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Abstract 

Dairy cows with mastitis are frequently treated with antibiotics. However, the 
potential effects of β-lactam antibiotics, such as cephalosporins, on the milk and 
fecal microbiome is unknown. By studying both milk and feces, we aimed to 
assess the broader effects of cephalosporin use on the cow's overall microbial 
ecology. This approach allowed us to examine any potential transmission or 
changes in microbial populations from the gut (represented by feces) to the udder 
(represented by milk). Resistant bacteria are the main reason for failure of 
antibiotic treatment. However, even if bacteria have been identified as sensitive to 
antibiotics, these antibiotics are not always effective in treating bacterial infection 
diseases. The population can exhibit phenotypic heterogeneity, and 
heteroresistance is considered to be a crucial intermediate stage before the 
development of full resistance. 

In the first experiment, the objective was to investigate the effect of a cocktail 
of two commonly used cephalosporins, ceftiofur and cefquinome, on the milk 
microbiota of 7 mastitis-affected dairy cows and the antibiotic resistance genes in 
the milk. Ceftiofur is a third-generation cephalosporin and cefquinome is a fourth-
generation cephalosporin. Third-generation cephalosporins have a lower coverage 
against most gram-positive bacteria as compared to first- and second generation 
cephalosporins, but increased coverage against Enterobacteriaceae, Neisseria 
spp., and Haemophilus influenzae. Compared to third-generation cephalosporins, 
fourth-generation cephalosporins have an additional coverage against antibiotic-
resistant gram-negative bacteria that produce beta-lactamases. In this first 
experiment, the milk samples were collected from 7 dairy cows at the period 
before medication (day 0), during medication (day 1, 2, and 3), during the 
withdrawal period (day 4, 6, and 8), and at several moments during the period 
after withdrawal (day 9, 11, 13, and 15). We applied 16S rRNA sequencing to 
explore the microbiota changes, and antibiotic resistance patterns were 
investigated by quantitative PCR. The microbiota richness and diversity in each 
sample were calculated using the Chao 1 (richness), Shannon (diversity), and 
Simpson (diversity) indices. The cephalosporins treatment lowered the Simpson 
diversity value at the period of withdrawal. Members of the Enterobacter genus 
were the most affected bacteria showing a significant reduction during the 
medication period which continued after. Meanwhile, antibiotic resistance genes 
in the milk were also influenced by antibiotic treatment. The cephalosporins 
treatment raised the proportion of blaTEM in milk samples at the period of 
withdrawal.  

In the second experiment, the objective was to investigate the effects of 
ceftiofur and cefquinome on the fecal microbiota and antibiotic resistance genes 
in the feces of dairy cows with mastitis. The fecal samples were obtained from the 
same cows during the same period as in experiment 1. The fecal samples were 
collected from 8 dairy cows at the following periods: the start day (day 0), 
medication (day 1, 2, and 3), withdrawal (day 4, 6, 7, and 8), and recovery (day 9, 
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11, 13, and 15). Again, 16S rRNA gene sequencing was applied to explore the 
changes in microbiota, and qPCR was used to investigate the antibiotic resistance 
genes. The cephalosporin treatment significantly decreased the microbial diversity 
and richness, indicated by the decreased Shannon and Chao 1 indexes, 
respectively (p < 0.05). The relative abundance of Bacteroides, Bacteroidaceae, 
Bacteroidales, and Bacteroidia increased, and the relative abundance of 
Clostridia, Clostridiales, Ethanoligenens, and Clostridium IV decreased at the 
withdrawal period. However, we observed that the relative abundance of the 
bovine mastitis-related bacterial genera, such as Blautia, Curvibacter, 
Bradyrhizobium, etc, significantly decreased at the medication period in milk, but 
did not change in the feces. The cephalosporin treatment increased the relative 
abundance of β-lactamase resistance genes (blaTEM and cfxA) at the withdrawal 
period (p < 0.05) in feces, thus the relative abundance of blaTEM increased in 
both milk and fecal samples during this withdrawal period.  

In the first experiment, the cephalosporin treatment did not have a significant 
effect on the relative abundance of Staphylococcus in milk. However, when 
analyzing the Staphylococcus isolated from the milk samples, they were almost 
all completely sensitive to ceftiofur (68/70, 97%). If the Staphylococcus isolated 
from milk samples are truly sensitive to ceftiofur, the cephalosporin treatment 
should theoretically significantly reduce the relative abundance of Staphylococcus. 
Therefore, we hypothesized that Staphylococcus may have developed antibiotic 
heteroresistance (HR). So, in the third experiment, we studied the prevalence of 
ceftiofur heteroresistant Staphylococcus isolates. In total, 151 Staphylococcus 
isolates were collected from milk from mastitis suffering cows from the major 
dairy-production areas of China, including 70 different Staphylococcus strains 
isolated from milk samples from the first experiment. To avoid duplicates, 
Staphylococcus isolates were considered unique if strains from the same milk 
sample differed at the species level by 16S rRNA sequencing. Among the isolates, 
15 strains (15/151, 9.9%) showed heteroresistance by the disk diffusion method, 
and, of those 15, three strains (3/15, 20%) exhibited heteroresistant phenotypes by 
the PAP method. Two of these heteroresistant strains were unstable, as the 
minimal inhibitory concentrations (MICs) decreased after 1-week daily culture. 
Whole-genome sequencing displayed that, for strains with heteroresistant 
phenotypes, there were single nucleotide polymorphisms in the mecA gene, 
leading to different protein sequences, which might be associated with ceftiofur 
heteroresistance. There were two extra mutations in the heteroresistant stable 
isolate (D12-4), which might have resulted in the formation of a stable resistant 
subpopulation in heteroresistant Staphylococcus.  

In summary, the treatment of cephalosporins, of which ceftiofur is one well-
known example, led to a change in the milk and fecal microbiota and increased β-
lactamase resistance genes in both milk and feces at the time of withdrawal period. 
These findings also raise concerns about the emergence of ceftiofur-
heteroresistant Staphylococcus isolates and the application of ceftiofur as therapy 
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for the treatment for Staphylococcus-induced mastitis in dairy cows. 

 

Keywords: dairy cow mastitis, cephalosporin, milk, feces, Staphylococcus, 
heteroresistance. 
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Résumé 

Les vaches laitières atteintes de mammite sont fréquemment traitées avec des 
antibiotiques. Cependant, les effets potentiels des antibiotiques β-lactamines, tels 
que les céphalosporines, sur le microbiome du lait et des matières fécales sont 
inconnus. En étudiant à la fois le lait et les fèces, nous avons cherché à évaluer les 
effets plus larges de l'utilisation des céphalosporines sur l'écologie microbienne 
globale de la vache. Cette approche nous a permis d'examiner toute transmission 
ou modification potentielle des populations microbiennes de l'intestin (représenté 
par les fèces) à la mamelle (représentée par le lait). Les bactéries pathogènes 
résistantes sont la principale cause d'échec du traitement antibiotique. Cependant, 
même si des bactéries ont été identifiées comme sensibles aux antibiotiques, ces 
derniers ne sont pas toujours efficaces pour traiter les maladies infectieuses 
bactériennes. La population peut présenter une hétérogénéité phénotypique et 
l'hétérorésistance est considérée comme une étape intermédiaire cruciale avant le 
développement d'une résistance totale. 

Dans la première expérience, l'objectif était d'étudier l'effet d'un cocktail de 
deux céphalosporines couramment utilisées, le ceftiofur et le cefquinome, sur le 
microbiote du lait de 7 vaches laitières atteintes de mammite et les gènes de 
résistance aux antibiotiques dans le lait. Le ceftiofur est une céphalosporine de 
troisième génération et le cefquinome est une céphalosporine de quatrième 
génération. Les céphalosporines de troisième génération ont une couverture 
inférieure contre la plupart des bactéries gram-positives par rapport aux 
céphalosporines de première et deuxième génération, mais une couverture accrue 
contre les Enterobacteriaceae, Neisseria spp. et Haemophilus influenzae. Par 
rapport aux céphalosporines de troisième génération, les céphalosporines de 
quatrième génération ont une couverture supplémentaire contre les bactéries 
gram-négatives résistantes aux antibiotiques qui produisent des bêta-lactamases. 
Dans cette première expérience, les échantillons de lait ont été prélevés sur 7 
vaches laitières à la période précédant la médication (jour 0), pendant la 
médication (jours 1, 2 et 3), pendant la période d’attente (jours 4, 6 et 8), et à 
plusieurs moments de la période suivant l’attente(jours 9, 11, 13 et 15). Nous 
avons appliqué le séquençage de l'ARNr 16S pour explorer les changements du 
microbiote, et les modèles de résistance aux antibiotiques ont été étudiés par PCR 
quantitative. La richesse et la diversité du microbiote dans chaque échantillon ont 
été calculées à l'aide des indices Chao 1 (richesse), Shannon (diversité) et 
Simpson (diversité). Le traitement aux céphalosporines a abaissé la valeur de la 
diversité de Simpson à la période de sevrage. Les membres du genre Enterobacter 
étaient les bactéries les plus touchées, montrant une réduction significative 
pendant la période de traitement qui s'est poursuivie par la suite. Pendant ce temps, 
les gènes de résistance aux antibiotiques dans le lait ont également été influencés 
par le traitement antibiotique. Le traitement aux céphalosporines a augmenté la 
proportion de blaTEM dans les échantillons de lait au moment du sevrage. 

Dans la deuxième expérience, l'objectif était d'étudier les effets du ceftiofur et 
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de la cefquinome sur le microbiote fécal et les gènes de résistance aux 
antibiotiques dans les fèces de vaches laitières atteintes de mammite. Les 
échantillons fécaux ont été prélevés sur les mêmes vaches au cours de la même 
période que dans l'expérience 1. Les échantillons fécaux ont été prélevés sur 8 
vaches laitières aux périodes suivantes : le jour de début (jour 0), la médication 
(jours 1, 2 et 3), l’attente (jours 4, 6, 7 et 8) et la récupération (jour 9, 11, 13 et 15). 
Encore une fois, le séquençage du gène de l'ARNr 16S a été appliqué pour 
explorer les changements dans le microbiote, et la qPCR a été utilisée pour 
étudier les gènes de résistance aux antibiotiques. Le traitement aux 
céphalosporines a significativement diminué la diversité et la richesse 
microbiennes, indiquées par la diminution des indices de Shannon et de Chao 1, 
respectivement (p < 0,05). L'abondance relative des Bacteroides, Bacteroidaceae, 
Bacteroidales et Bacteroidia a augmenté, et l'abondance relative des Clostridia, 
Clostridiales, Ethanoligenens et Clostridium IV a diminué au moment de la 
période de retrait. Cependant, nous avons observé que l'abondance relative des 
genres bactériens liés à la mammite bovine, tels que Blautia, Curvibacter, 
Bradyrhizobium, etc., diminuait significativement à la période de médication dans 
le lait, mais ne changeait pas dans les fèces. Le traitement aux céphalosporines a 
augmenté l'abondance relative des gènes de résistance aux β-lactamases (blaTEM 
et cfxA) à la période d'attente (p < 0,05) dans les matières fécales, ainsi 
l'abondance relative de blaTEM a augmenté dans les échantillons de lait et de 
matières fécales pendant cette période d'attente. 

Dans la première expérience, le traitement aux céphalosporines n'a pas eu 
d'effet significatif sur l'abondance relative de Staphylococcus dans le lait. 
Cependant, lors de l'analyse des Staphylococcus isolés des échantillons de lait, ils 
étaient presque tous complètement sensibles au ceftiofur (68/70, 97 %). Si les 
Staphylococcus isolés dans les échantillons de lait sont réellement sensibles au 
ceftiofur, le traitement par céphalosporine devrait théoriquement réduire de 
manière significative l'abondance relative des Staphylococcus. Par conséquent, 
nous avons émis l'hypothèse que Staphylococcus pourrait avoir développé une 
hétérorésistance aux antibiotiques (HR). Ainsi, dans la troisième expérience, nous 
avons étudié la prévalence des isolats de Staphylococcus hétérorésistants au 
ceftiofur. Au total, 151 isolats de Staphylococcus ont été collectés à partir de lait 
de vaches souffrant de mammite dans les principales zones de production laitière 
de Chine, dont 70 différentes souches de Staphylococcus isolées à partir 
d'échantillons de lait de la première expérience. Pour éviter les doublons, les 
isolats de Staphylococcus ont été considérés comme uniques si les souches 
provenant du même échantillon de lait différaient au niveau de l'espèce par le 
séquençage de l'ARNr 16S.Parmi les isolats, 15 souches (15/151, 9,9 %) ont 
montré une hétérorésistance par la méthode de diffusion sur disque et, parmi ces 
15, trois souches (3/15, 20 %) ont présenté des phénotypes hétérorésistants par la 
méthode PAP. Deux de ces souches hétérorésistantes étaient instables, car les 
concentrations minimales inhibitrices (CMI) diminuaient après 1 semaine de 
culture quotidienne. Le séquençage du génome entier a montré que, pour les 
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souches présentant des phénotypes hétérorésistants, il existait des 
polymorphismes nucléotidiques uniques dans le gène mecA, conduisant à 
différentes séquences protéiques, qui pourraient être associées à l'hétérorésistance 
au ceftiofur. Il y avait deux mutations supplémentaires dans l'isolat stable 
hétérorésistant (D12-4), qui auraient pu entraîner la formation d'une sous-
population résistante stable chez Staphylococcus hétérorésistant. 

En résumé, le traitement aux céphalosporines, dont le ceftiofur est un exemple 
bien connu, a entraîné une modification du microbiote laitier et fécal et une 
augmentation des gènes de résistance aux β-lactamases dans le lait et les fèces au 
moment du temps d'attente. Ces résultats soulèvent également des inquiétudes 
quant à l'émergence d'isolats de Staphylococcus hétérorésistants au ceftiofur et à 
l'application du ceftiofur comme thérapie pour le traitement de la mammite 
induite par I chez les vaches laitières. 

Mots-clés : mammite de vache laitière, céphalosporine, lait, matières fécales, 
Staphylococcus, hétérorésistance. 
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Chapter Ⅰ. General introduction 

1.1 The emergence of antibiotic resistance 
Before the introduction of penicillin some anti-infectives such as arsenic and 

sulfonamides, drugs made by chemically tinkering with synthetic dyes, and many 
disinfectants made with metal ions, such as mercury or copper, that are toxic to 
bacteria, were in use to prevent or treat infections. In 1928, Alexander Fleming 
recognized the significance of the antibacterial properties of Penicillium mold, but 
he never went on to purify or test the substance, which he called Penicillin, any 
further. It was a decade later that Fleming’s findings caught more interest and the 
first tests on mice were done by Florey and Chain (Ligon et al., 2004). Thereafter, 
the use of this and other antibiotics escalated in human and animal medicine. This 
increase in antibiotic use was due to two major changes: wartime troop movement 
in the 1940s and the intensification of the poultry industry (Landecker et al., 
2019). Today, antibiotics are generally classified as broad-spectrum or narrow-
spectrum antibiotics according to their spectrum of antibacterial activity. Broad-
spectrum antibiotics (i.e., doxycycline, azithromycin, amoxicillin and clavulanic 
acid, mupirocin, and fluoroquinolones) target a variety of gram-positive and 
gram-negative bacteria, while narrow-spectrum antibiotics (i.e., vancomycin, 
fidaxomicin, and sarecycline) target only a limited number of clinically relevant 
bacteria. Furthermore, antibiotics are divided into bactericidal (i.e., they kill 
bacteria) and bacteriostatic (i.e., they only inhibit the growth or proliferation of 
bacteria) categories based on their mechanism of action. For example, 
tetracyclines are generally bacteriostatic, while fluoroquinolones are bactericidal 
(Grada et al., 2021). 

The use of antibiotics in agriculture varies across regions and countries, but 
some antibiotics that have been banned in certain countries, mostly developed 
countries, are still currently being used in most developing countries. It is 
reported that the total antibiotic consumption in livestock in 2010 was 63151 tons 
(Van Boeckel et al., 2015). They estimated that the antibiotic consumption would 
rise by 67% by 2030, and roughly double in the BRICS countries that represent 
Brazil, Russia, India, China and South Africa. This rise is driven by the growing 
consumer demand for animal products and the need for maintaining the necessary 
animal health standards and high productivity levels on large scale farms. 
Antibiotic resistance is an inherent side effect related to the overuse, abuse, or 
continuous use of antibiotics (Williams-Nguyen et al., 2016). The antibiotic crisis 
is ascribed to the abuse of antibiotics, which are finally discharged into the 
environment and remain in livestock products.  

The lack of effective supervision and control is the main reason of antibiotic 

resistance (Tang et al., 2016). The Ministry of Health in China issued strategies to 

limit the use of antibiotics in humans and animals, but the government failed to 

control the sales of antibiotics, making them available everywhere in the market. 
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The irrational use of antibiotics in animals, humans, and environments, results in 

antibiotic residues or the persistence of antibiotic resistance genes (ARGs) in 

different environments. These environments, including soil, water, hospital, and 

farm waste, have been regarded as vital reservoirs and sources of antibiotic 

resistance dissemination (Figure 1-1) (Xiao et al., 2016). Antibiotic resistance has 

its origins in mutations in genes encoded on microbial chromosomes, and since 

genetic material can be exchanged between organisms, so can these mutations. 

This process therefore can provide host cells and their progeny with new genetic 

material encoding antibiotic resistance. Antibiotics exert selective pressure on the 

emergence of antibiotic resistance and induce the transfer of resistance genes 

among microorganisms (Holmes et al., 2016). 

 

 

Figure 1-1. The antibiotic resistance dissemination in different environment 

1.1.1  Intrinsic antibiotic resistance 
Bacteria are generally considered to be inherently resistant according to clinical 

definition if their infection cannot be treated with a given antibiotic (Olivares et 

al., 2013). In the ecological definition of resistance, the "intrinsic resistance" has 

been defined as a group of elements that directly or indirectly contribute to 

antibiotic resistance, the presence of which is independent of previous antibiotic 

exposure and is not due to horizontal gene transfer (HGT) (Paquola et al., 2018). 

Antibiotic resistance can be mediated through pre-existing phenotypes in natural 

bacterial populations. During evolution, bacterial cells accumulate genetic errors 

in existing genes (on the chromosomes or on plasmids). Gene duplication error 
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rates are fairly low, so typically one in a thousand growing bacteria will introduce 

errors (mutations) into the genome. About one in a billion bacteria are mutants 

that can grow faster or tolerate higher concentrations of antibiotics than their 

predecessors. When these bacterial mutants are exposed to antibiotics, those with 

antibiotic resistance genes will have an increased prevalence (Dantas et al., 2014). 

Thereafter the resistance genes can be transferred to descendant cells through 

vertical gene transfer (VGT), resulting in innate, intrinsic or natural resistance 

(Figure 1-2a). 

 

Figure 1-2. Principal modes of transmission involved in the evolution and 

development of antibiotic resistance. (a) Vertical transmission (VGT) of intrinsic 

antibiotic resistance (b) Horizontal transmission (HGT) leading to acquired 

antibiotic resistance (Dantas et al., 2014). 

1.1.2  Acquired antibiotic resistance 

Acquired resistance involves genetic exchange within and between bacterial 
species (Holmes et al., 2016). It implies HGT and the acquisition of new ARGs 
carried on mobile genetic elements (MGE), such as plasmids, integrons, 
transposons, insertion sequences, and phage-associated elements (Figure 1-2b). 
These genetic materials are passed on via conjugation (transfer of DNA from 
donor to recipient bacteria by cell-to-cell contact, with the help of fertility factors 
called pili), transformation (naked DNA present in the environment is taken up by 
the recipient cells) or transduction (bacteriophages act as vectors and insert DNA 
into recipient cells) (Dantas et al., 2014). HGT breaks the boundaries of kinship 
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and enables gene exchange between different species (Paquola et al., 2018). It is 
reported that bacterial antibiotic-resistant HGT plays an important role in the 
evolution and spread of multidrug resistance (Lerminiaux et al., 2019). 

Bacteria have developed mechanisms to evade antibiotics by adopting transient 
expression of resistance genes. This strategy involves temporarily increasing 
resistance in a subset of cells, which undermines the effectiveness of antibiotics 
and leads to chronic and difficult-to-treat infections (Mulcahy et al., 2010). It is 
important to recognize that transient resistance is not caused by genetic changes, 
rather cells use phenotypic variability or induce gene expression to generate a 
resistant phenotype (Levin et al., 2006). 

