GBOML: A modelling tool for structured MILPs

TB-06: Software for Optimization 2: Modelling

asociación

de investigación

latino iberoamericana

HNIVERSIDAD DE CHILI

ONTIFICIA

Católica

NIVERSIDAD

SISTEMAS COMPLEJOS

Bardhyl MIFTARI, Mathias BERGER, Guillaume DERVAL and Damien ERNST University of Liège Belgium 11 JULY 2023

Figure 1: Renewable energy community **Figure 2:** Belgian energy model

Figure 1: Renewable energy community **Figure 2:** Belgian energy model

Figure 1: Renewable energy community **Figure 2:** Belgian energy model

1

Figure 1: Renewable energy community **Figure 2:** Belgian energy model

Figure 1: Renewable energy community **Figure 2:** Belgian energy model

1

Let us formalize these problems

A structured MILP

3

Grid

Structured MILPs abstraction

Hierarchical hypergraph made of

- **Nodes**
- **Hyperedges**

Each **node** is itself made of

- **Parameters**
- **Variables**
- **Constraints**
- **Objectives**
- **Hierarchical hypergraph**

Each **hyperedge** is made of

- **Parameters**
- **Constraints**

 $\bm{\mathsf{H}}$ ierarchical hypergraph $\bm{\mathsf{G}}_g = \left(\mathcal{N}_g, \mathcal{E}_g\right)$ made of

- A set of **nodes** \mathcal{N}_n
- A set of **hyperedges** \mathcal{E}_n

Each $\mathsf{node} < v_n^{ext}, v_n^{int}, G_n, H_n, G_n, O_n$ is itself made of

- **•** External variables v_n^{ext}
- **External** variables v_n $\downarrow v_n$
- **Constraints** matrices G_n and H_n
- **Objectives** matrix $\boldsymbol{0}_n$
- **Hierarchical hypergraph**

Each **hyperedge** $<$ \mathcal{N}_e , G_e , H_e $>$ is made of

- A set of nodes \mathcal{N}_e
	- **Constraints** matrices G_e and H_e

 $\bm{\mathsf{H}}$ ierarchical hypergraph $\bm{\mathsf{G}}_g = \left(\mathcal{N}_g, \mathcal{E}_g\right)$ made of

- A set of **nodes** \mathcal{N}_n
- A set of **hyperedges** \mathcal{E}_n

Each **node** $< v_n^{ext}, v_n^{int}, G_n, H_n, G_n, O_n >$ is itself made of

- **•** External variables v_n^{ext}
- **• LATETTIAL** valiables v_n $\bigg| v_n$ $\bigg| v_n$
- **Constraints** matrices \mathbf{G}_n and \mathbf{H}_n
- **Objectives** matrix $\boldsymbol{0}_n$
- **Hierarchical hypergraph**

Each **hyperedge** $<$ \mathcal{N}_e , G_e , H_e $>$ is made of

- A set of nodes \mathcal{N}_e
	- **Constraints** matrices G_e and H_e

 $\bm{\mathsf{H}}$ ierarchical hypergraph $\bm{\mathsf{G}}_g = \left(\mathcal{N}_g, \mathcal{E}_g\right)$ made of

- A set of **nodes** \mathcal{N}_n
- A set of **hyperedges** \mathcal{E}_n

Each **node** $< v_n^{ext}, v_n^{int}, G_n, H_n, G_n, O_n >$ is itself made of

- **•** External variables v_n^{ext}
- **• LATETTIAL** valiables v_n $\bigg| v_n$ $\bigg| v_n$
- **Constraints** matrices \mathbf{G}_n and \mathbf{H}_n
- **Objectives** matrix $\boldsymbol{0}_n$
- **Hierarchical hypergraph**

Each **hyperedge** $<$ \mathcal{N}_e , G_e , H_e $>$ is made of

- A set of nodes \mathcal{N}_e
- **Constraints** matrices G_e and H_e

We have a **hierarchical hypergraph** $G_g = (N_g, \mathcal{E}_g)$ For each node, we have

 $\min \mathbf{1}^{1 \times \sigma_n}$ $\boldsymbol{O}_n [1\ v_n]^T$ s.t. $G_n[1 v_n]^T \leq 0$ $H_n[1 \, v_n]^T = 0$

For each hyperedge, we must respect the constraints $G_e[1 \ v_e]^T \leq 0$ $H_e[1 \ v_e]^T = 0$

And so on recursively for all sub-hypergraphs.

