibrium problem are analysed in order to
derive a general Iterative Aggregation-Disaggregation algorithm (IAD) (Rogers et al., 1991) which can be
applied for coupled markets as in PCR. The SOS constraints are also used to run a novel SOS-narrowing
heuristic that narrows the values of the spot prices during the branch and bound procedure in order
to limit the size of the branching tree, improving significantly the solving time. This SOS-narrowing
heuristic is generic and can be adapted to any formulation containing SOS of type 1.

Our computational experiments confirm and highlight our main contributions:

– the reformulation proposed, combined with new valid inequalities and preprocessing techniques that
reduce the number of variables, allow to solve instances with over 50 competitors and 5 generators;

– the proposed heuristics deliver very high quality solutions in a short computation time;
– thanks to the algorithmic improvements, a more detailed UC model can be handled in the master

problem;
– adding the transmission network to the model and a more detailed UC model represents a strong

step forward towards a more realistic and applicable model;
– the results also highlight the risk of a loss for the bidding GC when ignoring the new aspects we

introduced in the model.

The remainder of the paper is organized as follows. Section 2 defines the bidding problem and proposes
a bilevel formulation as well as a single level reformulation as a MPEC. An extended linearized formulation
obtained by discretizing the spot prices is presented in Section 3. In Section 4, we show how the number
of binary variables can be reduced by a careful study of the properties of bidding prices. Section 5
presents an adaptation of the formulation to the case of bidding at marginal costs. Heuristic methods
are proposed in Section 6. The results of our computational experiments are presented and analysed in
Section 7. Section 8 concludes the paper.

2 Problem definition

The Bidding Problem (BP) is a multi-period price-maker problem where a GC maximizes its profit by
proposing hourly bids for selling its production on the day-ahead electricity market. The production
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Fig. 1 Bidding procedure

schedule of the GC results from the optimal solution of a UC problem, and electricity spot prices are
computed to form a market equilibrium. In addition, the computation of spot prices takes into account
different regions coupled by a capacitated transmission network. The GC and competitors propose bids to
the MO that determines the spot price for each time period and the quantities traded between the actors.
A bid is composed of a unit price and a quantity and the MO can select any proportion of a bid proposed
by a producer or a retailer in order to obtain the market equilibrium solution maximizing the global
welfare. Bids of the competitors are considered as known. The day-ahead markets in different regions are
represented by a set of nodes N connected through a capacitated transmission network coordinated by
the MO. The GC and competitors can bid in several day-ahead markets as illustrated in Figure 1.

The MO imposes fixed minimum and maximum bidding prices λt and λ
t

for each time period t ∈ T .
It fixes the local spot λtn price for each period t ∈ T and node n ∈ N such that local seller bids under
the spot price are fully bought and bids above are not bought and conversely for local buyer bids. The
bids that are bought are said to be in-the-money, those that are not are out-of-the-money in market
regulations (EUPHEMIA, 2016). Power exchanges are possible through a set of capacitated transmission
lines E between the day-ahead markets.

A solution of BP is represented by a set of bids {(λtn, ptn)}t∈T,n∈N from the GC such that ptn is the
bidden quantity at node n, meaning the GC aims to bid at the spot prices by taking into consideration
the reaction of the market to its bid. We consider that the full bidden production of the GC is dispatched
to retailers by the MO. Note that bidding all the produced electricity at a single price is not restrictive
when considering the bids of the competitors as known. Indeed, Bakirtzis et al. (2007) proposed bidding
curves in order to diversify bidding prices and concluded that this is of no interest in the deterministic
case. In order to ensure selling bids, the GC must only bid under the spot price of electricity which can
be seen as an upper bound for bidding prices for the GC.

We denote by Pn the set of feasible solutions of the UC in node n, where pn = {ptn}t∈T ∈ Pn is a
vector of resulting quantities offered on market n. The cost for producing pn is denoted by c(pn). Note
that the GC is free to produce more than the quantities offered on the market. In order to guarantee
feasibility of BP, we assume for each period t ∈ T and node n ∈ N that the maximum production

capacity of the GC, Q
t

n, is smaller than the total demand in n and that there exists a feasible solution
when the GC does not participate in market n.

In the following, we first present a linear formulation for the market equilibrium problem of the MO
with ptn as parameter to provide a model integrating a fixed bidden production by a GC that must be
traded by the MO. A bilevel formulation of BP is then provided and reformulated as a bilinear MPEC
by using complementarity constraints arising from the market equilibrium problem.
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2.1 Unit commitment model

The UC is a challenging problem to solve in itself. In most bidding problems presented in the literature,
a simplified version is used. So far, only a few UC specific components have been considered in price-
maker bidding problems constrained by a transmission network. Only start-up and shut-down costs are
considered by Kardakos et al. (2014) while Ruiz and Conejo (2009) integrates only ramping up and down
constraints.

A more detailed UC formulation is composed of several specific components such as:

– non-linear production costs,
– startup and shut down costs, introducing binary decision variables and a non continuous objective

function,
– ramping up and down capacities, limiting the variation of production from on time period to another

for each generator, linking the time periods of the problem,
– minimum up and down times, forcing generators to be turned on or off for a minimum time period,

linking again the time periods.

Even production costs cannot be modelled through linear expressions and are often approximated through
linearization techniques.

In the present paper, we propose general market equilibrium constraints for a GC bidding in day-ahead
markets that can be adapted to any UC formulation. In the computational experiments, a detailed state-
of-the-art deterministic UC formulation presented by Ostrowski et al. (2012) is used. This formulation
is presented in Appendix D.

2.2 Market equilibrium problem

The actors in coupled day-ahead markets are divided into a set of buyers B and a set of sellers S,
partitioned into sets Bn and Sn, n ∈ N of buyers and sellers by node. Each actor bids in its local day-
ahead market. Each buyer b ∈ B defines a bid (πtb, Q

t
b) composed of a price πtb and a strictly positive

quantity Qtb. In the market equilibrium solution computed by the MO, a proportion xtb of bid b ∈ B is
traded at period t. The same notation applies for sellers s ∈ S. The transmission network is represented
by a graph (N,E), where a maximum capacity Cmaxnm > 0 is associated with each edge nm ∈ E. The set
of neighbors of a node n ∈ N is denoted Θn. Set A is the set of arcs obtained by replacing each edge in E
by two arcs in opposite directions. The flow f tnm, nm ∈ A, t ∈ T corresponds to the flow from node n to
node m at period t. The objective in the market equilibrium problem is to maximize the global welfare.

In a day-ahead market without transmission constraints, and where only step bids composed of a
unit price and a quantity are considered, the market equilibrium for a given period is determined by
the intersection of the aggregated production and demand curves as illustrated in Figure 2. The global

λt
Welfare

Quantity

P
ri

ce

Dem.

Prod.

Fig. 2 Bids and spot-price for a given time period
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welfare corresponds to the surface between the demand and the production curves and the spot price is
the price at the intersection of the two curves. We consider that if the intersection of both curves results
in multiple points, the spot price and quantity traded are settled at their maximum value (Hogan, 2012).

The marked equilibrium problem considered in this paper is a simplified version of the model proposed
by Madani and Van Vyve (2015) for European deregulated electricity markets considering only step bids.
As the GC intents to bid at the spot price and to sell the entirety of the quantity offered on the market, we
consider that the full production is dispatched to retailers by the MO. The market equilibrium problem
is decomposable by time period. Given the quantities ptn offered by the GC in period t, the market
equilibrium problem (MEt) is formulated as follows:

(MEt) max
∑
n∈N

(
∑
b∈Bn

πtbQ
t
bx
t
b −

∑
s∈Sn

πtsQ
t
sx
t
s) (1a)

s.t.
∑
b∈Bn

Qtbx
t
b −

∑
s∈Sn

Qtsx
t
s +

∑
m∈Θn

(f tnm − f tmn) = ptn n ∈ N (λtn) (1b)

0 ≤ xtb ≤ 1 n ∈ N, b ∈ Bn (ytb) (1c)

0 ≤ xts ≤ 1 n ∈ N, s ∈ Sn (yts) (1d)

0 ≤ f tnm ≤ Cmaxnm nm ∈ A (rtnm) (1e)

where dual variables are indicated next to constraints. The objective function (1a) corresponds to the
global welfare. Constraints (1b) are the balance constraints at each node, imposing the production
offered by the GC is bought. Constraints (1c)-(1e) are bounds on variables. A noticeable difference with
a market without transmission constraints is that the MO may be limited in its choice of bids because
of transmission constraints. Note that under the proposed assumptions, MEt admits a feasible solution
for each time period for any production of the GC.

An optimal solution of MEt produces a solution of the market equilibrium problem. The spot price
in a period t and market n is given by the optimal value of dual variable λtn (Baker and Taylor, 1979;
Balachandran and Ramakrishnan, 1996).

The dual of MEt for period t is given by:

(MEDt) min
∑
n∈N

(ptnλ
t
n +

∑
b∈Bn

ytb +
∑
s∈Sn

yts +
∑
m∈Θn

Cmaxnm rtnm) (2a)

s.t. Qtbλ
t
n + ytb ≥ πtbQtb n ∈ N, b ∈ Bn(xtb) (2b)

−Qtsλtn + yts ≥ −πtsQts n ∈ N, s ∈ Sn(xts) (2c)

λtn − λtm + rtnm ≥ 0 nm ∈ A(f tnm) (2d)

ytb, y
t
s, r

t
nm ≥ 0 (2e)

Variables ytb and yts represent the welfare obtained from a bid. Some observations can be made from the
primal and dual of the market equilibrium problem about the values of variables in a market equilibrium.
Let us consider a market equilibrium and two adjacent nodes n and m. If rtnm > 0, then f tnm = Cmaxnm

by complementarity constraints as rtnm is the dual variable of (1e). Variable rtnm only appears in (2d) in
the constraints of the dual and must be minimized in the objective function (2a), thus rtnm = λtm−λtn if
λtm − λtn ≥ 0. Variables rtnm represent the spot price difference between nodes m and n if this difference
is positive and 0 otherwise. Constraint (2d) can be strengthened as follow as at most one term out of
rtnm and rtmn is strictly positive:

λtn − λtm + rtnm − rtmn = 0 (3)

Two nodes n and m can have different spot prices if and only if |f tnm − f tmn| = Cmaxnm . Furthermore, if
rtnm > 0, line nm ∈ A is said to be saturated. In this case, λtn < λtm, meaning that when considering two
nodes linked by a transmission line, the exporting one has the lowest spot price.

