
ADVANCED ANALYTICS FOR A BETTER WORLD

Bardhyl MIFTARI, Mathias BERGER, Guillaume DERVAL and Damien ERNST
University of Liège Belgium
11 JULY 2023

GBOML: A modelling tool
for structured MILPs
TB-06: Software for Optimization 2: Modelling

Examples of structured MILPs

Figure 1: Renewable energy community Figure 2: Belgian energy model

1

Figure 1: Renewable energy community Figure 2: Belgian energy model

1

Examples of structured MILPs

Figure 1: Renewable energy community Figure 2: Belgian energy model

1

Examples of structured MILPs

Figure 1: Renewable energy community Figure 2: Belgian energy model

Same

1

Examples of structured MILPs

Figure 1: Renewable energy community Figure 2: Belgian energy model

Same

Same

1

Examples of structured MILPs

Let us formalize these problems

2

A structured MILP

Figure 1: Renewable energy community

PV Panels
House
Grid
Battery
Prosumer
Bat-consumer

3

A structured MILP

Figure 3: Structured MILP

PV Panels
House
Grid
Battery
Prosumer
Bat-consumer

Node

Node Node

Node

Node Node

Node

Node

Node

Node

Hyperedge

3

Structured MILPs abstraction

Hierarchical hypergraph made of
• Nodes
• Hyperedges

Each node is itself made of
• Parameters
• Variables
• Constraints
• Objectives
• Hierarchical hypergraph

Each hyperedge is made of
• Parameters
• Constraints

Node

Node Node

Node

Node Node

Node

Node

Node

Node

Hyperedge

4
Figure 3: Structured MILP

Structured MILPs formalization

Hierarchical hypergraph 𝘎𝘨 = 𝒩𝑔, ℰ𝑔
made of
• A set of nodes 𝒩𝓃
• A set of hyperedges ℰ𝓃

Each node < 𝒗𝒏𝒆𝒙𝒕, 𝒗𝒏𝒊𝒏𝒕, 𝑮𝒏, 𝑯𝒏, 𝘎𝘯, 𝑶𝒏 >
is itself made of
• External variables 𝒗𝒏𝒆𝒙𝒕
• Internal variables 𝒗𝒏𝒊𝒏𝒕
• Constraints matrices 𝑮𝒏 𝑎𝑛𝑑 𝑯𝒏
• Objectives matrix 𝑶𝒏
• Hierarchical hypergraph 𝘎𝘯
Each hyperedge < 𝒩ℯ , 𝑮𝒆, 𝑯𝒆 > is
made of
• A set of nodes 𝒩ℯ
• Constraints matrices 𝑮𝒆 𝑎𝑛𝑑 𝑯𝒆

Node

Node Node

Node

Node Node

Node

Node

Node

Node

Hyperedge

5
Figure 3: Structured MILP

𝒗𝒏

Structured MILPs formalization

Hierarchical hypergraph 𝘎𝘨 = 𝒩𝑔, ℰ𝑔
made of
• A set of nodes 𝒩𝓃
• A set of hyperedges ℰ𝓃

Each node < 𝒗𝒏𝒆𝒙𝒕, 𝒗𝒏𝒊𝒏𝒕, 𝑮𝒏, 𝑯𝒏, 𝘎𝘯, 𝑶𝒏 >
is itself made of
• External variables 𝒗𝒏𝒆𝒙𝒕
• Internal variables 𝒗𝒏𝒊𝒏𝒕
• Constraints matrices 𝑮𝒏 𝑎𝑛𝑑 𝑯𝒏
• Objectives matrix 𝑶𝒏
• Hierarchical hypergraph 𝘎𝘯
Each hyperedge < 𝒩ℯ , 𝑮𝒆, 𝑯𝒆 > is
made of
• A set of nodes 𝒩ℯ
• Constraints matrices 𝑮𝒆 𝑎𝑛𝑑 𝑯𝒆

Node

Node Node

Node

Node Node

Node

Node

Node

Node

Hyperedge

5
Figure 3: Structured MILP

𝒗𝒏

Structured MILPs formalization

Hierarchical hypergraph 𝘎𝘨 = 𝒩𝑔, ℰ𝑔
made of
• A set of nodes 𝒩𝓃
• A set of hyperedges ℰ𝓃

Each node < 𝒗𝒏𝒆𝒙𝒕, 𝒗𝒏𝒊𝒏𝒕, 𝑮𝒏, 𝑯𝒏, 𝘎𝘯, 𝑶𝒏 >
is itself made of
• External variables 𝒗𝒏𝒆𝒙𝒕
• Internal variables 𝒗𝒏𝒊𝒏𝒕
• Constraints matrices 𝑮𝒏 𝑎𝑛𝑑 𝑯𝒏
• Objectives matrix 𝑶𝒏
• Hierarchical hypergraph 𝘎𝘯
Each hyperedge < 𝒩ℯ , 𝑮𝒆, 𝑯𝒆 > is
made of
• A set of nodes 𝒩ℯ
• Constraints matrices 𝑮𝒆 𝑎𝑛𝑑 𝑯𝒆

