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USING HIGH-RESOLUTION IMAGES TO ANALYZE THE IMPORTANCE 1 

OF CROWN SIZE AND COMPETITION FOR THE GROWTH OF TROPICAL 2 

TREES 3 

Abstract 4 

The influence of canopy structure on tropical tree growth has been scantly studied because of the 5 

difficulties making field measurements in these dense multi-layered ecosystems. The recent advent 6 

of unmanned aerial vehicles (UAVs), has made it easier to collect canopy data, so offering a way 7 

to gain a better understanding of forest productivity and thereby improve forest management. In 8 

this study, we assessed tree growth prediction using UAV-derived crown measurements as an 9 

alternative for field data. 10 

Four experimental 9 ha plots were sampled in two forest sites, Yoko in the Democratic Republic 11 

of the Congo and Loundoungou in the Republic of Congo. Field inventories were made between 12 

2015 and 2020. For each tree, we computed the diameter increment (DBHI) using censuses and 13 

diameter-based competition indices (diameter-based CIs) using the first census. High-resolution 14 

orthoimages and digital surface models were acquired with UAVs in 2016 and 2018 in the two 15 

sites. They gave estimates of crown characteristics (size, relative elevation, shape) and crown-16 

based competition indices (crown-based CIs). Co-recorded UAV and field measurements were 17 

obtained for 1558 trees. The diameter increment of these trees was then modelled using supervised 18 

component generalized linear regression, and 20% of trees were kept for cross-validation. 19 

Combined field and UAV data predicted tree DBHI twice better than either taken separately. 20 

Diameter at breast height (DBH) and crown area (CA) were found to be complementary predictors. 21 
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Crown-based CIs significantly improved predictions of models already containing DBH and CA. 22 

Adding diameter-based CIs to models containing DBH, CA, and crown-based CIs only marginally 23 

improved growth predictions, showing that tree competition can be well-described with UAV data. 24 

The model calibrated at one site predicted the growth at the other site well, suggesting that a 25 

general model could be devised for multiple sites. Growth variance was better explained in the site 26 

(Yoko) where the crown density was higher and the crown smaller. Further data are now needed 27 

from multiple sites with ranging stand structures and compositions to build a general model. 28 

Keywords: Tropical forest, canopy structure, crown competition, drone, tree growth modelling 29 

1. INTRODUCTION 30 

Tree growth is an intermittent process that brings changes in stem shape and size (Guerra-31 

Hernández et al., 2017). Reliable data on tree growth and a better understanding of its drivers are 32 

needed in many tropical forests (Rozendaal et al., 2020) to predict future stand composition (Rüger 33 

et al., 2011), calibrate dynamics models (Purves and Pacala, 2013), assess carbon sequestration 34 

(Rutishauser et al., 2010), and develop decision support tools to guide forest management 35 

(Burkhart and Tomé, 2012). 36 

Tree growth is highly variable. It depends on numerous drivers and it is then challenging to model 37 

it in complex forests. Stem diameter increment depends on a tree’s life history, genetic heritage – 38 

reflecting the evolutionary history and adaptation of the parent population to different 39 

environments – and ontogenic stage, expressed in terms of age or size (Prévosto, 2005). It also 40 

depends on tree species and functional traits, and on the availability of on-site resources (light, 41 
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water, and nutrients), which may be depleted by competing species in dense stands (Baker et al., 42 

2003; Davies, 2001). In general, the adverse effects of competition on tree growth depend on the 43 

size of the subject trees and on their tolerance to competition and shading, and on how crowded 44 

the local neighborhood is (Rozendaal et al., 2020; Uriarte et al., 2004). For any given species, 45 

small trees are often the most severely affected by competition, and light-demanding species are 46 

often highly responsive to changes in competition intensity (Kunstler et al., 2016; Uriarte et al., 47 

2004). 48 

For a given subject tree, competition is often assessed indirectly using competition indices. The 49 

competition for resources can be either size-symmetrical or size-asymmetrical, depending on how 50 

it affects trees of different sizes. Size-symmetrical competition occurs when the effect of 51 

competition is proportional to tree size. Size-asymmetrical competition occurs when the effects 52 

are more than proportional tree size (Rasmussen and Weiner, 2017; West and Ratkowsky, 2021). 53 

In most growth models developed in tropical forests, competition indices have been based on 54 

diameter and/or height of neighbors (Franc et al., 2000). In some cases, competition indices are 55 

functions of distances between trees (distance-dependent). In others, the indices do not take into 56 

account the position of the measured trees (distance-independent) (Biging, 1995). Neighboring 57 

trees are usually defined as standing within a circular zone of influence of set radius, generally 58 

between 3 m and 30 m (Barros de Oliveira et al., 2021; Gourlet-Fleury and Houllier, 2000; 59 

Gourlet-Fleury et al., 2023).  60 

Competition indices can be a function of the size and position of neighboring tree crowns as 61 

demonstrated in temperate forests (Cole and Lorimer, 1994; Schomaker et al., 2007; Wyckoff and 62 

Clark, 2005; Zarnoch et al., 2004). However, this approach has been rare in dense tropical forests 63 
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(but see Foli et al., 2003; Franc et al., 2000) because crown measurements are particularly difficult 64 

to make and imprecise in multi-layered forests, especially for large trees (Blanchard et al., 2016). 65 

One of the few reported studies in tropical forests using field-derived crown measurements 66 

(Zambrano et al., 2019) recently showed the importance for growth and mortality predictions of 67 

competition indices based on crown overlap and neighboring trees being taller than the subjects. 68 

Such crown measurements attempt to measure, even indirectly, the amount of light intercepted by 69 

the tree, which is one of the main factors limiting growth for tropical trees (Baker et al., 2003). 70 

Therefore, crown indices are expected to provide more accurate and reliable indicators of tree 71 

growth and productivity in tropical forests than diameter-based indices. 72 

In the last few decades, airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) 73 

have supplied detailed information on tree crowns (Järnstedt et al., 2012), first in temperate forests 74 

(Popescu et al., 2003) and more recently in tropical forests, following with the advent of unmanned 75 

aerial vehicles (UAVs) (Getzin et al., 2012; Paneque-gálvez et al., 2014). RGB sensors can now 76 

be mounted on inexpensive UAV platforms that offer high operational flexibility, with low flight 77 

costs and the ability to take off in situ and fly at low altitude under cloud cover, enabling very 78 

high-resolution 3D imaging in forests inaccessible from the ground (Messinger et al., 2016). 79 

Several studies have recently shown excellent results for DAP applications in estimating canopy 80 

structure (Bourgoin et al., 2020) and stand productivity (Price et al., 2020; Tompalski et al., 2021). 81 

However, data collected with UAVs have rarely been used to assess tree growth even though this 82 

variable is critical for forest management (Guerra-Hernández et al., 2017). High-resolution UAV 83 

images can be used to identify, delineate, and measure individual tree crowns. Many variables 84 

related to crown size, shape and position can be extracted (Getzin et al., 2012; Ndamiyehe et al., 85 

2020) and added to classical field measurements such as stem diameter and social status (Moravie 86 
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et al., 1999).  87 

Though requiring new technological and analytical resources, the reduced operational cost and the 88 

high resolution of UAV imagery offer opportunities to replace or complement field measurements, 89 

which are particularly time-consuming and difficult in tropical forests. UAV imagery also offers 90 

the possibility to repeat canopy measurements at close intervals to monitor and detect fine changes 91 

of forest structure (Tompalski et al., 2021). 92 

In this study, we set out to explore the possibility of extracting new crown variables from UAV 93 

images and to assess whether those variables could improve tree growth predictions. We 94 

specifically addressed the following questions. 95 

1. Can UAV images help detect differences in stand structure across sites? 96 

2. Can crown-based competition indices replace stem diameter-based competition indices to 97 

predict tree growth? 98 

3. Can a general model of tropical tree growth be derived that works for multiple sites? 99 

We fitted different models of tree diameter increment in response to multiple crown-based and 100 

stem diameter-based competition indices to assess the use of UAV data. The models were fitted 101 

with supervised component-based generalized linear regression 'SCGLR' (Bry et al., 2013), a 102 

robust method to compare models in which many correlated explanatory variables are tested 103 

(Réjou-Méchain et al., 2021; Tomaschek et al., 2018). 104 

2. MATERIALS AND METHODS 105 

2.1 Study sites 106 
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The study was conducted in two sites of intact forest (not logged in the past) in central Africa 107 