When considering transmission constraints, the market equilibrium is harder to determine than find-
ing the intersection of two curves, as in Figure 2. For instance, if the production bids are very cheap
in a bidding area n, the MO might not be able to buy all of them because of the limited capacity of
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transmission lines. This can potentially lead to different spot prices in different bidding areas. Figure
3 illustrates the impact of the transmission network on a given time period t for the following bidding
data:

– N = {1, 2};E = {(1, 2)}
– Cmax1,2 = 3 GWh
– The GC is bidding in node 1
– B1 = {(80, 0.5), (75, 0.5), (60, 1), (37, 0.5), (25, 0.5)}
– S1 = {(10, 1), (20, 1), (30, 1.5), (35, 0.5), (40, 0.5)}
– B2 = {(90, 1), (70, 1.5), (63, 0.5), (58, 0.5), (50, 1), (43, 0.6), (41, 0.4)}
– S2 = {(25, 1), (33, 1), (38, 0.5), (47, 1), (52, 1.5)}

Bids in node 1 and node 2 are represented respectively in blue and red. Demand and production bids
are represented respectively with a full line and dashed line. The upper graph represents the aggregated
demand and production curves by node and the resulting market equilibriums when the transmission
network is ignored. The spot price in node 1 is 30 e/MW and a spot price in node 2 is 52 e/MW.
The upper-left graph represents the aggregated curves considering both nodes linked by the transmission
network. The resulting spot price is 43 e/MW in both nodes. A demand of 2GW and a production
of 4.5 GW bought in node 1. The exceeding production of 2.5 GW is sent to node 2 to complete the
local demand, respecting the capacity of the transmission network. The upper-right graph represents
the aggregated curves considering both nodes and an additional production bid (20,0.3) placed in node
1 and represented in green. The exceeding production bought in node 1 is of 2.8 GW and can be sent
through the transmission network to node 2, resulting in a market equilibrium with a global spot price
of 41 e/MW. The extra bid is fully bought and the demand bid (41,0.5) in node 1 is now only partially
bought. The middle-left graph consider an additional production bid of (20,0.8), reaching the maximum
transmission capacity of the transmission line, breaking the obligation of having equal spot prices in nodes
1 and 2. As node 1 is exporting, the spot price in node 1 is smaller or equal than in node 2. The resulting
local spot prices illustrated in the middle-right figure are of 40 e/MW in node 1 and of 41 e/MW in
node 2. In both nodes, all production bids under the local spot price are fully bought as all demand bids
are above the spot price. Bids at the spot price are partially bought up to the dot on the corresponding
curve. The bottom-left graph represents the aggregated curves with an extra bid (20,1.3) placed in node
1. The exceeding production in node 1 is now of 3.3 GW, which strictly exceeds the capacity of the
transmission network. The capacity limiting the objective value of the market equilibrium problem of
the MO, variable rt1,2 > 0 and the spot price cannot be equal in both nodes. The bottom-right graph
represents the market equilibrium obtained with the additional bid. As without the additional bid, the
spot price in node 2 stays at 41 e/MW, but falls to 37 e/MW in node 1. Note that once the transmission
line from 1 to 2 is at its maximum capacity, the spot price in node 2 cannot decrease when increasing
the production bidden in node 1. This can play at the advantage of the GC if some production is bidden
in node 2 and can be sold at a higher price than if all bids are aggregated in a single bidding area.

In a market equilibrium solution, we define a group as a set of connected nodes having the same spot
price at a given time period. During each time period t, the nodes N are partitioned into a set of groups
Gt in which rtnm = 0 for all n,m ∈ G,G ∈ Gt.

Given the production of competitors, the spot prices can be bounded considering the offer of the GC
on the market.

Lemma 1 Consider a set of quantities ptn for the market equilibrium problem in period t, the resulting
market equilibrium solution at period t with groups Gt and the spot prices λtn. Increasing a quantity ptn
cannot increase the spot price in any group.

Proof Consider a bid s ∈ Sn in a group G ∈ Gt such that increasing Qts of a quantity q in period t
increases the spot price in node n′ in group G′ ∈ Gt. If πts > λtn, then the extra quantity q is not bought
and the spot prices remain unchanged. Otherwise, πts = λtn and the spot price λtG′ can increase only if
after modifying the bidden quantities, quantity q is fully bought in addition to a positive quantity q′

not previously sold in G. Buying q′ is performed if and only if it increases the global welfare. If so, the
quantity q′ bought in G′ could have been bought without increasing Qts contradicting the initial market
equilibrium hypothesis.

It follows from Lemma 1 and the assumption that the spot price is maximal, that λtn can be expressed
as an upper step-wise decreasing function in ptm for all m ∈ N as illustrated in Figure 4. Values qti are
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Fig. 4 Spot price without transmission network

quantities at which the spot price decreases. de la Torre et al. (2002) proved that these values are fixed
parameters when considering a single day-ahead market but vary depending on all quantities ptn, n ∈ N
when considering coupled markets.

2.3 Market equilibrium constraints

To model BP, we propose a bilevel formulation where the GC acts as the leader. It maximizes the profit
arising from selling the production, determined by the solution of the UC problem, at spot prices. The
MO is the follower determining the market equilibrium solution:

(BP −BL) max
ptn

∑
n∈N

(∑
t∈T

λtnp
t
n

)
− c(pn) (4a)

s.t. pn ∈ Pn n ∈ N
(4b)

∀t ∈ T min
λt,ytb,y

t
s,r

t
nm

∑
n∈N

(ptnλ
t
n +

∑
b∈Bn

ytb +
∑
s∈Sn

yts +
∑
m∈Θn

Cmaxnm rtnm) (4c)

s.t. Qtbλ
t
n + ytb ≥ πtbQtb n ∈ N, b ∈ Bn

(4d)

−Qtsλtn + yts ≥ −πtsQts n ∈ N, s ∈ Sn
(4e)

λtn − λtm + rtnm − rtmn = 0 nm ∈ A
(4f)

ytb, y
t
s, r

t
nm ≥ 0 (4g)

The leader in the first level controls the quantities ptn produced and offered on the market, as solution of
problem (4b). The follower in the second level controls the remaining variables, among which, the spot
prices λtn, and is formulated by MEDt for each time period. Under the hypotheses considered in the
previous section regarding the bids of competitors, the optimal value of the second level is well defined
for any production levels ptn as the problem is a feasible linear program.

Assuming that c(pn) is an increasing lower semi-continuous function in pn, the optimal value of BP
is well defined. Classical unit commitment models respect this assumption since i) production costs are
generally quadratic, ii) discontinuities appear with start-up costs and iii) the spot prices are upper semi-
continuous functions. The objective function of (4) is thus an upper semi-continuous function in ptn for
all n ∈ N admitting a global maximum.

9



Several optimal solutions can exist in the second level if several bids are made at the spot price and
the MO can choose any subset of these bids to satisfy the demand. Furthermore, being the dual variables
of the balance constraints, the spot prices can be degenerated, i.e. several different values are possible in
an optimal solution. Therefore, the second level of the proposed bilevel formulation is not a point-to-point
map for values of variables ptn and an optimistic assumption is made. This assumption considers that the
follower always chooses the best solution for the leader among the set of optimal solutions of the second
level. This yields the following properties for BP-BL:

– the GC has priority over the competitors when bidding at the same price, which can practically be
ensured by decreasing the optimal bidding prices by a small amount,

– the MO maximizes spot prices in the chosen market equilibrium solution, which satisfies the assump-
tion made on the market equilibrium problem.

Since it is linear and continuous, the follower problem can be reformulated as a set of equilibrium
constraints by using complementarity constraints of the market equilibrium primal and dual formulations:

xtb
(
Qtbλ

t
n + ytb − πtbQtb

)
= 0 t ∈ T, n ∈ N, b ∈ Bn (5a)

xts
(
−Qtsλtn + yts + πtsQ

t
s

)
= 0 t ∈ T, n ∈ N, s ∈ Sn (5b)

ytb
(
1− xtb

)
= 0 t ∈ T, n ∈ N, b ∈ Bn (5c)

yts
(
1− xts

)
= 0 t ∈ T, n ∈ N, s ∈ Sn (5d)

(Cmaxnm − f tnm)rtnm = 0 t ∈ T, nm ∈ A (5e)

The bilinear terms xtby
t
b and xtsy

t
s can be replaced by ytb and yts by (5c) and (5d). We can then rewrite

constraints (5a) and (5b) as:

ytb = −Qtbλtnxtb + πtbQ
t
bx
t
b t ∈ T, n ∈ N, b ∈ Bn (6a)

yts = Qtsλ
t
nx

t
s − πtsQtsxts t ∈ T, n ∈ N, s ∈ Sn (6b)

Let us replace rtnm in (5e) by λtm − λtn:

Cmaxnm rtnm = f tnm(λtm − λtn) t ∈ T, nm ∈ A (7)

Lemma 2 Constraints (7) are valid for BP-BL.

Proof Constraints (5e) can be rewritten as:

Cmaxnm rtnm = f tnmr
t
nm

As previously mentioned rtnm represents the spot price difference between nodes m and n, λtm − λtn,
if this difference is positive and 0 otherwise. Thus,

– if rtnm = 0, then both sides equal 0,
– if rtnm > 0, then rtnm = λtm − λtn.

Constraints (6) and (7) are called reduced complementarity constraints. Let P 1 be the solution space
of constraints of MEt (1) and MEDt (2) combined with the complementarity constraints (5), which
defines the optimal solution space of MEt, and P 2 be the solution space of the same constraints MEt

(1) and MEDt (2) combined with the reduced complementarity constraints (6) and (7).