6

 $\mathsf{We}\ \mathsf{have}\ \mathsf{a}\ \mathsf{hierarchical}\ \mathsf{hypergraph}\ G_g = (\mathcal{N}_g,\mathcal{E}_g\textcolor{black}{\boldsymbol{\rightarrow}}\ \mathsf{Set}\ \mathsf{of}\ \mathsf{hyperedges}$ For each node, we have

 $\min \mathbf{1}^{1 \times \sigma_n}$ $\boldsymbol{O}_n [1\ v_n]^T$ s.t. $G_n[1 v_n]^T \leq 0$ $H_n[1 \, v_n]^T = 0$

Set of nodes

For each hyperedge, we must respect the constraints
\n
$$
G_e[1 \, v_e]^T \leq 0
$$
\n
$$
H_e[1 \, v_e]^T = 0
$$

And so on recursively for all sub-hypergraphs.

 $\mathsf{We}\ \mathsf{have}\ \mathsf{a}\ \mathsf{hierarchical}\ \mathsf{hypergraph}\ G_g = (\mathcal{N}_g,\mathcal{E}_g\big\{\textcolor{black}{\rightarrow}\ \mathsf{Set}\ \mathsf{of}\ \mathsf{hyperedges}\ \mathsf{Cylly}\ \mathsf{$ For each node, we have $\min \mathbf{1}^{1 \times \sigma_n}$ $\boldsymbol{\theta_n} [1 \ v_n]^T$ Inequality constraints $\underline{}$ **s. t.** $G_n[1 \text{ } v_n]^T_{-} \leq 0$ Equality constraints $\bm{H}_{\bm{n}}[1\ \bm{v}_{\bm{n}}]$ $H_n[1 v_n]^T = 0$ Set of nodes Objective matrix

Node variables

For each hyperedge, we must respect the constraints $G_e[1 \ v_e]^T \leq 0$ $H_e[1 \ v_e]^T = 0$

And so on recursively for all sub-hypergraphs.

 $\mathsf{We}\ \mathsf{have}\ \mathsf{a}\ \mathsf{hierarchical}\ \mathsf{hypergraph}\ G_g = (\mathcal{N}_g,\mathcal{E}_g\big\{\textcolor{black}{\rightarrow}\ \mathsf{Set}\ \mathsf{of}\ \mathsf{hyperedges}\ \mathsf{Cylly}\ \mathsf{$ For each node, we have $\min \mathbf{1}^{1 \times \sigma_n}$ $\boldsymbol{\theta_n} [1 \ v_n]^T$ Inequality constraints $\underline{}$ **s. t.** $G_n[1 \text{ } v_n]^T_{-} \leq 0$ Equality constraints $\bm{H}_{\bm{n}}[1\ \bm{v}_{\bm{n}}]$ $H_n[1 v_n]^T = 0$ Set of nodes Objective matrix

Node variables

 $G_e[1 \ v_e]^T \leq 0$

 $H_e[1 \ v_e]^T = 0$

For each hyperedge, we must respect the constraints

Inequality constraints Equality constraints

External variables of certain nodes

And so on recursively for all sub-hypergraphs.