(Fig. 1), Yoko and Loundoungou. The Yoko site, in the Democratic Republic of the Congo (DR 108 

Congo), is located 32 km southeast (0°17'N, 25°18'E) of Kisangani and characterized by a mean 109 

annual temperature of 25°C, a mean annual precipitation of 1750 mm, and no dry months (Picard 110 

et al., 2015). The soils are oxisols and the average elevation is 450 m. The Loundoungou site is 111 

located in the north of the Republic of Congo (2°24' N, 17°05'E), where the average temperature 112 

is 25°C. The average rainfall is 1600 mm and there is a dry season from December to March, with 113 

two dry months (December and January). The topography is slightly uneven, with an average 114 

elevation of 430 m. The geological substrate consists of alluvial deposits (Fayolle et al., 2014; 115 

Ligot et al., 2022; Loubota Panzou et al., 2018). The vegetation in both sites is moist Central 116 

African (Fayolle et al., 2014), specifically of the semideciduous type for Loundoungou and 117 

semideciduous evergreen transition  type for Yoko (Fig. 1, Réjou-Méchain et al. (2021)). In Yoko, 118 

the area surrounding the study site is dominated by agricultural fields and forest patches of 119 

secondary and degraded woodlands. In Loundoungou, the area surrounding the study site is 120 

dominated by forests that have been little affected by human activity. 121 
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 122 

Fig. 1. Location of the Yoko (Democratic Republic of the Congo) and Loundoungou (Republic of Congo) 123 

sites across (a) forest types (Réjou-Méchain et al., 2021). The experimental plots (yellow) in (b) Yoko and 124 

in (c) Loundoungou are presented with UAV images in the background. The diameter class distributions of 125 

trees inventoried in 2018 are also shown for each site. 126 

2.2 Field inventory data 127 

In each site, two experimental plots of 9 ha were sampled (Fig. 1) following a standardized 128 
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protocol (Picard and Gourlet-Fleury, 2008). Within each plot, we measured all trees with a 129 

diameter at breast height (DBH) ≥ 10 cm. For each measured tree, we recorded botanical identity 130 

and spatial coordinates, and we measured the diameter with a tape. In both sites, tree diameter was 131 

measured twice between 2015 and 2020 (Table 1). Diameter increments (DBHIs) were computed 132 

over a minimum of two years. A total of 351 distinct species were identified, of which 88 were 133 

present in both sites. On average, 450 trees. ha-1 were measured in Yoko and 350 trees ha-1 in 134 

Loundoungou. The five common dominant families in the two sites were Fabaceae, Meliaceae, 135 

Euphorbiaceae, Annonaceae, and Myrticaceae. These species made up 51% and 30% of trees in 136 

Yoko and Loundoungou, respectively.  137 

2.3 UAV images 138 

Aerial photographs were acquired using fixed-wing UAVs equipped with RGB sensors (Table 1). 139 

The flight plans were prepared (altitude and overlap of photographs) and executed in the Mission 140 

Planner version 1.3.31 environment. Overlaps between flight bands and between line bands were 141 

set at 80% for all flights to allow optimal alignment of photographs. The photographs were then 142 

processed in the Agisoft Photoscan environment (PhotoScan, 2015). The processing has three main 143 

steps: (i) camera calibration to mitigate the positioning errors of the UAV during image capture, 144 

(ii) image alignment by automatic matching of common points identified on neighboring images, 145 

and (iii) 3D canopy scene reconstruction (Lisein et al., 2013; Michez et al., 2016). We then 146 

obtained georeferenced orthoimages with a resolution of 10 cm pixel-1 and digital surface models 147 

(DSMs) with a resolution of 30 cm pixel-1. The images covered the area of the experimental plots 148 

plus a 50 m-wide buffer area around them (Fig. 2a). Given the uneven terrain and the difficulty to 149 

collect ground points due to the dense vegetation in the two sites, we were unable to calculate the 150 
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digital terrain model (DTM). As a result, we could not apply a standard method (DSM-DTM) to 151 

derive the digital height model. 152 

Table 1. Field inventory and UAV acquisition data in the two sites and four plots: Yoko (northern plot N 153 

and southern plot S) and Loundoungou (Plots 1 and 2). 154 

 Field inventory   UAV image acquisition  

Site Period DBH ≥ 10 cm in 2018  Period UAV Camera Area covered 

Yoko N: 2018-2020 5446 trees, 196 species  June 05, 2016 Wingspan: 2.5 m  Brand: Sony Nex7  400 ha 

 S: 2015-2019 4375 trees, 188 species   Weight: 6 kg Resolution: 24.1 MP  

 Plots N + S  9821 trees, 223 species    Lens: 16 mm  

Loundoungou 1: 2015-2018 2968 trees, 190 species  June 18, 2018 EBEE 03-907 Brand: S.O.D.A. 1 400 ha 

 2: 2015-2018 3396 trees, 192 species   Wingspan: 0.96 m Resolution: 20 MP  

 Plots 1 + 2 6364 trees, 216 species   Weight: 0.69 kg Lens: 13.133 mm  

2.4 Delineation of tree crowns and co-recording with field data 155 

To link UAV data with field inventory data, the positions of trees surveyed in the field were 156 

matched with the positions of tree crowns detected on UAV images by the co-recording approach 157 

described in Ndamiyehe et al. (2020). First, the tree stem positions defined in a local reference 158 

frame were transformed into the image coordinate system. A sample (n ≥ 10) of dominant non-159 

tilted trees was selected, spotted on the in situ orthoimages using a Microsoft Surface Pro 7 tablet 160 

(www.microsoftsurface.com) with QGIS software. Matching the tree stem and crown centroid 161 

positions of these dominant trees thus enabled us to apply an affine transformation (Carrillo, 2015) 162 

to the local coordinates of all the trees in the plot and to obtain their UTM coordinates. The 163 

centroids of the tree crowns were then considered as estimators of the position of the tree apex. 164 

Since these two positions may be offset, we rectified the positions of all canopy trees (2630) with 165 

respect to their crown centroids (Table 2). The crowns present on each of the four sampled plots 166 

http://www.microsoftsurface.com/
http://www.microsoftsurface.com/
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together with those inside a 50 m-wide buffer area around the plots (Fig. 2a) were manually 167 

delineated in the QGIS Development Team (2020). To locate tree crowns more precisely, they 168 

were examined on both the orthoimages and the DSMs. Translation was then carried out between 169 

trees and their nearby crown centroid, followed by a field check. The delineation of the crowns 170 

took approximately 21 days of 8 hours work. The co-recording of the trees and the field verification 171 

required approximately 13 additional days. 172 

 173 

Fig. 2. Delineation of tree crowns (a) within one of the four sampled plots and within a 50 m-wide buffer 174 

zone (black dashed boundary). DBH-based competition indices were calculated only for the trees in the 175 
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core zone. Crown-based CIs (b) could be computed for the trees in the buffer zone of the plot also. 176 

Competition indices were computed for different zones of influence centered on the subject tree. For an 177 

example zone of influence of 20 m, the neighborhood crowding index (NCI), one of the computed 178 

competition indices, is the ratio of the subject crown area to the cumulative area of competitor crowns 179 

(black area).  180 

2.5 Data analysis  181 

2.5.1 Variables measured from field surveys and aerial images  182 

Crown size (crown area, crown perimeter, and crown diameter), crown shape (crown circularity 183 

and ratio of crown perimeter to crown area, Getzin et al., 2012) and crown relative position within 184 

the canopy were computed from the orthoimages and DSMs obtained by UAV. The relative 185 

canopy position was calculated as the difference between the subject tree's altitude and its 186 

neighborhood altitude (∆ALT). As the effect of a tree on its neighborhood can operate over ranging 187 

distances depending on the tree’s size and species, several neighborhood zone areas were 188 

considered (Fig. 2). In this study, ten radii of interval 2.5 m were tested, giving for each tree ten 189 

values of ∆ALT over a maximum radial distance of 25 m (Laurans et al., 2014). The mean ∆ALT 190 

over the ten radii was taken to determine the categorical variable (crown situation, CRSITU), 191 

characterizing the location of a given crown in relation to the canopy, distinguishing dominated 192 

crowns (∆ALT < 0) from dominant crowns (∆ALT ≥ 0). 193 

The size of each crown was computed either as the orthogonal crown projection area (CA) or as 194 

the convex crown area (CCA) using orthoimages. Hybrid variables were then computed by 195 

dividing these crown variables by the basal area (BA) of the subject tree measured with field 196 
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data. The hybrid variable was expected to capture the recent growth strategy of trees, notably the 197 

trade-off between crown expansion and diameter growth for trees released in the canopy (Antin et 198 

al., 2013; Blanchard et al., 2016). By using a hybrid variable, we hypothesize that, at a given DBH, 199 

trees with larger crowns exhibit higher diameter growth rates due to their enhanced photosynthetic 200 

capacity (Ndamiyehe et al., 2020; Wyckoff and Clark, 2005).  201 

Overall solar radiation was also estimated for each crown with the r.sun.insoltime algorithm from 202 