Lemma 3 The solution spaces defined by P 1 and P 2 are equivalent.

Proof – P 1 ⊆ P 2: consider a solution (x, y, λ, π, r, f) ∈ P 1. This solution satisfies (7) as described in
Lemma 2. The solution also satisfies (6) as these constraints are derived from (5) which are satisfied
by (x, y, λ, π, r, f).

– P 2 ⊆ P 1: consider a solution (x, y, λ, π, r, f) ∈ P 2. By substituting ytb in (2b) using (6a), we obtain:

(−λtn + πtb)Q
t
bx
t
b ≥ (−λtn + πtb)Q

t
b (8)

If
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* πtb > λtn, constraints (1c) and (8) lead to xtb = 1,
* πtb = λtn, constraint (6a) implies that ytb = 0,
* πtb < λtn, constraint (6a) implies that xtb = 0 and ytb = 0 as these variables are positive.

Thus for any t ∈ T, b ∈ B, either ytb = 0 or xtb = 1, and constraints (5c) are satisfied by (x, y, λ, π, r, f).
Similarly, constraints (5d) are implied by (1d), (8) and (6b).
As constraints (5c) and (5d) are valid for P 2, ytb, y

t
s can be replaced by xtby

t
b and xtsy

t
s in constraints

(6a) and (6b) respectively, leading to constraints (5a) and (5b).
Constraint (5e) is also satisfied by (x, y, λ, π, r, f):
– if rtnm = 0, then this constraint is trivially satisfied,
– if rtnm > 0, then rtnm = λtm−λtn. Constraints (5e) are equivalent to constraints (7) by substitution.

The reduced complementarity constraints (6)-(7) of Lemma 3 combined with those of the primal and
dual of the market equilibrium problem can replace the second level problem of BP-BL. Variables ytb, y

t
s

can be substituted by using (6a) and (6b). This results in the following MPEC:

(BP −MPEC) max
∑
n∈N

(∑
t∈T

λtnp
t
n

)
− c(pn) (9a)

s.t. pn ∈ Pn n ∈ N (9b)∑
b∈Bn

Qtbx
t
b −

∑
s∈Sn

Qtsx
t
s +

∑
m∈Θn

(f tnm − f tmn) = ptn t ∈ T, n ∈ N (9c)

(λtn − πtb)(1− xtb) ≥ 0 t ∈ T, n ∈ N, b ∈ Bn (9d)

(−λtn + πts)(1− xts) ≥ 0 t ∈ T, n ∈ N, s ∈ Sn (9e)

(−λtn + πtb)x
t
b ≥ 0 t ∈ T, n ∈ N, b ∈ Bn (9f)

(λtn − πts)xts ≥ 0 t ∈ T, n ∈ N, s ∈ Sn (9g)

λtn − λtm + rtnm − rtmn = 0 t ∈ T, nm ∈ A (9h)

Cmaxnm rtnm = f tnm(λtm − λtn) t ∈ T, nm ∈ A (9i)

0 ≤ xtb ≤ 1 t ∈ T, n ∈ N, b ∈ Bn (9j)

0 ≤ xts ≤ 1 t ∈ T, n ∈ N, s ∈ Sn (9k)

0 ≤ f tnm ≤ Cmaxnm t ∈ T, nm ∈ A (9l)

rtnm ≥ 0 t ∈ T, nm ∈ A (9m)

Constraints (9c)-(9m) define market equilibrium constraints for all t ∈ T . Constraints (9c) are the
balancing contraints, constraints (9d)-(9g) ensure bids in-the-money are bought and bids out-of-the-
money are rejected. Constraints (9h)-(9i) link the flows with the differences of spot prices between the
bidding areas.

3 MILP reformulation

BP-MPEC contains a continuous bilinear objective and several bilinear constraints where all bilinear
terms contain a spot price variable. The linearization of the bilinear terms is challenging since all products
involve continuous variables.

Let Λt be the ordered set of all bidding prices of competitors at period t over all bidding areas

including the minimum and maximum bidding prices λt and λ
t

allowed by the MO. Prices in Λt are
denoted by λ̃ti, i ∈ It where It is the set of price indices of Λt.

Lemma 4 There exists an optimal solution of BP such that λtn ∈ Λt for all n ∈ N, t ∈ T .

Proof Consider an optimal solution with a spot price λtn that is not in Λt. Increasing λtn to λ̃ti = min{λ ∈
Λt|λ > λtn} preserves the validity of constraints (9d)-(9g) and potentially increases the objective value.
For all m ∈ Θn:
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– if rtnm = 0, λtm is increased to λ̃ti in order to preserve the validity of constraints (9h) and (9i).
– if rtnm > 0, rtnm is decreased by the same amount as λtn is increased in order to satisfy constraints

(9h) and (9i). Variable rtnm may become negative in this procedure if λtm ∈]λtn, λ̃
t
i[. In this case, λtm

is not in Λt either and can also be increased to λ̃ti.

Once the increase of λtn is propagated to rtnm and λtm for each adjacent node m, the procedure can be
iterated until all spot prices are in Λt.

It follows from Lemma 4 that relevant spot prices values λtn in an optimal solution can be discretized to
values in Λt by using Special Ordered Sets (SOS) of type 1 (Beale and Forrest, 1976). Consider binary
variables ztin, i ∈ It,

ztin =

{
1 if λtn = λ̃ti
0 otherwise.

The following constraints restrict variables λtn in BP-MPEC to values in Λt:∑
i∈It

ztin = 1 t ∈ T, n ∈ N (10a)

λtn =
∑
i∈It

λ̃tiz
t
in t ∈ T, n ∈ N (10b)

Sets {ztin}i∈It for all t ∈ T and n ∈ N are SOS of type 1, meaning exactly one variable in each set must
be different from 0. Constraints (10a)-(10b), lead to an extended formulation of BP-MPEC where the
continuous spot price variables are substituted by binary variables. All products of continuous variables
in BP-MPEC can be rewritten as the product of a binary and a continuous variable which can easily be
linearized. The following variables and inequalities are used for linearization for all t ∈ T, n ∈ N, i ∈ It:

P tin = ztinp
t
n 0 ≤ P tin ≤ Q

t

nz
t
in P tin ≤ ptn P tin ≥ ptn −Q

t

n(1− ztin) (11a)

Xt
ib = ztinx

t
b 0 ≤ Xt

ib ≤ ztin Xt
ib ≤ xtb Xt

ib ≥ xtb + ztin − 1 b ∈ Bn
(11b)

Xt
is = ztinx

t
s 0 ≤ Xt

is ≤ ztin Xt
is ≤ xts Xt

is ≥ xts + ztin − 1 s ∈ Sn
(11c)

F
t

inm = ztinf
t
nm 0 ≤ F tinm ≤ Cmaxnm ztin F

t

inm ≤ f tnm F
t

inm ≥ f tnm − Cmaxnm (1− ztin) m ∈ Θn
(11d)

F tinm = ztinf
t
mn 0 ≤ F tinm ≤ Cmaxnm ztim F tinm ≤ f tnm F tinm ≥ f tnm − Cmaxnm (1− ztim) m ∈ Θn

(11e)

Linearization constraints as (11) usually introduce a large LP gap due to the introduction of additional
variables that are weakly linked to the initial model. Valid inequalities linking these new variables and
the initial variables can tighten the formulation. By multiplying constraint (10a) by variables ptn, x

t
b, x

t
s

and f tnm respectively we obtain the following constraints:∑
i∈It

P tin = ptn t ∈ T, n ∈ N (12a)

∑
i∈It

Xt
ib = xtb t ∈ T, n ∈ N, b ∈ B (12b)

∑
i∈It

Xt
is = xts t ∈ T, n ∈ N, s ∈ S (12c)

∑
i∈It

F
t

inm = f tnm t ∈ T, nm ∈ A (12d)

∑
i∈It

F tinm = f tnm t ∈ T, nm ∈ A (12e)
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These constraints illustrate that the new variables are a disaggregation by price of the initial ones. The
balance constraint (9c) can also be disaggregated by price by multiplying them by the corresponding
variables ztin: ∑

b∈Bn

QtbX
t
ib −

∑
s∈Sn

QtsX
t
is +

∑
m∈Θm

(F
t

inm − F
t
imn) = P tin t ∈ T, n ∈ N, i ∈ It (13)

Multiplying constraints by binary variables as done for constraints (12) and (13) is similar to the RLT
procedure proposed by Sherali and Adams (1994) to tighten the linear programming relaxation of models
with binary variables. The formulation derived from BP-MPEC by adding constraints (10), (11), (12)
and (13) is denoted BP-MILP. The complete formulation is presented in Appendix A.

4 Price elimination

The discretization of λtn through sets It is heavy as it introduces |T |(|B| + |S|) binary variables to the
formulation in addition to the continuous variables resulting from linearization. The prices to consider
at each node can be restricted to a smaller set than Λt. We define in this section sets Itn containing the
indices of prices in Λt to consider as possible spot prices in an optimal solution.

Lemma 1 allows to bound the spot prices at each node. The highest, respectively lowest, possible
spot prices in an optimal solution are those obtained when solving the market equilibrium problem with
the GC bidding no capacity, respectively its full capacity, at each node and period. These bounds on the
spot prices are obtained by solving two times MEDt for each time period, first fixing ptn = 0, then fixing

ptn = Q
t

n. At each node n and time period t, let itn, respectively ıtn, be the index in Λt of the minimum,
respectively maximum, possible spot price. The indices of the spot prices to consider in sets Itn can be
restricted to {itn, . . . , ıtn}.

