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Let us formalize these problems
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A structured MILP
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A structured MILP

Figure 3: Structured MILP
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Structured MILPs abstraction

Hierarchical hypergraph made of 
• Nodes 
• Hyperedges

Each node is itself made of
• Parameters
• Variables
• Constraints
• Objectives 
• Hierarchical hypergraph

Each hyperedge is made of 
• Parameters
• Constraints
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Structured MILPs formalization

Hierarchical hypergraph 𝘎𝘨 = 𝒩𝑔, ℰ𝑔
made of 
• A set of nodes 𝒩𝓃
• A set of hyperedges ℰ𝓃

Each node < 𝒗𝒏𝒆𝒙𝒕, 𝒗𝒏𝒊𝒏𝒕, 𝑮𝒏, 𝑯𝒏, 𝘎𝘯, 𝑶𝒏 >
is itself made of 
• External variables  𝒗𝒏𝒆𝒙𝒕
• Internal variables 𝒗𝒏𝒊𝒏𝒕
• Constraints matrices 𝑮𝒏 𝑎𝑛𝑑 𝑯𝒏
• Objectives matrix 𝑶𝒏
• Hierarchical hypergraph 𝘎𝘯
Each hyperedge < 𝒩ℯ , 𝑮𝒆, 𝑯𝒆 > is 
made of 
• A set of nodes 𝒩ℯ
• Constraints matrices 𝑮𝒆 𝑎𝑛𝑑 𝑯𝒆
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Structured MILPs formalization

We have a hierarchical hypergraph 𝘎𝘨 = 𝒩𝑔, ℰ𝑔
For each node, we have 

min𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 2

s. t. 𝑮𝒏 1 𝒗𝒏 2 ≤ 𝟎
                                                                    𝑯𝒏 1 𝒗𝒏 2 = 𝟎

For each hyperedge, we must respect the constraints
𝑮𝒆 1 𝒗𝒆 2 ≤ 𝟎
𝑯𝒆 1 𝒗𝒆 2 = 𝟎

And so on recursively for all sub-hypergraphs.
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Structured MILPs formalization

Let us define three recursive functions :
• the function 𝑓 that takes a set of nodes 𝒩 as input and returns the sum of the 

objectives of the nodes and their subnodes recursively,

𝑓 𝒩 = $
𝘯∈𝒩

𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 𝑇 + 𝑓 𝒩𝓃 .

• the Boolean-valued function g that takes a hypergraph 𝖦 = 𝒩, ℰ as input and 
returns, 
g G = 𝑮𝒆 1 𝒗𝒆 𝑇 ≤ 0 ∀e ∈ ℰ ∧ 𝑮𝒏 1 𝒗𝒏 𝑇 ≤ 0 ∧ 𝑔 Gn ∀n ∈ 𝒩 .

• the Boolean-valued function h that takes a hypergraph 𝖦 = 𝒩, ℰ as input and 
returns,
h 𝖦 = 𝑯𝒆 1 𝒗𝒆 T = 0 ∀𝖾 ∈ ℰ ∧ 𝑯𝒏 1 𝒗𝒏 T = 0 ∧ h 𝖦𝗇 ∀𝗇 ∈ 𝒩 .
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Structured MILPs formalization

Given
• 𝑓 𝒩 = ∑𝘯∈𝒩 𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 𝑇 + 𝑓 𝒩𝓃 ,

• g G = 𝑮𝒆 1 𝒗𝒆 𝑇 ≤ 0 ∀e ∈ ℰ ∧ 𝑮𝒏 1 𝒗𝒏 𝑇 ≤ 0 ∧ 𝑔 Gn ∀n ∈ 𝒩 ,

• And, h 𝖦 = 𝑯𝒆 1 𝒗𝒆 T = 0 ∀𝖾 ∈ ℰ ∧ 𝑯𝒏 1 𝒗𝒏 T = 0 ∧ h 𝖦𝗇 ∀𝗇 ∈ 𝒩 .

We have that our problems can be written as,
min f 𝒩ℊ
s.t. ℎ 𝘎𝘨 is true

g 𝘎𝘨 is true
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How can we exploit this 
structure in a modelling tool?
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Modelling tool workflow
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Figure 4: Modelling tool workflow



The Graph-Based Optimization Modelling Language (GBOML)

Step 1
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Figure 4: Modelling tool workflow



Encoding structure [1]

#TIMEHORIZON
T = <value>;

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>
#CONSTRAINTS
<constr_def>
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Encoding hierarchical structure [1]

#TIMEHORIZON
T = <value>;

#NODE <node_name>
#PARAMETERS
<param_def>
[#NODE <node_name]
[#HYPEREDGE <edge_name>]
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>
#CONSTRAINTS
<constr_def>
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Step 2

13

The Graph-Based Optimization Modelling Language (GBOML)

Figure 4: Modelling tool workflow



Inner representation
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Figure 5: Hierarchical hypergraph inner representation



Inner representation

Reference tree
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Inner representation

Encapsulation
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Inner representation

Re-use

Figure 5: Hierarchical hypergraph inner representation
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Inner representation

Re-use & change

Figure 5: Hierarchical hypergraph inner representation
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Inner representation

//

//

//

//

//
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Figure 5: Hierarchical hypergraph inner representation



Step 3-4
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The Graph-Based Optimization Modelling Language (GBOML)

Figure 4: Modelling tool workflow



Solver interface and output

• Commercial solvers

• Open-source solvers

• Structure exploiting methods
• DSP[7]: Dantzig-Wolfe decomposition
• CPLEX: Benders decomposition

• Generates structure JSON and plain CSV

16
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Benchmarking
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Performances for generating an instance
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Figure 6: (Left) time taken to generate an instance (right) peak RAM usage to generate an instance 
– both were done on the remote renewable energy hub[8] for a growing time horizon [9]



Structure Exploiting methods
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Figure 7: (Left) Plain no-swot problem problem from the MIPLIB[10] solved in 25s by Gurobi (Right) 
structured no-swot problem encoded in GBOML with a good decomposition solved by Dantiz-
Wolfe in 2.5s.



Conclusion 

20

• Structure can help
• Encode problems more naturally
• Enable re-use and component assembling
• Generate models faster 
• Interface with structure exploiting methods

• In terms of tool, GBOML exploits structure from model encoding to output 

Figure 7: GBOML workflow
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Appendix : GBOML inner working