GRASS software (Hofierka and Suri, 2002; Olpenda et al., 2018) considering the DSM as the input 203 

layer. Global solar radiation was calculated for the first day of each month, and an annual average 204 

was then computed (glob_rad in Wh m-2 day-1). 205 

To account for species shade tolerance, a regeneration guild sensu Hawthorne (1995) was assigned 206 

to each species from Bénédet et al. (2013): contrasting pioneer, non-pioneer light-demanding 207 

(NPLD), and shade-tolerant (SB). Finally, the variable stem size class (SSIZE), distinguished large 208 

trees (DBH ≥ 40 cm) from small trees (DBH < 40 cm).  209 

2.5.2 Competition indices from both field and images 210 

Competition indices (CIs) using field data (Table 2) are classically used in tropical forests 211 

(Gourlet-Fleury and Houllier, 2000; Moravie et al., 1999) and were calculated here in circular 212 

zones of radius 5, 10, 15, 20, 25, and 30 m. The DBH-based CIs were calculated only for trees 213 

located in the core zone of the plot. For the trees in the edge zone, the CIs could not be computed 214 

as their zone of influence (of maximum radius of 30 m) had not been fully inventoried. However, 215 

the crown-based CI were calculated for trees located in the entire plot area (core plus edge zones, 216 

Fig. 2a), given that the ortho-images acquired extended 50 m outside the plot boundaries. Taking 217 
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into account the distance and size of competitors, four group of indices could be recognized: (i) 218 

distance-dependent symmetrical competition indices, (ii) distance-dependent asymmetrical 219 

competition indices, (iii) distance-independent symmetrical competition indices, and (iv) distance-220 

independent asymmetrical competition indices. The symmetric competition indices included all 221 

identified neighbors in the zone of influence. In contrast, asymmetric competition indices were 222 

calculated by considering as competitors of a given subject tree only the neighboring trees with 223 

larger and/or taller crowns than the subject (Rio et al., 2014; West and Ratkowsky, 2021). Ten 224 

indices were computed with Equation 1. Competition indices other than those described with 225 

Equation 1 were calculated, and formulas are given in Table 2. 226 

  CI𝑖 = ∑ CA𝑗
𝛼/DIST𝑖𝑗

𝛽
 𝑛

𝑗=1 ,     Eq. 1  227 

where CIi is a competition index for subject tree i depending on the crown area (CAj) of the n 228 

neighboring trees located at distance DISTij from the subject tree. Exponents α and β could be set 229 

to 0, 1 or 2 to weight CA and/or DIST. If β = 0, the competition indices were distance-independent; 230 

otherwise, they were distance-dependent (Eq.1). If α = 0 and β = 0, the resulting index 231 

corresponded to the number of neighboring trees within the influence zone. The indices were also 232 

computed considering all neighboring trees (symmetrical competition) or only the trees larger than 233 

the subject trees (asymmetrical competition).234 
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Table 2. Variables and competition indices used to predict tree growth, measured or calculated from field data, UAV, or a combination of both 235 

(hybrid variables). DBH-based CIs are marked ф; crown-based CI are marked ⸙. The Model column states, for each variable, the model including 236 

these variables among the predictors (see Section 2.5.3). 237 

Variable type Definition Index Formulas Reference Model 

Field Diameter at breast height  DBH —  M1,M3,M4,M5 

(DBH-based Logarithm of DBH logDBH Log(DBH)  M1,M3,M4,M5 

variables) Logarithm of squared DBH logDBH2 Log(DBH)2  M1,M3,M4,M5 

 Logarithm of (DBH)1/2 logDBH12 Log(DBH)0.5  M1,M3,M4,M5 

 Stem size class SSIZE DBH < 40 cm: small tree 

DBH ≥ 40 cm: large tree 

 M1,M3,M4,M5 

 Number of neighborsф Nn —  M1,M5 

 Number of neighbors taller than the subject treeф NnT —  M1,M5 

 Sum of the basal areas of the neighborsф SBA 
∑ π/4 × DBHi

2
Nn

𝑖=1
 

Moravie et al. (1999) M1,M5 

 Sum of the basal areas of the taller neighborsф SBAT 
∑ π/4 × DBHi

2
NnT

𝑖=1
 

 M1,M5 

 Basal area ratioф BAR BA/(BA+SBA) Moravie et al. (1999) M1,M5 

Remote sensing 

(UAV-based  

Projected crown area  CA —  M2,M3,M4,M5 

variables) Logarithm of crown area  logCA Log(CA)  M2,M3,M4,M5 

 Convex crown area  CCA 
∑

𝑆𝑖

min (cos (slope𝑖)

𝑛

𝑖=1
 

Ndamiyehe et al. (2020) M2,M3,M4,M5 

 Crown diameter  CD (4 × CA π)0.5 ⁄   M2,M3,M4,M5 

 Crown perimeter CP —  M2,M3,M4,M5 

 Crown situation CRSITU ∆ALT < 0: dominated crown 

∆ALT ≥ 0: dominant crown 

 M2,M3,M4,M5 

 Crown circularity  CCircu 4π × CA CPi
2 ⁄   Getzin et al. (2012) M2,M3,M4,M5 

 Crown perimeter / area ratio CPA CP CA⁄   Getzin et al. (2012) M2,M3,M4,M5 
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 Difference in altitude between the subject tree and its 

neighborhood 

∆ALT — Ndamiyehe et al. (2020) M2,M3,M4,M5 

 Number of all neighboring tree crowns⸙ NC Eq. 1, with α = 0, β = 0  M2,M3,M4,M5 

 Number of neighboring crowns higher than the subject⸙ NCH Eq. 1, with α = 0, β = 0 Ma et al. (2018) M2,M3,M4,M5 

 Number of neighboring crowns larger than the subject NCL Eq. 1, with α = 0, β = 0  M2,M3,M4,M5 

 Neighboring crowns higher and larger than the subject⸙ NCHL Eq. 1, with α = 0, β = 0  M2,M3,M4,M5 

 Sum of the crown area of neighboring trees⸙ NCA 
∑ CA𝑗

𝛼/DIST𝑖𝑗
𝛽

NC

𝑗=1
 

with α = 1, β = 0 

 M2,M3,M4,M5 

 Neighborhood crowding index⸙ NCI NCA Area of influence zone⁄   M2,M3,M4,M5 

 Sum of the crown area of higher trees⸙ CAH 
∑ CA𝑗

𝛼/DIST𝑖𝑗
𝛽

NCH

𝑗=1
 

with α = 1, β = 0 

 M2,M3,M4,M5 

 Sum of the crown area of larger trees⸙ CAL 
∑ CA𝑗

𝛼/DIST𝑖𝑗
𝛽

NCL

𝑗=1
 

with α = 1, β = 0 

Filipescu et al. (2012) M2,M3,M4,M5 

 Sum of the crown area of higher and larger trees⸙ CAHL 
∑ CA𝑗

𝛼/DIST𝑖𝑗
𝛽

NCHL

𝑗=1
 

with α = 1, β = 0 

 M2,M3,M4,M5 

 Distance weighted sum of the neighboring crown area⸙ NCADW 
∑ CA𝑗

𝛼/DIST𝑖𝑗
𝛽

NC

𝑗=1
 

with α = 1, β = 1 

 M2,M3,M4,M5 

 Global solar radiation  glob_rad — Hofierka and Suri (2002) 

Olpenda et al., 2018) 

M4 

Hybrid Ratio of projected crown area to basal area CBR CA BA⁄  Wyckoff and Clark (2005) M4,M5 

 Ratio of convex crown area to basal area CCBR CCA BA⁄  Ndamiyehe et al. (2020) M4,M5 

238 
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2.5.3 Growth models 239 