Indices in sets Itn can also be restricted based on potential groups in a market equilibrium. Spot prices
can be equal or different between nodes depending whether they are in the same group or not. Consider
an index i ∈ {itn, . . . , ıtn} such that λ̃ti ∈ Λt corresponds to a price bidden in a node m 6= n. Then the
spot price at node n can be equal to λ̃ti if and only if it is equal to λ̃ti at node m and n and m are in the
same group. This allows to eliminate from Itn indices i ∈ [itn, ı

t
n] such that λ̃ti is bidden at a node m 6= n

and i 6∈ [itm, ı
t
m]. Let Ĩtn be the set of all indices of prices in Λt bidden at node n at period t included in

{itn, . . . , ıtn}. Then Itn is defined as follow:

Itn =
⋃
m∈N

(Ĩtm ∩ {itn, . . . , ıtn})

Figure 5 provides an illustration of the potential spot prices by nodes for a time period considering 30
bidding prices in a network of 4 nodes. All bids are represented by a color associated to a node on the
first line. The indices itn and ıtn are indicated for each node. The price indices considered in Itn are
local price indices in {itn, . . . , ıtn} in addition to the prices indices bidden in another nodes m that are in
{itn, . . . , ıtn} ∩ {itm, . . . , ıtm}. The resulting average number of prices per node is of 7.5. Note that in this
example, there does not exist any common spot price for all nodes meaning there are at least two groups
in an optimal solution.

When using sets Itn, the proportion bought for some bids in B and S in a feasible solution can be
trivially fixed. For all bids b ∈ Bn:

– if πtb > λ̃tıtn
, then xtb = 1,

– if πtb < λ̃titn
, then xtb = 0,

and conversely for bids in S.

5 Bidding at marginal costs

The literature on price-maker bidding considers two approaches: bidding at unconstrained prices (de la
Torre et al., 2002; Bakirtzis et al., 2007; Ruiz and Conejo, 2009) or bidding at marginal production costs
(Dalby, 2017; Kardakos et al., 2014). The MPEC formulation proposed for BP can easily be adapted to

13



It 1 it1 5 it3 10 it2 i
t
1

15 it4 i
t
3

20 i
t
2

25 i
t
4

30

It1

It2

It3

It4

Fig. 5 Price discretization by node for a given period

bid at marginal production cost in a problem BPM . We consider that each generator makes a single bid
(πj , p

t
jn) at a fixed marginal production cost πj for each generator j ∈ Jn at each time period. Set Jn is

composed of the generators at node n.
In BP, it is assumed that the GC can sell its full bidden production. The same does not hold for

BPM as some generators might have a marginal cost above the spot price and can therefore not sell
any production. Constraints (9g) rejecting such bids in BP-MPEC can be added for the bids of the GC,
leading to the following formulation derived from BP-MPEC:

(BPM −MPEC) max
∑
n∈N

∑
j∈Jn

(∑
t∈T

λtnp
t
jn

)
− c(pjn) (14a)

s.t. pjn ∈ P jn n ∈ N, j ∈ Jn (14b)∑
b∈Bn

Qtbx
t
b −

∑
s∈Sn

Qtsx
t
s t ∈ T, n ∈ N (14c)

+
∑
m∈Θn

(f tnm − f tmn) =
∑
j∈Jn

ptjn

(λtn − πtb)(1− xtb) ≥ 0 t ∈ T, n ∈ N, b ∈ Bn (14d)

(−λtn + πts)(1− xts) ≥ 0 t ∈ T, n ∈ N, s ∈ Sn (14e)

(−λtn + πtb)x
t
b ≥ 0 t ∈ T, n ∈ N, b ∈ Bn (14f)

(λtn − πts)xts ≥ 0 t ∈ T, n ∈ N, s ∈ Sn (14g)

(λtn − πjn)ptjn ≥ 0 t ∈ T, n ∈ N, j ∈ Jn (14h)

λtn − λtm + rtnm ≥ 0 t ∈ T, nm ∈ A (14i)

Cmaxnm rtnm = λtmf
t
nm − λtnf tnm t ∈ T, nm ∈ A (14j)

0 ≤ xtb ≤ 1 t ∈ T, n ∈ N, b ∈ Bn (14k)

0 ≤ xts ≤ 1 t ∈ T, n ∈ N, s ∈ Sn (14l)

0 ≤ f tnm ≤ Cmaxnm t ∈ T, nm ∈ A (14m)
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rtnm ≥ 0 (14n)

where P jn is the feasible solution space for generator j in node n and constraint (14h) rejects bids from
generators with a marginal cost above the spot price. The same reformulation technique used for BP-
MPEC can be applied by introducing variables P tijn = ptjnz

t
in. The spot prices are discretized in the same

way adding marginal production costs to sets Λt. The linearized formulation BPM -MILP is presented in
Appendix B.

6 Heuristic methods

In this section we describe two heuristic solution methods based on the properties of the spot prices.

6.1 Iterative price-taker algorithm

A simple price-taker formulation with estimated spot prices λ̃tn is considered as follow:

(BP − PT ) max
∑
n∈N

∑
t∈T

λ̃tnp
t
n − c(pn) (15a)

s.t. pn ∈ Pn (15b)

A feasible solution of a bilevel problem can be computed by iteratively solving a leader and a follower
subproblem. In the leader subproblem, variables of the follower are fixed and variables of the leader
are optimized and conversely for the follower subproblem. For BP, the leader subproblem is BP-PT
fixing spot prices {λtn}t∈T,n∈N as in a price-taker formulation and the follower subproblem is MEDt

fixing bidden quantities {ptn}t∈T,n∈N and computing spot prices. A feasible solution of BP is found with
algorithm BP-start as follow:

1. Set pt∗n = ptn = ptn,0, t ∈ T, n ∈ N ,

2. Initialize λ̃tn by solving MEDt for each time period,

3. z∗ =
∑
n∈N

∑
t∈T

(
λ̃tnp

t
n0

)
− c(pn0),

4. Update ptn by solving BP-PT,
5. Update λ̃tn by solving MEDt for each time period,

6. Set z =
∑
n∈N

∑
t∈T

(
λ̃tnp

t
n

)
− c(pn)

7. If z > z∗, set z∗ = z, pt∗n = ptn, go to step 4
8. Return z∗ and pt∗n

where ptn,0 is an initial bidden quantity and pt∗n is the best bidden quantity found. In the following,
BP-start provides an initial solution for BP by setting ptn,0 to 0. This algorithm can be adapted to obtain

a feasible solution of BPM by setting ptnj = 0 for all generators having a marginal cost above the spot

price λ̃tn before step 6.

6.2 Iterative Aggregation Disaggregation algorithm

In a solution of BP, the spot price in a group at a given time period is based on bids within this group,
the imported/exported quantities of this group and the production of the GC and is independent of
the structure of the network within this group. As already illustrated in Figure 3, a spot price is much
simpler to compute when the transmission constraints are not blocking the selection of bids of the MO.
We already presented some conditions under which two nodes cannot be in the same group in Section
4 through the spot prices in sets Itn. Based on these observations, an efficient clustering of nodes can
reduce the difficulty of solving BP.

Bids in different nodes of the same group can be aggregated before determining a market equilibrium
for the groups considered as illustrated in Figure 6 where nodes 2 to 4 are considered in a single group.
Aggregating the bids in a group of nodes can reduce significantly the size of the problem by considering
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fewer spot prices, removing the transmission constraints within groups and reducing the number of lines
between groups to consider. In Figure 6, aggregating the nodes 2,3 and 4 results in a two nodes network
with only two spot prices to establish (rather than four) and a single transmission line with a capacity
equal to the sum of the capacities Cmax1,2 and Cmax1,3 . The drawback of performing an aggregation of
nodes is the loss of information that can lead to non-optimal or infeasible solutions. A way to improve
or repair the solution of an aggregated formulation is to retrieve and use some aggregated information
by a disaggregation procedure. This scheme corresponds to classical aggregation and disaggregation
techniques used to solve large scale problems described by Rogers et al. (1991).

Consider a set of groups over time periods G =
⋃
t∈T Gt. When aggregating the nodes at period t ∈ T ,

the transmission network is modified into a graph (Gt, Et). Edges between two groups G1 and G2 in the
original transmission network are aggregated as a single edge G1G2 with a capacity equal to the sum
of the capacities of the aggregated edges. Set At is the set of arcs corresponding to edges in the graph
(Gt, Et). Consider the following aggregated formulation of BP with groups G where λtG is the spot price
in group G ∈ Gt:

(BP − G) max
∑
G∈Gt

∑
n∈G

(
λtG
∑
t∈T

ptn − c(pn)

)
(16a)

s.t. pn ∈ Pn n ∈ N (16b)∑
b∈BG

Qtbx
t
b −

∑
s∈SG

Qtsx
t
s t ∈ T,G ∈ Gt (16c)

+
∑

GG′∈At
(f tGG′ − f tG′G) =

∑
n∈G

ptn

(λtG − πtb)(1− xtb) ≥ 0 t ∈ T,G ∈ Gt, n ∈ G, b ∈ Bn (16d)

(−λtG + πts)(1− xts) ≥ 0 t ∈ T,G ∈ Gt, n ∈ G, s ∈ Sn (16e)

(−λtG + πtb)x
t
b ≥ 0 t ∈ T,G ∈ Gt, n ∈ G, b ∈ Bn (16f)

(λtG − πts)xts ≥ 0 t ∈ T,G ∈ Gt, n ∈ G, s ∈ Sn (16g)

λtG1
− λtG2

+ rtG1G2
≥ 0 t ∈ T,G1G2 ∈ At (16h)

CmaxG1G2
rtG1G2

= λtG2
f tG1G2

− λtG1
f tG1G2

t ∈ T,G1G2 ∈ At (16i)

0 ≤ xtb ≤ 1 t ∈ T, n ∈ N, b ∈ Bn (16j)

0 ≤ xts ≤ 1 t ∈ T, n ∈ N, s ∈ Sn (16k)

0 ≤ f tG1G2
≤ CmaxG1G2

G1G2 ∈ At (16l)

rtG1G2
≥ 0 G1G2 ∈ At (16m)

This formulation corresponds to aggregating the balance constraints of BP-MPEC in constraint (16c),
ignoring flow constraints within each group. This model can be reformulated into a MILP similar to
BP-MPEC. A feasible solution of BP-G is feasible for BP if and only if there exist flows within each
group satisfying the demand at each node. This is done by checking for all groups G ∈ Gt, t ∈ T the
feasibility of the initial demand and transmission constraints :
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(FLOW t
G)

∑
n∈G

∑
b∈Bn

Qtbx
t∗
b −

∑
n∈G

∑
s∈Sn

Qtsx
t∗
s

+
∑

m∈Θn,m∈G
(f tnm − f tmn) +

∑
G2∈ΘG1

(f t∗G1G2
− f t∗G2G1

) = pt∗n t ∈ T, n ∈ G (17a)

0 ≤ f tnm ≤ Cmaxnm t ∈ T, nm ∈ A,n,m ∈ G (17b)

where xt∗b , x
t∗
s , f

t∗
G1G2

, pt∗n are the values in the feasible solution of BP-G.
In an optimal solution of BP-G, if there exists a group G ∈ Gt such that FLOW t

G is not feasible,
then G is partioned to restore violated transmission constraints in BP-G. The partitioning is performed
by running an augmenting path algorithm and partitioning nodes in G along cuts where all lines are at
their maximum capacity.