1.1.3  Detection methods of antibiotic resistance 
Bacteria can be sensitive to a given antibiotic, and thus be treated with that 

antibiotic, they can be resistant and thus not be treated, or they can be 
intermediate resistant, which means that they can be treated, but only with a 
certain minimum dosage of a given antibiotic. Antimicrobial susceptibility testing 
methods such as the MIC (minimum inhibitory concentration) determination 
(Vijayakumar et al., 2011) (Figure 1-3), the disc diffusion method (Parvin et al., 
2020) (Figure 1-4) and the Etest (Bailey et al., 2018) (Figure 1-5) as procedures 
for defining isolates as sensitive, resistant, or intermediate resistant to any 
antibiotic are generally accepted worldwide. MIC is the lowest concentration of 
an antibiotic expressed in mg/L (μg/mL), that, under strictly controlled in vitro 
conditions, completely prevents visible growth of the test isolate of the bacteria 
(EUCAST, 2000). With the MIC determination method, a dilution series of 
antibiotics is tested in the presence of the potential target bacterial isolates to 
determine the MIC (Figure 1-3). With the disc diffusion method, the surface of an 
agar plate is inoculated with bacteria, and a paper disk containing the antibiotic is 
applied to the agar and the plate is incubated (Figure 1-4). If the antibiotic stops 
the bacteria from growing or kills the bacteria, there will be an area around the 
disk where the bacteria have not grown enough to be visible. This is called the 
zone of inhibition. The sensitivity of bacterial isolates to each antibiotic can then 
be judged by comparing the size of these zones of inhibition (EUCAST, 2021). 
The Etest, a test developed by bioMérieux, France, is an antibiotic susceptibility 
test that quantitatively measures the MIC values of an antibiotic (Singh et al., 
2012) (Figure 1-5). The Etest uses plastic strips containing a continuous gradient 
of a specific antibiotic on one side and a code for the associated concentration on 
the other side. The principle is similar to the disc diffusion method. 
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Figure 1-3. Example of a dilution plate to determine the MIC (μg/mL) value of 

an antibiotic against bacterial isolates. MBC means minimum bactericidal 

concentration (Vijayakumar et al., 2011) 

 

Figure 1-4. Example of an antimicrobial susceptibility test of bacteria by the 

disc diffusion method, showing a zone of inhibition (↔) (Parvin et al., 2020). 
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Figure 1-5. Examples of Etests against different bacterial isolates.  Etest strips 

were placed onto agar plates. Plates are read after an incubation of 16 to20h in 

ambient air at 35 ± 2°C. The MIC results are read as where the zone of inhibition 

ellipse intersects the Etest strip; if the ellipse intersects between two MIC values, the 

higher of the two values is reported (Bailey et al., 2018). 

1.2  The harm of antibiotic resistance 
1.2.1  The harm to the ecological environment 

Antibiotics are used to protect human health and inhibit the emergence of 
animal disease. However, antibiotics freely available in the environment are a big 
concern. These antibiotics are found in the environment because of their low 
absorption capacity in the intestines (Akram et al., 2017; Callaway et al., 2021). 
The undigested antibiotics are discharged through urine and feces into the 
environment (Sarmah et al., 2006). Antibiotics can also be released into the 
environment through agricultural activities such as the use of animal manure as 
fertilizer or the disposal of wastewater (Martinez et al., 2017; Quaik et al., 2020). 
These practices have resulted in the contamination of different habitats with large 
concentrations of antibiotics. Since antibiotics are inhibitors of bacterial growth, 
this situation has implications for the structure and the activity of bacterial 
populations (Martinez et al., 2017). Antibiotic residues can reduce or eliminate 
microbial communities or expand antibiotic resistant bacteria (ARB) (Grenni et 
al., 2018). The degradation of the soil microbiome can affect microbial processes 
such as the mineralization and decomposition of organic matter (Kumar et al., 
2005). According to the report, antibiotic pollution in aquatic environment has the 
potential to decrease overall microbial diversity, including the taxa responsible for 
carbon cycling and primary productivity (Kraemer et al., 2019). Additionally, 
antibiotics can impact bacterial enzyme activities, such as dehydrogenase, 
phosphatase, and urease, which serve as critical indicators of soil activity (Cycoń 
et al., 2019). Furthermore, the disturbance caused by antibiotics on microbial 
communities can result in an elevated abundance of parasites and bacteria in both 
soil and water environments. It is reported that the presence of antibiotics in 
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aquatic environments has led to an increased frequency of toxic cyanobacterial 
species, leading to the eutrophication in freshwater environments (Drury et al., 
2013). 

1.2.2  The harm to husbandry 
Since the 1960s, antibiotics have been widely used as growth promoters for 

food-producing animals (Hassan et al., 2018). The problem with uncontrolled 
doses of growth-promoting antibiotics is that they create conditions that favor the 
selection of ARB, which then pollute the environment (Meek et al., 2015). The 
presence of ARB may enhance the transfer of ARGs to the gut bacteria in host 
animals. Moreover, the presence of antibiotics can stimulate HGT in some 
pathogens; for example, resistance to azithromycin, ciprofloxacin, or tigecycline 
has been observed in Enterococcus faecalis and P. aeruginosa (Zalewska et al., 
2021).  

1.2.2.1 The harm to aquaculture husbandry 

Aquaculture production accounts for almost half of the global consumption of 
fish and fish-by products, posing a shift to intensified and semi-intensive 
production practices. As a result, the use of antibiotics for both therapeutic and 
non-therapeutic purposes have increased dramatically (Palma et al., 2020). This 
inevitably led to the customary use of antibiotics, leading to a strong selection 
pressure favoring the emergence and selection of antimicrobial resistance (AMR) 
strains, and the subsequent transmission of AMR through various routes such as 
food, feed, and environment (Ryu et al., 2012; Cabello et al., 2013; Santos et al., 
2018). To date, there are no antibiotics specifically designed for aquaculture. 
Inappropriate use of antibiotics has been linked to a reduced ability of fish to 
efficiently metabolize the administered drugs. Therefore, antibiotic residues 
persist in fish meat for a prolonged time, facilitating the spread to terrestrial 
ecosystems through the food chain. Furthermore, it is estimated that 70-80% of 
the active compounds are eliminated by feces, enabling the diffusion of antibiotics 
through wastewater; thus, affecting multiple ecosystems (Cabello et al., 2016). 
ARGs have been reported to be transferred between aquatic bacteria that are 
pathogenic to both fish and humans (Ryu et al., 2012). For the farmed shellfish, 
deadly pathogens such as Vibrio and Salmonella may acquire resistance through 
horizontal transfer. For example, the fish pathogens Vibrio and Lactococcus can 
transfer tetracycline ARGs to human Escherichia coli and Enterococcus faecalis 
(Neela et al., 2009). The World Organization for Health (WHO), the World 
Organization for Animal Health (WOAH, formerly the Office International des 
Epizooties), and the Food and Agriculture Organization (FAO) expert consultation 
on Antimicrobial Use and Antimicrobial Resistance in Aquaculture (2006) 
concluded that public health hazards associated with the use of antibiotics in 
aquaculture include the development and spread of ARB and ARGs, and the 
emergence of antibiotic residues in aquaculture products (FAO/OIE/WHO, 2006). 

1.2.2.2 The harm to livestock animal husbandry 

As earlier stated, in the early years of antibiotic use in livestock, antibiotics 
were used not only for disease treatment, but also often merely as growth 
promoters. The use of antibiotics in veterinary medicine is however ideally 
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associated with the treatment of infectious diseases. Therapeutic interventions 
should be designed following accurate pathogen identification and antimicrobial 
susceptibility testing (AST) (Aarestrup et al., 2005). Nevertheless, it is a common 
method to extend the antimicrobial treatment to the entire livestock herd to limit 
the pathogen spread, leading to an overuse of antibiotics as non-infected animals 
are also administrated with the antibiotics (Economou et al., 2015). A validated 
growth-based AST, based on the recommendations of the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) or the Clinical Laboratory 
Standards Institute (CLSI), is currently recommended to guide the antimicrobial 
therapy (Vasala et al., 2020). Most recurrent infections on cattle farms are related 
to shipping fever, bovine pneumonia, and diarrhea, requiring heavy use of 
common antibiotics, such as penicillin, quinolone, gentamicin, and tylosin 
(McEwen et al., 2002). In addition, broad-spectrum antibiotics are often used to 
treat liver infections, while narrow-spectrum antibiotics, such as beta-lactams are 
the first choice for streptococcal mastitis (Cameron et al., 2016). In the food-
producing animal industry, antibiotics have been seen to affect the functions of 
gut bacteria and can temporarily increase antibiotic resistance in the microbiome 
(Broom et al., 2017). The feces from numbers of animals raised under intensive 
conditions is often spread on pasturelands as fertilizer. Groundwater, streams and 
other waterways contaminated by these wastes may also facilitate the spread of 
bacteria that carry antibiotic resistance traits (McEwen et al., 2002). Some 
countries have officially banned the use of antibiotics in livestock except for 
medical use, others not yet. A study on antibiotic use in South East Asia in 2016 
showed that, in addition to feed, farmers in this region applied 46 mg of different 
antibiotics per kilogram (kg) of live pigs and 52-276 mg per kg of live chickens 
per year (Nhung et al., 2016). It is estimated that approximately 84% of 
antibiotics administered in chicken farms located in the Mekong Delta region 
were solely used for preventive intentions (Nhung et al., 2016). The non-medical 
treatment of antibiotics, such as treating entire extensive animal production 
facilities in response to the illness of a single animal, has contributed to the 
proliferation of ARBs within the animal production chain (Zalewska et al., 2021). 

1.2.3  The harm to food safety and human health 
The WHO, WOAH and FAO have shown that the non-human use of all kinds of 

antibiotics may lead to harmful results for human health (So et al., 2015). 
Livestock animals, fish and vegetables are considered large hosts of ARB, and the 
food production chain is an ecosystem consisting of different ecological niches in 
which a large amount of antibiotics is used and many bacteria co-exist (Acar et al., 
2006). ARB can be spread along the food chain through direct or indirect contact. 
The rapid spread of ARB between hosts is enhanced by the immediate exposure 
of humans to animals and biological materials such as blood, urine, feces, milk, 
saliva, and semen. Occupationally exposed workers, such as veterinarians, 
farmers, abattoir workers, and food handlers, and those in direct contact with 
them, are at high risk of becoming colonized or infected with ARB (Marshall et 
al., 2011). Furthermore, there is a potential for indirect exposure of the human 
population to ARB and ARGs through contact with or consumption of 
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contaminated food items, including meat, eggs, milk, and dairy products. The 
transmission of ARB and ARGs via the food chain represents a widespread and 
intricate mode of dissemination (Figure 1-6). Recent studies have highlighted the 
presence of significant quantities of ARB and ARGs in various food products 
derived from different animals such as cattle, poultry, swine, sheep, and goats 
(Coetzee et al., 2016; Yang et al., 2022). These food products include ready-to-eat 
meat, cooked meat, and raw milk. These ARB and ARGs can interfere with the 
action of prescribed medications, cause allergic reactions, interfere with the 
natural gut flora, or lead to the further evolution of ARB that can eventually lead 
to health problems such as toxic effects, hepatotoxicity, nephropathy, 
mutagenicity, carcinogenicity and antibiotic resistance (Chen et al., 2019).  

Figure 1-6. Antibiotic use and different transmission routes of antibiotic resistance in 

the food chain (Andersson et al., 2014). 

 

In the following sections we will give examples of the different mechanisms on 
how antibiotic resistance can occur, what the current state is with regard to milk 
from dairy cattle and how to detect it. It is paramount to understand that there are 
various antibiotic resistance mechanisms and the potential spread of antibiotic 
resistance can be quite complex.  

 

1.3  Mechanisms of antibiotic resistance 
1.3.1 Target modifications or genetic mutations 

Antibiotics can inhibit bacterial proliferation through cell destruction or growth 
inhibition. A genetic mutation or modification of the target site will interfere with 
the normal bond between antibiotic and pathogen, thereby affecting the effect of 
the antibiotic. During infection, there is often a large and diverse population of 
pathogens, and if a single point mutation in a gene encoding an antibiotic target 
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can confer antibiotic resistance, strains with this mutation can subsequently 
proliferate (Blair et al., 2015). For example, β-Lactams are an important class of 
antibiotics whose members contain a β-lactam ring and inhibit peptidoglycan 
synthesis by covalently binding to the active site serine of bacterial penicillin-
binding proteins (PBPs). PBPs are located on the bacterial cytoplasmic membrane 
and play a role in the synthesis of cell wall peptidoglycan. PBPs can promote the 
synthesis and maintenance of the cell wall. β-Lactams include penicillin 
derivatives, cephalosporins, carbapenems, and monobactams that interfere with 
bacterial cell wall synthesis. β-Lactams inhibit the working of PBPs that catalyze 
the transpeptidation process during peptidoglycan synthesis, thereby preventing 
crosslinks that form tightly bound cell wall structures. The common mechanisms 
of β-lactam resistance are alterations of the target sites (gene mutations of the 
PBPs) (Tang et al., 2014). When a mutation arises, it results in the loss of affinity 
between β-lactam antibiotics and their target PBPs. Consequently, the antibiotics 
become incapable of binding to their targets, thus urging bacterial resistance. 
(Miyachiro et al., 2019). Another example is the resistance to aminoglycosides. 
Aminoglycosides bind to the decoding center aminoacyl-tRNA recognition site 
(A-site) on the ribosomal 16S rRNA of the bacteria, thereby inhibiting protein 
synthesis and thus displaying bactericidal activity. Resistance development related 
to their use is due to an acquired inactivation of the binding of the 
aminoglycosides due to the presence of enzymes such as the 16S rRNA methylase 
that methylates the 16S rRNA target, which can lead to a decrease or loss of 
affinity of the antibiotic for its target (Poirel et al., 2018).   

 

1.3.2  Resistance to antibiotics by inactivation enzyme 
Enzyme-catalyzed modifications of antibiotics are the main mechanisms of 

antibiotic resistance. At present, thousands of enzymes that can degrade and 
modify different classes of antibiotics have been identified, including those that 
modify β-lactams, aminoglycosides, phenicols and macrolides (Mcphee et al., 
2009). For example, the most clinically relevant aminoglycosides commonly used 
to treat infections caused by Gram-negative pathogen are gentamicin (GEN), 
amikacin (AMK), and tobramycin (TOB) (Partridge et al., 2015). It is reported 
that more than 100 aminoglycoside-modifying enzymes (AMEs) have been found 
and are classified into three groups: acetyltransferases, nucleotidyltransferases 
and phosphotransferases. These AMEs decrease the binding ability of the 
antibiotic for its target and lead to an ineffective antibacterial ability (Ramirez et 
al., 2010).  Another example is the resistance to carbapenems. The main 
mechanism of Enterobacteriaceae resistance to carbapenem antibiotics is the 
production of enzymes that hydrolyze carbapenems and the so-called 
carbapenemase-producing Enterobacteriaceae have thus a selective advantage. 
The β-lactamases can destroy most β-lactams such as penicillin and cephalosporin 
(Figure 1-8). They are usually produced by, amongst others, resistant Escherichia 
coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter 
baumannii (Sköld et al., 2011; Sawa et al., 2020).  
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Figure 1-7. Core structures for penicillins & cephalosporin antibiotics & hydrolysis 

by beta-lactamase. Penicillins & cephalosporins share a common four-atom β-

lactam ring. Beta-lactamases are a family of enzymes produced by some gram-

negative bacteria that provide a resistance to beta-lactam drugs by breaking the ring 

open by hydrolysis, which eliminates the molecule's antibacterial actions 

（https://tmedweb.tulane.edu/pharmwiki/doku.php/beta_lactam_working_rough_dr

aft_-_not_ready_for_prime_time）. 

 

1.3.3  Metabolic alteration or auxotrophy 
The bacterial metabolism has been confirmed to be a potential target for 

antibiotic resistance, but metabolic dysregulation is not commonly recognized as 
a prominent mechanism of antibiotic resistance (Zhang et al., 2022). However, it 
has been reported that gene mutations affecting core genes in certain metabolic 
pathways can lead to antibiotic resistance. For example, the sucA gene (encoding 
the 2-oxoglutarate dehydrogenase enzyme) involved in the tricarboxylic acid 
cycle has been found to be widely present in the genome of clinically pathogenic 
E. coli (Zampieri et al., 2021). A mutation in the sucA gene reduces basal 
respiration by inhibiting the activity of the tricarboxylic acid cycle. Zampieri et al. 
has seen that this led to a reduced bactericidal effect of the antibiotic, and finally 
to antibiotic resistance. This shows that antibiotic efficacy can be linked to an 
organism’s metabolic state (Zampieri et al., 2021). 

  Microbial communities consist of cells with all kinds of metabolic capabilities, 
often including auxotrophs that lack essential metabolic pathways. Auxotrophs 
can hence only persist in communities where these essential metabolites are 
consistently available for them to use (Yu et al., 2022). For example, during the 
process of bacterial folic acid metabolism, sulfonamides possess a similar 
structure to that of p-aminobenzoic acid (PABA), it can bind with the active site 
of dihydropteroate synthase (DHPS) by competing with PABA to inhibit the 
activity of dihydrofolate synthase and prevent folic acid metabolism. DHPS is an 
essential enzyme in the bacterial folic acid metabolism pathway. Its primary role 
is to catalyze the formation of dihydropteroate, a crucial precursor in the synthesis 
of folic acid within bacterial cells. Since folic acid is the precursor of nucleic acid 
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synthesis, the lack of folic acid will hinder the synthesis of nucleic acid and 
inhibit the growth and reproduction of bacteria. However, bacteria can also 
weaken the inhibitory effect of sulfonamide on folic acid metabolism through 
metabolic enhancement and can also obtain folic acid from extracellular sources 
in an auxotrophic method to maintain normal metabolism (Figure 1-8) (modified 
from Zhang et al., 2022).  

 

Figure 1-8. The mechanism of metabolic alteration or auxotrophy. tetrahydrofolic 

acid (THFA), dihydropteroate synthase (DHPS), p-aminobenzoic acid (PABA). 

 

1.3.4  Efflux pumps 
Efflux pumps are ubiquitous transport proteins distributed in the plasma 

membrane of bacteria, archaea and eukaryotes (Tanaka et al., 2013). Bacteria can 
use efflux pumps as a natural defense mechanism as they are able to expel various 
toxic compounds from the environment (Henderson et al., 2021). Efflux pumps 
enable bacteria to survive for a period of time, increasing the likelihood of 
spontaneous mutations leading to the development of high levels of resistance to 
some antibiotics (Ebbensgaard et al., 2020). Efflux pumps have been implicated 
as a kind of effective resistance mechanism in bacterial pathogens to a variety of 
antibiotics clinically used to treat infections (Blanco et al., 2016). When 
overexpressed, efflux pumps can confer high levels of resistance to commonly 
used clinical antibiotics. Some efflux pumps have narrow substrate specificity 
such as tet pumps, but many transport a variety of structurally distinct substrates 
and are known as multidrug-resistant (MDR) efflux pumps (Blair et al., 2015). 
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There are several important efflux transporters families taking part of these MDR 
efflux pumps: Resistance Nodule and Cell Division (RND), especially important 
for bacteria; Master Facilitator Superfamily (MFS); Multidrug and Toxic 
Compound Extrusion (MATE); small multidrug resistance (SMR); and the ATP-
binding cassette (ABC) superfamily or family (Hernando-Amado et al., 2016). 
ABC efflux pumps utilize ATP hydrolysis to consume energy and eliminate 
substrates, whereas MATE, MFS, RND, and SMR pumps transport sodium and 
hydrogen out of membranes by utilizing the proton motive force (PMF) as an 
energy source (Kourtesi et al., 2013). Bacteria overexpressing efflux pumps have 
been isolated from patients since the 1990s, including Enterobacteriaceae, 
Pseudomonas aeruginosa, and Staphylococcus aureus (Everett et al.,1996; 
Pumbwe et al., 2000; Kosmidis et al.,2012). Understanding the mechanism of 
overexpression is important because it is a common resistance mechanism in 
clinical isolates, and a thorough understanding of this mechanism could lead to 
the design of new treatments to prevent the production of efflux pump proteins. 