To test whether the use of UAV data provided information similar or complementary to field data 240 

for predicting tree growth, we first analyzed the correlations between these two types of data using 241 

principal component analysis (PCA). We then tested the influence of the two types of data in 242 

growth models including all variables, even those potentially correlated. Five models were 243 

calibrated considering the trees located in the core of the plots (Fig. 2a, Table 2). Models 1 and 2 244 

(M1 and M2) were calibrated using only field or UAV variables, respectively. Model 3 (M3) was 245 

calibrated using all variables except the hybrid variables. Model 4 (M4) was calibrated using the 246 

UAV-derived variables, the hybrid variables, and tree diameter (see Section 2.5). Model 5 (M5) 247 

contains all possible variables from the field, UAV and the hybrid variables. Comparing models 248 

M4 and M5 allowed us to quantify the importance of diameter-based CIs (absent in M4) in the 249 

presence of crown data. The categorical variables, namely the stem size class (SSIZE), crown 250 

situation (CRSITU) and species guild (TE), were added to the models (Table 2) as additional 251 

variables. To account for the non-linear relationship between tree growth and size (Hérault et al., 252 

2011), stem and crown size were log-transformed (Gourlet-Fleury and Houllier, 2000). In addition, 253 

to homogenize the variance of the residuals, we used a logarithmic transformation of the response 254 

variable (DBHI). To avoid the problem of logarithms on negative increments, we used 255 

log(DBHI+1) instead of log(DBHI) (Gourlet-Fleury et al., 2023).  256 

Given the large number of covariates and the strong correlations between them (Appendix A and 257 

see PCA results in Appendix B), we fitted supervised component generalized linear regressions 258 

(SCGLRs) (Bry et al., 2013) to take account of information redundancy in the bundles of variables. 259 

SCGLR identifies a reduced number of the most predictive components through linear 260 
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combination of covariates (Table 2). The components are constructed by searching for the 261 

directions of high variance in the predictor space that at the same time are optimal for predicting 262 

the response variable (Réjou-Méchain et al., 2021; Tomaschek et al., 2018). To maximize the 263 

trade-off between goodness of fit and the amount of information the components capture from the 264 

covariates, three parameters must be defined cautiously: l ≥ 1 measures the locality of the bundles 265 

of variables with which the components tend to align, s, between 0 and 1, describes the structural 266 

strength of the predictors, and k is the optimal number of model components (Bry et al., 2013; 267 

Mortier et al., 2017). These parameters were determined by cross-validation using the harmonic 268 

mean of the mean square prediction error (MSPE) criteria (Appendix C). 269 

The predictive power of the models was tested with a cross-validation in which the dataset was 270 

randomly subdivided into a training dataset (80% of trees) and a validation dataset (20%). The 271 

model fitted on the training sample was tested to predict the growth of the trees in the validation 272 

sample. The operation was repeated 10 times and the mean coefficients of determination (R2) and 273 

the mean square prediction error (MSPE) were used to quantify the accuracy of the models. The 274 

calculation of R2 involved three steps: (i) the coefficients that form the components were calculated 275 

on the training sample, (ii) these coefficients were then used to calculate the components on the 276 

validation sample, and (iii) the response variable was regressed with least squares regression on 277 

these components in the validation sample, to obtain the R2, adjusted R2 (R2 adj) and p-values. 278 

The model with the best compromise between parsimony and accuracy was identified among M1–279 

M5 based on their R2 adj and MSPE values along with the type of variables and number of 280 

components it contained. This model was then tested at the two sites separately. To test the site 281 

effect, the model fitted to one site was tested to predict DBHIs on the other site and vice versa. We 282 
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also fitted simple linear regression to detect significant variables in the best model. We started 283 

with a model including all possible explanatory variables. Then, we used an automatic procedure 284 

(stepAIC) to remove the variables one by one, based on the Akaike information criterion (AIC) to 285 

identify the best model in terms of AIC and parameter number.  286 

UAV data were processed using QGIS software version 2.18 (QGIS Development Team, 2020) 287 

and different R packages: sf version 0.9.2 (Anderson and Winter, 2020), raster version 3.5-2 288 

(Hijmans et al., 2020), qgisprocess version 0.0.0.9000 (Caha, 2023),  and vec2dtransf version 1.1 289 

(Carrillo, 2015). Statistical models were calibrated using the SCGRL packages version 3.0.9000 290 

(https://github.com/SCnext/SCGLR/) and MASS version 7.3-54 (Venables et al., 2002). All 291 

statistical analyses were performed in R (R Core Team., 2021). 292 

3. RESULTS 293 

3.1 Using UAV data to describe canopy structure  294 

A total of 4961 crowns were delineated on UAV images. Of these, 2630 were located within the 295 

9 ha plots and 2331 in the 50 m buffer zones (Fig. 2). A total of 1558 delineated crowns were 296 

paired to trees identified in the field surveys: 984 were located in the core of the plots and 574 in 297 

the edge zones. The paired trees made up 9.6% of the inventoried trees (Table 2) and 38% of 298 

species (n = 135, Appendix G). The crown diameter of these paired trees was on average lower in 299 

Yoko (9.5 ± 4.8 m) than in Loundoungou (12.0 ± 5.6 m) (Appendix D) and this difference was 300 

significant (t = −12.41, df = 2628, p < 0.001). Within sites, the mean crown diameter did not vary 301 

significantly between plots (Yoko: t = −0.39, df = 1575, p = 0.69; Loundoungou: t = 0.23, df = 302 

1051, p = 0.82). Differences in crown density were also observed between the two sites: crowns 303 

https://github.com/SCnext/SCGLR/
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were significantly denser (t = −7.74, df = 34, p < 0 .001) in Yoko (83.1 ± 9.9 crowns ha-1) than in 304 

Loundoungou (56.2 ± 10.9 crowns ha-1). The DBH of paired trees ranged between 10.3 cm and 305 

204.1 cm, and 72% of them were more than 40 cm in diameter (see in Appendix H, the DBH 306 

distribution of sampled trees). Diameter increment varied across sites and species guild (Table 2). 307 

Trees grew faster in Loundoungou than in Yoko (ANOVA I: F = 20.03, df = 1556, p < 0.001). 308 

Table 3. Number of inventoried trees, delineated crowns and co-recorded crowns together with the 309 

proportion of delineated and co-recorded crowns among the trees inventoried in 2018. The mean and 310 

standard deviation of stem diameter and diameter increment in cm year-1 in the two study sites (Yoko and 311 

Loundoungou) for co-recorded trees are also shown by site and species guild: pioneer, non-pioneer light-312 

demanding (NPLD), and shade-tolerant (SB). 313 

Site Inventoried 

trees 

Crown 

delineated 

UAV-field data 

co-recorded 

% of data co-

recorded 

DBH range of co-

recorded trees (cm) 

DBHI (cm year-1) of co-recorded trees 

by species guild 

Yoko 9821 1577 876 8.9 10.3–160.4 Pioneer  0.983 ± 0.857 (n = 88) 

      NPLD 0.421 ± 0.355 (n = 276) 

      SB 0.297 ± 0.317 (n = 512) 

Loun- 6364 1053 682 10.7 10.3–204.1 Pioneer 0.842 ± 0.738 (n = 129) 

doungou      NPLS 0.494 ± 0.462 (n = 229) 

      SB 0.404 ± 0.311 (n = 324) 

Total 16185 2630 1558 9.6 10.3–204.1 — — 

3.2 Variable and model selection 314 

According to the MSPE drop for the five fitted models, two supervised components (SC) were 315 

optimal for predicting growth (Fig. 3a) of the 984 trees studied in the core zones. Diameter 316 
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increment (DBHI) was strongly correlated to these two first components (SC1 and SC2).  317 

DBHI was negatively correlated with SC1, except in M1 (Fig. 3b). In contrast, DBHI was 318 

positively correlated with SC2 in all the models. Variables characterizing crown size (CA, CCA, 319 

CD), relative altitude (ΔALT) and tree diameter (DBH) were the most negatively correlated with 320 

SC1 and showed a positive effect on DBHI. Hybrid variables (CBR, CCBR) were also positively 321 

correlated with Axis 2 and showed the strongest correlation with DBHI, especially in Model 4 322 

(Fig. 3e). Hybrid variables were also negatively correlated to the basal area of neighboring trees 323 

(SBA, BAR) (see also PCA results, Appendix B), showing that the greater the competition exerted 324 

on a tree, the smaller was the crown to basal area ratio. Both the SC1 and SC2 showed that in 325 

general, the asymmetric (NCL, NCHL) and symmetric (NCA, NCI, NC, Nn) competition indices 326 

assessed from field or UAV data at different radii negatively affected DBHI. When all field and 327 