The Iterated Aggregation-Disaggregation algorithm (IAD) solves iteratively formulation BP-G until a
feasible solution of BP is found, starting with Gt = N for all t ∈ T and disaggregating groups Gt each
time FLOW t

G is not feasible. Algorithm IAD iterates at most until all groups are partitioned into single
nodes in which case BP-G is equivalent to BP-MPEC. The initial groups G of IAD can be improved
considering observations made in Section 4. In a group G ∈ Gt, feasible prices are prices that are feasible
for all nodes in the group, that is ItG = ∩n∈GItn. If there exists a group G ∈ Gt such that ItG = ∅,
then the optimal solution of BP-G cannot be feasible for BP when discretizing prices. Such a group G is
partitioned by removing a node n such that ItG\n 6= ∅. If no such node exists, nodes are removed from
G at random until there exists a feasible price for the remaining nodes of G. In the example of Figure
5, there exists no feasible price for a group containing all four nodes. The resulting partitioning can be
{1, 2, 3} and {4} or {1} and {2, 3, 4}.

In order to retrieve a feasible repaired solution of BP at each iteration of IAD where the solution is
not feasible for BP, the productions pn found at the current iteration are used as initial production in
BP-start to obtain a feasible solution of BP. The flowchart of algorithm IAD is presented in Figure 7.
Step Cut groups (1) corresponds to the partitioning of groups if there exists a group G such that ItG = ∅,
step Cut groups (2) corresponds to the partitioning of a group in an optimal solution of BP-G where the
flow is not feasible.

When solving IAD, if there exists a time period t ∈ T such that Gt = {N}, then flow constraints
disappear from BP-G in this period. The production of the GC at period t is then only constrained
by (16c)-(16g) regarding the market equilibrium constraints. This leads to a single node formulation as
presented by de la Torre et al. (2002) where the spot price λt{N} can then be expressed as a piece-wise
linear function depending on the total production of the GC at period t, as already illustrated in Figure
4. Let rti be the residual demand at price i ∈ It{N}, that is, the production the GC can sell with priority

over competitors at price λ̃ti:

rti =
∑

b∈B:πtb≥λ̃
t
i

Qtb −
∑

s∈S:πts<λ̃
t
i

Qts

de la Torre et al. (2002) showed on a single node that if the production of the GC lies in an interval
]rti+1; rti ] then the spot price λtn is equal to λ̃ti+1. After price discretization, constraints (16c)-(16i) of
BP-G for periods t ∈ T such that Gt = {N} can be replaced by the following constraints:∑

i∈It
zti{N} = 1 (18a)

∑
i∈It

P ti{N} =
∑
n∈N

ptn (18b)

P ti{N} ≤ r
t
iz
t
i{N} i ∈ It{N} (18c)

P ti{N} ≥ r
t
i+1z

t
i{N} i ∈ It{N} (18d)

0 ≤ P ti{N} ≤ Q
t

nz
t
i{N} i ∈ It{N} (18e)
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Fig. 7 IAD flowchart

P ti{N} ≥
∑
n∈N

ptn −
∑
n∈N

Q
t

n(1− zti{N}) i ∈ It{N} (18f)

zti{N} ∈ {0, 1} i ∈ It{N} (18g)

Formulation BP−{N} where all nodes are aggregated during all time periods is presented in Appendix C.

6.3 SOS-narrowing

For each time period and node, a special ordered set composed of binary variables {ztin}i∈Itn is used to
represent the possible spot prices. Fractional values of these variables obtained during the branching
process may give some indication on prices that are unlikely to be optimal spot prices. Consider the
following values at a node of the branching tree for variables {ztin}i∈Itn with Itn = {1, . . . , 10} :
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i 1 2 3 4 5 6 7 8 9 10
zti 0 0.02 0.06 0.61 0.20 0.08 0.03 0 0 0

These values can roughly be seen as a discrete probability distribution. Prices up to price πt3 and after
πt6 can be considered as unlikely to be an optimal bidding price. These prices can be eliminated in the
remaining subtree of the branch and bound tree in order to narrow the value of the potential prices
considered. Consider an elimination coefficient α ∈ [0, 0.5] and the following indices:

itm = min{i ∈ It :
∑

i′∈It,i′≤i

zti′ ≥ α} ; itM = max{i ∈ It :
∑

i′∈It,i′≥i

zti′ ≥ α}

As
∑
i′∈It z

t
i = 1, ztim ≤ ztiM , at each node of the branching tree, the prices with indices out of

{itm, . . . , itM} are eliminated by setting the corresponding variables to 0 through local cuts. These cuts
reduce the number of binary variables and thus the size of the solution space during the branching
procedure but may also eliminate optimal solutions from the model.

In order to avoid eliminating optimal solution too early in the branching tree and to limit the size
of the branch and bound tree, the value of α is increased from an initial value up to 0.5 following a
sigmoid curve as the number of nodes explored increases. This increases the number of prices eliminated
in the subtrees as the number of nodes explored increases. Consider α1 as an initial value for α, n as the
maximum number of nodes that can be explored and αk as the elimination coefficient used at node k.
Then,

αk =
1

1 + e−
Θk
n +Θ

; Θ = ln
1− α1

α1

We have αk ≤ 0.5 for all k ∈ [1, n] and αn+1 > 0.5. Figure 8 illustrates the value of αk throughout the
iterations of the heuristic.

In the following the SOS narrowing heuristic with values α and n is referred to as SOS-n(α, n).

7 Numerical results

We present in this section computational results to assess the quality of models and solution methods
proposed in this paper. We first provide a description of the characteristics of the instances. Some
preliminary computational experiments are then performed on small instances with exact methods.
Finally larger instances are only solved through the heuristic methods to illustrate their scalability. An
analysis of the impact of PCR on the profit of the GC is performed. The impact of restricting bidding
prices to marginal production costs and the resulting impact on the spot prices is also analysed. All the
results reported are averages over five instances.

Tests are performed on a 8-core i7-4790K 4.00 GHz with 32 Gb of RAM memory and the computation
time is limited to 1800 seconds. All reported times include instances that are not solved to optimality in
1800 seconds. All methods are implemented using Julia 1.0 with packages JuMP 0.18.5 and CPLEX 0.4.1
interfaced with ILOG CPLEX 12.7. The default parameters of CPLEX are used. The SOS parameter of
CPLEX available for special ordered sets is deactivated as no improvement in the solving time has been
observed during the tests performed with this feature.
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7.1 Data

The instances used are built from several sources234 and consider 24 time periods. Each bid of a competi-
tor represents a generator similar to those of the GC in terms of capacity. The bidding prices considered
reflect bids observed on the EPEX market. Figure 9 illustrates the hourly amount of electricity traded
and the average spot price and demand over instances with 200 bids without considering bids of the GC.
The instances are available on the github repository https://github.com/jdeboeck/BPUC.
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Fig. 9 Average demand (GWh) and spot-price (e/MWh) of instances with 200 bids

The generators considered in the UC are thermal units in a bus to bus system. This model integrates
linearized quadratic production costs, start-up and shut-down costs related to the online/offline time,
ramping up and down constraints and minimum online and offline time. The UC formulation contains
three binary variables per generator and time period. The data for generators is provided by Carrión
and Arroyo (2006) and have been used in multiple studies. Ten generators types are given. The instances
considered replicate these generators to obtained the desired number of generators. In case (|J |−5) mod
5 = 0, the five generators at odd indices are added.

The transmission network is composed of 4 nodes representing The Netherlands, Belgium, France
and Germany. Daily average spot prices on the EPEX and BELPEX are similar for Belgium, France
and Germany. The total bidden quantity of competitors are randomly partitioned in each country in
following proportions:

Netherlands Belgium France Germany
15% 15% 35% 35%

The transmission network depicted in Figure 10 shows transmission lines between each pair of bordering
countries. It has been observed in EPEX that hourly spot prices are often equal between France and
Germany. The values for capacities of the transmission lines have been chosen in order that two or three
local spot prices are defined over the four markets at each time period in a market equilibrium to be
compatible with the EPEX data.

2 https://www.epexspot.com/fr/
3 https://www.entsoe.eu/data/
4 https://www.belpex.be
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7.2 Exact formulations for BP

Table 1 presents numerical results obtained with algorithm BP-start on small instances as well as the
impact of adding the obtained starting solution to BP-MILP. Gaps are relative to the best bound found
with BP-MILP with a starting solution.

Instance Start heuristic
BP-MILP

No start With start
|S| |J | Count. Time (s) Gap (%) Iter. Time (s) Gap (%) Time (s) Gap (%)
100 5 BE 0.63 0.85 1.45 191.11 0 118.55 0
100 10 BE 0.97 3.35 2.11 1097.45 1.19 864.91 0
200 5 BE 0.85 0.97 1.58 298.11 0 99.16 0
200 10 BE 1.23 3.02 2.23 1800 10.85 1653.31 0.74

Table 1 Start solution impact on BP-MILP

Sets S and J are the set of competitor bids and the set of generators of the GC. Column Count. are
the countries where the GC is bidding and Iter. is the number of iterations of BP-start. Feasible solutions
with a small gap to optimality can be found with BP-start in a short time. Adding a starting solution
to BP-MILP improves significantly the solving time and the end gap for unsolved instances.