Node

Node Node

Node

Node Node

Node

Node

Node

Node

Hyperedge

5
Figure 3: Structured MILP

𝒗𝒏

Structured MILPs formalization

We have a hierarchical hypergraph 𝘎𝘨 = 𝒩𝑔, ℰ𝑔
For each node, we have

min𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 2

s. t. 𝑮𝒏 1 𝒗𝒏 2 ≤ 𝟎
 𝑯𝒏 1 𝒗𝒏 2 = 𝟎

For each hyperedge, we must respect the constraints
𝑮𝒆 1 𝒗𝒆 2 ≤ 𝟎
𝑯𝒆 1 𝒗𝒆 2 = 𝟎

And so on recursively for all sub-hypergraphs.

6

Structured MILPs formalization

We have a hierarchical hypergraph 𝘎𝘨 = 𝒩𝑔, ℰ𝑔
For each node, we have

min𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 2

s. t. 𝑮𝒏 1 𝒗𝒏 2 ≤ 𝟎
 𝑯𝒏 1 𝒗𝒏 2 = 𝟎

For each hyperedge, we must respect the constraints
𝑮𝒆 1 𝒗𝒆 2 ≤ 𝟎
𝑯𝒆 1 𝒗𝒆 2 = 𝟎

And so on recursively for all sub-hypergraphs.

6

Set of nodes

Set of hyperedges

Structured MILPs formalization

We have a hierarchical hypergraph 𝘎𝘨 = 𝒩𝑔, ℰ𝑔
For each node, we have

min𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 2

s. t. 𝑮𝒏 1 𝒗𝒏 2 ≤ 𝟎
 𝑯𝒏 1 𝒗𝒏 2 = 𝟎

For each hyperedge, we must respect the constraints
𝑮𝒆 1 𝒗𝒆 2 ≤ 𝟎
𝑯𝒆 1 𝒗𝒆 2 = 𝟎

And so on recursively for all sub-hypergraphs.

6

Set of nodes

Set of hyperedges

Objective matrix

Inequality constraints
Equality constraints

Node variables

Structured MILPs formalization

We have a hierarchical hypergraph 𝘎𝘨 = 𝒩𝑔, ℰ𝑔
For each node, we have

min𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 2

s. t. 𝑮𝒏 1 𝒗𝒏 2 ≤ 𝟎
 𝑯𝒏 1 𝒗𝒏 2 = 𝟎

For each hyperedge, we must respect the constraints
𝑮𝒆 1 𝒗𝒆 2 ≤ 𝟎
𝑯𝒆 1 𝒗𝒆 2 = 𝟎

And so on recursively for all sub-hypergraphs.

6

Set of nodes

Set of hyperedges

Objective matrix

Inequality constraints
Equality constraints

Inequality constraints
Equality constraints

Node variables

External variables of certain nodes

Structured MILPs formalization

Let us define three recursive functions :
• the function 𝑓 that takes a set of nodes 𝒩 as input and returns the sum of the

objectives of the nodes and their subnodes recursively,

𝑓 𝒩 = $
𝘯∈𝒩

𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 𝑇 + 𝑓 𝒩𝓃 .

• the Boolean-valued function g that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
g G = 𝑮𝒆 1 𝒗𝒆 𝑇 ≤ 0 ∀e ∈ ℰ ∧ 𝑮𝒏 1 𝒗𝒏 𝑇 ≤ 0 ∧ 𝑔 Gn ∀n ∈ 𝒩 .

• the Boolean-valued function h that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
h 𝖦 = 𝑯𝒆 1 𝒗𝒆 T = 0 ∀𝖾 ∈ ℰ ∧ 𝑯𝒏 1 𝒗𝒏 T = 0 ∧ h 𝖦𝗇 ∀𝗇 ∈ 𝒩 .

7

Structured MILPs formalization

Let us define three recursive functions :
• the function 𝑓 that takes a set of nodes 𝒩 as input and returns the sum of the

objectives of the nodes and their subnodes recursively,

𝑓 𝒩 = $
𝘯∈𝒩

𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 𝑇 + 𝑓 𝒩𝓃 .

• the Boolean-valued function g that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
g G = 𝑮𝒆 1 𝒗𝒆 𝑇 ≤ 0 ∀e ∈ ℰ ∧ 𝑮𝒏 1 𝒗𝒏 𝑇 ≤ 0 ∧ 𝑔 Gn ∀n ∈ 𝒩 .