UAV data were combined (M5, Fig. 3f), crown-based competition indices (CAHL, NCL, NCI,) 328 

were found to correlate better with SC1 and SC2, and therefore with DBHI, than the diameter-329 

based competition indices (SBAT, NnT). The crown competition types that had the most influence 330 

on SC1 and SC2 were both symmetric (NC, NCI) and asymmetric (NCL, CAHL), and they varied 331 

in the size of the zone of influence where they were measured (Fig. 3f). The variables with the 332 

strongest correlations (r ≥ 0.60) with the supervised components are given in Appendix E.  333 
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Fig. 3. In (a), the optimal number of components in the fitted models is marked by the blue dotted lines 335 

analyzing the variation in mean square prediction error. Correlation plots for the predictors and response 336 

variable in the planes defined by the supervised components SC1 and SC2 are presented for the model fitted 337 

using variables from (b) field (Model 1), (c) UAV (Model 2), (d) field + UAV (Model 3), (e) DBH + UAV 338 

+ hybrid (Model 4), and (f) the entire set of variables calculated in this study (Model 5). For clarity, 339 

variables with a correlation of less than 0.5 with both components (dashed circle) are not shown. Similarly, 340 

each competition index is represented by considering the zone of influence for which the index has the best 341 

correlation with the components. The predicted variable is shown in red, DBH-based variables in blue, 342 

UAV-based variables in orange and hybrid variables in green. 343 

Comparison of the calibrated models considering data from the two sites combined (Fig. 3, Fig. 4a) 344 

or separated (Fig. 4b,c) showed the same trend: the predictive quality of M1 and M2 was low, that 345 

of M3 was moderate and there was very little difference in predictive quality between M4 and M5. 346 

Mixing the two field- and UAV-based variables (M3) explained growth variance 40% better than 347 

models M1 and M2, which contained only one type of variable (Fig. 4), and reduced the MSPE of 348 

these models by at least 17% (Fig. 3a). The maximum R2 adj was obtained using all possible 349 

variables (M5, Table 2). However, with an R2 adj better than that of M3 (Fig. 4b,c) and representing 350 

90% of that of M5, M4 had the advantage of not containing the DBH-based competition indices, 351 

and therefore of containing fewer variables than the other two models. Going from M4 to M5 352 

showed that adding DBH-based competition indices to a model already containing tree size 353 

variables and crown-based competition indices improved growth predictions very slightly. The 354 

relative gain in R2 adj varied from 0.6% to 1.4% (Fig. 4b,c) and the reduction in harmonic mean 355 

of the mean square prediction error (MSPE) was 0.8% (Fig. 3a). 356 
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 357 

Fig. 4. Adjusted coefficient of determination of the different growth models calibrated using M1 (field 358 

variables), M2 (UAV variables), M3 (mixture of field and UAV variables), M4 (tree diameter, UAV and 359 

hybrid variables), and M5 (set of all measured variables). Mean R2adj values supplemented by the standard 360 

deviation are presented for each model. 361 

Linear regression showed that the ratio of crown area to basal area (hybrid variable) explained 362 

15% (AIC = 112.1, RSE = 0.256, p < 0.001) of the variability in diameter increment (DBHI) at 363 

both sites. Together with species guild, variables characterizing tree size (DBH, CA, CBR) 364 

explained 20% of diameter increment (AIC = 49.27, RSE = 0.247, p < 0.001). The M4 model, 365 

containing the crown-based CIs in addition to tree dimensions, was significantly better (F = 9.60, 366 

p < 0.001) than without these CIs. As with the SCGLR models, comparison of the linear models 367 
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M4 (R2 adj = 0.246, AIC = 4.738, RSE = 0.241) and M5 (R2 adj = 0.256, AIC = −4.690, RSE = 368 

0.239) in Table 5 shows that adding diameter-based CIs to a model already containing tree 369 

dimensions and crown-based CIs marginally improved the quality of DBHI predictions (Table 5). 370 

Results also showed that both asymmetric (CAH, NCL) and symmetric (NCA, NCI) crown indices 371 

were significant in growth models (Table 5). Without significant effect, the site did not appear to 372 

be a relevant variable in the two models M4 and M5. Models containing the site variable were not 373 

significantly different from those that did not contain it, whether they were of type M4 (F = 1.719, 374 

P = 0.19) or M5 (F =0.646, P =0.422). 375 

Table 5. Estimated coefficients of the linear models (M4 and M5) using the trees located inside the core 376 

zones in both sites (n = 984). M5 contains all possible variables from the field, UAV and hybrids. M4 377 

contains the variables from M5 except for the competition indices from the field data. The reference factor 378 

level for the species guild is “shade bearer”. Significance of parameters is indicated at the statistical 379 

threshold of 0.05: *, 0.01: ** and 0.001: ***. R2 adj is the coefficient of determination of the fitted model. 380 

RSE is the residual standard error. 381 

    M4      M5   

   R2 adj AIC df RSE   R2 adj AIC df RSE 

   0.246 4.738 973 0.241   0.256 -4.690 969 0.239 

Variables Predictor Estim. SE t  p Sign.  Estim. SE t  p Sign. 

 Intercept -0.858 0.150 -5.710 0.000 ***  -0.828 0.160 -5.178 0.000 *** 

Hybrid CBR 0.189 0.015 12.471 0.000 ***  0.189 0.002 10.814 0.000 *** 

TE NPLD 0.032 0.018 1.812 0.070   0.038 0.018 2.162 0.031 * 

 Pioneer 0.210 0.025 8.521 0.000 ***  0.214 0.025 8.702 0.000 *** 

 CD -0.010 0.004 -2.844 0.005 **  0.014 0.002 6.041 0.000 *** 

 ∆ALT_10 0.014 0.002 5.952 0.000 ***  0.009 0.002 4.193 0.000 *** 

UAV CAH_5 0.000 0.000 2.919 0.004 **  0.000 0.000 2.759 0.006 ** 

 NCA_15 -0.000 0.000 -4.305 0.000 ***  -0.000 0.000 -4.112 0.000 *** 

 NCL_20 0.005 0.003 1.651 0.099   -0.007 0.003 2.352 0.019 * 

 NCI_25 0.498 0.172 2.896 0.004 **  0.453 0.172 2.644 0.008 ** 
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 BAR_10 - - - - -  5.9e7 2.9e7 2.038 0.042 * 

Field NnT_10 - - - - -  -0.020 0.007 -2.838 0.005 ** 

 SBA_10 - - - - -  -18.900 9.228 -2.048 0.041 * 

 SBAT_10 - - - - -  0.121 0.050 2.638 0.008 ** 

3.3 Between-site differences 382 

The most important variables for predicting growth were similar at both sites as indicated by the 383 

results of M4 (Fig. 5). However, their relative influence on growth was variable. In particular, 384 

crown-based variables and DBH predicted tree growth better at Yoko (R2 adj = 0.34, AIC = −164.5) 385 

than at Loundoungou (R2 adj = 0.20, AIC = 64.6). The position of the crown distinguishing 386 

dominated trees from dominant trees did not appear in the final model calibrated at Yoko. 387 

Testing a model calibrated at one site to predict growth at the other site gave an explained variance 388 

comparable to that obtained with locally calibrated models (Table 6, comparison of results in (a) 389 

versus (b), results in (c) versus (d)). Analysis of residuals showed the validity of prediction models 390 

from one site to the other (see Appendix F). The final models contained the stem size class variable, 391 

distinguishing small trees (DBH < 40 cm) from large trees (DBH ≥ 40 cm). In all local models, 392 

the coefficients associated with small trees were significantly positive. 393 
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 394 

Fig. 5. Results of using the M4 model tested at each of the two sites. Since M4 did not include DBH-based 395 

competition indices, this model was fitted again using data from the trees located in the core and the edge 396 

zones of the plots (Fig. 2a). The number of optimal components is marked by the blue dotted lines in (a), 397 

and the R2 adj values are shown in (b). The correlation plots of the variables in the planes formed by the 398 

supervised components are presented in (c) for the Yoko site (n = 876) and in (d) for the Loundoungou site 399 

