# Underground Thermal Energy Storage for Carbon Neutral Communities





Prof. Dr. Shady Attia

Sustainable Building Design Lab, UEE, Applied Sciences, University of Liège, Belgium shady.attia@uliege.be

in/shady-attia-14352a7/www.shadyattia.org



# Acknowledgment

3rd International Conference on Underground Space Environments & The Excellent Graduate Students Academic Summer Camp, 06 September 2023



## CA20139 – Adaptive Facades



International Association of Underground Space Environments





陕西省制冷学会 Shaanxi Association of Refrigeration

陕西省建筑设备科学与地下空间环境国际联合 研究中心 International Jointed Research Center for Building Service Science and Underground Space Environment, Shaanxi

Architectural Facades and Products research group







European Committee for Standardization



IEA ES Task 43, 2023-2027, Thermal building mass storage

# **Carbon Neutral Communities**





## **Global GHG emissions by sector**



REN21 RENEWABLES IN CITIES 2019 GLOBAL STATUS REPORT



A NZEB is a grid connected, energy efficient building that balances its total annual energy needs by on-site generation







## **Net Zero Energy Buildings** nearly Zero Energy (nZEB) and Net Zero Energy Buildings (NZEB)



## **Net Zero Energy Buildings** All Electric with Heat Pumps





# **Net Zero Energy Buildings**



nearly Zero Energy (nZEB) and Net Zero Energy Buildings (NZEB)

**High Performance Design Process** 







## **From Energy Use Intensity to GHG Emissions Intensity**

## Measuring Energy Emissions



# **Net Zero Carbon Buildings**

![](_page_9_Picture_1.jpeg)

## **Converting the primary energy use intensity to GHG emissions**

## Measuring Epergy Emissions

![](_page_9_Figure_4.jpeg)

# **Carbon Neutral Communities**

![](_page_10_Picture_1.jpeg)

## **From Single Building to Community**

![](_page_10_Picture_3.jpeg)

# **Carbon Neutral Communities**

![](_page_11_Picture_1.jpeg)

### **Storage & Scale the Core of Carbon Neutrality**

![](_page_11_Figure_3.jpeg)

![](_page_11_Figure_4.jpeg)

Resilience

Micro Grids

## **Thermal Storage** The Core of Carbon Neutrality

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

# **Shallow Geothermal Energy**

![](_page_13_Picture_1.jpeg)

![](_page_14_Picture_0.jpeg)

## **Shallow Geothermal Energy** Aquifer Thermal Storage (ATES)

![](_page_14_Picture_2.jpeg)

![](_page_14_Figure_3.jpeg)

## **Shallow Geothermal Energy** Borehole Thermal Energy Storage (BTES)

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

## **Shallow Geothermal Energy** Borehole Thermal Energy Storage (BTES)

![](_page_16_Picture_1.jpeg)

#### = "CLOSED SYSTEM"

Probe foot

#### Ground level Excavation level Antwerpen Brugge Water/antifreeze Gent heat transfer fluid Grout Hassel 2.8 - 2.9 1.5 - 1.6 22-23 1.6 - 1.7 1.9 - 2.0 2.5 - 2.6 2.9 - 3.0 2.3-2.4 1.7 - 1.8 2.0 - 2.1 2.6 - 2.7 3.0 - 3.1 Pipe spacer 1.8 - 1.9 2.1-2.2 2.4 - 2.5 2.7 - 2.8 3.1-3.2 Tremie pipe 0 10 20 30 40km Gemiddelde thermische geleidbaarheid (W/mK) 10 (removed as grout is injected) Grout U-tube

FEASABLE "EVERYWHERE"

1 mar 1

# **Heating Grids**

![](_page_17_Picture_1.jpeg)

# **District Heating**

![](_page_18_Picture_1.jpeg)

![](_page_18_Figure_2.jpeg)

#### 4th Generation:

District heating grid with a collective source

#### **5th Generation:** Thermal energy directly from the subsurface $(T5 - 25^{\circ}C)$

# **Case Studies**

![](_page_19_Picture_1.jpeg)

# Conclusion

![](_page_20_Picture_1.jpeg)

# Conclusion

![](_page_21_Picture_1.jpeg)

## **Neutral Grid with collective ATES-boreholes**

![](_page_21_Picture_3.jpeg)

#### **NEUTRAL GRID**

Allows to connect different buildings from different owners under a public infrastructure.
Can be managed and operated by a private/public third party.

#### **COLLECTIVE ATES WELLS**

-ATES wells and boreholes are part of the public domain

- -Need to make sure they don't get connected -Require continuous monitoring from the environmental authorities
- -Need to make sure that their efficiency will not decrease with time.

# Thank you for your attention

![](_page_22_Picture_1.jpeg)

#### Prof. Dr. Shady Attia/

Sustainable Building Design Lab, UEE, Applied Sciences, University of Liège, Belgium shady.attia@uliege.be

/in/shady-attia-14352a7 /www.shadyattia.org

![](_page_22_Picture_5.jpeg)