Let us define three recursive functions :

• the function f that takes a set of nodes $\mathcal N$ as input and returns the sum of the objectives of the nodes and their subnodes recursively,

$$
f(\mathcal{N}) = \sum_{n \in \mathcal{N}} \left(\mathbf{1}^{1 \times \sigma_n} \, \mathbf{O}_n [\mathbf{1} \, \mathbf{v}_n]^T + f(\mathcal{N}_n) \right).
$$

• the Boolean-valued function g that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns,

$$
g(G) = [G_e[1 \, v_e]^T \leq 0 \, \forall e \in \mathcal{E}] \wedge \left[\left(G_n[1 \, v_n]^T \leq 0 \wedge g(G_n) \right) \forall n \in \mathcal{N} \right].
$$

• the Boolean-valued function h that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns,

$$
h(G) = [H_e[1 \, v_e]^T = 0 \,\forall e \in \mathcal{E}] \wedge \left[\left(H_n[1 \, v_n]^T = 0 \wedge h(G_n) \right) \forall n \in \mathcal{N} \right].
$$

Let us define three recursive functions :

• the function f that takes a set of nodes $\mathcal N$ as input and returns the sum of the objectives of the nodes and their subnodes recursively,

$$
f(\mathcal{N}) = \sum_{n \in \mathcal{N}} \left(\mathbf{1}^{1 \times \sigma_n} \mathbf{O}_n [1 \mathbf{v}_n]^T + \frac{f(\mathcal{N}_n)}{\text{Applied recursively on its sub-nodes}} \right)
$$

• the Boolean-valued function g that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns,

$$
g(G) = [G_e[1 \, v_e]^T \leq 0 \, \forall e \in \mathcal{E}] \wedge \left[\left(G_n[1 \, v_n]^T \leq 0 \wedge g(G_n) \right) \forall n \in \mathcal{N} \right].
$$

• the Boolean-valued function h that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns,

$$
h(G) = [H_e[1 \, v_e]^T = 0 \,\forall e \in \mathcal{E}] \wedge \left[\left(H_n[1 \, v_n]^T = 0 \wedge h(G_n) \right) \forall n \in \mathcal{N} \right].
$$

Let us define three recursive functions :

• the function f that takes a set of nodes $\mathcal N$ as input and returns the sum of the objectives of the nodes and their subnodes recursively,

$$
f(\mathcal{N}) = \sum_{n \in \mathcal{N}} \left(\mathbf{1}^{1 \times \sigma_n} \, \mathbf{O}_n [\mathbf{1} \, \mathbf{v}_n]^T + f(\mathcal{N}_n) \right).
$$

• the Boolean-valued function g that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns,

$$
g(G) = [G_e[1 \, v_e]^T \leq 0 \, \forall e \in \mathcal{E}] \wedge \left[\left(G_n[1 \, v_n]^T \leq 0 \wedge g(G_n) \right) \forall n \in \mathcal{N} \right].
$$

• the Boolean-valued function h that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns,

$$
h(G) = [H_e[1 \, v_e]^T = 0 \,\forall e \in \mathcal{E}] \wedge \left[\left(H_n[1 \, v_n]^T = 0 \wedge h(G_n) \right) \forall n \in \mathcal{N} \right].
$$

Let us define three recursive functions :

• the function f that takes a set of nodes $\mathcal N$ as input and returns the sum of the objectives of the nodes and their subnodes recursively,

$$
f(\mathcal{N}) = \sum_{n \in \mathcal{N}} \left(\mathbf{1}^{1 \times \sigma_n} \, \mathbf{O}_n [\mathbf{1} \, \mathbf{v}_n]^T + f(\mathcal{N}_n) \right).
$$

- the Boolean-valued function g that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns, $\log({\mathsf{G}}) = \left\| {\mathsf{G}}_{{\bm{e}}}[1 \ v_{{\bm{e}}}]^T \leq 0 \ \forall {\mathsf{e}} \in {\mathcal{E}} \right\|\wedge \left\| \left({\mathsf{G}}_{{\bm{n}}}[1 \ v_{{\bm{n}}}]^T \leq 0 \ \wedge g({\mathsf{G}}_{{\bm{n}}}) \right) \forall {\mathsf{n}} \in {\mathcal{N}} \right\|.$ Hyperedge Node
- the Boolean-valued function h that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns,

$$
h(G) = [H_e[1 \, v_e]^T = 0 \,\forall e \in \mathcal{E}] \wedge \left[\left(H_n[1 \, v_n]^T = 0 \wedge h(G_n) \right) \forall n \in \mathcal{N} \right].
$$