Figure 11 shows the evolution with respect to time of the relative gap to the best solution found for
all methods for an unsolved instance. Bounds are in the upper half of the figure.

The upper bound on BP falls down to a value close to optimality in a short time before stagnating.
Finding integer solution seems to be difficult. Without using a starting solution, the first integer solution
with a gap under 20% is found after 931 seconds, the final gap being 12.81% with only three other integer
solutions found. With a starting solution, a total of six feasible solutions are found, the best one having
a relative gap of 1.09%.

Curve Bound - UC relax. is obtained by solving BP-MILP and relaxing the integrality constraint of
the UC variables, which provides an upper bound for BP in the smallest time. This partial relaxation
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Instance BP-MILP - without (12) and (13) BP-MILP
|S| |J| Count. LP gap (%) End gap (%) Time (s) LP gap (%) End gap (%) Time (s)
100 5 BE 605.42 298.34 1800 12.48 0 118.55
200 5 BE 351.12 217.53 1800 3.37 0 99.16
100 10 BE 1303.62 665.22 1800 23.38 0 864.91
200 10 BE 459.84 341.62 1800 8.2 0.75 1653.31

Table 2 Strengthening BP-MILP

Instance LP-relaxation BP-MILP BP-MILPR
|S| |J| Count. LP gap (%) Time (s) Opt. End gap (%) Time (s) Nodes Bound gap (%) Time (s)
200 10 BE 8.2 2.93 2 0.75 1653.31 4283 0.83 448.27
300 10 BE 5.74 3.01 0 0.85 1800.41 4257 0.9 180.43
400 10 BE 3.94 3.15 1 0.31 1651.59 3419 0.35 130.91
200 20 BE 39.74 10.24 0 25.88 1800.44 3 25.21 1822.9
300 20 BE 17.83 11.3 0 8.46 1800.22 18 8.15 1827.11
400 20 BE 11.27 11.1 0 4.46 1800.26 0 3.3 1805.42
200 10 BE-FR 6.52 3.12 2 0.6 1661.77 2782 0.67 329.0
300 10 BE-FR 3.99 3.41 1 0.41 1726.39 744 0.31 149.78
400 10 BE-FR 3.52 3.15 0 0.6 1800.26 113 0.23 197.14
200 20 BE-FR 17.61 12.63 0 6.54 1800.12 0 5.67 1803.96
300 20 BE-FR 9.79 14.65 0 3.06 1800.21 0 2.59 1801.87
400 20 BE-FR 7.49 12.97 0 2.42 1800.31 0 1.64 1803.87

Table 3 Numerical results for BP-MILP

of the integer variables of BP-MILP is denoted BP-MILPR in the following. The relative gap of SOS-
n(0.01,2000) is also illustrated, the heuristic method finds the best feasible solution in a very short
time.

In all the following results we initialize all solution methods with a starting solution obtained with
BP-start .

Some insight on the impact of constraints (12) and (13) used to strengthen BP-MILP after linearizing
the extended formulation of BP-MPEC is reported in Table 2. All gaps reported are relative to the
best solution found with the full BP-MILP formulation. From the LP gaps we can observe that the
strengthening constraints are significantly tightening the solution space. Without these constraints, no
feasible solution of decent quality can be found.

Numerical results of formulation BP-MILP for larger instances are reported in Table 3. When the
GC is bidding in two countries, the number of generators is equally split in both countries. All gaps
are relative to the best solution found with BP-MILP. Column Nodes is the number of nodes explored
in the branch and bound tree. Only very few instances are solved to optimality and some do not start
the branching procedure. The gap reported for BP-MILPR is the relative gap between the best bound
and the best solution found with BP-MILP. Formulation BP-MILPR provides on average a better upper
bound on BP than BP-MILP, generally in a shorter time. During the branching procedure, the gaps tend
to get low quite quickly but decrease very slowly afterwards as illustrated in Figure 11. We can observe
that the size of the UC formulation strongly influences the difficulty of the instances. The penetration of

the GC on the market defined by |J||S| is also correlated to the difficulty of solving an instance. The higher

the penetration, the more the GC influences the spot prices resulting in more potential spot prices to
consider in sets Itn and more binary variables in formulation BP-MILP.

Figure 12 illustrates the local spot prices over time on an instance where the GC is bidding in two
nodes. This spot prices represented with a full line result from the best solution found with BP-MILP.
The dotted line represents the spot prices obtained without the bids of the GC, in which case the spot
prices are equal in all nodes in 10 time periods over 24 and spot prices are always identical between
France and Germany. With the bids of the GC, 8 time periods admit a global spot price and France
and Germany have the same spot price in 17 periods. Recalling the exporting/importing situation of a
node can be deduced from local spot prices, one can observe it fluctuates over time, mainly between The
Netherlands and Belgium on one side and France and Germany on the other side.

Figure 13 gives the number of price indices in sets Itn to illustrate the impact of the price elimination
technique presented in Section 4. Without any price elimination, there would be 400 binary variables for
bid prices at each time period. The largest number of prices after eliminations is 26 and lies in Belgium
as the generators of the GC have the highest local penetration in this country. The number of prices
in France is also generally more important than in Germany as the GC also bids in France. In several
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Instance IAD
|S| |J| count. Gap C. gap (%) Time (s) Iter. Nb. gr.
200 10 BE 0.45 39.19 86.73 2.8 1.8
300 10 BE 0.39 53.57 65.89 2.6 2.15
400 10 BE 0.27 10.0 56.14 2.0 1.99
200 20 BE 4.8 76.17 2244.08 3.0 2.15
300 20 BE 4.65 38.25 1458.44 2.0 1.93
400 20 BE 3.08 3.75 2121.34 2.0 2.12
200 10 BE-FR 0.42 30.0 197.34 2.4 1.92
300 10 BE-FR 0.15 51.61 116.58 2.2 1.98
400 10 BE-FR 0.13 43.48 148.53 2.4 2.05
200 20 BE-FR 5.29 1.49 2120.24 1.6 2.22
300 20 BE-FR 1.87 26.09 1428.44 1.0 1.71
400 20 BE-FR 1.65 -2.48 2458.29 1.6 2.19

Table 4 Numerical results for IAD

time period, the number of local prices to consider is equal to one, fixing the local spot prices on these
periods.

7.3 Heuristic methods

Table 4 presents numerical results for IAD. Gaps are relative to the best bound found with BP-MILP or
BP-MILPR. Column C. gap reports the proportion of the gap closed by the best solution z∗ found by
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IAD in comparison to the best solution z found by MILP, relative to the best upper bound found z:

C. gap = 1− z − z∗

z − zMILP

Column Iter. is the number of iterations of IAD before finding a feasible solution or reaching the time
limit and column Nb. gr. is the average number of groups per time period in the solution returned by
IAD. Except for a couple of instances, IAD improves significantly the value of the best solution found
as well as the solving time. The number of iterations is quite reduced before finding a feasible solution
by solving BP-G, the groups being rapidly partitioned. The average gaps and times per iteration over
the 60 instances of Table 4 are reported in Figure 14. The numbers shown in brackets next to the
iteration indices are the number of instances that did not terminate before the given iteration. The
repaired solutions computed improve over the iterations, illustrating the importance of initial starting
productions in BP-start. Figure 15 presents the average number of groups per time period per iteration.
The number of groups considered in the first iteration is often different from 1 as the network can be
partitioned from the beginning to have at least one price in each set ItG. The most important partitioning
is then made at the end of the first iteration. At the end of further iterations, only one or two groups
are generally partitioned.

Numerical results for the SOS-n(0.01,2000) heuristic are given in Table 5. This heuristic is tested
on BP-MILP and on IAD. Gaps are relative to the best bound found with BP-MILP or BP-MILPR.
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Instances BP-MILP - SOS-n IAD - SOS-n
|S| |J| count. Gap (%) C. gap (%) Time (s) Nodes Gap (%) C. gap (%) Time (s)
200 10 BE 0.57 22.97 96.13 911 0.6 -33.33 57.21
300 10 BE 0.45 46.43 75.28 708 0.27 30.77 48.35
400 10 BE 0.28 6.67 53.19 485 0.27 0.0 39.64
200 20 BE 11.08 44.99 1298.25 1980 6.74 -40.42 2040.89
300 20 BE 3.98 47.14 843.71 1723 3.33 28.39 948.72
400 20 BE 2.53 20.94 945.83 1455 2.48 19.48 1324.32
200 10 BE-FR 0.43 28.33 77.81 496 0.43 -2.38 88.13
300 10 BE-FR 0.2 35.48 64.87 496 0.15 0.0 96.75
400 10 BE-FR 0.15 34.78 64.62 256 0.17 -30.77 107.18
200 20 BE-FR 3.77 29.8 1445.91 1833 4.28 19.09 1877.62
300 20 BE-FR 1.32 47.83 1142.27 1576 0.86 54.01 1293.67
400 20 BE-FR 1.26 21.74 1215.05 1418 1.27 23.03 1521.87

Table 5 Numerical results for SOS-n(0.01,2000)
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Fig. 16 Solving methods gap comparaison

The closed gaps are the proportion of the gap closed by the best solution found with SOS-n compared
to the best solution found with the corresponding solving method without SOS-n, relative to the best
upper bound found. The initial value for α = 0.01 and the limitation to 2000 nodes are the parameters
reporting the best results. Increasing the number of nodes improves slightly the solution and increases
slightly the solving time and conversely for the value of α.

When used on BP-MILP, SOS-n improves significantly the solving time as well as the best solution
found. The largest instances that do not exit the root node of the branch and bound tree in BP-MILP
have over a thousand nodes with SOS-n, illustrating some binary variables are eliminated starting from
the root node. On IAD, SOS-n improves the solving time but the solution is sometimes of lower quality
than without SOS-n. Still, IAD - SOS-n finds on average better solutions than BP-MILP - SOS-n.