(n = 682). In the plots, the response variable is shown in red, DBH-based explanatory variables in blue, 400 
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UAV-based explanatory variables in orange and hybrid variables in green. The parameters used for the 401 

fits are s = 0.14, l = 7 in Yoko, and  s = 0.18, l = 7 in Loundoungou. 402 

Table 6. Coefficients of the SCGLR models calibrated at each site and tested alternatively to predict growth 403 

at the second site. The reference factor level for species guild was "shade tolerant". The reference factor 404 

level for the “crown situation” variable was "dominant trees". The reference factor level for the “stem size 405 

class” variable was "large trees". Significance of parameters is indicated at the statistical threshold of 406 

0.05: *, 0.01: ** and 0.001: ***. R2 adj is the adjusted coefficient of determination. RSE is the residual 407 

standard error. Parameter values were replaced by “—” for the variables that were not selected in the 408 

final model.  409 
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 (a) Model calibrated at Yoko  (b) Loundoungou model tested at Yoko 

 n R2 adj AIC RSE  n R2 adj AIC RSE 

 876 0.34 -164.5 0.219  876 0.33 -145.2 0.222 

 Est. RSE t p  Est. RSE t  p 

Intercept 0.211 0.012 17.407 0.000***  0.202 0.013 15.021 0.000*** 

SC1 –0.005 0.002 –3.338 0.000***  –0.041 0.005 –8.507 0.000*** 

SC2 0.044 0.005 9.533 0.000***  0.018 0.005 3.586 0.000*** 

Pioneer 0.278 0.026 10.728 0.000***  0.237 0.028 8.462 0.000*** 

NPLD 0.071 0.017 4.238 0.000***  0.054 0.017 3.208 0.001** 

Small trees 0.125 0.025 5.026 0.000***  0.162 0.026 6.300 0.000*** 

Dominated trees — — — —  0.027 0.020 1.369 0.171 

          

 (c) Model calibrated at Loundoungou  (d) Yoko model tested at Loundoungou 

 n R2 adj AIC RSE  n R2 adj AIC RSE 

 682 0.20 64.6 0.252  682 0.17 93.9 0.258 

 Est. RSE t  p  Est. RSE t p 

Intercept 0.341 0.017 20.091 0.000***  0.345 0.017 19.718 0.000*** 

SC1 –0.045 0.006 –7.630 0.000***  –0.004 0.002 –2.240 0.025* 

SC2 0.020 0.006 3.411 0.000***  0.041 0.007 6.138 0.000*** 

Pioneer 0.101 0.028 3.570 0.000***  0.153 0.028 5.564 0.000*** 

NPLD 0.004 0.022 0.194 0.846  0.021 0.022 0.944 0.346 

Small trees 0.063 0.032 1.928 0.054  0.033 0.033 0.988 0.324 

Dominated trees –0.039 0.028 –1.312 0.190  –0.094 0.028 –3.345 0.000*** 

4. DISCUSSION 410 

Aerial imagery offers the potential to derive relevant tree crown information and so obtain more 411 

accurate estimates of tropical tree growth (Tompalski et al., 2021). Tree crown information from 412 

UAV data can produce good predictors of the growth of upper and lower canopy trees (Guerra-413 

Hernández et al., 2017). Adding such predictors to tree growth models that already include 414 

variables measured by field monitoring was found to improve model R2 adj by a factor of two. 415 
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Stem diameter (from field monitoring) and crown measurements (from UAV monitoring) were 416 

found to be complementary variables. Moreover, in the models that included the effects of tree 417 

size (DBH, crown area) and crown-based competition indices, diameter-based competition indices 418 

were no longer relevant for predicting tree growth. Tree competition could thus be assessed with 419 

UAV data without requiring additional data from field surveys. Focusing on modelling crown 420 

competition, the best model for both sites contained similar variables, suggesting that a general 421 

model of tree growth in tropical forests could be fitted with larger datasets. To the best of our 422 

knowledge, our study presents pioneering results of crown competition analysis based on the 423 

characterization of tropical forest canopy structure using UAV technology. 424 

4.1 Remote sensing provides data complementary to field data 425 

Estimating the growth of tropical trees using remote sensing is valuable because it reduces the 426 

need for labor-intensive field data collection. We found that the amount of explained variance was 427 

similar using field data and remotely sensed data. Although these results did show an interesting 428 

potential for UAV data, we had expected them to provide even better predictions, because such 429 

measurements can be used to assess the availability of light at the tree scale, one of the main factors 430 

limiting tropical tree growth (Baker et al., 2003). The UAV data likely emerged as limited 431 

predictors of tree growth because only the crown of dominant or co-dominant trees could be 432 

identified on aerial images. All the study trees had their crowns almost entirely exposed to light, 433 

limiting the variability of the computed competition indices. Moreover, crown competition 434 

assessed by remote sensing does not fully reflect the competition the tree experiences. Factors such 435 

as root competition for water and nutrients, which are important determinants of growth (West, 436 

2023), remain challenging to quantify through photogrammetric measurements. In contrast, 437 
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competition indices based on field measurements can provide some insight into root competition, 438 

as they supply information on all neighboring trees. This likely explains the observed 439 

complementarity between UAV measurements of tree crowns and field measurements of tree 440 

diameter. 441 

The best model of tree growth combined UAV data with field-measured stem diameter. This model 442 

fit was satisfactory (R2 adj = 0.26) and 40% better than the model containing only field-based 443 

variables (R2 adj = 0.15) or UAV-based variables (R2 adj = 0.17). These two data sources were 444 

thus complementary, similar to previous findings in both tropical forests (Ndamiyehe et al., 2020) 445 

and temperate forests (Wyckoff and Clark, 2005). Similarly, the hybrid variable calculated from 446 

DBH and crown area (the ratio of crown area to tree basal area) was found to be the best predictor 447 

of tree growth in both sites, explaining 15% of the predicted variance (Fig. 3e,f and Fig. 5c,d). 448 

This result confirms that tree growth depends on tree architecture (Hérault et al., 2011), tree 449 

dimensions reflecting metabolic capacity (West and Ratkowsky, 2021) and resource availability 450 

with a larger illuminated crown having higher growth at a given DBH (Baker et al., 2003; 451 

Schomaker et al., 2007; Wyckoff and Clark, 2005). The explanatory power of the hybrid variable 452 

and its positive correlation with diameter growth suggest that such variables are good indicators 453 

of tree competition and tree life history. Indeed, once a tree reaches the canopy, it can change its 454 

resource allocation strategy allocating more resources to lateral crown expansion and less 455 

resources to height growth (Antin et al., 2013; Blanchard et al., 2016). Hybrid variables may better 456 

capture this effect than the other tested variables. 457 

The variance explained in our growth models (~25%) was greater than that often reported in 458 

tropical rainforest. Notably, it was twice that of the models established in the Panama rainforest 459 
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(12%) using DBH and light availability measurements (Rüger et al., 2011). It was also higher than 460 

that explained by models of Adame et al. (2014) in the Puerto Rico forest (15%) comprising the 461 

effects of tree characteristics (DBH, height, social status), diameter-based CIs, and species guild. 462 

The relatively good performance of our models is partly due to the contribution of crown 463 

measurements obtained with UAVs, which are generally lacking in other studies. It is also 464 

attributable to the fact that our study focuses on large trees, whereas existing models in tropical 465 

forests are generally fitted on all trees with DBH ≥ 10 cm (i.e., with datasets containing many 466 

small trees). In addition, the use of component-based regressions keeps more variables in the 467 

models, even redundant ones, letting each of them contribute maximally to prediction (Bry et al., 468 

2013).  469 

The use of diameter-based CIs appeared of limited relevance when UAV data and DBH were 470 

available. Most asymmetrical competition indices obtained from field or UAV data were closely 471 

correlated. In particular, the number or basal area of neighbors taller than the subject tree (SBAT, 472 