1.3.5  Reduced permeability 
In Gram-negative bacteria, the cell wall is mainly composed of proteins and 

lipopolysaccharides, where hydrophilic antibiotics diffuse across the outer 
membrane via the outer membrane porin (Omp) proteins (Chevalier et al., 2017). 
Each kind of bacteria produces specific porins such as OmpF, OmpC, and OmpE, 
and one or more deletions in them or damage to the Omps is one of the sources of 
bacterial resistance (McPhee et al., 2009). For example, the absence of the OprD 
porin on the outer membrane of cells results in low efficacy or weakness of many 
broad-spectrum antimicrobials against Pseudomonas aeruginosa, and the inability 
of antimicrobials to enter cells leads to natural resistance to antibiotics (Nadeem 
et al., 2020). 

1.4  Current situation of bacterial resistance in milk 
1.4.1  Current situation of Staphylococcus 

Staphylococcus spp. is part of the commensal microbiota on the skin and in 
nostrils in healthy humans and animals, but they may also cause infections, 
resulting in abscesses and septicemia, and potentially also leading to bacterial 
diseases (Ikwap et al., 2021). As such, Staphylococcus spp. forms a big problem 
in cattle, since it can colonize the udder of dairy cows, leading to the occurrence 
of mastitis (Sasidharan et al., 2011). Clinical mastitis can be diagnosed by 
recognizing specific visible symptoms, which may include observable signs like 
redness in the udder, increased warmth, noticeable swelling, sensitivity to touch, 
the presence of milk clots, alterations in the color and texture of the milk. 
Frequently observed indications also encompass fever (with a temperature 
exceeding 39.5 °C) and a reduction in appetite (Sharun et al., 2021). According to 
the data from the National Bureau of Statistics of China for the year 2022 (source: 
https://data.stats.gov.cn), China is home to approximately 102.16 million cattle, 
with an estimated mastitis prevalence rate of approximately 60-70%. The bacteria 
are transmitted to dairy cows from the environment, and when adequate sanitation 
is lacking during milking, they are transmitted along the dairy production chain 
(Silva et al., 2022). Humans can then consume these bacteria, which can cause 
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disease. Staphylococcus spp. is of the most important pathogens affecting human 
health, and staphylococcal poisoning is the most common type of foodborne 
disease (Hennekinne et al., 2012). Although staphylococci in dairy products are 
nonpathogenic, they can become opportunistic and cause nosocomial infections 
(Irlinger et al., 2008). It is reported that the multidrug resistance rate of 
staphylococci isolated from cows' milk ranges from 18% to 34% in Kenya 
(Mbindyo et al., 2021). Deaths from AMR in Africa are likely to be greater than 
in the rest of the world because surveillance data is scarce. In industrialized 
countries, these data are available at the regional, national and international levels. 
For example, the European Antimicrobial Resistance Surveillance System 
(EARSS) provides a database with information on AMRs (De Kraker et al., 2013). 
However, also in the developing countries, Staphylococcus remains a problem. A 
growing number of studies reported that Staphylococcus aureus has developed 
antibiotic resistance and evolved from single-drug resistance to multidrug 
resistance (MDR), making it increasingly difficult to address antibiotic resistance 
(Gomes et al., 2016). Staphylococcus aureus was responsible for approximately 
119,000 morbidities and almost 20,000 deaths in the United States in 2007 
(Kourtis et al., 2019). Methicillin-resistant S. aureus (MRSA) bacteria are among 
the most pathogenic S. aureus, and they exhibit resistance levels to multiple 
antibiotics, particularly penicillin, aminoglycosides, macrolides, tetracyclines, and 
fluoroquinolones (Hasanpour et al., 2017).  

1.4.2  Current situation of Escherichia coli 
Escherichia coli is a Gram-negative rod-shaped commensal bacterium in the 

human intestine and it is also a major causative agent of several infection diseases. 
Escherichia coli is also a very important environmental pathogen causing mastitis 
in dairy cows. In a study by Liu et al., a total of 1920 retail milk samples were 
obtained from grocery stores in California in 2017 (Liu et al., 2020). Among the 
1920 milk samples, 95 E. coli strains were isolated, 80 (84%) had at least one 
antibiotic-resistant phenotype and 34 (36%) showed multidrug resistance (≥2 
antibiotic-resistant phenotypes). Ceftazidime resistance was the most prevalent 
phenotype in this cohort (n=57; 60%), followed by resistance against amoxicillin 
(n=24; 25%), tetracycline (n=24; 25%), and streptomycin (n=22; 23%). The 
antibiotic-resistant E. coli also emerges in low-income countries. A recent study 
evaluated the risk factors related to the carriage of antibiotic-resistant E. coli in 
northern Tanzania and found that direct transmission of microorganisms in raw 
milk was a major predictor of AMR prevalence, emphasizing the role of raw milk 
in transmitting antibiotic-resistant E. coli (Caudell et al., 2018). Liu et al. 
collected 195 raw milk samples from dairy farms in northern China. Among the 
samples, 67 E. coli strains were isolated. The prevalence of β-lactamase-encoding 
genes was 34% in those 67 E. coli isolates and 45% in 40 β-lactam-resistant E. 
coli isolates (Liu et al., 2021). 

1.4.3  Current situation of Bacillus cereus 
Bacillus cereus is a Gram-positive, endospore-forming, foodborne pathogen that 

is widely distributed in the natural environment, commonly found in foods 
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especially dairy products, and they even persist in host epithelial cells (Rigourd et 
al., 2018; Abdeen et al., 2020). Foodborne outbreaks involving B. cereus often 
occur through dairy products in China (Gao et al., 2018; Zhao et al., 2020). 
Precautionary measures have been taken in the last century to manage 
contamination of dairy products, but outbreaks of B. cereus contamination still 
occur in a variety of dairy products around the world (Rossi et al., 2018; Yusuf et 
al., 2018; Pedonese et al., 2019). Effective antibiotic treatment is considered as 
the main therapy to eliminate B. cereus infection, so it is necessary to study the 
antimicrobial susceptibility of B. cereus. In a recent study, B. cereus strains 
isolated from pasteurized milk in China were resistant to β-lactam antibiotics and 
rifampicin, but were sensitive to quinolones, aminoglycosides, and macrolides 
(Gao et al., 2018). It is reported that the B. cereus isolated from dairy farms and 
dairy products were generally resistant to β-lactam antibiotics such as ampicillin 
(98%), oxacillin (92%), penicillin (100%), amoxicillin (100%), and cefepime 
(100%) (Owusu-Kwarteng et al., 2017). Torkar et al. (2016) considered 
vancomycin as one of the most appropriate antibiotic options to combat B. cereus 
infections (Torkar et al., 2016), but Gao et al. found a fraction of the isolates 
detected (approximately 13%) that were not susceptible to vancomycin (Gao et al., 
2018), revealing a potentially high risk of B. cereus to public health and the dairy 
industry. 

1.5  Measures against bacterial resistance  
1.5.1  One health strategy for the prevention and control of antibiotic 

resistance 
Deaths due to antibiotic resistance are estimated around 700,000 people 

worldwide each year (European Comission, 2017). To address this problem, it is 
often incorporated into “The One Health Model”. “One Health” is defined as a 
multidisciplinary effort - locally, nationally and globally - to achieve optimal 
health for humans, animals and the environment through policy, research, 
education and practice (Gronvall et al., 2014). In 2008, several organizations 
including the FAO, the WOAH and the WHO emphasized the importance of 
ecosystems in the One Health concept (FAO/OIE/WHO, 2008). In general, 
infectious diseases, including zoonoses, are the major focus and target of the One 
Health approach. AMR is directly linked to such diseases and it has been 
recognized as one of the major problems deserving a One Health approach (Van 
Puyvelde et al., 2018). To address the crisis of antibiotic contamination and 
antibiotic resistance globally, the WHO provided the framework for national 
action plans in 2015, developed policies and regulations to combat ARB and 
antibiotic contamination. For example, Canada participates in global efforts to 
combat antibiotic contamination and ARB, and committed to address 
antimicrobial resistance and antimicrobial use through its own domestic program. 
The program focuses on four main topics: (1) Surveillance: While the Canadian 
surveillance systems are producing useful and reliable data on AMR and 
antibiotic use, there is still a lack of information in certain communities and the 
robust integrated surveillance systems are needed to fully understand AMR and 
antibiotic use in Canada. (2) Infection prevention and control: To curb the spread 
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of resistant microorganisms and reduce AMRs and antibiotic use, standardized 
infection prevention and control approaches, programs and policies must be 
developed. (3) Stewardship: To develop programs and policies to raise awareness 
to reduce inappropriate prescribing and use of antibiotics in humans and animals, 
and to protect the effectiveness of new and existing antibiotics. (4) Innovation: 
Responses to AMR must be evidence-based and require increased knowledge, 
innovative tools and collaborative methods to better understand resistance and 
develop new treatments and strategies (Public Health Agency of Canada, 2017). 
Europe has been at the forefront of addressing antibiotic contamination and the 
antibiotic resistance crisis and implemented the “EU One Health Action Plan 
against AMR” in June 2017. The main objectives of their program are: (1) To 
make the EU a best practice region, (2) To boost research, development and 
innovation, and (3) To shape the global agenda (Kraemer et al., 2019). 

1.5.2  Control the use of veterinary antibiotics and maintain the ecological 

balance of microorganisms 
For decades, many antibiotics were given to food-producing animals for 

production purposes, such as growth promotion. However, now, these practices 
are no longer permitted. Countries such as Canada, India, and European member 
states have implemented and enhanced surveillance systems to detect new 
emerging threats and monitor changes in antibiotic usage and the prevalence of 
ARB in agricultural settings, particularly in animal production, with a focus on 
promoting appropriate use of antibiotics in veterinary medicine. Since 1999, the 
EU no longer permits the use of antibiotics that are medically important to 
humans as additives to animal feed for economic purposes of promoting growth. 
Since the 1st of January 2006, the growth promotion uses of the remaining 
antibiotics (non-medically important) were forbidden (European Commission, 
2003).  The European Parliament voted in 2019 to forbid antibiotic use for disease 
prevention, effective from the 28th of January, 2022 (Wallinga et al., 2022). 
Canada has implemented a strong regulatory framework for veterinary drugs and 
medicated feeds since February 2018, including adding medically important 
antimicrobials (MIAs) to the Prescription Drug List (PDL) to make sure they are 
sold by prescription only, and removing growth promotion claims from MIA drug 
labels (CCDR, 2017). China   also passed the legislation, effective from 
November 2020, banning antibiotics as feed additives to promote growth (Wen et 
al., 2022). In the US, the Food and Drug Administration (FDA) made the use of 
antibiotics as mere growth promotors illegal in 2017 (Wallinga et al., 2022). 
Nevertheless, the FDA clearly defines antibiotics used for disease prevention as 
therapeutic drugs, even when used in animals without any disease or specific 
pathogen infection. At least 13 medically important antibiotics are FDA-approved 
for use in feeds for disease prevention with no clear time (“duration”) limit, 
meaning that animal populations may be exposed to them on a near-continuous 
basis (Hyun et al., 2021). Developing countries should examine and build on the 
experiences of developed countries and obtain scientific expertise from these 
countries to reduce antibiotic consumption in livestock animals and aquaculture 
while maintaining their productivity. In addition, it is critical to promote and 
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ensure sustainable agriculture so that developing countries are not dependent on 
antibiotics, and this to achieve the United Nations Sustainable Development 
Goals by 2030. 

1.5.3  Improve sanitation conditions of husbandry and reduce cross-

contamination 
Unprecedented global food demands lead to farmers relying on antibiotics to 

produce large amounts of animal protein at low cost. Improving animal welfare 
and health has the potential to reduce overreliance on antibiotics without 
compromising productivity and costs (Founou et al., 2016). One potential solution 
could involve applying tightly regulated extensive farming practices that prioritize 
animal health and welfare, while promoting and implementing the use of low 
levels of chemicals. This method aims to limit the development of infectious 
diseases and reduce reliance on antibiotics. Practices such as all-in-all-out 
management and extensive free-range systems could be encouraged instead of 
intensive farming methods. Free-range systems typically involve lower animal 
densities compared to intensive farming systems. The reduced crowding and 
lower stress levels in animals can contribute to better overall health and a lower 
risk of disease transmission, which may decrease the need for antibiotic use. 
Organic farms have become very popular in recent years, both to meet global food 
needs and to reduce the widespread use of antibiotics (Prabhakar et al., 2010). For 
example, Österberg et al. reported that the prevalence of antibiotic resistance E. 
coli isolated from organic pig farms was significantly lower than that from 
conventional pig farms in four European countries (Ligon et al., 2004).  It is also 
reported that the prevalence of MRSA in the free-range production type herds is 
lower than that in the conventional indoor production herds (20.2% to 89.2%) 
(European Food Safety Authority, 2021). 

1.5.4  Examine the use of antibiotic replacements 
Using natural antimicrobials is one of the most effective methods to reduce 

antibiotic resistance. Studies to discover potential alternatives, such as pre- or 
probiotics, have progressed in recent years. For example, many probiotics are 
used to treat and control Staphylococcus infections. The probiotic Lactobacillus 
casei (BL23) significantly decreases mammary glands inflammation during S. 
aureus infection by inhibiting the expression of S. aureus-induced pro-
inflammatory cytokines (IL8, IL6, TNF-α, IL1β, and IL1α). This causes a potent 
anti-inflammatory effect against S. aureus infection in bovine mammary epithelial 
cells (Souza et al., 2018). It is reported that the cleaning solutions and probiotic 
agents were administered directly to the udder teats of dairy cows by massage 
movements to the teat apex area twice a day, directly after milking. Notably, the 
control group, which did not receive probiotics, experienced a substantial rise in 
the number of diseased animals within one month (Zhumakayeva et al., 2023). 
Some antioxidants such as polyphenols, vitamins and carotenoids have good 
antibacterial and anti-inflammatory activities (Naqvi et al., 2019; Abd EI-Ghany 
et al., 2020). Awan et al. found that chloroform extract of cumin and turmeric 
exhibited significant antibacterial activity against Serratia marcescens and P. 
aeruginosa (Awan et al., 2013). Nweze and Eze reported that the ethanolic extract 
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of lamiaceae leaves mixed with ampicillin had a synergistic influence on E. coli 
and Candida albicans (Nweze et al., 2009).  

1.6 Mechanisms of heteroresistance 
The broadest definition of heteroresistance (HR) is the presence of a 

heterogeneous bacterial population with one or a few subpopulations that exhibit 
higher levels of antibiotic resistance compared to the main population (El-
Halfawy et al., 2015). The first reported use of the term "heteroresistance" 
occurred in 1970 (Kayser et al., 1970). Increased antibiotic resistance may be due 
to mutations or gene duplications in key resistance genes or regulatory systems. 
Long-term infection may lead to instability of bacterial genomic DNA, which 
may lead to HR. 

1.6.1 Examples of heteroresistance 

For example, Chambers et al. (1985) showed that an increased production of 
PBP2a, encoded by the mecA gene, was responsible for an increased methicillin 
resistance in a subset of a S. aureus population, thus leading to HR in a population 
(Chambers et al., 1985). However, regulatory systems can also lead to HR 
towards β-lactams. For example, the inactivation of transcriptional regulators, 
such as Sar (Piriz et al., 1996) and the Sigma B operon (Wu et al., 1996), are a 
possible cause for MRSA HR. However, Sigma B contributed to methicillin 
resistance but not to HR in S. epidermidis. The inactivation of the anti-Sigma B 
factor RsbW converts HR to a uniform high-level resistance (Knobloch et al., 
2005). Among P. aeruginosa carbapenem-HR isolates, a stable resistant 
subpopulation showed an upregulation of efflux-related genes and increased 
membranous permeability to carbapenems due to the reduced expression of the 
porin-encoding gene oprD (He et al., 2018). 

HR has also been found towards glycopeptides. An example of a glycopeptide 
antibiotic is vancomycin. HR to glycopeptide antibiotics is not directly linked to a 
specific mechanism. Several studies reported an increased incidence of regulatory 
gene mutations in HR populations. The agr (accessory gene regulator) was 
dysfunctional in 58% HR vancomycin intermediate S. aureus (hVISA) isolates 
but only in 21% of MRSA strains (Arigaya et al., 2011). It seems that agr 
dysfunction leads to the development of vancomycin HR of S. aureus clinical 
isolates. For example, compared with vancomycin sensitive MRSA, 13 of 38 
(34%) hVISA isolates had at least 1 non-synonymous mutation: 6 in vraSR, 7 in 
walRK, and 2 in rpoB (Yamakawa et al., 2012). Mutations in the vraS gene lead to 
upregulation of the VraSR two-component system and conversion to the hVISA 
phenotype (Katayama et al., 2009). Various mutations within an essential walKR 
two-component regulatory site involved in the control of cell wall metabolism, 
increase resistance to vancomycin and daptomycin in several hVISA strains 
(Howden et al., 2011). Independent novel mutations in the vanR, vanS, vanH, 
vanA, vanX, and vanY genes that occur during sustained exposure to antibiotics 
can cause HR in vancomycin-resistant Enterococcus strains (Khan et al., 2008; 
Park et al., 2008). 
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In several studies, the resistance mechanism of subpopulations with stable HR 
involved efflux and/or influx of antibiotics. Resistance is associated with an 
increased expression of efflux pumps in colistin HR A. baumannii isolates 
(Machado et al., 2018). HR to polymyxin B in B. cereus depends on differences in 
putrescine and YceI secretion levels that are differentially expressed in different 
subpopulations (l-Halfawy et al., 2013). Gene amplification-driven HR was first 
reported in a study of colistin resistance in S. typhimurium (Hjort et al., 2016). 
The results showed that during sub-MIC selection (i.e., concentrations that are 
lower than the MIC, which can contribute to antibiotic resistance for colistin 
resistance) mutants exhibited an HR phenotype due to the amplification of the 
gene containing pmrD. 

1.6.2 Detection methods of HR 

The Population Analysis Profiling (PAP) method is considered the golden 
standard for determining HR. In this method, bacterial populations are subjected 
to antibiotic concentration gradients (on plates or in liquid media), and bacterial 
growth at each concentration is quantified. PAP is usually performed using a 
standard MIC assay format with 2-fold increments of the antibiotic, and using the 
spread plate method for colony-forming unit (CFU) enumeration (Figure 1-9).  

 

Figure 1-9. Population analysis profile (PAP) test to identify HR. The principle of the 

PAP test is shown in the figure. Briefly a defined number of cells (typically 102 to 108 

cells) are spread on agar plates with different concentrations of the antibiotic, and 

the number of colonies formed are counted after 1 day to determine the frequency of 

resistant cells and their level of resistance. One frequently accepted definition of HR 

is growth of a resistant subpopulation at antibiotic concentrations at least eightfold 

above the highest antibiotic concentration that does not affect growth of the main 

sensitive population (Andersson et al., 2019). 

 

The disc diffusion test and Etest strips have also been used to detect HR and are 
recommended for traditional in vitro susceptibility testing (Pelaez et al., 2008; 
Superti et al., 2009; Tato et al., 2010; Lee et al., 2011). Compared with PAP, the 
lack of standard guidelines hinders the use of the Etest and the disc diffusion 
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assays to detect HR. These and other methods all show poor specificity and poor 
sensitivity, as indicated by the high frequency of false positive and false negative 
samples (Lo-Ten-Foe et al., 2007; Van Hal et al., 2011). A clear sign of HR is the 
growth of distinct colonies growing within the clear zone of inhibition as 
determined by the Etest or the disc diffusion assay. However, as mentioned earlier, 
many reports set cut-off concentrations or zone-inhibition diameters to determine 
the heterogeneity of bacterial population responses to antibiotics, but these cut-
offs do not adequately describe population-wide behavior. 