Figure 16 summarizes the performance of the different solving methods presented per instances. Gaps
are relative to the best bound found with BP-MILP or BP-MILPR. Negative gaps are associated with
feasible solutions. Overall, formulation BP-MILPR provides the best upper bound and the best feasible
solution is found by IAD - SOS-n. As already observed, the difficulty of the instances is strongly correlated
with the penetration of the GC and the size of the UC formulation. For a given number of generators
and nodes, the gap tends to decrease when the number of bids increases.

7.4 Market impact

This section provides some insight on the impact on the profit of the GC when considering a transmission
network or restraining bidding prices to marginal prices of generators.

Table 6 compares the formulation proposed by de la Torre et al. (2002) for BP considering a single
day-ahead market with the equivalent formulation BP-{N}.
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Instances de la Torre et al. BP-{N}
B. gap (%)|S| |J| count. LP gap (%) Time LP gap (%) Time (s) Gap to BP (%) C. gap 1 (%) C. gap 2 (%)

200 10 BE 2.26 4.88 1.86 1.28 -5.42 3.01 22.75 0.57
300 10 BE 1.34 5.26 1.13 1.7 -3.86 1.02 43.19 0.27
400 10 BE 1.34 5.0 1.17 2.11 -3.03 0.39 66.95 0.27
200 20 BE 3.46 95.25 3.07 36.25 -14.37 22.35 24.5 6.67
300 20 BE 1.77 18.16 1.56 6.37 -10.2 7.39 35.49 3.33
400 20 BE 1.66 45.03 1.44 11.3 -8.69 3.31 24.82 2.48
200 10 BE-FR 1.97 4.12 1.58 1.38 -3.14 1.05 52.27 0.43
300 10 BE-FR 1.37 3.95 1.13 1.62 -0.2 0.34 72.24 0.15
400 10 BE-FR 1.1 2.84 0.94 1.43 -2.46 0.53 72.75 0.15
200 20 BE-FR 3.24 41.45 3.0 29.78 -3.78 4.83 44.94 3.77
300 20 BE-FR 1.7 11.71 1.51 9.78 -0.72 1.94 75.44 0.86
400 20 BE-FR 1.61 23.8 1.43 21.02 -2.7 1.35 61.88 1.26

Table 6 Comparaison with single node model
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Fig. 17 Single node network results for |S| = 300, |J | = 20, country = BE

The columns under de la Torre et al. provide the LP gaps and the solving times to optimality. The
columns under BP-{N} also reports LP gaps and the total solving time that are both slightly improved.
The constraints of the transmission network being removed, BP-{N} is a relaxation of BP-MILP. Column
Gap to BP reports the gap of the optimal value of BP-{N} relative to the best upper bound found for
BP. These gaps are reported as negative as the optimal value of BP is overestimated when ignoring the
transmission constraints. C. gap 1 reports the first corrected gap, that is the profit for the GC considering
it sells its full quantity at the spot prices obtained considering the transmission network, relative to the
best upper bound found. Considering this optimistic correction where the GC sells everything without
worrying about bidding prices, the solution provided by BP-{N} is of significantly lower quality than the
best solution obtained with the former methods, the best gap obtained considering the network being
reported in column B. gap. A more realistic correction is to consider the GC places bids according to
the spot prices and quantities computed in BP-{N}. The risk in this case is to place a bid over the
accurate local spot price and not sell any production at some time periods as can be the case in price-
taker formulations. The gap of the realistic correction, considering bids over the spot price are not sold,
relative to the best upper bound found is reported in column C. gap2. The gaps obtained are very large,
illustrating the importance of integrating an accurate computation mechanism of the spot prices to avoid
bidding at a too high price and not selling.

Figure 17 illustrates the spot prices and quantities sold by the GC with no network before and
after the realistic correction and compares it to the best solution found for BP. The curves reported
for the spot prices correspond to the local spot price of the node where the GC is bidding. On the left
figure, we can observe that the spot prices found without considering the transmission constraints can
be pretty far from the corrected local spot prices. Furthermore, in the four periods where the spot price
is over-estimated, the corresponding quantity sold is equal to zero if the GC bids at the computed spot
price.
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Instances BPM -MILP
|S| |J| count. End gap (%) Time (s) Gap to BP (%)
200 10 BE 1.97 1797.47 6.99
300 10 BE 1.05 1800.2 5.4
400 10 BE 0.49 1701.41 4.7
200 20 BE 22.87 1800.55 1.85
300 20 BE 13.49 1800.48 4.89
400 20 BE 12.7 1800.22 7.72
200 10 BE-FR 1.75 1786.01 4.05
300 10 BE-FR 2.12 1800.34 3.54
400 10 BE-FR 1.52 1782.56 2.38
200 20 BE-FR 5.75 1800.27 2.29
300 20 BE-FR 9.98 1807.93 8.79
400 20 BE-FR 7.67 1800.27 7.76

Table 7 Bidding at marginal costs
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Fig. 18 Marginal bidding results for |S| = 300, |J | = 20, country = BE

We now consider the effect of constraining bidding prices to the marginal cost of the associated
generator as in BPM . Numerical results for formulation BPM are reported in Table 7. The gap to BP
is the relative gap between the value of the best solution found by BPM and the best solution found by
BP-MILP. As bidding prices are fixed in BPM , its optimal value is at most the optimal value of BP. The
end gaps are slightly bigger than when solving BP-MILP, this is explained by the additional difficulty
in BPM to track if generators can sell their production depending on their marginal cost and the spot
prices. The gaps to BP is on average of 5% and the end gaps of the formulation are slightly bigger
than for BP-MILP. Figure 18 illustrates the local spot prices of each bidding market as well as the sold
quantity per time period. In the results of this instance, the same generators are turned on until period
13 in BP and in BPM . The bidden production of the GC is limited by the spot prices in periods 2 and
14 when bidding at marginal costs. The production of the GC is smaller is these periods in BPM than
in BP to limit the production at loss. When the spot prices are not limiting the bidden production, one
can expect that the optimal bidden quantities are identical in BP and BPM as start-up and shut-down
costs are identical until period 13 included. But because of ramping up constraints, the total production
in BPM catches up the total production of BP only in period 9 and 10 before decreasing again to avoid a
too important production at loss in period 14. At period 14 in BPM , the GC can either decide to reduce
the production of the generators over the spot price and keep it turned on, producing at loss but avoiding
future start-up cost, or shut-down the generators to avoid producing at loss but adding eventual start-up
costs in the future. In this instance, the involved generator is turned off at period 14 in BPM and is
not turned back on during the remaining times periods, start-up cost being too important. In order to
compensate a lower production during the last periods in BPM , the generators that are turned on in
period 14 in BPM produce more than in BP at a higher unit cost. The restriction of limiting bidding
prices to marginal production costs can significantly modify the UC production plan.
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Fig. 19 Profit, income and production cost for BP and BPM on |S| = 300, |J | = 20, country = BE

Finally, we illustrate how the profit of the GC is split into income and production for solutions of BP
and BPM in Figure 19. The instance used is the same as for Figure 18. The dotted line represents the
income, the dashed line the production cost and the full line the profit of the GC. In period 4, the income
decreases significantly regarding the income in BPM while the production cost decreases only slightly.
This is a consequence of the GC not bidding any production with some generators with a marginal cost
under the spot price but still producing power with them to reach a desired quantity in future time
periods. In period 15, the production cost of BPM surpasses the one in BP, consequence of the GC
deciding to shut down a generator in period 14 and producing more with the other generator in future
periods. One can also observe that in both formulations, the GC has a negative profit in certain time
periods. This is explained by the ramping up constraints that limit the increase and decrease of the total
production. In order to be able to sell a lot of production during periods with a high spot price, the
GC must start the production several periods in advance even if this results in a production at loss for
certain periods.

8 Conclusion

This paper presents a Mathematical Program with Equilibrium Constraints formulation and a tight
Mixed Integer Linear reformulation of the bidding problem. Our model consider a Unit Commitment
problem much more detailed than the current literature on such bidding problems. Instances with a
limited number of generators and a larger number of bids are solved to less than 1% from optimality.

Computational experiments highlight the complexity introduced by regulations such as Priced Cou-
pled Regions. Nevertheless, the problem could be addressed by exploiting properties of local spot prices
in an Iterative Aggregation-Disaggregation heuristic, aggregating the bidding areas with a potentially
equal spot price throughout the time periods to reduce significantly the number of binary variables.
The gap to optimality is significantly reduced in comparison of the best solutions found with the Mixed
Integer Linear formulation. This heuristic is particularly interesting if many areas are likely to have equal
spot prices, and can be adapted to other bidding problems with a transmission constrained network.

The SOS-n heuristic, reducing the number of binary variables to consider in Special Ordered Sets
during a branch and bound procedure, is particularly efficient in improving the gap to optimality in
a limited computational time. This generic heuristic can be adapted to any formulation containing a
special ordered set of type 1 represented by binary variables.

Numerical results have also shown the importance of considering a price-maker formulation with a
realistic spot price computation. A bad evaluation of the spot price might result in bids with a high price
that are not sold after determining the market equilibrium, leading to important losses.