NnT) were strongly correlated with the number or area of neighboring crowns higher and larger 473 

than the subject (NCHL, CALH), with r reaching 0.7 (p < 0.001). Additionally, even though 474 

symmetrical competition indices from the two data sources showed weaker correlations (r  ≤  0.4), 475 

they were still significantly correlated. Thus, the contribution of diameter-based CIs to explaining 476 

growth in a model that already contains crown-based CI was low, suggesting that crown-based CIs 477 

can replace DBH-based CIs. This result has practical implications for inventory work, as it shows 478 

that remote sensing, in this case by UAV, can reduce the workload of traditional inventories. By 479 

eliminating the need for field competition indices in growth models, the systematic positioning 480 

and measurement of small-diameter trees (DBH < 40 cm) is no longer essential for estimating the 481 

growth of canopy trees if UAV data can be obtained more readily. 482 
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Small trees were found to grow faster than large trees (DBH ≥ 40 cm, Table 6). It should be noted 483 

that the small trees were mostly detected and thus sampled in canopy gaps where they faced less 484 

light competition from the large trees. The threshold of 40 cm (DBH class 30-40 cm) can also 485 

represent the ontogenetic stage at which many species reach their maximum growth rate (Hérault 486 

et al., 2011). These two reasons might explain why small trees were found to have higher diameter 487 

increments than larger trees. 488 

4.2 Effects of crown competition indices  489 

Different crown competition indices were built from UAV data to predict tree growth. The 490 

performance of these predictors was generally significant, complementary to the indices built from 491 

field survey but limited. Tree growth was generally negatively correlated to crown-based 492 

competition indices as expected and in line with what is generally observed with diameter-based 493 

CIs across tropical forests (Barros de Oliveira et al., 2021; Rozendaal et al., 2020).  494 

Nevertheless, crown-based CIs explained a relatively small proportion of the variance of diameter 495 

growth. Adding them to a model containing tree size variables improved model fits by only 2%. 496 

The smallness of the contribution made by competition-based measures to explaining growth was 497 

nevertheless not surprising in tropical forests (Barros de Oliveira et al., 2021; Gourlet-Fleury et 498 

al., 2023; Laurans et al., 2014). It can be explained by the fact that the intrinsic characteristics of 499 

the tree (i.e., its diameter and crown size) already integrate the effects of past competition 500 

(Prévosto, 2005). The effect of tree size can hardly be distinguished from that of competition (West 501 

and Ratkowsky, 2021), but see Rüger et al. (2011) for an approach disentangling size and light 502 

response at species level. It can also be explained by the low power of competition indices to 503 

predict tree growth in tropical forests owing to high species diversity with sharply contrasting 504 
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responses to light conditions, and high interspecific growth variation (Barros de Oliveira et al., 505 

2021; Charbonnier et al., 2017; Rozendaal et al., 2020; Rüger et al., 2011).  In particular, the low 506 

gradient of light availability for dominant trees sampled also likely explains, at least partly, the 507 

limited contribution of the crown-based CI for growth predictions. Future studies could 508 

additionally include indices of tree vigor such as the ratio of living crown length (Stăncioiu et al., 509 

2021) or the degree of crown fragmentation (Rutishauser et al., 2011). Such indices might appear 510 

useful to further investigate the interaction between tree architecture, resulting partly from the 511 

competition history, and tree growth.  512 

Both asymmetric and symmetric crown indices significantly explained tree growth,  indicating 513 

their complementarity and the importance of using them simultaneously as it has already been 514 

recommended (Sun et al., 2019). The best important asymmetric competition indices corresponded 515 

to numbers and area of neighboring crowns taller or wider than the subject tree. Ma et al. (2018) 516 

also tested similar crown indices to predict tree growth in temperate forests. In particular, they 517 

found that the index related to the number of taller crowns quantified with LiDAR data was more 518 

closely correlated with the volume growth of conifer tree crowns. 519 

Delimiting the zone of influence to accurately assess competition experienced by a subject tree 520 

remains challenging in tropical forests. Several approaches have been used, including the fixed 521 

radius method (Gourlet-Fleury and Houllier, 2000; Gourlet-Fleury et al., 2023) and the crown 522 

overlap method (Zambrano et al., 2019). In this study, we calculated indices with a varying radius. 523 

Our results show that the indices contained in the best models were associated with zones of 524 

influence with a radius in the range 5–30 m, suggesting that a single radius does not fully capture 525 

the effect of competition (Zambrano et al., 2019). 526 
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In this study, we propose a new approach to determine the social status of trees using UAV that is 527 

comparable to the classic Dawkins index (Dawkins, 1958). By comparing the altitude of the target 528 

tree with that of its neighbors (∆ALT), we could define whether the tree was dominant or 529 

dominated. Contrary to the Dawkins index based on a partly subjective estimate, ∆ALT has the 530 

advantage of being a continuous quantitative variable that can be easily measured for the trees 531 

whose crowns are often hardly visible from the ground (Laurans et al., 2014). ΔALT was a 532 

significant predictor of tree growth (p < 0.001) with dominant trees showing, as expected, more 533 

sustained growth than less dominant trees (Moravie et al., 1999). The magnitude of this effect 534 

depends, however, on the sampled gradient of ΔALT and significant effect could likely only be 535 

observed when the sampled gradient is not too limited (Ndamiyehe et al., 2020).  Further studies 536 

could test whether ΔALT variable can substitute for the Dawkins index fitting growth models 537 

including one or the other indicator of social status. 538 

4.3 Developing a general tree growth model with UAV data 539 

A general tree growth model would be useful for predicting tree growth across a wide range of 540 

species and environmental conditions. In our study, we found that the best models for both sites 541 

contained similar variables: DBH, crown size, and crown-based CIs. Additionally, a model 542 

calibrated at one site to predict growth at the other, and vice versa, showed predictions comparable 543 

to those of the local models. Furthermore, the site effect did not appear significant in models 544 

containing all the trees from Loungoungou and Yoko. This effect was likely limited when the 545 

effect of the other explanatory variables was already taken into account and the site effect could 546 

have been partly captured by the other explanatory variables. It suggests that a general model 547 

might be devised for multiple sites. However, predicted growth variance was better explained for 548 
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trees growing at Yoko than at Loundoungou, probably because of the varied growth conditions in 549 

the two sites, marked by differences in canopy structure, soil, and climatic characteristics (Gourlet-550 

Fleury et al., 2023). Similar variation in predicted variance between sites of growth models based 551 

on crown measurements was also reported by Ma et al. (2018) in temperate forests. In their case, 552 

model performance varied with tree development stage and the abundance of trees belonging to 553 

different shade tolerance classes. In our study, we observed that crown measurements predicted 554 

tree growth better in the site with the highest stand density (~450 stems ha-1). To fit a general 555 

model for a large-scale use, further studies will particularly need to investigate the effects of 556 

canopy structures, crown density, and environmental conditions. Moreover, the species 557 

composition in our two study sites was contrasted with more individuals of shade-tolerant species 558 

at Yoko (n = 512) than at Loundoungou (n = 324). In future studies, it would be interesting to 559 

analyze to what extent species composition can affect DBH growth predictions from UAV images. 560 

This would however require data collected in a larger number of sites. 561 

4.4 Practical implications and remaining challenges 562 

UAV technology, with its ability to produce high-resolution images, allows detailed descriptions 563 

of canopy structure, which are essential for a better understanding of how forest ecosystems work. 564 

In this study, orthoimages with a resolution of 10 cm pixel-1 and DSM of 30 cm pixel-1 enabled us 565 

to detect differences in canopy structure at two forest sites. These two sites differed significantly 566 

in both size and number of crowns in the canopy, with higher crown density but smaller crowns in 567 

Yoko than in Loundoungou. These differences in canopy structure were also consistent with 568 

differences in stem density observed with field inventories, with nearly 450 stems ha-1 at Yoko 569 

against 350 stems ha-1 at Loundoungou. 570 
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Using UAVs to study canopy structure and predict tree growth costs less  than other remote sensing 571 

methods such as those using LiDAR technology (Dandois and Ellis, 2013). However, its use is 572 

only relevant for large trees with crowns in the upper part of the canopy. This UAV approach could 573 

be of particular interest for planning logging operations, since most exploitable trees generally 574 

have DBH ≥ 40 cm, and high proportions (65–80%) of trees of this size stand out on aerial images 575 

of tropical forests (Araujo et al., 2020; Ndamiyehe et al., 2020). Moreover, the UAV's ability to 576 

detect the largest trees remains important because large trees preempt the largest share of 577 

resources, have pivotal roles in  stand dynamics, store high amounts of carbon (Slik et al., 2013; 578 

Stephenson et al., 2014). Using UAV can then be an efficient way to assess and monitor key forest 579 

components (Bastin et al., 2015). 580 

Manual delineation of tree crowns and co-recording of UAV field data remain a limitation to the 581 

use of remote sensing for individual tree growth assessment (Tompalski et al., 2021). In this study, 582 

to describe the neighborhood of each tree crown, it was necessary to delineate, from the UAV 583 

images, all neighboring tree crowns. This work is time-consuming, especially for dense canopies. 584 