Therefore, by simultaneously investigating both milk and fecal samples, our 
research aimed to provide a comprehensive evaluation of the broader impacts of 
cephalosporin administration on the overall microbial ecology within dairy cows. 
This unique dual-sampling approach allowed us to explore the potential 
transmission and alterations in microbial populations originating from the gut (as 
represented by feces) to the udder (as represented by milk). Our primary focus 
was to gain insights into the dynamics of antibiotic resistance. Antibiotic-resistant 
bacteria play a central role in the ineffectiveness of antibiotic treatments. However, 
it's important to note that the mere identification of bacteria as 'sensitive' to 
antibiotics does not guarantee the success of antibiotic therapy in managing 
bacterial infections. This complexity arises from the population's ability to exhibit 
phenotypic heterogeneity. Within this context, heteroresistance emerges as a 
critical intermediate stage in the progression toward full antibiotic resistance. 
Understanding the intricacies of heteroresistance is essential for developing more 
effective strategies to combat bacterial infections and to ensure the judicious use 
of antibiotics in veterinary medicine. 
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Chapter 2. Objectives and outline of the thesis 

2.1 Objective 

This thesis aimed to answer the following three questions: (1) To investigate the 

alterations of milk microbiota and the resistance genes following treatment with 

cephalosporins, and to evaluate the influences of antibiotics to maintain the 

rational use of antibiotics. (2) To investigate the effects of cephalosporins on the 

feces microbiota and antibiotic resistance genes of dairy cows with mastitis. (3) 

To screen for heteroresistance and explore the reason of ceftiofur heteroresistance 

in Staphylococcus spp. isolates obtained from raw milk. 

 

2.2 Outline of the thesis 
Chapter 1: General introduction 

 

Chapter 2: Objectives and outline of thesis 

 

Chapter 3 (Article 1): Effect of therapeutic administration of β-lactam 

antibiotics on the bacterial community and antibiotic resistance patterns in milk of 

dairy cows with clinical mastitis. 

Dong L, Meng L, Liu H, Wu H, Hu H, Zheng N, Wang J, Schroyen M. Effect of 

therapeutic administration of β-lactam antibiotics on the bacterial community and 

antibiotic resistance patterns in milk. J Dairy Sci. 2021 Jun;104(6):7018-7025. 

 

Chapter 4 (Article 2): Effect of cephalosporin treatment on the microbiota and 

antibiotic resistance genes in feces of dairy cows with clinical mastitis. 

Dong L, Meng L, Liu H, Wu H, Schroyen M, Zheng N, Wang J. Effect of 

Cephalosporin Treatment on the Microbiota and Antibiotic Resistance Genes in 

Feces of Dairy Cows with Clinical Mastitis. Antibiotics (Basel). 2022 Jan 

17;11(1):117. 

 

Chapter 5 (Article 3):  

The study on the heteroresistance to cephalosporins of Staphylococcus in milk 

from mastitis suffering cows. (To be submitted)  

 

Chapter 6: General discussion, conclusion and perspectives 
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3.1  Abstract 
The effect of β-lactams antibiotics given to dairy cows on the milk microbiome 

is still not clear. The object of this research was to investigate the effect of two 
commonly used cephalosporins on the milk microbiota and the antibiotic 
resistance genes in the milk. The milk samples were collected from 7 dairy cows 
at the period before medication (day 0), medication (days 1, 2, 3), withdrawal 
period (days 4, 6, 8) and the period after withdrawal (days 9, 11, 13, 15). The milk 
samples were applied to explore the microbiota changes using 16S rRNA 
sequencing, and antibiotic resistance patterns were investigated by qPCR. The 
microbiota richness and diversity in each sample were calculated using the Chao 
1 (richness), Shannon and Simpson (diversity) index. The cephalosporins 
treatment significantly lowered the Simpson diversity value at the period of 
withdrawal (p < 0.05). Members of the Enterobacter genera were the most 
affected bacteria associated with mastitis (p < 0.05). Meanwhile, antibiotic 
resistance genes in the milk were also influenced by antibiotic treatment. The 
cephalosporins treatment raised the relative proportion of blaTEM in milk 
samples at the period of withdrawal (p < 0.05). Therefore, the treatment of 
cephalosporins led to significant change in the milk microbiota and increase of β-
lactam resistance gene in the milk at the time of withdrawal period. 

Key words: antibiotic resistance gene; cephalosporin; dairy cow mastitis; milk 
microbiota 

 

3.2 Introduction 
Bovine mastitis, inflammation of the udder, is mainly caused by intramammary 

invasion of bacteria in the udder, which is one of the most prevalent diseases in 
dairy cows. Bovine mastitis can reduce milk production and milk quality, increase 
veterinary expenses, and diminish animal welfare (Halasa et al., 2007; Hogeveen 
et al., 2011; Heikkilä et al., 2012; Peters et al., 2015). Mastitis also accounts for 
the highest proportion of antibiotic use on dairy farms (Stevens et al., 2016). It is 
reported that 70% of antibiotics used to treat dairy cows are used to treat bovine 
mastitis in France. The average number of days each cow received antibiotic 
treatment for mastitis per year from 2005 to 2012 is 1.41 (Kuipers et al., 2016). 

Nowadays, the abuse of antibiotics has become a major concern for public 
health, and the high number of antibiotic resistant bacteria has been found in 
different environments samples and even in foods (Flórez et al., 2017). Antibiotic 
resistance is considered as one of the biggest risks to public in the world. The 
prevalence of antibiotic resistant bacteria (ARB) in food has led to a concern that 
food may be a reservoir of antibiotic resistance genes (ARGs) and spread 
antibiotic resistance (Marshall et al., 2011). In recent years, resistance genes in 
ARB isolated from dairy products have been founded (Devirgiliis et al., 2010; 
Soares-Santos et al., 2015). Moreover, the resistance level of the microbial 
community will affect the dynamics of other microbial community after antibiotic 
therapy, which results in an even more increased antibiotic resistance (Holman et 
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al., 2019). There is also a worry that animals used antibiotics may spread ARB 
and ARGs into the surrounding environment (Alexander et al., 2008).  

Cephalosporins are used to treat various bacterial infections in both human and 
animals. In 26 countries monitored by European Surveillance of Veterinary 
Antimicrobial Consumption (ESVAC), the use of 3rd-and 4th-generation 
cephalosporins increased in recent years (Scoppetta et al., 2016). The number of 
cephalosporins sold in the United States for food-producing animals was 26611 
kg in 2011. And FDA revealed that 28000 kg cephalosporins were sold for 
livestock in 2013 (FDA, 2011; Kanwar et al., 2014). Ceftiofur is the only 3rd-
generation cephalosporin labeled for veterinary use in the USA, and is the drug of 
choice in the majority of dairy intramammary treatment of mastitis operations 
(USDA, 2014). Cefquinome is a 4th-generation cephalosporin that was developed 
only for veterinary use. Cefquinome has been accepted for the treatment of acute 
mastitis, respiratory tract diseases, calf septicemia, metritis-mastitis-agalactia 
syndrome in sows, and respiratory diseases in pigs in Europe and elsewhere 
outside the United States (CVMP, 2003; Uney et al., 2011). It is reported that the 
use of ceftiofur (3rd-generation cephalosporin) leads to the occurrence of E. coli 
resistant to 1st and 2nd-generation cephalosporins (Sato et al., 2014). Therefore, 
the influence of cephalosporins therapy on microbiota and the antibiotic resistome 
needs to be evaluated.  

To our knowledge, few reports have investigated the effect of therapeutic 
administration of β-lactams antibiotics on the microbiota and antibiotic resistance 
patterns in the milk via 16S rDNA sequencing. Therefore, the purposes of the 
research were to investigate the alterations of milk microbiota and the resistance 
genes following treatment with cephalosporins. It is important to evaluate the 
influences of antibiotics to maintain the rational use of antibiotics. 

3.3 Materials and methods 

3.3.1 Sample collection 

Milk samples were received from a dairy farm in Tianjin city, China. The cows 
were not exposed to antibiotics prior to the study. The enumeration of somatic 
cells is a common method to identify mastitis. In this dairy farm, the dairy cow 
was judged to be mastitis by a veterinarian based on the obvious symptoms of 
redness of either udder, milk curdling, discoloration, and when the somatic cell 
count in milk was more than 500,000 cells/mL. A total of 7 mastitis affected dairy 
cows were selected. The cows used had an average body weight of 560-686kg, 
were 105-226 days in milk and gave between 34.26-39.12 kg of milk of milk per 
day. Milk from these cows was collected from the udder into a 400mL-sterile 
plastic bottle through the sterilized milk cup after diagnose on day 0. The cows 
were then injected with ceftiofur into the muscle at the level of 2mg/kg body 
weight and cefquinome into the udder at the level of 0.75ng/kg body weight per 
day for 3 days. All dairy cows were then sampled at days 1, 2, 3, 4, 6, 8, 9, 11, 13, 
and 15. All milk samples were directly put on ice and transported to the laboratory. 
The SCC in milk returned to the normal values on d 4, and the dairy cows stopped 
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receiving the antibiotics. The milk was tested for antibiotic residues on d 9. Day 0 
was classified as the period before medication; d 1 to 3 was classified as the 
period of medication; d 4 to 8 was classified as the withdrawal period; d 9 to 15 
was classified the period after withdrawal. The milk sample was tested to assure 
there was no antibiotic residue. 

3.3.2 DNA extraction 

Total DNA was extracted from 500 mL of each milk sample using the HiPure 
Soil DNA Kits (Magen, Guangzhou, China) according to manufacturer’s 
instructions. The DNA samples’ quality and concentration were measured using 
the Qubit 3.0 DNA detection kit (Life Technologies, Grand Island, NY). These 
DNA samples were stored at -80 ℃ for further genotypic quantification. 

3.3.3 PCR amplification 

The V3-V4 region of the 16S rDNA was amplified by PCR (94°C for 2 min, 
then 98°C for 10 s, 62°C for 30 s, and 68°C for 30 s for 30 cycles, and finally 
extended at 68°C for 5 min) using primers 341F: CCTACGGGNGGCWGCAG; 
806R: GGACTACHVGGGTATCTAAT (Guo et al., 2017). Triplicate PCR 
reactions were performed with 50 μL of the mixture containing 5 μL of 10 × 
kodakaraensis (KOD) buffer, 5 μL of 2 mM deoxyribonucleoside triphosphate 
(Dntp), 3 μL of 25 mM MgSO4, 1.5 μL of each primer (10 μM), 1 μL of KOD 
polymerase, and 100 ng of template DNA. All PCR reagents were from TOYOBO. 

3.3.4 Illumina Novaseq 6000 sequencing 

The amplicons were extracted from a 2% agarose gels and purified using the 
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, U.S.) 
according to the manufacturer’s instructions and quantified using the ABI 
StepOnePlus Real-Time PCR System (Life Technologies, Foster City, USA). 
Purified amplicons were concentrated in equimolar and paired-end sequenced 
(PE250) on the Illumina platform according to the standard protocols. 

3.3.5 Statistical Analysis 

Raw data including adapters or low-quality reads would have effect on the 
following assembly and analysis. Therefore, in order to obtain high quality clean 
reads, FASTP (Chen et al., 2018) (version 0.18.0) was used to further filter the 
original reads according to the following rules. The UPARSE (Edgar et al., 2013) 
(version 9.2.64) pipeline was used to cluster the effective tags into operational 
taxonomic units (OTUs) with similarity ≥ 97 %. PCA (principal component 
analysis) was performed using the Vegan package in R (Oksanen et al., 2010) 
(version 2.5.3). The Vegan package in R (Oksanen) (version 2.5.3) was used to 
calculate Jaccard and bray-curtis distance matrix. The microbiota richness and 
diversity in each sample were calculated with QIIME (Caporaso et al., 2010) 
(version 1.9.1) using the Chao 1 (richness), Shannon and Simpson (diversity) 
index. Alpha index comparison among groups was calculated by Tukey’s HSD 
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test and Kruskal-Wallis H test using the Vegan package in R ((Oksanen et al., 
2010) (version 2.5.3). 

3.3.6 Quantification of antibiotic resistance genes 

The number of 16 antibiotic resistance genes was evaluated using qPCR as 
described previously (Holman et al., 2018). In brief, genes conferring resistance 
to beta-lactams (cfxA, blaROB, bla1 and blaTEM), aminoglycosides (strA and 
strB), macrolides [erm(A) and erm(B)], sulfonamides (sul1 and sul2), 
tetracyclines [tet(B), tet(C), tet(Q) and tet(H)] and vancomycin (vanC and vanG) 
were evaluated. The primer sequences used were as previously released in Huang 
et al. (Huang et al., 2019). These genes were reflected as proportions of the 16S 
rRNA gene, which was also quantified by qPCR. The 16S rRNA gene was 
amplified using the 357-F: 5’-CCTACGGGAGGCAGCAG-3’ and 518-R: 5’-
ATTACCGCGGCTGCTGG-3’ primers that were also used to generate the 16s 
rRNA gene libraries. 

3.4 Results 

3.4.1 Animal weight gain, and 16S rRNA sequencing overview 

None of the dairy cows in this research received any other antibiotic treatments. 
The dairy cows were weighed before the medication and after the withdrawal 
period. The growth rate of the dairy cows was not influenced by the antibiotic 
medication (P > 0.05). The raw reads of sequences per sample ranged from 
17,321 to 113,589. After cleaning, the tags of sequences per sample ranged from 
16,640 to 112,958. The average effective ratio was 91.06%. The OTU numbers 
ranged from 223 to 1,462, and the average OTU number was 713. 

3.4.2 α-diversity 

Microbial diversity within α-diversity was measured by the richness (Chao 1) 
and by diversity indices (Shannon and Simpson). The average values of the 
Shannon diversity index and the average Chao 1 index for the microbiota were 
similar among the different periods, which suggested the total number of species 
did not significantly increase the richness of the microbiota (P > 0.05). However, 
the mean values of the Simpson index had significant differences among the 
different periods (P > 0.05), which indicated that the antibiotic treatment might 
have had an effect on the microbial community diversity (Figure 3-1). 
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Figure 3-1. (a) Shannon diversity index of samples from 4 different periods. (b) 

Chao 1 richness index of samples from 4 different periods. (c) Simpson diversity 

index of samples from 4 different periods. *Indicates significant differences 

compared with X0 (P < 0.05). X0, X, Y, and Z indicate the periods of before 

medication, medication, withdrawal, and after withdrawal, respectively. Error bars 

indicate SD. 

 

3.4.3 β-diversity 

The β-diversity is the measurement of diversity between 2 or more groups. The 
higher the β-diversity, the greater the difference in species identity is among 
communities. The principal component analysis confirmed the correlation of the 
data: some samples from the 4 groups were separated by the first axis, which 
explained 50.58% of the species abundance variation (Figure 3-2). Based on the 
Bray-Curtis dissimilarities analysis, there were no significant differences in the 
period of before medication and medication (P > 0.05). The milk microbiota 
shifted significantly in the period of withdrawal (P < 0.05, Supplemental Table S1, 
https://figshare.com/articles/figure/supplement_table_xlsx/14167430). From the 
period before medication through the period after withdrawal time, there were no 
significant changes (P > 0.05) of the milk microbiota of the antibiotic-treated 
cows, indicating the recovery of the microbial community. 
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Figure 3-2. Principal coordinates (PC) analysis graph of the Bray dissimilarities in 

the milk samples between the sampling times. The percentages of change explained 

by the PC are displayed on the axes. X0, X, Y, and Z indicate the periods of before 

medication, medication, withdrawal, and after withdrawal, respectively. 

 

3.4.4 Microbial community analysis 

The milk samples collected from different periods were analyzed for the 
distribution of the microbial population at class-level and family-level distribution 
of the microbial population. The microbial community compositions of four 
periods were similar. Gammaproteobacteria was the most abundant bacterial class 
at the four periods, accounting for about 30% of the total species, followed by 
Clostridia, Bacteroidia, Bacilli, Actinobacteria, Alphaproteobacteria, 
Oxyphotobacteria, and Verrucomicrobiae. All these classes accounted for over 
85% of all the bacteria (Figure 3-3). From the family level, Preudomonadaceae, 
Burkholderiaceae, Ruminococcaceae, and Lachnospiraceae were the four most 
abundant families, belonging to the Clostridia (Figure 3-4). 

For some frequently detected common bacteria in milk, the use of antibiotics 
had effect on the bacterial composition of the milk microbiota. Most notably, the 
relative abundance of Enterobacter was significantly reduced at medication (p < 
0.05) and decreased continuously from medication to the period of withdrawal 
(Figure 3-5a). The relative abundance of Staphylococcus and Bacillus did not 
differ significantly among different periods. Interestingly, the relative abundance 
of Staphylococcus and Bacillus was decreased from medication time to 
withdrawal time but both increased in the time after withdrawal (Figure 3-5b and 
Figure 3-5c). In comparison with the period of before medication, treatment with 
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antibiotics also significantly decreased the relative abundance of Enterobacter, 
Blautia, Curvibacter, Bradyrhizobium, Enhydrobacter, and Gemmatimonas at the 
genus level (p < 0.05, Figure 3-5d). The greatest dissimilarity among different 
periods occurred at the medication time (Figure 3-5d). 

 

Figure 3-3. Milk microbiota composition at the class level of samples from different 

periods. The top 8 classes were described for each period, and all other classes were 

grouped as “Other” or “Unclassified.” X0, X, Y, and Z indicate the periods of before 

medication, medication, withdrawal, and after withdrawal, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4. Milk microbiota composition at the family level of samples from different 

periods. The top 4 families were described for each period, and all other families 

were grouped as “Other” or “Unclassified.” X0, X, Y, and Z indicate the periods of 

before medication, medication, withdrawal, and after withdrawal, respectively. 
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Figure 3-5. The relative abundance of the common bacterial genera in raw milk (a) 

Enterobacter, (b) Staphylococcus, (c) Bacillus, and (d) other bacterial genera with 

significantly different changes in milk at different periods (P < 0.05). X0, X, Y, and Z 

indicate the periods of before medication, medication, withdrawal, and after 

withdrawal, respectively. Error bars indicate SD. 

 

3.4.5 Antibiotic resistance genes 

The proportions of 16 ARG [bla1, blaROB, cfxA, blaTEM, strA, strB, erm (A), 
erm(B), tet(C), tet(B), tet(Q), tet(H), sul1, sul2, vanC, vanG] in milk samples 
from 4 different sampling periods were quantified. Among these 16 resistance 
genes, only 7 genes [cfxA, blaTEM, strB, tet(A), tet(B), tet(C), tet(Q)] were 
higher than the detection limit in the milk samples (Figure 3-6). The ceftiofur and 
cefquinome significantly increased the proportion of blaTEM in the milk at 
withdrawal time (Figure 3-6). The relative abundance of blaTEM was 
significantly increased at the time after withdrawal compared with withdrawal 
time. Other resistance genes were not affected by antibiotic treatment (data not 
shown). 
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Figure 3-6. Proportion of the antibiotic resistance genes blaTEM compared to 16S 

rRNA gene. Different lowercase letters (a and b) suggest significantly different means 

(P < 0.05). X0, X, Y, and Z indicate the periods of before medication, medication, 

withdrawal, and after withdrawal, respectively. 

 

3.5 Discussion 
The analysis of the Bray-Curtis dissimilarities suggested that the milk 

microbiota structure shifted at withdrawal time (p < 0.05). Because this was the 
most immediate sampling time after administration, continuous antibiotic 
treatment may have had an impact on the cows. At the same time, it may be 
inferred that the use of antibiotic resulted in changes in the milk microbiota over 
three days rather than an immediate change (≤1d). The milk microbiota shifted 
significantly in the period of withdrawal (p < 0.05). This might be caused by the 
elevation in the phylum of Proteobacteria and the reduce in the phylum of 
Firmicutes and Verrucomicrobia (Additional file 1: Table S2, 
https://figshare.com/articles/figure/supplement_table_xlsx/14167430). It has been 
confirmed that some antimicrobials agents can reduce the diversity of gut 
microbiota of cows (Allen et al., 2011). However, the relative abundance of the 
microbiota increased at the period of withdrawal time, showing that the 
antibiotics suggested a prolonged antimicrobial effect (＞8 d). 