As a vast majority of the literature on price-maker approaches, we make strong assumptions to keep
the models tractable. The market mechanism used is limited to a single type of bid, the context is
deterministic and only capacity constraints are consider for the transmission network. Clements et al.
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(2016) have illustrated that physical constraints of a transmission network can have a significant impact
on the spot price. Some papers consider a more complete setup for the transmission constraints with
a simplified UC formulation as a counterpart. The combination of the market equilibrium constraints
proposed in this paper could potentially be combined with an more detailed transmission model to be
closer to reality. Uncertainty should also be considered in the bids of competitors. For this purpose,
Γ -robust optimization (Bertsimas and Sim, 2003) could be a possible approach. Finally, the bidding
mechanism proposed in most price-maker bidding problems are a very simplified version of the one used in
Europe, where the market equilibrium problem is solved with the EUPHEMIA algorithm (EUPHEMIA,
2016). Koltsaklis and Dagoumas (2018) have illustrated the limitation of this algorithm as it does not
consider all physical constraints of power generation. The bidding mechanism being central for accurate
price-maker formulations, a more accurate market mechanism should be considered to fit with real life
constraints.
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A BP-MILP formulation

max
∑
n∈N

∑
t∈T

∑
i∈Itn

λ̃tiP
t
in

− c(pn)

s.t. pn ∈ Pn n ∈ N (19a)∑
b∈Bn

QtbX
t
ib −

∑
s∈Sn

QtsX
t
is

+
∑

m∈Θm

(F
t
inm − F timn) = P tin t ∈ T, n ∈ N, i ∈ It

∑
i∈Itn

λ̃ti(z
t
in −Xt

ib)− π
t
b(1− x

t
b) ≥ 0 t ∈ T, n ∈ N, b ∈ Bn

−
∑
i∈Itn

λ̃ti(z
t
in −XT

is) + πts(1− xts) ≥ 0 t ∈ T, n ∈ N, s ∈ Sn

−
∑
i∈Itn

λ̃tiX
t
ib + πtbx

t
b ≥ 0 t ∈ T, n ∈ N, b ∈ Bn

∑
i∈Itn

λ̃tiX
t
is − πtsxts ≥ 0 t ∈ T, n ∈ N, s ∈ Sn

∑
i∈Itn

λ̃tiz
t
in −

∑
i∈Itm

λ̃tiz
t
im + rtnm − rtmn = 0 t ∈ T, nm ∈ A

xtb = 0 t ∈ T, n ∈ N, b ∈ Bn : πtb < λ̃titn

xtb = 1 t ∈ T, n ∈ N, b ∈ Bn : πtb > λ̃tıtn

xts = 0 t ∈ T, n ∈ N, b ∈ Sn : πts > λ̃tıtn
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xts = 1 t ∈ T, n ∈ N, b ∈ Sn : πts < λ̃titn

Cmaxnm rtnm =
∑
i∈Itn

λ̃tiF
t
inm −

∑
i∈Itn

λ̃tiF
t
inm t ∈ T, nm ∈ A

∑
i∈Itn

ztin = 1 t ∈ T, n ∈ N

∑
i∈Itn

P tin = ptn t ∈ T, n ∈ N

∑
i∈Itn

Xt
ib = xtb t ∈ T, n ∈ N, b ∈ B

∑
i∈Itn

Xt
is = xts t ∈ T, n ∈ N, s ∈ S

∑
i∈Itn

F
t
inm = f tnm t ∈ T, nm ∈ A

∑
i∈Itn

F tinm = f tnm t ∈ T, nm ∈ A

0 ≤ P tin ≤ Q
t
nz
t
in t ∈ T, n ∈ N, i ∈ Itn

P tin ≤ ptn t ∈ T, n ∈ N, i ∈ Itn
P tin ≥ ptn −Q

t
n(1− ztin) t ∈ T, n ∈ N, i ∈ Itn

0 ≤ Xt
ib ≤ z

t
in t ∈ T, n ∈ N, b ∈ Bn, i ∈ Itn

Xt
ib ≥ x

t
b + ztin − 1 t ∈ T, n ∈ N, b ∈ Bn, i ∈ Itn

0 ≤ Xt
is ≤ ztin t ∈ T, n ∈ N, s ∈ Sn, i ∈ Itn

Xt
is ≥ xts + ztin − 1 t ∈ T, n ∈ N, s ∈ Sni ∈ Itn

0 ≤ F tinm ≤ Cmaxnm ztin t ∈ T, nm ∈ A, i ∈ Itn
F
t
inm ≥ f tnm − Cmaxnm (1− ztin) t ∈ T, nm ∈ A, i ∈ Itn

0 ≤ F tinm ≤ C
max
nm ztim t ∈ T, nm ∈ A, i ∈ Itn

F tinm ≥ f
t
nm − Cmaxnm (1− ztim) t ∈ T, nm ∈ A, i ∈ Itn

0 ≤ xtb ≤ 1 t ∈ T, n ∈ N, b ∈ Bn
0 ≤ xts ≤ 1 t ∈ T, n ∈ N, s ∈ Sn
0 ≤ f tnm ≤ Cmaxnm t ∈ T, nm ∈ A

0 ≤ rtnm t ∈ T, nm ∈ A

ztin ∈ {0, 1} t ∈ T, n ∈ N, i ∈ Itn

B BPM -MILP formulation

Q
t
jn : maximum production capacity of generator j at node n in period t,

P tijn : t ∈ T, n ∈ N, j ∈ Jn, i ∈ Itn.

BPM -MILP is obtained from BP-MILP, replacing constraints (19a) by

pnj ∈ P jn n ∈ N, j ∈ Jn

, and by adding the following constraints:

ptn =
∑
j∈Jn

ptjn t ∈ T, n ∈ N

P tin =
∑
j∈Jn

P tijn t ∈ T, n ∈ N, i ∈ Itn∑
i∈Itn

λ̃tiP
t
ijn − πtjnptjn ≥ 0 t ∈ T, n ∈ N, j ∈ Jn

∑
i∈Itn

P tijn = ptjn t ∈ T, n ∈ N, j ∈ Jn

0 ≤ P tijn ≤ Q
t
jnz

t
in t ∈ T, n ∈ N, j ∈ Jn, i ∈ Itn
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P tijn ≤ ptjn t ∈ T, n ∈ N, j ∈ Jn, i ∈ Itn

P tijn ≥ ptjn −Q
t
(1− ztin) t ∈ T, n ∈ N, j ∈ Jn, i ∈ Itn

C BP-{N} formulation

max
∑
t∈T

∑
i∈It

λ̃tiP
t
i − c(p)

s.t. p ∈ P∑
i∈It

zti = 1 t ∈ T

∑
i∈It

P ti = pt t ∈ T

P ti ≤ rtizti t ∈ T, i ∈ It

P ti ≥ rti+1z
t
i t ∈ T, i ∈ It

0 ≤ P ti ≤ Q
t
zti t ∈ T, i ∈ It

P ti ≤ pt t ∈ T, i ∈ It

P ti ≥ pt −Q
t
(1− zti ) t ∈ T, i ∈ It

zti ∈ {0, 1} t ∈ T, i ∈ It

D UC formulation from Ostrowski et al. (2012)

Formulation is given for a single node.
Data:

– J : set of production units (generators)
– P j , P j : lower and upper bound on production level of unit j over one time period
– Aj : fixed cost for a generator is turned on
– NLj : number of segments for production cost of unit j
– Flj : unit cost on segment l of unit j
– Tlj : upper bound on accumulated production up to segment l of unit j
– UTj , DTj : minimum up and down times for unit j
– Kj , Cj : Ramping up/down costs
– RUj , RDj : ramping up/down rates
– SUj , SDj : start/stop rates
– p0j : initial production of unit j
– Lj : number of periods unit j must be initially offline due to its minimum down time constraint
– Gj : number of periods unit j must be initially online due to its minimum up time constraint

Variables:

– pt ≥ 0: energy bidding in period t in the node.
– pj(t) ≥ 0: energy produced in period t by unit j
– c(p): total production cost for {pj(t)}{j∈J,t∈T}
– Θl(j, t) ≥ 0: energy produced by j in period t on segment l
– vj(t) ∈ {0, 1}: indicates if unit j is active at period t
– yj(t) ∈ {0, 1}: indicates if unit j is started at period t
– zj(t) ∈ {0, 1}: indicates if unit j is turned-off at period t
– cpj (t): production cost of unit j at period t

– cuj (t): ramping up cost of unit j at period t

– cdj (t): ramping down cost of unit j at period t

Link with market equilibrium variables:

c(p) =
∑
t∈T

∑
j∈J

cpj (t) + cuj (t) + cdj (t)

pt ≤
∑
j∈J

pj(t) t ∈ T

Production cost:
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cpj (t) = Ajvj(t) +

NLj∑
l=1

FljΘl(j, t) j ∈ J, t ∈ T

pj(t) =

NLj∑
l=1

Θl(j, t) + P jvj(t) j ∈ J, t ∈ T

Θ1(j, t) ≤ T1j − P j j ∈ J, t ∈ T

Θl(j, t) ≤ Tlj − Tl−1 j j ∈ J, t ∈ T, l = 2, . . . , NLj − 1

ΘNLj (j, t) ≤ P j − TNLj−1 j j ∈ J, t ∈ T

Start-up / shut-down costs:

cuj (t) ≥ Kj(vj(t)−
t∑

n=1

vj(t− n)) j ∈ J, t ∈ T

cdj (t) ≥ Cj(vj(t− 1)− vj(t)) j ∈ J, t ∈ T

vj(t− 1)− vtj + yj(t)− zj(t) = 0 j ∈ J, t ∈ T

Production capacities:

P jvj(t) ≤ pj(t) ≤ pj(t) j ∈ J, t ∈ T

0 ≤ pj(t) ≤ P jvj(t) j ∈ J, t ∈ T
Ramping up and down :

pj(t)− pj(t− 1) ≤ RUjvj(t− 1) + SUjyj(t) j ∈ J, t = 2, . . . , |T |

pj(1)− p0j ≤ RUjvj(0) + SUjyj(1) j ∈ J

pj(t− 1)− pj(t) ≤ RDjvj(t) + SDjzj(t) j ∈ J, t = 2, . . . , |T |

p0j − pj(1) ≤ RDjvj(1) + SDjzj(1) j ∈ J

Minimum up / down times:

t∑
t′=t−UTj+1

yj(t
′) ≤ vj(t) j ∈ J, t ∈ Gj + 1, . . . , |T |

vj(t) +
t∑

t′=t−DTj+1

zj(t
′) ≤ 1 j ∈ J, t ∈ Lj + 1, . . . , |T |

Gj∑
t=1

vj(t) = Gj j ∈ J

Lj∑
t=1

vj(t) = 0 j ∈ J

cpj (t), cuj (t), cdj (t), Θl(j, t) ≥ 0 j ∈ J, t ∈ T

vj(t), yj(t), zj(t) ∈ {0, 1} j ∈ J, t ∈ T
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