Let us define three recursive functions :

• the function f that takes a set of nodes $\mathcal N$ as input and returns the sum of the objectives of the nodes and their subnodes recursively,

$$
f(\mathcal{N}) = \sum_{n \in \mathcal{N}} \left(\mathbf{1}^{1 \times \sigma_n} \, \mathbf{O}_n [\mathbf{1} \, \mathbf{v}_n]^T + f(\mathcal{N}_n) \right).
$$

• the Boolean-valued function g that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns,

$$
g(G) = [G_e[1 \, v_e]^T \leq 0 \, \forall e \in \mathcal{E}] \wedge \left[\left(G_n[1 \, v_n]^T \leq 0 \wedge g(G_n) \right) \forall n \in \mathcal{N} \right].
$$

• the Boolean-valued function h that takes a hypergraph $G = (\mathcal{N}, \mathcal{E})$ as input and returns,

$$
h(G) = [H_e[1 \, v_e]^T = 0 \, \forall e \in \mathcal{E}] \wedge \left[\left(H_n[1 \, v_n]^T = 0 \wedge h(G_n) \right) \forall n \in \mathcal{N} \right].
$$

July 10-14 · SANTIAGO, CHILE

7

Given

•
$$
f(\mathcal{N}) = \sum_{n \in \mathcal{N}} \left(\mathbf{1}^{1 \times \sigma_n} \mathbf{O}_n [\mathbf{1} \mathbf{v}_n]^T + f(\mathcal{N}_n) \right)
$$
,
\n• $g(\mathbf{G}) = [\mathbf{G}_e [\mathbf{1} \mathbf{v}_e]^T \le 0 \ \forall e \in \mathcal{E}] \wedge \left[(\mathbf{G}_n [\mathbf{1} \mathbf{v}_n]^T \le 0 \wedge g(\mathbf{G}_n) \right] \forall n \in \mathcal{N} \right]$,
\n• $\text{And } h(\mathbf{G}) = [\mathbf{H} [\mathbf{1} \mathbf{u}_n]^T = 0 \ \forall e \in \mathcal{E}] \wedge \left[(\mathbf{H} [\mathbf{1} \mathbf{u}_n]^T = 0 \ \land \mathbf{h}(\mathbf{G}) \right] \forall n \in \mathcal{N} \right]$

• And,
$$
h(G) = [H_e[1 \ v_e]^T = 0 \ \forall e \in \mathcal{E}] \wedge [(H_n[1 \ v_n]^T = 0 \wedge h(G_n)) \ \forall n \in \mathcal{N}].
$$

We have that our problems can be written as,

$$
\min f\left(\mathcal{N}_g\right)
$$
\ns.t. $h\left(\mathcal{G}_g\right)$ is true

\n
$$
g\left(\mathcal{G}_g\right)
$$
 is true

How can we exploit this structure in a modelling tool?

Modelling tool workflow

Encoding

Inner representation

Solver Interface

Figure 4: Modelling tool workflow

The Graph-Based Optimization Modelling Language (GBOML)

Figure 4: Modelling tool workflow

Encoding structure [1]

#NODE <node name> #PARAMETERS <param_def> #VARIABLES <var_def> #CONSTRAINTS <constr_def> #OBJECTIVES <obj_def>

#TIMEHORIZON T = <value>;

#HYPEREDGE <edge name> #PARAMETERS <param_def> #CONSTRAINTS <constr_def>

Encoding structure [1]

#NODE <node name> #PARAMETERS <param_def> #VARIABLES <var_def> #CONSTRAINTS <constr_def> #OBJECTIVES <obj_def>