The administration of cephalosporins can affect the bacterial composition of the 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/antimicrobial-resistance
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milk microbiota. It is reported that the Bacteroides strains isolated from various of 
human infections contained β-lactamase genes, which reduced sensitivity to 
abroad profiles of antibiotics (García et al., 2016). Especially, it was measured 
that the isolated Bacteroides strains were highly resistant to 1st and 2nd -
generation cephalosporins and were moderately resistant when exposed to 3rd and 
4th-generation cephalosporins (Nuria et al., 2008). In our study, the Enterobacter 
was significantly reduced at medication (p < 0.05) and decreased continuously 
from medication to the period of withdrawal (Figure 3-5a). This finding suggested 
the cephalosporins were effective in reducing the colonization of Enterobacter. 
However, a recent study has suggested appropriate veterinary use of a 3rd -
generation cephalosporin can increase the occurrence of 1st and 2nd -generation 
cephalosporin-resistant E. coli in the rectal. The abuse of ceftiofur in veterinary 
therapy might elevate the risk of E. coli resistant to cephalosporin. Due to the 
flexibility of genome in E. coli, this organism has evolved into pathogenic strains 
capable of causing diseases, including bovine mastitis following fecal 
contamination of the teat skin. So, the cephalosporin should be used prudently 
and monitored carefully to prevent the spread of bacteria resistant to 
cephalosporin. 

ARGs can be settled in mobile genetic elements (MGEs) and be transferred 
through horizontal gene transfer (HGT) from bacteria in food to human (Spanu et 
al., 2014). It is worth noting that this transfer can occur between the same or 
different species and may be associated with pathogenic bacteria and non-
pathogenic bacteria (Spanu et al., 2010). In addition, HGT will be faster when the 
donor of the antibiotic resistance system and its recipient belong to the same 
family (Kruse et al., 1994). It is reported that the tetM genes commonly connected 
with MGEs were detected in 42% of E. coli isolated strains in raw milk in Poland 
and the risk of ARGs transferring from milk bacteria to human gastrointestinal 
coliform bacteria may be high (Godziszewska et al., 2018). 

Previous research mainly focused on the presence of antibiotic resistance genes 
in feces, nasopharyngeal, rumen, and gut etc. rather than milk (Durso et al., 2017; 
Holman et al., 2019). However, as far as we know, this is the first evaluation of 
antibiotic resistance genes in the milk microbiome of mastitis affected dairy cow 
from before medication period to the period after withdrawal. Only blaTEM was 
significantly increased (p < 0.05) from medication time to withdrawal time. The 
blaTEM gene has been detected ubiquitously among Enterobacteriaceae 
(Lachmayr et al., 2009), Stenotrophomonas maltophilia (Matthew et al., 2000), 
Neisseria gonorrhoeae (Gianecini et al., 2015), Haemophilus parainfluenzae 
(García-Cobos et al., 2013), and Pseudomonas aeruginosa (Marchandin et al., 
2000). Considering the proportion of blaTEM in milk during the withdrawal 
period in this study, it seems that the milk might be an important carrier of the 
blaTEM gene. The blaTEM gene has also been found in bulk tank milk 
(Sudarwanto et al., 2015). The cephalosporins changed the proportion of 
antibiotic resistance genes in the milk microbiome at different periods, which 
involved the other kinds of antibiotic resistance genes not only cephalosporins 



Effects of cephalosporin treatment on the microbiota and resistance genes in milk and feces, and the presence of 

antibiotic heteroresistant strains 

 54 

resistance. However, the treatment of a kind of antibiotic can provide selective 
pressure to maintain other unassociated resistance genes by linking to MGEs 
(García et al., 2016).  

3.6 Conclusion 
This study provides a snapshot of the profile of the milk microbiota and ARGs 

affected by cephalosporins. The relative abundance of Enterobacter was 
significantly reduced along with the use of cephalosporins (P < 0.05). However, 
the relative abundance of the β-lactam gene blaTEM was increased at the period 
of withdrawal time. The effect of the cephalosporin treatment on the milk 
microbiota and resistome are worthy of further investigation. 
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4.1 Abstract 

Antibiotics are frequently used to treat dairy cows with mastitis. However, the 
potential effects of β-lactam antibiotics, such as cephalosporins, on the fecal 
microbiome of dairy cows with mastitis is largely unknown. The objective was to 
investigate the effects of ceftiofur and cefquinome on the fecal microbiota and 
antibiotic resistance genes of dairy cows with mastitis. The fecal samples were 
collected from 8 dairy cows at the following periods: the start day (Day 0), 
medication (Days 1, 2, and 3), withdrawal (Days 4, 6, 7, and 8), and recovery 
(Days 9, 11, 13, and 15). 16S rRNA gene sequencing was applied to explore the 
changes in microbiota, and qPCR was used to investigate the antibiotic resistance 
genes. The cephalosporin treatment significantly decreased the microbial diversity 
and richness, indicated by the decreased Shannon and Chao 1 indexes, 
respectively (p < 0.05). The relative abundance of Bacteroides, Bacteroidaceae, 
Bacteroidales, and Bacteroidia increased, and the relative abundance of 
Clostridia, Clostridiales, Ethanoligenens, and Clostridium IV decreased at the 
withdrawal period. The cephalosporin treatment increased the relative abundance 
of β-lactam resistance genes (blaTEM and cfxA) at the withdrawal period (p < 
0.05). In conclusion, the cephalosporin treatment decreased the microbial 
diversity and richness at the medication period, and increased the relative 
abundance of two β-lactam resistance genes at the withdrawal period. 

Keywords: dairy cow mastitis; cephalosporin; fecal microbiota; antibiotic 
resistance genes 

4.2 Introduction 

Mastitis is regarded as one of the most frequent diseases in the dairy cows. 
Mastitis can directly and/or indirectly affect milk hygienic quality (Halasa et al., 
2007) and can lead to a substantial loss in milk production (Santos et al., 2004; 
Turk et al., 2012). The average economic losses due to mastitis are estimated at 
around USD 325 per cow per year (Huijps et al., 2008). About 24% of antibiotics 
in the dairy industry are used for mastitis treatment and around 44% for mastitis 
prevention (Kuipers et al., 2016). Antibiotic usage (both oral and injection) has a 
profound influence on the microbiome of animal feces, leading to an increase in 
the relative abundance of antibiotic resistance genes (Xiong et al., 2018; Holman 
et al., 2019). There is also a concern that due to the continued antibiotic use to 
prevent or treat mastitis, antimicrobial resistance will greatly increase the 
difficulty and cost of treatment (Kaniyamattam et al., 2020). It is reported that the 
chlortetracycline treatment promoted the abundance of tetracycline resistance 
genes such as tet(A) and tet(W) (Xiong et al., 2018). Antibiotic resistance genes 
(ARGs) can be transferred into the environment and pose a high risk to soil 
ecology and public health (Bengtsson-Palme et al., 2015). The abundance of 
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ARGs in fertilized greenhouse soils was higher than that in field soil (Fang et al., 
2015). 

Cephalosporins are frequently used in veterinary medicine to treat bacterial 
infections (Chambers et al., 2015). Ceftiofur is a third-generation cephalosporin 
that was approved for veterinary use to treat various Gram-negative bacterial 
infections. Ceftiofur is also one of the most used antibiotics in dairy cows to treat 
mastitis, metritis, and respiratory diseases (Foster et al., 2019), and is the only 
third-generation cephalosporin approved for veterinary use in the USA (USDA et 
al., 2014). Cefquinome is a fourth-generation cephalosporin developed solely for 
veterinary use. Cefquinome can treat the infections caused by Staphylococcus 
aureus, Streptococcus suis Serotype 2, and Escherichia coli (Wang et al., 2014; 
Zhou et al., 2015; Guo et al., 2016). It was reported that bacteria in animals can 
develop resistance to cefquinome (Li et al., 2016; Pehlivanoglu et al., 2016). A 
Swiss study found up to 44% of Escherichia coli isolates resistant to cefquinome 
(Stannarius et al., 2009). There is a reasonable concern that the use of cefquinome 
in cows could increase the expression of β-lactam genes, which may deliver 
resistance to cephalosporins (Chambers et al., 2015). Resistance to cephalosporin 
was related to the production of β-lactamases (Liu et al., 2007). It is reported that 
β-lactamase encoding genes, such as blaTEM, blaCMY, blaSHV, and cfxA, 
confer resistance to ceftiofur (Zhao et al., 2001; Chambers et al., 2015). To date, 
no research has investigated the effect of cephalosporins on the fecal microbiome 
of mastitis cows. 

The objective was to investigate the alterations in fecal microbiota and the 
antibiotic resistance genes following cephalosporin treatment of mastitis cows. 

4.3 Materials and methods 

4.3.1 Animals and sample collections 

Fecal samples were collected from a dairy farm in Tianjin city, China. The dairy 
cows were judged to suffer from clinical mastitis by a veterinarian based on the 
obvious symptoms of redness of either udder, milk curdling, discoloration, and 
when the somatic cell count in milk was more than 500,000 cells/mL. The 
somatic cell count was calculated by the California mastitis test (CMT). A total of 
8 primiparous mastitis-affected Holstein dairy cows (one quarter was infected; 
560–686 kg body weight; 105–226 days in milk; 34.26–39.12 kg of milk per day) 
were selected. The cows had not been treated with any antibiotics prior to the 
study. According to the uniform regulations of the dairy farm, these mastitis cows 
were housed individually in a well-ventilated barn and fed a totally mixed ration 
three times daily. Prior to antibiotic treatment, feces from these cows were 
collected from the rectum by the veterinarian, grabbed with sterile groves. 
Approximately 300 g of feces collected for the first time were discarded to 
prevent contamination. Then 100 g of the fresh samples were immediately placed 
into a 200 mL-sterile plastic bottle to avoid exposure to the environment. The 
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cows were then injected with ceftiofur sodium for injection (Qilu animal health 
products co., LTD, Shandong, China) into the muscle (2 mg/kg body weight), and 
with a cefquinome sulfate intermammary infusion (Qilu animal health products 
co., LTD, Shandong, China) into the teat canal of the mastitis-affected quarter 
(0.75 ng/kg body weight) by the veterinarian once per day from Day 1 to Day 3. 
The somatic cell counts in milk returned to normal values (<200 thousand 
cells/mL), and the dairy cows stopped receiving the antibiotics after Day 3. The 
milk was tested by Delvotest SP-NT (DSM Food Specialities R&D, Delft, The 
Netherlands) according the manufacturer’s instructions to ensure that the 
antibiotics were not detected in the milk on Day 9. The feces of all dairy cows 
(n=8) were then sampled at Days 1, 2, 3, 4, 6, 8, 9, 11, 13, and 15 (Figure 4-1). 
Day 0 referred to the start day; Days 1 to 3 were classified as the medication 
period; Days 4 to 8 were classified as the withdrawal period; and Days 9 to 15 
were classified as the recovery period. 

 

Figure 4-1. Timeline for fecal sampling. Sampling days are displayed above the black 

lines. The antibiotic treatments are noted at Days 1, 2, and 3. X0, X, Y, and Z indicate 

the periods Day 0, medication, withdrawal, and recovery, respectively. 

 

4.3.2 DNA extraction 

Total DNA was extracted from 500 mg of each fecal sample using the 
E.Z.N.A™ Mag-Bind Soil DNA Kit (OMEGA, Norcross, GA, USA), according 
to manufacturer’s instructions. The DNA samples’ quality and concentration were 
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measured using a Qubit 3.0 DNA detection kit (Life Technologies, Grand Island, 
NY, USA). These DNA samples were stored at −80 °C for further genotypic 
quantification. 

4.3.3 PCR Amplification 

The V3–V4 region of the 16S rDNA was amplified by PCR (94 °C for 3 min, 
94 °C for 30 s, 45 °C for 20 s, and 65 °C for 30 s for 5 cycles). Illumina bridge 
PCR compatible primers were introduced in the second round of PCR 
amplification at 94 °C for 20 s, 55 °C for 20 s, and 72 °C for 30 s for 20 cycles, 
and finally extended at 72 °C for 5 min using primers 341F: 
CCTACGGGNGGCWGCAG; 805R: GACTACHVGGGTATCTAATCC (Su et al., 
2015). Triplicate PCR reactions were performed with 30 μL of the mixture 
containing 15 μL of 2 × Hieff Robust PCR Master Mix, 1 μL of Primer F, 1 μL of 
primer R, 10–20 ng template DNA or PCR products, and H®2O was added to 30 
μL. All PCR reagents were from TOYOBO, Japan. 

4.3.4 Illumina Novaseq 6000 Sequencing 

The amplicons were extracted from a 2% agarose gels and purified using the 
SanPrep DNA Gel Extraction Kit (SANGON Biotechnology, Shanghai, China), 
according to the manufacturer’s instructions, and quantified using the ABI Step 
One Plus Real-Time PCR System (Life Technologies, Foster City, CA, USA). 
Purified amplicons were concentrated in equimolar and paired-end sequenced 
(PE250) on the Illumina platform according to the standard protocols. 

4.3.5 Quantification of Antibiotic Resistance Genes 

The quantity of 20 antibiotic resistance genes was evaluated using qPCR, as 
described previously (Holman et al., 2019). In brief, genes conferring resistance 
to beta-lactams (cfxA, blaROB, blaCMY, mecA, blaCTX-M, bla1, and blaTEM), 
aminoglycosides (strA and strB), macrolides (erm(A) and erm(B)), sulfonamides 
(sul1 and sul2), tetracyclines (tet(A), tet(B), tet(C), tet(H) and tet(Q)), and 
vancomycin (vanC and vanG) were evaluated. The primer sequences used were as 
previously described in Huang et al. (Huang et al., 2019). These genes were 
normalized against the 16S rRNA gene, which was also quantified by qPCR. The 
16S rRNA gene was amplified using the 357-F: 5′-CCTACGGGAGGCAGCAG-
3′ and 518-R: 5′-ATTACCGCGGCTGCTGG-3′ primers that were also used to 
generate the 16S rRNA gene libraries. 

4.3.6 Statistical Analysis 

Raw data including adapters or low-quality reads would affect the assembly and 
following analysis. Therefore, in order to obtain high quality clean reads, FASTP 
(Chen et al., 2018) (version 0.18.0) was used to further filter the original reads 
according to the following rules. The UPARSE (Edgar et al., 2013) (version 
9.2.64) pipeline was used to cluster the effective tags into operational taxonomic 
units (OTUs) with similarity ≥ 97%. This package was also used to calculate the 
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Jaccard and Bray–Curtis distance matrix. The α-diversity indexes, such as Chao 1, 
Shannon, and Simpson, were calculated in QIME (Caporaso et al., 2010) 
(version1.9.1). The rarefaction analysis was performed using the mothur (Schloss 
et al., 2009). The alpha index comparison among groups was calculated by 
Tukey’s HSD test and the Kruskal–Wallis H test using the Vegan package in R 
(Vegan, 2021). Linear discriminant analysis effect size (LEfSe) was used to 
determine which microorganisms were significantly different among groups 
(Segata et al., 2011). The antibiotic resistance gene comparison among different 
periods was statistically analyzed using ANOVA with Tukey’s multiple 
comparison test by SPSS software version 24.0 (SPSS, Inc., Chicago, IL, USA). 

4.4 Results 

4.4.1 Animal Weight Gain, and 16S rRNA Gene Sequencing Overview 

None of the dairy cows in this research received any other antibiotic treatments. 
The dairy cows were weighed prior to the medication and the recovery period 
(one quarter was infected; 560–686 kg body weight; 105–226 days in milk; 
34.26–39.12 kg of milk per day). The growth rate of the dairy cows was not 
influenced by the antibiotic medication (p > 0.05). The raw reads of sequences per 
sample ranged from 35,133 to 105,031. After cleaning, the tags of sequences per 
sample ranged from 33,984 to 102,801. The OTU numbers ranged from 795 to 
2344. 

4.4.2 α-Diversity 

The rarefaction analysis performed for each fecal sequence dataset retrieved 
rarefaction curves. The result suggested that the sample size was large enough to 
represent the bacterial diversity present in the communities (Figure 4-2). 
Microbial diversity within the α diversity was measured by richness (Chao 1) and 
diversity indices (Shannon and Simpson). The average values of the Shannon 
diversity index and the average Chao 1 index for the microbiota both decreased 
significantly at the medication period (p < 0.05), suggesting that the total number 
of species and the abundance of microbiota were all decreased. However, the 
mean values of the Simpson index did not show significant differences among the 
different periods (Figure 4-3). 
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Figure 4-2. The rarefaction analysis performed using mothur. The rarefaction 

curve based on the species diversity showed sufficient coverage for the sequences. 

The first letter of the number (A–H) represented the different cows. X0, X (X1, X2, 

X3), Y (Y1, Y3, Y4, Y5), and Z (Z1, Z3, Z5, Z7) indicate the periods Day 0, 

medication, withdrawal, and recovery, respectively. 
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Figure 4-3. (a) Chao 1 richness index of samples from four different periods. (b) 

Shannon diversity index of samples from four different periods. (c) Simpson 

diversity index of samples from four different periods. Different lowercase letters 

within each sampling group represent significantly different means (p < 0.05). X0, X, 

Y, and Z indicate the periods Day 0, medication, withdrawal, and recovery, 

respectively. 

 

4.4.3 Microbial Community Analysis 

The distribution of the most abundant classes and families in the fecal samples 
are displayed in Figures S1 and S2. At the class level, Clostridia was the most 
abundant bacterium at all four periods, accounting for about 60% of all bacteria, 
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followed by Bacteroidia, Actinobacteria, and Erysipelotrichia. These four classes 
accounted for over 85% of all bacteria (Figure S1). At the family level, a total of 
50 taxa were detected in the feces. Ruminococcaceae, Lachnospiraceae, 
Bifidobacteriaceae, and Porphyromonadaceae were the four most abundant 
(Figure S2). 

To obtain further insights, the statistical differences in genera in the fecal 
samples were analyzed using the Vegan R package. At the genus level, 
Bifidobacterium, Sporobacter, Bacteroides, Clostridium sensu stricto, Romboutsia, 
and Ruminococcus dominated the fecal samples (Figure 4-4a). Bifidobacterium 
belongs to Actinobacteria; Sporobacter, Clostridium sensu stricto, Romboutsia, 
and Ruminococcus belong to Firmicutes; and Bacteroides belongs to 
Bacteroidetes (Figure 4-4a). Roseburia was more abundant when antibiotics were 
used. The relative abundance of Bacteroides (genus), Bacteroidales (order), 
Bacteroidaceae (family) and Bacteroidia (class) increased with the cephalosporin 
treatment, and the relative abundance of Clostridia (class), Clostridiales (order), 
Ethanoligenens (genus), and Clostridium_IV (genus) decreased (Figure 4-4b). At 
the recovery period, the relative abundance of Clostridium XI (genus), 
Peptostreptococcaceae (family), Verrucomicrobiales (order), Verrucomicobiae 
(class), Akkermansia (genus), and Verrucomicrobiaceae (family) increased in the 
fecal samples (Figure 4-4b). Figure S3 displays that the antibiotics were effective 
in reducing or preventing the growth of Moraxellaceae. 
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Figure 4-4. Alterations in bacterial genera abundance in the feces at different periods. 

(a) The difference in abundance of multiple groups of samples after quartile 

calculation of the abundance of samples at the genus level (b) Lefse analysis 

phylogenetic tree diagram; different colors in the legend on the left side represent 

different days in different periods X0 (day 0), X (medication), Y (withdrawal) and Z 

(recovery). The concentric circles radiating from the outermost to the innermost 

represent the hierarchical classification levels from phylum to genus (or species). 

Each small circle at different classification levels represents a taxonomic group at 

that level, and the diameter of the circle is proportional to its relative abundance. 

Species without significant differences are colored uniformly in yellow. Red nodes 

represent microbial groups that play an important role in the red group, while green 

nodes represent microbial groups that play an important role in the green group. 

The meaning of other circle colors is similar. The species names represented by 

English letters in the figure are displayed in the legend on the right side 

4.4.4 Antibiotic Resistance Genes 

The proportions of sixteen antibiotic resistance genes (cfxA, blaROB, blaCMY, 
mecA, blaCTX-M, bla1, and blaTEM, strA, strB, erm(A), erm(B), sul1, sul2, 
tet(A), tet(B), tet(C), tet(H) and tet(Q), vanC and vanG) in fecal samples from 
four different sampling periods were quantified. Among these 20 resistance genes, 
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only eight genes (cfxA, blaTEM, blaCMY, strB, tet(A), tet(B), tet(C) and tet(Q)) 
showed Cq values during detection in fecal samples. Ceftiofur and cefquinome 
significantly increased the proportion of blaTEM and cfxA in the feces at the 
withdrawal period when compared with Day 0 (Figure 4-5). Other resistance 
genes were not affected by the antibiotic treatment (data not shown). At the 
recovery period, the proportion of cfxA was significantly decreased compared 
with the withdrawal period, but the proportion of blaTEM was not changed 
significantly. 