• the Boolean-valued function h that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
h 𝖦 = 𝑯𝒆 1 𝒗𝒆 T = 0 ∀𝖾 ∈ ℰ ∧ 𝑯𝒏 1 𝒗𝒏 T = 0 ∧ h 𝖦𝗇 ∀𝗇 ∈ 𝒩 .

7

Applied recursively on its sub-nodes

Structured MILPs formalization

Let us define three recursive functions :
• the function 𝑓 that takes a set of nodes 𝒩 as input and returns the sum of the

objectives of the nodes and their subnodes recursively,

𝑓 𝒩 = $
𝘯∈𝒩

𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 𝑇 + 𝑓 𝒩𝓃 .

• the Boolean-valued function g that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
g G = 𝑮𝒆 1 𝒗𝒆 𝑇 ≤ 0 ∀e ∈ ℰ ∧ 𝑮𝒏 1 𝒗𝒏 𝑇 ≤ 0 ∧ 𝑔 Gn ∀n ∈ 𝒩 .

• the Boolean-valued function h that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
h 𝖦 = 𝑯𝒆 1 𝒗𝒆 T = 0 ∀𝖾 ∈ ℰ ∧ 𝑯𝒏 1 𝒗𝒏 T = 0 ∧ h 𝖦𝗇 ∀𝗇 ∈ 𝒩 .

7

Structured MILPs formalization

Let us define three recursive functions :
• the function 𝑓 that takes a set of nodes 𝒩 as input and returns the sum of the

objectives of the nodes and their subnodes recursively,

𝑓 𝒩 = $
𝘯∈𝒩

𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 𝑇 + 𝑓 𝒩𝓃 .

• the Boolean-valued function g that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
g G = 𝑮𝒆 1 𝒗𝒆 𝑇 ≤ 0 ∀e ∈ ℰ ∧ 𝑮𝒏 1 𝒗𝒏 𝑇 ≤ 0 ∧ 𝑔 Gn ∀n ∈ 𝒩 .

• the Boolean-valued function h that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
h 𝖦 = 𝑯𝒆 1 𝒗𝒆 T = 0 ∀𝖾 ∈ ℰ ∧ 𝑯𝒏 1 𝒗𝒏 T = 0 ∧ h 𝖦𝗇 ∀𝗇 ∈ 𝒩 .

Hyperedge Node

7

Structured MILPs formalization

Let us define three recursive functions :
• the function 𝑓 that takes a set of nodes 𝒩 as input and returns the sum of the

objectives of the nodes and their subnodes recursively,

𝑓 𝒩 = $
𝘯∈𝒩

𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 𝑇 + 𝑓 𝒩𝓃 .

• the Boolean-valued function g that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
g G = 𝑮𝒆 1 𝒗𝒆 𝑇 ≤ 0 ∀e ∈ ℰ ∧ 𝑮𝒏 1 𝒗𝒏 𝑇 ≤ 0 ∧ 𝑔 Gn ∀n ∈ 𝒩 .

• the Boolean-valued function h that takes a hypergraph 𝖦 = 𝒩, ℰ as input and
returns,
h 𝖦 = 𝑯𝒆 1 𝒗𝒆 T = 0 ∀𝖾 ∈ ℰ ∧ 𝑯𝒏 1 𝒗𝒏 T = 0 ∧ h 𝖦𝗇 ∀𝗇 ∈ 𝒩 .

7

Structured MILPs formalization

Given
• 𝑓 𝒩 = ∑𝘯∈𝒩 𝟏𝟏×𝝈𝒏 𝑶𝒏 1 𝒗𝒏 𝑇 + 𝑓 𝒩𝓃 ,

• g G = 𝑮𝒆 1 𝒗𝒆 𝑇 ≤ 0 ∀e ∈ ℰ ∧ 𝑮𝒏 1 𝒗𝒏 𝑇 ≤ 0 ∧ 𝑔 Gn ∀n ∈ 𝒩 ,

• And, h 𝖦 = 𝑯𝒆 1 𝒗𝒆 T = 0 ∀𝖾 ∈ ℰ ∧ 𝑯𝒏 1 𝒗𝒏 T = 0 ∧ h 𝖦𝗇 ∀𝗇 ∈ 𝒩 .

We have that our problems can be written as,
min f 𝒩ℊ
s.t. ℎ 𝘎𝘨 is true

g 𝘎𝘨 is true

8

How can we exploit this
structure in a modelling tool?