#TIMEHORIZON T = <value>;

#HYPEREDGE <edge name> #PARAMETERS <param_def> #CONSTRAINTS <constr_def>

Encoding structure [1]

#NODE <node name> #PARAMETERS <param_def> #VARIABLES <var_def> #CONSTRAINTS <constr_def> #OBJECTIVES <obj_def>

11

#TIMEHORIZON T = <value>;

#HYPEREDGE <edge name> #PARAMETERS <param_def> #CONSTRAINTS <constr_def>

Encoding hierarchical structure [1]

#TIMEHORIZON $T = \{value\};$ #NODE <node name> #PARAMETERS <param_def> [#NODE <node_name] [#HYPEREDGE <edge name>] #VARIABLES <var_def> #CONSTRAINTS <constr_def> #OBJECTIVES <obj_def> #HYPEREDGE <edge name> #PARAMETERS <param_def> #CONSTRAINTS <constr_def>

of Operational Research Societies July 10-14 · SANTIAGO, CHILE

Figure 4: Modelling tool workflow

13

Figure 5: Hierarchical hypergraph inner representation

Inner representation

Figure 5: Hierarchical hypergraph inner representation

of Operational Research Societies July 10-14 · SANTIAGO, CHILE

Inner representation

Figure 5: Hierarchical hypergraph inner representation

of Operational Research Societies July 10-14 · SANTIAGO, CHILE

July 10-14 · SANTIAGO, CHILE

Inner representation

Figure 5: Hierarchical hypergraph inner representation

Figure 5: Hierarchical hypergraph inner representation

Figure 4: Modelling tool workflow

Solver interface and output

• Commercial solvers

- Structure exploiting methods
	- DSP[7]: Dantzig-Wolfe decomposition
	- CPLEX: Benders decomposition
- Generates structure JSON and plain CSV

Benchmarking

Performances for generating an instance

Figure 6: (Left) time taken to generate an instance (right) peak RAM usage to generate an instance – both were done on the remote renewable energy hub[8] for a growing time horizon [9]

Structure Exploiting methods

Figure 7: (Left) Plain no-swot problem problem from the MIPLIB[10] solved in 25s by Gurobi (Right) structured no-swot problem encoded in GBOML with a good decomposition solved by Dantiz-Wolfe in 2.5s.

Conclusion

- Structure can help
	- Encode problems more naturally
	- Enable re-use and component assembling
	- Generate models faster
	- Interface with structure exploiting methods
- In terms of tool, GBOML exploits structure from model encoding to output

References

- [\[1\] Bardhyl](https://github.com/Argonne-National-Laboratory/DSP) Miftari et al., "GBOML: Graph-Based Optimizat https://joss.theoj.org/papers/10.21105/joss.04158, 2022
- [2] Gurobi Optimization, LLC. All Rights Reserved. https://v
- [\[3\] FICO® Xpress Optimization. https://www.fico.com/en/prod](https://www.frontiersin.org/article/10.3389/fenrg.2021.671279)ucts/ficooptimization
- [4] IBM ILOG CPLEX Optimizer. https://www.ibm.com/prod studio/cplex-optimizer
- [5] HiGHS [high performance sof](https://miplib.zib.de/)tware for linear optimizat
- [6] CBC/CLP from COIN-OR Foundation, Inc..https://www.
- [7] DSP, Argonne National Laboratory. https://github.com/A Laboratory/DSP
- [8] Mathias Berger et al., "Remote Renewable Hubs for Ca Production", in Frontiers in Energy Research 9 (2021), p.2 10.3389/fenrg.2021.671279. https://www.frontiersin.org/article/10.3389/fenrg.2021.6712
- [9] Bardhyl Miftari et al., "GBOML: a Structure-exploiting O Language in Python", https://orbi.uliege.be/handle/2268/29
- [10] MIPLIB, https://miplib.zib.de/

ADVANCED ANALYTICS FOR A BETTER WORLD

Appendix : GBOML inner working