 

Figure 4-5. Proportion of the antibiotic resistance genes (a) blaTEM and (b) cfxA 

compared with the 16S rRNA gene. Different lowercase letters suggest significantly 

different means (p < 0.05). X0, X, Y, and Z indicate the periods Day 0, medication, 

withdrawal, and recovery, respectively. 

 

4.5 Discussion 

In our study, the relative abundance of Bacteroidia was increased in feces at the 
medication period. It was reported that the relative abundance of class Bacteroidia 
was increased and the relative abundance of class Actinobacteria was decreased 
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in experimental cattle after 3 days of ceftiofur exposure (Chambers et al., 2015). 
This was similar to our study. It was also reported that the genus Bacteroides 
strains isolated from human infections contained β-lactamase genes, which 
reduced sensitivity to antibiotics (Dorado-García et al., 2016). Therefore, we 
speculated that the increase in Bacteroidia at the medication period may be 
related to the increase of β-lactam resistance genes. 

The blaTEM has been reported to have a high prevalence in the ceftiofur-
resistant bacteria of swine tissues (Chander et al., 2011). In accordance with our 
previous study, the blaTEM in milk that were collected from the cows was 
significantly increased (p < 0.05) after 3 days of cephalosporin exposure (Dong et 
al., 2021). It was also reported that blaTEM was one of the most abundant ARGs 
in the feces from a pig farm (Gāliņa et al., 2021). In the present study, the β-
lactamase encoding genes blaTEM and cfxA were significantly increased (p < 
0.05) at the withdrawal period. cfxA was considered to be the most abundant β-
lactam ARG in ceftiofur-treated cattle feces (Chambers et al., 2015). cfxA was 
also found to be an important gene encoding β-lactamase in Bacteroides spp. 
(García et al., 2008). Avelar et al. (Avelar et al., 2003) detected the cfxA gene in 
11 Bacteroides spp. strains among a total of 73 strains. So, there may be a close 
correlation between the Bacteroides in the feces and the increased genes encoding 
β-lactam. 

The milk microbiota richness of mastitis cows treated with cephalosporins did 
not decrease (Dong et al., 2021). In the present study, we investigated the effect of 
cephalosporins on the feces of cows. The results suggested that the cephalosporin 
treatment indeed affected the abundance of the microbiota in feces, with a 
decreased richness and decreased diversity, suggesting that antibiotics may have a 
more pronounced effect on the gut than milk. It may be because the ceftiofur 
sodium has a pKa value of 3.7 and insufficient lipid-soluble properties to 
penetrate breast milk (Fernández-Varón et al., 2016). It was reported that when 
the cattle were treated with ceftiofur, the β-lactam ARGs in feces were increased, 
and the ceftiofur-resistant E. coli isolates from the feces were greater compared to 
control cattle (Lowrance et al., 2007). In a recent study that used qPCR to detect 
β-lactam ARGs, they were found to be increased in the feces of cows treated with 
ceftiofur compared to cows without ceftiofur treatment (Chambers et al., 2015). 
Considering the proportion of blaTEM and cfxA in feces during the withdrawal 
period in this study, it seems that the feces might be an important reservoir of the 
blaTEM and cfxA genes. Other studies have also confirmed that animal feces are 
an important reservoir of ARGs (Dorado-García et al., 2016). 

Although none of the cattle received tetracyclines during the period of the study, 
some antibiotic resistance genes coding for tetracycline resistance (tet(W) and 
tet(Q)) were detected but did not significantly change at the different periods (data 
not shown). This may be because the treatment of a kind of antibiotic can provide 
selective pressure to maintain other unassociated resistance genes by linking to 
mobile genetic elements (MGEs) (Enne et al., 2004). The co-transfer of erm(B) 
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and tet(M) in the presence of erythromycin has been reported in Streptococcus 
pyogenes isolates (Brenciani et al., 2007), and the colocalization of mefA, aphA3, 
tet(Q), and IS614 was observed in a transposon of Bacteroide (Tauch et al., 2002). 
It has been reported that MGEs promote the mobilization and spread of ARGs in 
bacteria. High concentrations of ARGs are considered a risk to public health 
because the ARGs can transfer from the manure compost, becoming pathogens in 
agricultural soil (Dorado-García et al., 2016). The resistant bacteria and resistance 
genes in the feces can also be seen as a serious problem because they may transfer 
among cattle and result in antibiotic treatment failure. Therefore, the appropriate 
use of antibiotics in dairy cattle is an important process to avoid the spread of 
ARBs and ARGs. 

4.6 Conclusion 

This study provides a snapshot of the changes in the fecal microbiota and 
resistome affected by cephalosporins. The richness and diversity of the bacterial 
communities were significantly decreased at the medication period. The relative 
abundance of Bacteroides, Bacteroidaceae, Bacteroidales, and Bacteroidia 
increased, and the relative abundance of Clostridia, Clostridiales, Ethanoligenens, 
and Clostridium IV decreased at the withdrawal period. This research suggests 
that cephalosporins had a measurable and immediate effect on the fecal 
microbiota. However, the cephalosporins increased the proportion of the β-lactam 
genes blaTEM and cfxA at the withdrawal period. The long-term (>10 days) 
effect of the cephalosporin treatment on the fecal microbiota and resistome are 
worthy of further investigation. At the same time, it is important to develop the 
appropriate management to control the transfer of ARGs. 
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5.1 Abstract 

Heteroresistance can bring about therapy failure and is hard to detect by routine 
methods in the laboratories. In this study, we studied the prevalence of ceftiofur 
heteroresistant Staphylococcus isolates. In total, 151 Staphylococcus isolates were 
collected from milk from mastitis suffering cows from the major dairy-production 
areas of China. The disk diffusion method and population analysis profiling (PAP) 
method were carried out to evaluate the existence of heteroresistance. The 
heteroresistance stability was investigated by culturing isolates for seven days in 
ceftiofur-free medium. Whole-genome sequencing analysis was used to identify 
the nucleotide and resultant protein sequences. Among the isolates, 15 strains 
(15/151, 9.9%) showed heteroresistance by the disk diffusion method, and, of 
those 15, three strains (3/15, 20%) exhibited heteroresistant phenotypes by the 
PAP method. Two of these heteroresistant strains were unstable, as the minimal 
inhibitory concentrations (MICs) decreased after 1-week daily culture. Whole-
genome sequencing displayed that, for strains with heteroresistant phenotypes, 
there were single nucleotide polymorphisms in the mecA gene, leading to different 
protein sequences, which might be associated with ceftiofur heteroresistance. 
There were two extra mutations in the heteroresistant stable isolate (D12-4), 
which might have resulted in the formation of a stable resistant subpopulation in 
heteroresistant Staphylococcus. These findings improve knowledges about the 
emergence of ceftiofur-heteroresistant Staphylococcus isolates and the application 
of ceftiofur as therapy for the treatment for mastitis in dairy cows.  

Keywords: Staphylococcus, ceftiofur heteroresistance, milk, mecA 

5.2 Introduction 
Staphylococcus spp. strains are commonly found in the all kind of natural 

environment such as water, soil, and air. They are also an integral component of 
the microbiota of the skin and mucous membranes of humans and some animals. 
In humans, Staphylococcus is associated with skin infections, pneumonia and 
endocarditis (Donadu et al., 2022). Also in livestock animals, Staphylococcus can 
cause important infections, and can be spread from animals to humans (Fluit et al., 
2012; Tegegne et al., 2021). In addition, Staphylococcus exist in foods such as 
fermented meat products, milk, and cheese (Milala et al., 2021). Several 
Staphylococcus spp. strains can produce enterotoxins, which are often associated 
with coagulase-positive species such as Staphylococcus aureus (S. aureus). 
Coagulase-negative Staphylococcus strains have been found containing 
enterotoxin-related genes and are also capable of producing these enterotoxins, 
which have been described as the causative agent of foodborne disease outbreaks 
(Casaes et al., 2016; da Silva Cândido et al.,2020). 

Ceftiofur is a kind of third-generation cephalosporin antibiotic with broad-
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spectrum antibacterial activity, commonly used in the treatment of infectious 
diseases in dairy cows (Saini et al., Dong et al., 2021). It has been reported that 
80% of S. aureus and 97.5 % of S. chromogens isolates from milk samples of 
mammary quarters of cows were classified as intermediate, while the remaining 
isolates (20% of S. aureus and 2.5% of S. chromogenes) were all resistant to 
ceftiofur (Leite et al., 2018).  

Resistant bacteria are the main reason for failure of antibiotic treatment and they 
lead to an increased mortality after infection (Nicoloff et al., 2019). However, 
even if bacteria have been identified as sensitive to antibiotics, antibiotics are not 
always effective in treating bacterial infection diseases (European Committee on 
Antimicrobial Susceptibility Testing, 2019). The main reason is that a specific 
population of pathogens contains subpopulations of these pathogens with lower 
susceptibility to the antibiotic than the dominant population and thus the 
population can exhibit phenotypic heterogeneity, which makes it difficult to 
categorize bacteria as sensitive or resistant (Andersson et al., 2019). This 
phenomenon is entitled antibiotic heteroresistance. Several studies have reported 
that heteroresitant bacteria may lead to failure of antibiotic treatment (Pournaras 
et al., 2005; Kelley et al., 2011). According to some previous studies, antibiotic 
heteroresistance is defined as the existence of a subpopulation of cells capable of 
at least 8-fold higher antibiotic concentrations than the highest concentration that 
does not inhibit the growth of the dominant population (El-Halfawy et al., 2015). 
Heteroresistance is considered to be a crucial intermediate stage before the 
development of full resistance (Morand et al., 2007). Heteroresistance, which 
describes the presence or emergence of resistant subpopulations, is a great 
challenge for the microbiology field. Falsely identified and interpreted susceptible 
microorganisms can have a bad effect on the treatment, resulting in higher 
morbidity, mortality, and overuse of second-line and last-line antibiotics. 
Therefore, the detection and characterization of heteroresistant isolates is crucial 
for maximizing the antibiotics efficiency. 

Almost all research on heteroresistance have been performed in human rather 
than animal isolates. Several studies on heteroresistance to cephalosporin have 
been reported in Acinetobacter baumannii (Hung et al., 2012), 
Enterobacteriaceae (Søgaard et al., 1985), S. aureus (Saravolatz et al., 2014), and 
Escherichia coli (Ma et al., 2016), however, most of them are concerned with 
Gram-negative bacteria. So far, no study has screened for heteroresistance to 
ceftiofur in Staphylococcus spp., from milk. Therefore, the aims of this study 
were to screen the heteroresistant bacteria and explore the mechanisms of 
ceftiofur heteroresistance in Staphylococcus spp. isolates obtained from raw milk. 
Our study is the first study to research the mechanism of heteroresistance 
Staphylococcus to ceftiofur in raw milk, providing a basis for reducing the 
development and spread of heteroresistance. 

5.3 Materials and methods 
5.3.1 Bacterial isolates  
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A total of 151 Staphylococcus spp. strains studied in the present study were 
isolated from milk samples from mastitis suffering cows (One quarter was 
infected; 545–690 kg body weight; 99–246 days in milk; 33.12–40.58 kg of milk 
per day. All cows received ceftiofur during illness) from the major dairy-
production areas of China, with 31 S. aureus from Xinjiang, 70 Staphylococcus 
spp. from Tianjin, 9 S. aureus from Qingdao, and 41 S. aureus from Inner 
Mongolia. The isolates were identified as Staphylococcus spp. by polymerase 
chain reaction (PCR) (Bio-Rad S1000, United States) and 16S rRNA sequencing. 
All isolates were stored at -80℃ until further testing. Frozen isolates were thawed 
and sub-cultured at least twice prior to treatment. The strains were cultured on 
nutrient agar (Thermo Fisher Oxoid, Basingstoke, UK) at 37℃.  

5.3.2 Antimicrobial susceptibility testing 

The susceptibility determinations of clinical routine antibiotics, including 
penicillin (PEN), ampicillin (AMP), amoxicillin and clavulanate potassium (ACP), 
oxacillin (OXA), cephalothin (CEP), ceftiofur (CEF), erythromycin (ERY), 
clindamycin (CLI), gentamicin (GEN), doxycycline (DOX), florfenicol (FLO), 
rifaximin (RIF), vancomycin (VAN), sulfisoxazole (SUL), pediatric compound 
sulfamethoxazole tablets (PCST), ciprofloxacin (CIP), were assayed in triplicate 
for each bacterial strain by a broth microdilution method (BMD) and interpreted 
in line with CLSI guidelines (Clinical and Laboratory Standards Institute, 2018). 
S. aureus ATCC 29213 was used as a quality control strain. The multiple 
antibiotic resistance (MAR) index for each bacterium was measured against 16 
antimicrobial agents according to the method of Blasco et al. (Blasco et al., 2008). 
The MAR index is a reasonable risk evaluation method. A MAR index value of 
0.20 is used as threshold to distinguish the low-risk (<0.20) and high-risk (>0.20) 
(Krumperman et al., 1983). 

 

 

5.3.3 Primary screening of heteroresistant bacteria 

Hereroresistance to CEF was detected by the disc diffusion method on Mueller-
Hinton agar (MHA) (Thermo Fisher Oxoid, Basingstoke, UK) using a 0.5 
McFarland standard bacterial suspension and paper discs containing CEF 
concentrations of 10 μg (Jinzhang, Tianjin, China). Following incubation at 37℃ 
for 24h, the presence of distinct colonies growing within a well-defined inhibition 
zone was deemed an indication of CEF-heteroresistant Staphylococcus (CHS), 
while isolates displaying inhibition halos but no populations were defined as non-
CHS. 

5.3.4 Population analysis profiling 

After the primary screening, 15 non-duplicate isolates that showed 
heteroresistance were further screened using the population analysis profile (PAP) 
methods according to the previously published study with some modifications 

MAR index =
number of antibiotics to which isolate was resistant

total number of antibiotics tested
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(Hong et al., 2020). Each isolate represented a single milk sample. First, after 
overnight growth on MHA plates, one bacterial colony was inoculated into fresh 
MH broth while shaking at 37℃ for 24 hours. A single colony of each isolate was 
regulated to 108 CFU/mL by the 0.5 McFarland standard bacterial suspension. 
The serial dilutions of the bacterial suspension (10-7, 10-6, 10-5, 10-4, 10-3) were 
carried out in saline. Then, a 100 μL aliquot of 108 CFU/mL-103 CFU/mL 
bacterial suspension was spread onto MHA plates containing either 0, 0.25, 0.5, 
1.0, 2.0, 4.0, 8.0, 16.0 mg/mL CEF. The limit of quantification (LOQ) was 20 
CFU/mL. The PAP method was duplicated with three independent biological 
repeats. 

5.3.5 Stability of resistant subpopulations 

The stability test was conducted to study if the resistant subpopulations 
preserved their CEF resistance phenotype. Two to three colonies were selected 
from the PAP test plates containing heteroresistant Staphylococcus spp. strains. 
The resistant subpopulations were serially inoculated for seven extra overnight 
incubation periods (about 10 generations each day) in the absence and presence of 
CEF. Then, the MIC of CEF were determined by the broth microdilution method, 
and the resistant subpopulation was considered unstable if the MICs decreased or 
recovered to that of the parental strain. All measurements were performed with 
three independent biological replicates. 

5.3.6 Whole-genome sequence 

The genome of nine Staphylococcus strains [three Staphylococcus strains were 
identified heteroresistant to ceftiofur by both the disc diffusion method as well as 
the PAP method (HR*HR), three Staphylococcus strains identified heteroresistant 
to CEF by the disc diffusion method but non-heteroresistant by the PAP method 
(HR*S), and three Staphyloccocus strains were sensitive to CEF (S)] were 
sequenced at the Beijing Genomics Institute (Shenzhen, China) using both the 
PacBio RS II and Illumina HiSeq 4000 platforms. For the PacBio platform, four 
SMRT cells Zero-Mode Waveguide arrays were used to generate the subreads set. 
Subreads with a length less than 1 kb were deleted. The Pbdagcon program 
(https://github.com/PacificBiosciences/pbdagcon) was utilized for self-correction. 
Draft genomic units were assembled using the Celera Assembler against a high-
quality corrected set of circular consensus subreads. To enhance the accuracy of 
the genome sequences, single-base corrections were performed using GATK 
(https://www.broadinstitute.org/gatk/) and SOAP tool packages (SOAP2, 
SOAPsnp, SOAPindel). The filtered Illumina reads were then mapped to the 
bacterial plasmid database (http://www.ebi.ac.uk/genomes/plasmid.html, last 
accessed July 8, 2016) using SOAP to identify any plasmids that may have 
emerged. Gene prediction was performed on the staphylococcus genome 
assembly by glimmer3 (http://www.cbcb.umd.edu/software/glimmer/) with 
Hidden Markov models. Resistance gene were identified according to the core 
dataset in ARDB (Antibiotic Resistance Genes Database) database. Single 
nucleotide variants analysis and protein sequences were identified by whole-
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genome alignment using the MegAlign software package. 

5.4 Results 
5.4.1 Antibiotic susceptibility results of Staphylococcus 

The antibiotic resistance for different kinds of antibiotics in the 151 tested 
strains of Staphylococcus are listed in Table 5-1 and Figure 5-1. The antibiotic 
susceptibility results of the 151 Staphylococcus isolates are listed in 
Supplementary Table S1. In addition, the 151 tested strains had a MAR index 
value ranging from 0 to 0.375 (Supplemental Table S2), with 18.5% (28/151) of 
isolates having MAR values > 0.20. 

 

 

Figure 5-1. Distribution of resistance patterns. 

 

Table 5-1 The resistance rate of different antibiotics in 151 Staphylococcus 

Antibiotics No. of Resistance isolates (%) 

Ampicillin 58 (38.41%) 

Erythromycin 54 (35.76%) 
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Clindamycin 32 (21.19%) 

Sulfisoxazole 26 (17.22%) 

Amoxicillin/clavulanic acid 23 (15.23%) 

Oxacillin 9 (5.96%) 

Ceftiofur 8 (5.30%) 

Ciprofloxacin 5 (3.31%) 

Gentamicin 4 (2.65%) 

Trimethoprim/sulfamethoxazole 2 (1.32%) 

Doxycycline 0 (0%) 

Vancomycin 0 (0%) 

Penicillin 0 (0%) 

cephalothin 0 (0%) 

Florfenicol 0 (0%) 

Rifampin 0 (0%) 

 

5.4.2 Verification of CEF heteroresistance among Staphylococcus isolates 

The CEF heteroresistance among Staphylococcus was identified performing the 
disc diffusion method and the PAP method. Among the 151 isolates screened by 
the disc diffusion method, we found scattered colonies in the inhibition zones 
around the CEF disks in 15 isolates (Figure 5-2a), showing the potential to induce 
resistance of CEF under the pressure of CEF. The PAP method confirmed the 
presence of a heteroresistant subpopulation in 20.0% (3/15) of the strains that 
grew to 4 or 8 mg/L CEF from milk samples from mastitis suffering cows of 
Tianjin city (Figure 5-2b). 
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Figure 5-2. Verification of CEF heteroresistance among Staphylococcus strains. (a) 

Heteroresistance apperance of Staphylococcus isolates to CEF identified by the disk 

diffusion method. (b) PAP method of the CEF heteroresistant strains and the control 

strain (ATCC 29213) 

a 

b 
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5.4.3 Stability of the subpopulations of CEF-heteroresistant Staphylococcus 

We confirmed that three Staphylococcus isolates (D12-4, H0-2, N0-3) showed 
CEF heteroresistance, and it was observed that H0-2 and N0-3 were susceptible to 
all tested antibiotics, while D12-4 was resistant to AMP but susceptible to CEF 
(Table S1). The single phenotypes and PAP frequencies of these subpopulations 
from parental isolates are shown in Table 5-2. The results demonstrated that H0-2 
and N0-3 were unstable and transient without other antibiotic exposure after 
seven days of serial subculturing. The D12-4 maintained the resistance to CEF 
after seven days. 

