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Unravelling the role of collective bursting neurons, quiet waking
and structural plasticity in memory consolidation
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Context | Neural activity during learning and rest periods Protocol | Alternate periods of learning and rest to test the role of rest periods in memory consolidation
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Computational model | Biophysical neurons model are able to switch from tonic (learning) to burst (rest)

: 1 2 3 4 5 6 e 13 14 15 16 time
Tonic State # >

= Task Learnd Rest Learn O Rest Learn O Rest Learn 7 Rest NOISE Rest
= weight
<5 Mmax
— I I I I
=
_ &
= ‘o i
- = 0
S Py I“«;‘fﬁ“fﬁ e A I S A
& 3&%‘& ,«' , m& W‘ oy :..%3..»@55 Rk S R Y %}; .'{ 4{1 B Consolldatlon during rest Robust to noise
3NN "’h P »‘54 3 e‘(“l)\’{.’ ¥ rx@%"waﬂ«w s e gl sy ?ﬁ} i R W3 .-§{~; B
% .::}:-%”i }{Mﬁ.ﬁu‘:ﬁg«u« Segded mn}\‘;::}ga.?\z afs m&d’ \CM\-“MMM @, ;%:" ﬁ‘{' .&;’ ' )5'{ ! q. :':,3’ %ﬁ;‘: %%": %‘; ::.-.
Conductance-based model > “’"“””"‘;’s‘""" s ‘”’”f’&‘l’iﬁi{.@‘i‘ ':;:‘:;2:‘:::;::;:3 Jo oy g“«. ﬁ" : %4, %, B
i 5 fen "”"“"' «-*»'w”’ it g O &L o & oy 2 - 0 : : : : > s
robust to neuromodulation, 2 SRR, 7 ok ke W R % 3 Mechanisms | Memory consolidation simultaneously requires brain-state switches and structural plasticity
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o ¢ o . e . . e The early weight (w) is reset during each burst state. Rest is associated with a collective bursting activity.
Synaptlc plﬂStlUty Synaptic weight = early weight (w) x late weight () It allows the network to learn new information but it Modeling rest with a weak tonic activity or blocking
Traditional i nlastic / \ . . NEW forgets previous learning. bursting prevents reset in the synaptic weights.
raditional synaptic plasticity Structural Plasticity New memory will erase the previous one and no
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(Graupner and Brunel, 2012] o We developed an innovative burst-induced structural plasticity: I=f(w). olasticity is blocked.
w = f([Cal) 0 It aims to better understand the role of collective bursting activity
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= max| Blocking the collective bursting and replacing it with a weak Memory fades-out. Fragile to noise
S tonic activity prevents resetting the synaptic weights.
% Late-Phase of Long-Term Potentiation (L-LTP) Memory Is preserved but less selective.
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> 0 Restoration of the postsynaptic receptor efficacy — called reset  \We have developed a biophysical neuron network able to ¢ \Ve created a burst-induced structural plasticity that supports memory
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Time (s) Insertion of newly generated proteins
Me S i i | ¢ This new rule Is independent of the traditional synaptic plasticity used and
Collective bursting induces a reset in early weights. Change in the morphology of the synapse messages * This work offers a better understanding of the role of rest in g YHapte p Y

memory consolidation by demonstrating the importance of new-  robust to neuromodulation. It can provide synaptic homeostasis during rest or
protein synthesis and morphological change in the synapse. consolidation by tuning the structural plasticity parameters.