9

Modelling tool workflow

10

Figure 4: Modelling tool workflow

The Graph-Based Optimization Modelling Language (GBOML)

Step 1

10

Figure 4: Modelling tool workflow

Encoding structure [1]

#TIMEHORIZON
T = <value>;

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>
#CONSTRAINTS
<constr_def>

11

Encoding structure [1]

#TIMEHORIZON
T = <value>;

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>
#CONSTRAINTS
<constr_def>

11

Encoding structure [1]

#TIMEHORIZON
T = <value>;

#NODE <node_name>
#PARAMETERS
<param_def>
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>
#CONSTRAINTS
<constr_def>

11

Encoding hierarchical structure [1]

#TIMEHORIZON
T = <value>;

#NODE <node_name>
#PARAMETERS
<param_def>
[#NODE <node_name]
[#HYPEREDGE <edge_name>]
#VARIABLES
<var_def>
#CONSTRAINTS
<constr_def>
#OBJECTIVES
<obj_def>

#HYPEREDGE <edge_name>
#PARAMETERS
<param_def>
#CONSTRAINTS
<constr_def>

12

Step 2

13

The Graph-Based Optimization Modelling Language (GBOML)

Figure 4: Modelling tool workflow

Inner representation

14
Figure 5: Hierarchical hypergraph inner representation

Inner representation

Reference tree

14
Figure 5: Hierarchical hypergraph inner representation

Inner representation

Encapsulation

14
Figure 5: Hierarchical hypergraph inner representation

Inner representation

Re-use

Figure 5: Hierarchical hypergraph inner representation
14

Inner representation

Re-use & change

Figure 5: Hierarchical hypergraph inner representation
14

Inner representation

//

//

//

//

//

14
Figure 5: Hierarchical hypergraph inner representation

Step 3-4

15

The Graph-Based Optimization Modelling Language (GBOML)

Figure 4: Modelling tool workflow

Solver interface and output

• Commercial solvers

• Open-source solvers

• Structure exploiting methods
• DSP[7]: Dantzig-Wolfe decomposition
• CPLEX: Benders decomposition

• Generates structure JSON and plain CSV

16

[2] [3] [4]

[5] [6]

Benchmarking

17

Performances for generating an instance

18

Figure 6: (Left) time taken to generate an instance (right) peak RAM usage to generate an instance
– both were done on the remote renewable energy hub[8] for a growing time horizon [9]

Structure Exploiting methods

19

Figure 7: (Left) Plain no-swot problem problem from the MIPLIB[10] solved in 25s by Gurobi (Right)
structured no-swot problem encoded in GBOML with a good decomposition solved by Dantiz-
Wolfe in 2.5s.

Conclusion

20

• Structure can help
• Encode problems more naturally
• Enable re-use and component assembling
• Generate models faster
• Interface with structure exploiting methods

• In terms of tool, GBOML exploits structure from model encoding to output

Figure 7: GBOML workflow

References

21

• [1] Bardhyl Miftari et al., ”GBOML: Graph-Based Optimization Modeling Language”,
https://joss.theoj.org/papers/10.21105/joss.04158, 2022

• [2] Gurobi Optimization, LLC. All Rights Reserved. https://www.gurobi.com/
• [3] FICO® Xpress Optimization. https://www.fico.com/en/products/fico-xpress-

optimization
• [4] IBM ILOG CPLEX Optimizer. https://www.ibm.com/products/ilog-cplex-optimization-

studio/cplex-optimizer
• [5] HiGHS - high performance software for linear optimization. https://highs.dev/
• [6] CBC/CLP from COIN-OR Foundation, Inc..https://www.coin-or.org/
• [7] DSP, Argonne National Laboratory. https://github.com/Argonne-National-

Laboratory/DSP
• [8] Mathias Berger et al., “Remote Renewable Hubs for Carbon-Neutral Synthetic Fuel

Production”, in Frontiers in Energy Research 9 (2021), p.200. DOI
10.3389/fenrg.2021.671279.
https://www.frontiersin.org/article/10.3389/fenrg.2021.671279

• [9] Bardhyl Miftari et al., ”GBOML: a Structure-exploiting Optimization Modeling
Language in Python”, https://orbi.uliege.be/handle/2268/296930, 2022

• [10] MIPLIB, https://miplib.zib.de/

https://joss.theoj.org/papers/10.21105/joss.04158
https://www.gurobi.com/
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://highs.dev/
https://www.coin-or.org/
https://github.com/Argonne-National-Laboratory/DSP
https://github.com/Argonne-National-Laboratory/DSP
https://www.frontiersin.org/article/10.3389/fenrg.2021.671279
https://orbi.uliege.be/handle/2268/296930
https://miplib.zib.de/

ADVANCED ANALYTICS FOR A BETTER WORLD

22

23

Appendix : GBOML inner working