 

Table 5-2. Characteristics of 3 CEF-heteroresistant Staphylococcus isolates 

included in this 

Isolate BMIC 

(mg/L) 

HCG in 

PAPs (mg/L) 

PAP MIC after 1-

weeka  

HP PAP 

frequencyb 

D12-4 0.25 4 Heteroresistant 4 Stable 2.72×10-7 

H0-2 0.25 8 Heteroresistant 2 Unstable 2.44×10-6 

N0-3 0.5 8 Heteroresistant 4 Unstable 2.63×10-7 

a Resistant colonies MIC after 1-week daily passages onto CEF free medium 

bThe frequency of the appearance of CEF-heteroresistant subpopulation was calculated 

according to the following formula: [number of colonies on CEF (2, 4 μg/mL) dish × 

dilution]/ (number of colonies on CEF-free dish × dilution. 

Abbreviation: BMIC, Broth MIC; HCG, Highest concentration of growth; HP, 

Heterogeneous phenotype 

 

5.4.4 Whole-genome sequences, general genomic features, and protein 
sequences 

In our study, the complete genomic sequences of three kinds of Staphylococcus 
strains were determined. The D12-4, H0-2, and N0-3 were heteroresistant to CEF 
by both the disc diffusion method as well as the PAP method (HR*HR), the C8-2, 
C11-2, and Q12-3 were heteroresistant to CEF by disc diffusion method but 
sensitive to ceftiofur by PAP method (HR*S), and the H0-1, D12-5, C11-1 were 
sensitive to the CEF (S). The general informations of the nine Staphylococcus 
strains are displayed in Table 5-3. The genomic features of the examined strains 
are shown in Table S3.  

Overall, 18 resistance determinants, showing resistant to 11 classes of 
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antibiotics, were found in the nine isolates, and all nine isolates carried resistance 
determinants. All nine Staphylococcus strains carried the vanRE, vanRG, and 
vanRD, lmrB, ykkC, ykkD. All HR*HR strains (D12-4, H0-2, N0-3) carried the β-
lactam resistance determinants mecA or bl2a_pc. Two HR*S strains (C8-2, C11-2) 
and one S strain (D12-5) carried the β-lactam resistance determinant mecA. The 
mphC gene, showing resistance to macrolide, was also detected in all HR*HR 
strains (D12-4, H0-2, N0-3), two HR*S strains (C8-2, C11-2) and one S strain 
(D12-5). Only one HR*HR strain (N0-3) carried the fosB and tmrB gene. 
However, none of the HR*HR strains (D12-4, H0-2, N0-3) carried genes 
conferring resistance to trimethoprim, tetracycline, or aminoglycoside.  

The presence of the carbohydrate-active enzyme was shown in Table 5-3, it is 
worth noting that the SpsG was only detected in some HR*HR (D12-4, N0-3) and 
HR*S strains (C8-2, C11-2). 

We also identified the different protein sequences (Table 5-4). The protein 
sequences differences were detected with regard to the mecA gene in six 
Staphylococcus strains. Comparing these strains with the translation of the mecA1 
gene in Staphylococcus sciuri ATCC 29062 (BioProject: PRJNA313047), resulted 
in 17 differences in D12-4 (HR*HR, stable). There were the same protein 
sequence differences in 15 positions in the mecA gene in H0-2 (HR*HR), C11-2 
(HR*S), and D12-5 (S). We also found protein sequence differences in 15 
positions in the mecA gene in C8-2 (HR*S). 
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Table 5-3. Resistance phenotypes, distribution of antibiotic genes, and carbohydrate-active enzyme presence in nine Staphylococcus 

sequenced by whole-genome sequences. 

   Resistance determinant  

Strai

ns 

Genus State Glycopep

tides 

polypep

tide 

Lincosa

mide 

SM

R 

β-

Lacta

m 

Macrol

ide 

Fosfom

ycin 

Tunicam

ycin 

Trimetho

prim 

Tetracyc

line 

Aminoglyc

oside 

Carbohyd

rate-

active 

enzyme 

D12-

4 

Staphyloc

occus 

sciuri 

HR*

HRa 

stable 

vanXYE, 

vanRE, 

vanRG, 

vanRD 

bacA lmrB (3),  ykk

D, 

ykk

C,   

mecA mphC      SpsG 

H0-2 Staphyloc

occus 

sciuri 

HR*

HR 

vanXE, 

vanRD, 

vanRG, 

vanRE 

bacA lmrB (4),  ykk

C, 

ykk

D 

mecA mphC       

N0-3 Staphyloc

occus 

HR*

HR 

vanXYE, 

vanRE 

bacA lmrB (4) ykk

C, 

mecA

, 

mphC fosB tmrB    SpsG 
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sciuri (2), 

vanRG, 

vanRD,  

ykk

D 

bl2a_

pc,  

C8-2 Staphyloc

occus 

sciuri 

HR

*Sb 

vanRD, 

vanRG, 

vanRE, 

vanXYE 

bacA lmrB (3) ykk

C, 

ykk

D 

mecA

, 

bl2a_

pc,  

mphC      SpsG 

C11-

2 

Staphyloc

occus 

sciuri 

HR

*S 

vanRD, 

vanRG, 

vanRE, 

vanXYE 

bacA lmrB (3) ykk

C, 

ykk

D 

mecA mphC      SpsG 

Q12-

3 

Staphyloc

occus 

chromoge

ns 

HR*S vanRG, 

vanRA, 

vanRD, 

vanRE 

bacA, 

bcrA 

lmrB (2) ykk

C, 

ykk

D 

    dfra20 tet38   

H0-1 Staphyloc

occus 

Sc vanRD, 

vanRA, 

bacA, 

bcrA 

lmrB (2) ykk

C, 

    dfra20 tet38 vatd  
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chromoge

ns 

vanRE, 

vanRG 

ykk

D 

D12-

5 

Staphyloc

occus 

sciuri 

S vanRE, 

vanXYE, 

vanRD, 

vanRG 

bacA lmrB (4) ykk

C, 

ykk

D 

mecA mphC   dfra20    

C11-

1 

Staphyloc

occus 

chromoge

ns 

S vanRD, 

vanRA, 

vanRG, 

vanRE 

bacA, 

bcrA 

lmrB (2) ykk

C, 

ykk

D 

     tet38 vatd  

a The strains were determined as heteroresistance strains screened by the disc diffusion method and the PAP method. 

b The strains were determined as heteroresistance strains screened by the disc diffusion method but sensitive strains by the PAP method. 

c The strains were determined sensitive strains screened by the disc diffusion method.
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Table 5-4. Nucleotide and protein sequences translation of mecA gene in six 

Staphylococcus strains. 

 Protein sequences 

Gene D12-4 

(HR*HR) 

H0-2 

(HR*HR) 

N0-3 

(HR*HR) 

C8-2 

(HR*S) 

C11-2 

(HR*S) 

D12-5 

(S) 

mecA S 18 G 

R 109 H 

N 125 D 

A 130 V 

D 207 Y 

Q 241 E 

L 244 F 

D 289 E 

N 304 Q 

K 313 E 

I 317 K 

Q 351 K 

S 374 N 

S 408 A 

L 412 S 

D 621 N 

I 625 M 

 

S 18 G 

R 109 H 

N 125 D 

A 130 V 

Q 241 E 

L 244 F 

D 289 E 

N 304 Q 

K 313 E 

I 317 K 

Q 351 K 

S 374 N 

S 408 A 

D 621 N 

I 625 M 

 

1-8 lack 

I 10 V 

A 14 V 

G 16 A 

V 19 I 

D 26 N 

K 27 S 

K 28 Q 

E 31 D 

I 33 L 

N 47 D 

M 61 I 

D 76 A 

N 125 D 

A 130 V 

K 136 Q 

T 200 A 

D 218 N 

L 223 T 

N 225 R 

T 62 I 

L 124 F 

N 125 D 

A 130 V 

V 159 I 

Q 241 E 

L 244 F 

D 289 E 

N 304 Q 

K 313 E 

I 317 K 

S 374 N 

S 408 A 

D 621 N 

I 625 M 

S 18 G 

R 109 H 

N 125 D 

A 130 V 

Q 241 E 

L 244 F 

D 289 E 

N 304 Q 

K 313 E 

I 317 K 

Q 351 K 

S 374 N 

S 408 A 

D 621 N 

I 625 M 

 

S 18 G 

R 109 H 

N 125 D 

A 130 V 

Q 241 E 

L 244 F 

D 289 E 

N 304 Q 

K 313 E 

I 317 K 

Q 351 K 

S 374 N 

S 408 A 

D 621 N 

I 625 M 
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S 234 T 

I 317 K 

A 328 S 

S 408 A 

G 419 D 

D 619 N 

D 621 N 

I 625 M 

R 663 N 
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5.5 Discussion 
According to the World Health Organization (WHO), ceftiofur, a main 

registered third-generation cephalosporin, is a veterinary critically important 
antimicrobial and antibiotic (WHO, 2017). Ceftiofur was frequently used as a 
common antibiotic in the dairy farms from which our samples were obtained 
(Dong et al., 2021). During the research, we found that a few dairy cows had 
recurrent mastitis infections. However, only 8 (8/151, 5.30%) strains were 
resistant to ceftiofur in the antibiotic susceptibility results of Staphylococcus, 
which showed that there may be the appearance of the heteroresistance 
phenomenon.  

In our study, we chose to study Staphylococcus spp. since it was the bacteria 
with the highest isolation rate in milk samples from mastitis suffering cows 
compared to other common mastitis-associated pathogens such as Enterobacter, 
Streptococcus, Klebsiella pneumoniae (data not shown). However, there are 
almost no reports on heteroresistance to ceftiofur in Staphylococcus spp. in food. 
As far as we know, this is the first time to investigate the heteroresistance to 
ceftiofur in Staphylococcus spp. in milk. 

In this study, we investigated ceftiofur heteroresistance in Staphylococcus 
isolates from milk. There were 15 isolates showing the possibility of inducible 
resistance to CEF using the disc diffusion method. Only three Staphylococcus 
strains that were determined to be sensitive to ceftiofur were subsequently 
identified as ceftiofur heteroresistant by the PAP method, which is considered an 
appropriate method for determining heteroresistance. The prevalence of 
heteroresistant Staphylococcus in our study was lower than that in another study 
on this subject (Saravolatz et al., 2014). We can think of two main reasons to 
explain this phenomenon. The first lies in the resistance rate of these strains. In 
our study, the prevalence of antibiotic resistance (the strains were less than 50% 
resistant to every antibiotic tested) and multidrug resistance (with 18.5% of 
isolates having MAR indices >0.20) were both relatively lower than that in 
previous studies (Odjadjare et al., 2012; Tan et al., 2020), which may have a 
positive correlation to HR. The other reason is the different sources of the isolates. 
The strains in our study were collected from mastitis milk, but the Staphylococcus 
strains investigated in some previous reports were collected from people (Ma et 
al., 2016). In the present study, we found that only one strain was stable but the 
other two subpopulations were unstable and transient, and the MIC reverted to a 
lower level. Some previous studies have shown that heteroresistance could often 
exhibit different MIC levels and stability due to the subpopulation and its mutants 
(Nicoloff et al., 2019). These results were consistent with the observation in our 
research. This showed that the routinely performed analysis of strains in the 
laboratories, might not always completely characterize all bacteria isolated from 
all kinds of samples. A number of heteroresistance strains were unstable in some 
previous studies (Nicoloff et al., 2019). It is reported that resistant subpopulations 
of Enterobacter cloacae have increased from less than 10% to more than 80% 
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following colistin exposure. However, this occurrence was reversible, and strains 
could recover to the sensitivity levels of pretreatment after being cultured in 
colistin-free medium. This kind of heteroresistance is hard to detect due to the 
instability, which is often lost when the antibiotic pressure becomes lower. 
Moreover, it is difficult to detect with a traditional method, so that strains with a 
resistant subpopulation being misdiagnosed as sensitive is common, and finally 
results in treatment failure.  

In recent years, more and more studies have shown that point mutations, 
insertions, and small deletions in genes can be related to antibiotic resistance 
(Andersson et al., 2019). Recently, it has been reported that the high frequency of 
heteroresistance in all kinds of bacteria, such as Escherichia coli, Klebsiella 
pneumoniae, S. typhimurium, and Acinetobacter baumannii, were mainly created 
by unstable, spontaneous tandem amplification of all kinds of genes in 
subpopulations, finally leading to heteroresistance (Nicoloff et al., 2019). In this 
study, there were several mutations identified in the β-lactam gene mecA. The 
mecA gene is a penicillin binding protein and has a low affinity to β-lactam and 
catalyzes a penicillin-insensitive transpeptidation. The altered PBP2a production 
encoded by mecA, leading to a low affinity to all β-lactams and endues extensive 
resistance to β-lactams antibiotics (including cephalosporins and carbapenems), 
which is not influenced by β-lactamase inhibitors. To our knowledge, the only 
known mechanism for ceftiofur resistance in Staphylococcus is methicillin 
resistance (Park et al., 2013). It is reported that the mecA gene from S. sciuri was 
the precursor of the mecA gene found in clinical S. aureus currently related to 
infections in human being, and S. sciuri is the ancestral repository of mecA gene 
(Saraiva et al., 2021). An interesting finding here was the presence of sensitive 
isolates to ceftiofur but at the same time mecA positive, which will lead to neglect 
the spread of the mecA gene. It is worth noting that there were the same mutations 
in the unstable HR strains H0-2(HR*HR, unstable), C11-2 (HR*S), and sensitive 
strain D12-5. However, there were extra two mutations in the D12-4 (HR*HR, 
stable). We speculated that these two mutations might be related to ceftiofur 
heteroresistance. But further studies are very necessary to evaluate the 
mechanisms of ceftiofur heteroresistance and to verify that the point mutations are 
related ceftiofur heteroresistance. 

The incidence of ceftiofur heteroresistance may be of concern if 
heteroresistance is a precursor to resistant strains (Band et al., 2021). If the 
selective pressure of continued exposure to antibiotics increases the possibility of 
the resistant isolates to the antibiotic, there may be more and more isolates 
resistant to ceftiofur occurring with a more widespread use of ceftiofur. Although 
the mechanism of ceftiofur heteroresistance on Staphylococcus is still unclear, the 
emergence of heteroresistance should be paid attention to.  

5.6 Conclusion 
In conclusion, our research is the first study to determine Staphylococcus strains 

displaying ceftiofur heteroresistance collected from milk. The mutations in the 



Effects of cephalosporin treatment on the microbiota and resistance genes in milk and feces, and the presence of 

antibiotic heteroresistant strains 

98 

 

mecA gene might be the primary mechanisms in the ceftiofur heteroresistance 
Staphylococcus. Our research underlies the significance and emergency of 
monitoring the presence of ceftiofur heteroresistance Staphylococcus in the 
susceptibility testing of Staphylococcus collected from milk. It is suggested that 
dairy cow mastitis inducing microorganisms should be concerned not only with 
regard to the antibiotic resistance but also about the antibiotic heteroresistance, 
thereby to reduce the risk of antibiotic resistance. The small sample size of 
Staphylococcus strains in our research limits the generalizability of the results. It 
is necessary to evaluate the frequency of ceftiofur heteroresistance in a larger size 
of Staphylococcus to validate these results. 
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Table S1 Antibiotic susceptibility of 151 Stapphylococcus isolates 

Area 

Isolate

s name 

Pen

icill

in 

Am

picil

lin 

Amoxicil

lin/clavul

anic acid 

Ox

acil

lin 

Cep

halot

hin 

Cef

tiof

ur 

Eryth

romy

cin 

Clin

damy

cin 

Gent

amic

in 

Dox

ycycl

ine 

Flor

feni

col 

Rif

am

pin 

Vanc

omy

cin 

Cipro

floxa

cin 

Sulfis

oxaz

ole 

Trimethopri

m/sulfametho

xazole 

Qin

gdao  

QDW

Y-2-1-

2 

≤0.

25 

≤0.2

5 

≤0.25/

0.12 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 
0.5 

≤0.2

5 
1 

≤0.

25 
1 ≤0.25 8 ≤0.12/2.4 

QDM-

M-2-2-

1-1 

2 2 
0.5/0.2

5 

≤0.

25 

≤0.2

5 
1 

＞

128 

≤0.2

5 
8 

≤0.2

5 
2 

≤0.

25 
0.5 16 4 ≤0.12/2.4 

QDM-

M-3-2-

5-1 

1 0.5 
≤0.25/

0.12 

≤0.

25 

≤0.2

5 

≤0.

25 
8 

≤0.2

5 
8 0.5 8 

≤0.

25 
≤0.5 16 4 ≤0.12/2.4 

QDF-

1-1-2 
4 1 

0.5/0.2

5 
32 32 64 16 8 8 

≤0.2

5 
2 4 0.5 0.5 

>102

4 
≤0.12/2.4 

QDM-

M-3-3-

5-1 

≤0.

25 

≤0.2

5 

≤0.25/

0.12 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 ≤0.25 32 ≤0.12/2.4 

QDS-

S-1-24 
8 4 

0.5/0.2

5 

≤0.

25 

≤0.2

5 
0.5 

＞

128 

＞

128 
32 

≤0.2

5 
1 

≤0.

25 
0.5 ≤0.25 8 0.5/0.95 

QDM-

S-4-17 
8 8 

0.5/0.2

5 

≤0.

25 

≤0.2

5 
0.5 

＞

128 

＞

128 
32 

≤0.2

5 
1 

≤0.

25 
0.5 1 8 0.5/0.95 
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QDM-

S-4-24 

2 2 0.5/0.2

5 

≤0.

25 

≤0.2

5 

0.5 ＞

128 

1 8 ≤0.2

5 

2 ≤0.

25 

0.5 16 4 0.12/0.24 

QDM-

S-8'-30 
8 8 

0.5/0.2

5 

≤0.

25 
0.5 0.5 >128 >128 32 

≤0.2

5 
2 

≤0.

25 
0.5 1 16 0.5/9.5 

Xin

jiang 

d27 
≤0.

25 

≤0.2

5 

≤0.25/

0.12 

≤0.

25 

≤0.2

5 

≤0.

25 
≤0.25 

≤0.2

5 

≤0.2

5 
1 1 

≤0.

25 
0.5 ≤0.25 ≤2 ≤0.12/2.4 

d28 
≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 

≤0.

25 
≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

d29 4 2 0.5/0.25 
≤0.

25 

≤0.2

5 

≤0.

25 
≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 

≤0.2

5 
1 8 ≤0.12/2.4 

d30 
≤0.

25 

≤0.2

5 

≤0.25/0.1

2 
1 0.5 8 32 

≤0.2

5 
32 

≤0.2

5 
2 

≤0.

25 
1 ≤0.25 1024 ≤0.12/2.4 

d31 4 
1/0.

5 
4 

≤0.

25 

≤0.2

5 
4 2 

≤0.2

5 
1 1 4 0.5 4 ≤0.25 2 ≤0.125/2.4 

d32 2 1 0.5/0.25 
≤0.

25 

≤0.2

5 

≤0.

25 
≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 

≤0.2

5 

≤0.

25 

≤0.2

5 
0.5 4 ≤0.12/2.4 

d33 
≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
0.5 

≤0.

25 
0.5 ≤0.25 256 ≤0.12/2.4 

d34 1 0.5 ≤0.25/0.1 8 16 2 1 16 4 ≤0.2 1 1 0.5/0 0.5/0. 1024 ≤0.12/2.4 
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2 5 .25 25 

103 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 ≤2 ≤0.12/2.4 

104 
16 8 0.5/0.25 

≤0.

25 
0.5 0.5 

＞

128 

＞

128 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

105 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

107 
0.5 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 

＞

128 

＞

128 
4 

≤0.2

5 
2 

≤0.

25 
0.5 4 4 ≤0.12/2.4 

113 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

118 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 

＞

128 

＞

128 

≤0.2

5 

≤0.2

5 
0.5 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

120 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 ≤2 ≤0.12/2.4 

124 
16 16 0.5/0.25 

≤0.

25 
0.5 0.5 

＞

128 

＞

128 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 128 ≤0.12/2.4 

J68 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

J70 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 

＞

128 

＞

128 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

J71 
16 16 1/0.5 0.5 0.5 0.5 

＞

128 

＞

128 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 0.5 256 ≤0.12/2.4 

J73 ≤0. ≤0.2 ≤0.25/0.1 ≤0. ≤0.2 0.5 ≤0.25 ≤0.2 ≤0.2 ≤0.2 1 ≤0. 0.5 0.5 4 ≤0.12/2.4 
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25 5 2 25 5 5 5 5 25 

J74 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

J76 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 
1 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 8 ≤0.12/2.4 

J82 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

J83 
16 16 0.5/0.25 

≤0.