Automatic delineation and recognition of tree crowns and species on images is thus necessary to 585 

alleviate measuring dendrometry variables from images. Several deep learning techniques have 586 

been tested for computer vision of various objects, including trees on UAV images (Ball et al., 587 

2023; Dos Santos et al., 2019; Morales et al., 2018). Although promising results have already been 588 

reported for tree crown detection and delineation in plantations (Ocer et al., 2020), in temperate 589 

forests (Kattenborn et al., 2019; Schiefer et al., 2020; Yu et al., 2022) as well as in tropical forests 590 

(Ball et al., 2023), the use of these techniques to detect species still remains complicated in tropical 591 

forests owing to the high specific diversity (Slik et al., 2015) and multi-layered structure of 592 

canopies. Further research is needed to adapt these tools to tropical forests and improve them. In 593 
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this regard, our dataset, which paired tree records from UAV and field data, could be used as a 594 

training dataset to develop such tools. 595 

Another remaining challenge is the estimation of tree height: the difficulty detecting "ground" 596 

points on images acquired in dense forest makes it difficult to create a digital terrain model and 597 

thus to estimate tree height, especially for hill terrains. Among the recommended solutions to solve 598 

this problem, we can consider the use of lidar drones, whose cost remains high but has fallen 599 

significantly in recent years: solutions are available for about 25,000 €. Integrating height into 600 

growth models would probably improve the predictions of tree growth. 601 

5. CONCLUSION 602 

Crown competition indices estimated from UAV photogrammetry capture valuable information to 603 

predict tree growth, and this information is complementary to that provided by tree dimensions as 604 

classically recorded from field inventory. Most competition indices obtained from field or UAV 605 

data were closely correlated. Thus, in a model including the effect of UAV-based crown 606 

measurements, the DBH-based competition indices from field measurements were no longer 607 

relevant. The model containing DBH, CA and crown-based CIs proved best on both sites. To build 608 

a model that can be generalized on a large scale, a larger number of sites with structurally 609 

heterogeneous canopies will have to be sampled. Although the use of UAV still presents some 610 

technical constraints particularly in tropical forests, our results show that it can improve our 611 

understanding of forest dynamics while simplifying and reducing the cost of forest inventories. 612 
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7.1 Appendix A: Correlation between explanatory variables 624 
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 625 

Fig. A.1. Correlation between covariates calculated from field inventory data. 626 
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 627 

Fig. A.2. Correlation between covariates determined from the UAV data. 628 

7.2 Appendix B: Results from principal component analysis on all explanatory 629 

variables 630 

PCA results on the explanatory variables used in this study highlight three main axes. Axis 1 631 

separates trees according to their size expressed by DBH and by crown size (CCA, CP, CD). Small 632 

trees lie on the positive side and large trees on the negative side. Axis 1 also shows that tree size 633 
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is positively correlated with ΔALT variables but negatively correlated with asymmetric 634 

competition indices (NCL, NCH, NnT). This indicates that the larger the tree, the less competition 635 

it faces from larger and/or taller neighboring trees. Asymmetric competition indices calculated 636 

from field and UAV imagery are generally closely correlated (e.g., r = 0.71, p < 0.001 between 637 

NnT_30 and NCHL_30). 638 

Axis 2 separates trees according to the basal area of their neighbors (BAR, SBA), which is opposite 639 

to the ratio of crown area to basal area of the tree (CBR, CCBR). This axis shows that the greater 640 

the competition around a tree, the smaller the crown to basal area ratio. Axis 3 separates trees 641 

according to the number of crowns in their vicinity, expressed in terms of symmetric competition 642 

indices. This axis shows that symmetric competition indices from field and UAV data are weakly 643 

correlated. The best correlation between the symmetric competition indices calculated using these 644 

two types of data is r = 0.41 (p < 0.001) between Nn_30 and Nc_30. We also see on Axis 3 that 645 

when the number of crowns in the vicinity of the subject is high, the sum of the areas covered by 646 

crowns of trees taller than the subject is lower. 647 
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  648 

  649 

Fig. B.1. Projection of predictor onto the plane formed by the three principal axes of a PCA illustrating the 650 

correlations between variables calculated from field data (blue), from UAV data (red), and from hybrid 651 

variables (green) derived from these two types of data. The figure shows (a) the histogram of eigenvalues, 652 

and (b), (c), and (d) the projection of variables on the first three PCA planes. 653 
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7.3 Appendix C: SCGLR model fitting parameters 654 

Table C.1: Parameters l and s and the number k of optimal components of the fitted SCGLR models. 655 

        SCGLR adjustment parameters 

Model Data used s l k 

M1 Field 0.18 7 2 

M2 UAV 0.18 7 2 

M3 UAV + Field 0.18 7 2 

M4 UAV + DBH + Hybrid 0.20 7 2 

M5 UAV + Field + Hybrid 0.20 7 2 

7.4 Appendix D: Distribution of crown size at the two study sites 656 

Fig. D.1. Histogram and fitted normal distribution curve of the crown diameter (log-transformed) of 657 

the 2630 trees delineated from the orthoimages acquired by UAV at very high resolution. The 658 

distributions are presented for both sites combined and for each of the four plots (4 × 9 ha) sampled at 659 
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the separate sites: Yoko in DR Congo (n = 1577, for Plot 1 and Plot 2) and Loundoungou in the 660 

Republic of Congo (n = 1 053, for Plot 3 and Plot 4). The crown diameter is presented in logarithmic 661 

values. Red dotted lines mark the mean for each distribution. 662 

7.5 Appendix E: Variables that most influenced the supervised components of 663 

SCGLR models 664 

Table E.1. Variables with a correlation of absolute value greater than or equal to 0.6 with one of the 665 

two supervised components (SC). The variables are distinguished according to the positive (+) or 666 

negative (−) sign of their correlation with SC. The sign of the correlation with variable DBHI is also 667 

given. 668 

Model SC Positive correlation with SC Negative correlation with SC Correlation with DBHI 

M1 SC1 NnT_30, NnT_25, NnT_20, NnT_15, SBAT_30 DBH, logDBH (+) 

 SC2 - SBA_15, BAR_15, BAR_20, 

SBA_20 

(+) 

M2 SC2 NCL_30, NCL_20, NCL_25, NCL_15, 

NCI_10, NCL_10, NCA_15, NCI_15, 

NCHL_20, NCHL_25, NCHL_30, CCA, 

NCHL_15, NCHL_10, NC_5 

CD, CP, CPA, CA, ΔALT_15, 

logCA, logCD 

(-) 

 SC2 - NC_30, NC_25 (+) 

M3 SC1 NCL_30, NCL_25, NCL_20, NCI_10, NCA_10, 

NCL_15, CPA, NCL_10, NCA_15, CCA, NC_5, 

NCHL_25, NCHL_30, NCHL_20, NCHL_15, 

NCHL_10, NCL_10, NCA_15, NC_5, 

NCHL_25, NCHL_30, NCHL_20, 

NCHL_15, NCHL_10 

CD, CP, CCA, ΔALT_10, DBH, 

logDBH, logCA,  

(-) 

 SC2 -  (+) 

M4 SC1 NCL_30, NCL_25, NCL_20, NCI_10, NCA_10, 

NCL_15, CPA, NCL_10, NCA_15, NCI_15, 

NC_5, NCHL_25, NCHL_30, NCHL_20, 

NCHL_15, NCL_5 

CD, CP, CCA, CA, ΔALT_10, 

logCA, logCD 

(-) 

 SC2 - CCBR, CBR (+) 

M5 SC1 NCL_30, NCI_10, NCA_10, CPA, NCL_25, 

NCL_20, NCL_15, NCA_15, NCI_15, NCL_10, 

CD, CP, CCA, CA, logCA,logCD (-) 
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NC_5 

 SC2 - CAH_20 (+) 

7.6 Appendix F: Analysis of residuals from the M4 models applied to the two study 669 

sites 670 

 671 

Fig. F.1. M4 model residuals as a function of BBH and tree crown area at study sites. 672 
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7.7 Appendix G: Data 673 

The dataset used in this study is provided as an attached file.  674 

7.8 Appendix H :  DBH and diameter increment distribution of sampled trees by 675 

site and species guild 676 
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 677 

Fig. H.1. Distribution of DBH and diameter increment (DBHI) of the trees co-recorded between 678 

the field and UAV measurements, in the two sites, Yoko (n = 876) and Loundoungou (n =682). The 679 

distributions are presented by site and by species guild. 680 
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