25 
0.5 0.5 

＞

128 

＞

128 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 0.5 1024 ≤0.12/2.4 

J84 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

J86 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 

＞

128 

＞

128 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 1 128 ≤0.12/2.4 

J87 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 

＞

128 

＞

128 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

J88 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 
0.5 0.5 1 2 

≤0.2

5 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
1 ≤0.25 512 ≤0.12/2.4 

J93 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 

＞

128 

＞

128 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

J94 
1 0.5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
1 ≤0.25 

≤0.2

5 

≤0.2

5 
1 0.5 

≤0.

25 
0.5 ≤0.25 1024 ≤0.12/2.4 

J96 

≤0.

25 

≤0.2

5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 
0.5 ≤0.25 

≤0.2

5 

≤0.2

5 

≤0.2

5 
2 

≤0.

25 
0.5 0.5 4 ≤0.12/2.4 

Inn G-229- 1 0.5 ≤0.25/0.1 ≤0. ≤0.2 ≤0. ＞ ≤0.2 ≤0.2 ≤0.2 1 ≤0. 0.5 ≤0.25 16 ≤0.12/2.4 
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er 

Mong

olia 

28-1 2 25 5 25 128 5 5 5 25 

G-557-

2-1 
1 0.5 

≤0.25/0.1

2 
8 8 2 2 2 8 

≤0.2

5 
1 1 0.5 0.5 1024 ≤0.12/2.4 

R-229-

26-1 
1 0.5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 

≤0.

25 

＞

128 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 ≤0.25 16 ≤0.12/2.4 

G-229-

6-1 
1 0.5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 

≤0.

25 

＞

128 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 ≤0.25 16 ≤0.12/2.4 

G-229-

27-1 
0.5 0.5 

≤0.25/0.1

2 
16 16 2 2 2 8 

≤0.2

5 
1 1 1 1 

＞

1024 
≤0.12/2.4 

G-229-

30-1 
1 0.5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 

≤0.

25 

＞

128 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
0.5 ≤0.25 16 ≤0.12/2.4 

G-229-

1-1 
1 0.5 

≤0.25/0.1

2 

≤0.

25 

≤0.2

5 

≤0.

25 

＞

128 

≤0.2

5 

≤0.2

5 

≤0.2

5 
1 

≤0.

25 
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Table S2 Their multiple antibiotic resistance (MAR) index of 151 Staphylococcus isolates 

Isolates name MAR index Isolates name MAR index Isolates name MAR index 

QDWY-2-1-2 0 18-tank-1 0.13 D2-2 0 

QDM-M-2-2-

1-1 0.19 16-1558-1 0.13 C6-4 0.06 

QDM-M-3-2-

5-1 0.19 17-1745-2 0.25 P1-1 0 

QDF-1-1-2 0.38 17-1509-1 0.06 D6-3 0 

QDM-M-3-3-

5-1 0 23-321-1 0.25 C2-2 0 

QDS-S-1-24 0.25 18-tank-3 0.19 Q12-4 0.06 

QDM-S-4-17 0.25 16-1745-1 0.25 P11-2 0 

QDM-S-4-24 0.19 21-7121-1 0.25 N1-4 0 

QDM-S-8'-30 0.25 20-tank-2 0.19 H3-5 0.25 

d27 0 19-1745-1 0.25 N8-5 0.06 

d28 0 17-tank-1 0.19 N14-1 0.13 

d29 0.06 17-14F24-1 0 Q3-3 0 

d30 0.25 15-1643-1 0.19 G3 0.06 

d31 0.06 22-4958-2 0.25 Q7-1 0 

d32 0.06 22-1046-1 0.25 D12-5 0 

d33 0 18-A190-1 0.13 D7-2 0 

d34 0.25 23-190-1 0.25 D14-3 0.25 

103 0 17-1745-1 0.25 N0-3 0 

104 0.19 16-14F24-1 0.25 M6-4 0.06 

105 0 23-JD-1 0.19 C9-2 0.13 

107 0.19 21-JD-2 0.25 N2-2 0.25 

113 0 23-PF-4865-1 0.25 N14-2 0.06 

118 0.13 16-PF-1745-2 0.06 M6-6 0.31 

120 0 23-PF-4913-1 0.13 H11-1 0 

124 0.19 16-PF-A190-3 0.25 G7 0 

J68 0 21-PF-0509-1 0 H9-2 0 

J70 0.13 23-PF-4965-3 0.19 H8-3 0 
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J71 0.25 
16-PF-14F24-

3 0.25 H1-1 0 

J73 0 23-PF-190-4 0.06 Q12-3 0.06 

J74 0 23PF-6218-2 0.06 M2-4 0.25 

J76 0 H7-2 0.06 M3-2 0 

J82 0 M9-2 0 M7 0 

J83 0.25 N9-5 0.06 H0-1 0 

J84 0 N1-6 0.06 M13 0 

J86 0.13 N6-2 0 H2-2 0.06 

J87 0.13 C11-2 0 H13-2 0.06 

J88 0.06 G14-4 0 P12-3 0 

J93 0.13 G12-3 0 甘 P2-1 0 

J94 0.13 M8-1 0.19 甘 G12-1 0 

J96 0 M13-3 0 N6-3 0 

G-229-28-1 0.13 H13-4 0 G7-1 0 

G-557-2-1 0.19 H11-3 0 H8-5 0 

R-229-26-1 0.13 C8-2 0 C13 0.06 

G-229-6-1 0.13 N2-4 0 P7-2 0 

G-229-27-1 0.19 P6-4 0 H12-4 0 

G-229-30-1 0.13 M2-3 0 D12-4 0.06 

G-229-1-1 0.13 C11-1 0 M9-3 0 

G-229-8-1 0.13 H0-2 0 C7-4 0 

G-871-28-1 0.13 H12-4 0 P12-1 0 

R-229-25-1 0.25 N0-1 0 G8-2 0 

G-229-5-1 0.13     
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Table S3 Genomic features of nine Staphylococcus spp. isolates 

Feature D12-4 H0-2 N0-3 C8-2 C11-2 Q12-3 H0-1 D12-5 C11-1 

G+C content, % 32.6 32.49 32.62 32.55 32.6 36.91 36.88 32.61 36.88 

Plasmids, no. 0 0 0 0 0 2 1 0 1 

Chromosome 2684117 2678012 2790798 2667072 2639642 2368681 2331091 2657520 2330594 

Genes, no. 2729 2901 2717 2770 2663 2601 2277 2680 2273 

tRNA, copy no. 57 56 58 50 57 60 60 58 60 

sRNA, copy no. 11 11 19 10 11 22 23 13 21 
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6.1 Evaluating Cephalosporin Usage in Mastitis 
Management: A Comprehensive Analysis 

In this study, we explored the effect of cephalosporins on the microbiota and 
ARGs in milk and feces of dairy cows with mastitis. Cephalosporins are a class of 
β-lactam antibiotics that are commonly used to treat various infectious diseases by 
disrupting the peptidoglycan layer synthesis in the cell wall of bacteria 
(Magdaleno et al., 2015). Cephalosporins account for 50-70% of the total 
antibiotics used by humans. In Europe, cephalosporins have been considered as 
the second most prescribed antibiotic class until 2012 (Estrada et al., 2012). On 
dairy farms in the U.S., intramammary ceftiofur, a 3rd generation cephalosporin, is 
the most commonly used antibiotic for the treatment of mastitis. Ceftiofur was the 
only antibiotic used by all 40 large dairy farms included in a recent study, 
accounting for about half of all antibiotic use in dairy cows (de Campos et al., 
2021). The WHO classifies ceftiofur as a “highest priority, critical important 
antibiotic” (Anonymous et al., 2019). In the Netherlands, the use of this critical 
important antibiotic is only allowed after diagnostics and susceptibility tests show 
that there are no alternatives (Koops et al., 2018).  

Mastitis can be categorized based on various factors, including its duration, 
symptoms, and the responsible pathogenic agent. Inadequate management 
practices in dairy farming have also contributed to the increased incidence of 
mastitis. Such factors include high stocking density, subpar hygiene and sanitation, 
such as inadequate drainage systems and accumulation of dung, as well as the 
presence of flies and peri-parturient diseases (Bari et al., 2022). On many dairy 
farms, clinical mastitis is treated symptomatically without knowing the cause, but 
many of these treatments are unnecessary (Ruegg et al., 2019). On most farms, at 
least 85% of clinical mastitis cases are not severe when detected, so, immediate 
antibiotic treatment is not required (Oliveira et al., 2013). So, the timing of 
antibiotic administration is a crucial concern. Are farmers initiating antibiotic 
treatment promptly upon detecting mastitis, or is there a tendency to treat too 
early or too late? Early treatment may curb the progression of the infection, but it 
also raises concerns about antibiotic resistance development and the potential 
overuse of antibiotics. The U.S. Food and Drug Administration (FDA)-approved 
treatment with intramammary ceftiofur includes a flexible duration of 2 to 8 days. 
Although most veterinarians treat until clinical signs resolve (approximately 5 
days), the benefits of longer treatment are outweighed by the cost (Oliveira et al., 
2014; Pinzon-Sacnchez et al., 2011).  

Lima et al., (2018) conducted the experiment to compared the microbiota from 
healthy and clinical mastitis cows. The milk samples were divided into four 
groups based on their health status: healthy, E. coli-mastitis, Klebsiella spp.-
mastitis, and Streptococcus spp.-mastitis. Notably, the shared families among 
these groups exhibited a consistent mean relative abundance exceeding 85%, 
regardless of the milk-health-status. Taxonomic data at the family level showed 
that sequences from mastitis milk samples cultured positive for E. coli and 
Klebsiella spp. groups were predominantly affiliated with Enterobacteriaceae 
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(family), while for Streptococcus spp. group were dominated by Streptococcacea 
(family), followed by Pseudomonadaceae (family) and Enterococcaceae (family). 

In the context of our experimental farm, the decision on the duration of 
antibiotic treatment for mastitis is guided by daily monitoring of SCC in raw milk. 
Elevated SCC can be indicative of mastitis, and this practice is used to assess the 
severity of the infection. In such cases, antibiotics are administered for a specific 
duration to address the infection. An easy method to reduce antibiotic use is to 
reduce the duration of intramammary therapy from 5 days to 3 days. Schukken et 
al. reported a 38% cure rate for the bacteria in untreated cows and a 73% cure rate 
in treated animals after a 5-day intramammary treatment with ceftiofur (Schukken 
et al., 2011). This treatment led to a significant increase in cure rate, especially in 
E. coli-infected animals. However, Ganda et al. showed no significant difference 
in cure rate between treated and untreated animals (Ganda et al., 2016). 
Consequently, there is evidence suggesting that we could reduce antibiotic use in 
a cattle herd without significantly compromising their health.  

The great problem with the uncontrolled use of antibiotics lies clearly in the 
emergence of bacterial resistance. In the first experiment, the cephalosporin 
treatment did not have a significant effect on the relative abundance of 
Staphylococcus in milk. However, when analyzing the Staphylococcus isolated 
from the milk samples, they were almost all completely sensitive to ceftiofur 
(68/70, 97%) (data not shown in the experiment 1). If the Staphylococcus isolated 
from milk samples are truly sensitive to ceftiofur, the cephalosporin treatment 
should theoretically significantly reduce the relative abundance of Staphylococcus. 
Therefore, we hypothesized that Staphylococcus may have developed antibiotic 
heteroresistance (HR) due to the use of cephalosporins. Despite the clinical 
importance of cephalosporin-resistant Staphylococcus species, there is currently 
limited research available on this specific topic. This scarcity of studies means 
that our understanding of the resistance mechanisms employed by these bacteria 
is not as comprehensive as it is for other well-studied antibiotic-resistant strains. 
In experiment 1, we isolated four strains of E. coli from the raw milk samples (all 
present in samples taken during the medication period). Among them, one strain 
was found to be resistant to ceftiofur (the data was not shown due to the small 
sample size). Based on our observations, we speculate that mastitis in the dairy 
cows on this farm is mostly caused by Staphylococcus spp. rather than E. coli. 
However, the emergence of ceftiofur-resistant E. coli should be a matter of 
concern for us. 

 In recent studies, it is seen that resistance to β-lactam antibiotics, particularly to 
3rd generation cephalosporins, is on the rise in commensal Enterobacteriaceae 
isolates from U.S. dairy cows (Gelalcha et al., 2022). Resistance to 3rd generation 
cephalosporins is mainly mediated by the production of extended-spectrum β-
lactamases (ESBLs), which can destroy β-lactam rings of these 3rd generation 
cephalosporins (Rawat et al., 2010). Resistance to cephalosporins is widespread in 
human and animal Enterobacterales worldwide and is mediated mainly by two 
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classes of inactivating enzymes: extended-spectrum β-lactamases (ESBLs) and 
plasmid-mediated AmpC β-lactamases (AmpCs) (Harris et al., 2015). When 
examining different studies performed in the Netherlands, the ESBL/AmpC gene 
profile distribution of E. coli from livestock and food-associated species was 
found to differ from that of E. coli from humans (Dorado-García et al., 2018). 
Also in the UK, whole genome sequencing revealed that E. coli populations, 
including those with ESBL and AmpC genes, in livestock and retail meat were 
different compared to E. coli populations isolated from human blood samples 
taken after an E. coli infection (Ludden et al., 2019). To examine patterns from 
diverse countries and sources can offer further insights and enable comparisons 
about the patterns and dissemination of antimicrobial resistance. Hayer et al. 
reviewed that the percentage of swine possessing E. coli resistance for 3rd 
generation cephalosporins varied by country, region and the source of isolate 
sampling (healthy or diseased animals) (Hayer et al., 2022). In general, the 
frequencies of 3rd generation cephalosporin resistance were lower in isolates from 
Australia, European and North American countries. Not surprisingly, some of 
these countries have implemented policies restricting the use of antibiotics, 
including cephalosporins, in animal production (Agerso et al., 2013; Abraham et 
al., 2015; Callens et al., 2018). Chantziaras et al. found a high correlation between 
antibiotic use and resistance using country-level data from seven European 
countries (Chantziaras et al., 2014). In Asian countries, the proportion of 3rd 
generation cephalosporin-resistant E. coli isolates collected from pigs was very 
high. This is not surprisingly since the rate of antibiotic use in animal production 
is higher in Asian countries than in any other region in the world. Within the 
Enterobacteriaceae family, E. coli and Klebsiella are commonly identified 
bacteria that harbor ESBL-encoding genes, including blaCTX-M (cefotaxime-
hydrolyzing β-lactamase), blaSHV (sulfhydryl reagent variable (SHV) enzymes), 
and blaTEM (TEM enzymes) (Collis et al., 2019). The parental types of SHV and 
TEM are narrow-spectrum β-lactamases, which are mutated to generate their 
respective ESBL variants. Amino acid substitutions or mutations in the genes 
responsible for these enzymes have the ability to enhance hydrolytic activity or 
improve substrate specificity (Castanheira et al., 2021). Consequently, there is an 
increasing number of identified variants in TEM and SHV families, most of which 
have emerged through stepwise mutations (Castanheira et al., 2021). 

6.2 Cephalosporins resistance in animals and humans 
The 3rd generation cephalosporin resistance is now a widespread and serious 

problem. In 2020, the 3rd generation cephalosporin resistance rates of invasive 
Klebsiella pneumoniae isolates were 50% or more in 44% of the countries 
reporting data to the European Antimicrobial Resistance Surveillance Network 
(EARS-Net), mainly in countries of Southern and Eastern Europe, such as 
Bulgaria (79.1%), Greece (74.5%), and Romania (67.9%) (WHO, 2021). It is 
reported that the use of ceftriaxone or ceftiofur increased fecal extended-spectrum 
cephalosporin (3rd and 4th generation) resistant Enterobacterales (ESCR-E) 
prevalence in hospitalized dogs during treatment and this persisted for 4 weeks 
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after discharge (Salgado-Caxito et al., 2021). It is also reported that the use of 
extended-spectrum cephalosporin (ESC) antibiotics in combination with 
hospitalization for more than 6 days increased the number of multidrug-resistant 
E. coli in the feces of the hospitalized patients (Gibson et al., 2011). A study by 
Sheedy et al. demonstrated a temporal association between antibiotic treatment 
and ceftiofur-resistant Enterobacteriaceae in early lactating dairy cows. 
Conversely, in untreated cows, the prevalence of the resistant Enterobacteriaceae 
phenotype was notably low, whereas cows treated systemically with antibiotics 
experienced rapid emergence of the AMR phenotype, peaking during treatment 
(Sheedy et al., 2021). ESC-resistant Salmonella has also been isolated from food-
producing animals and their products in some European countries (Hasman et al., 
2005; Rodriguez et al., 2009). It is reported that over the past decade these 
isolates are also particularly prevalent in chickens in Japan (Bueno et al., 2018). 

Although AMR research and policy work have focused on the medical and 
animal husbandry, the wider environment as a conduit between human and animal 
hosts, with increasing evidence for the presence of AMR in watersheds and 
croplands, is receiving renewed attention (He et al., 2020; Rahman et al., 2021). 

Consumption trends indicate an increasing preference for plant-based diets, 
which are often eaten with minimal preparation or heat treatment, and thus food 
crops may pose an important AMR hazard to consumers (Sivapalasingam et al., 
2004). A growing number of observational investigations in the fields and markets 
report the presence of resistant microorganisms on food crops (Brunn et al., 
2022a). Using a meta-analysis approach and providing a baseline from the 
existing literature, Brunn et al. found that 3.75% of food crops globally under 
investigation for AMR were contaminated with 3rd generation cephalosporin 
resistant Enterobacteriaceae (Brunn et al., 2022b). To date, food safety authorities 
have focused on foods of animal origin to characterize the AMR hazards related 
to veterinary use of antibiotics (Van Boeckel et al., 2019), but Brunn et al. 
consider plant-based foods to be an overlooked hazard of consumer and 
occupational AMR exposure (Brunn et al., 2022b). 

6.3 Effects of cephalosporins on animal microbiota and 
resistance genes 

The global debate on the public health implications of the use of antibiotics in 
animal production has been intense since recent decades. The reasons for this are 
not limited to the emergence and spread of zoonotic resistant pathogens (Bueno et 
al., 2018), but also include the risks related to the transmission of resistance genes 
to humans through the consumption of foods, or through some direct and indirect 
contact with environmental sources that are contaminated by waste from 
agricultural systems following the heavy use of antibiotics (Costa et al., 2017; 
Xiong et al., 2018). Ruminococcus are often associated with gut health through 
the production of short-chain fatty acids, which play an important role in reducing 
colonization by many opportunistic pathogens (Yu et al., 2018). A reduction of 
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Ruminococcus therefore is considered not opportune. In our study (chapter 4), 
Ruminococcus dominated the fecal samples, but the ceftiofur treatment had no 
significant reduction effect on the relative abundance of Ruminococcus. We did 
however observe a significant reduction of Moraxellaceae in feces after antibiotic 
treatment (chapter 4). Moraxellaceae is widely believed a pathogenic bacterium 
because it can cause human respiratory diseases such as asthma (Liu et al., 2019). 
Moraxellaceae has been detected in various medias such as milk, environmental 
samples, and bedding samples (Wu et al., 2020). However, we did not detect 
Moraxellaceae in our milk samples. Moraxellaceae is known for its ability to 
survive and reproduce at low temperatures, and can secrete protease and lipase, 
which can lead to gelatinization and odor of milk protein, and reduce the quality 
of milk (Wu et al., 2019). We also observed the relative abundance of Clostridia, 
Clostridiales, and Clostridium_IV in the feces decreased significantly with the 
cephalosporin treatment, some Clostridia are associated with pathogenic 
processes, even implicated in severe diseases such as infant botulism in preterm 
neonates (Grenda et al., 2022). In the milk, the treatment of cephalosporin 
decreased the relative abundance of Enterobactor, Curvibacter. With this in mind, 
the reduction of these bacteria would be favorable. This seems to favor the 
administration of ceftiofur in our experiments, but there needs to be a balance 
point with antibiotic use. 

With regard to the resistance genes (ARGs), Alali et al. used fecal samples 
examined before by Lowrance et al. and they saw that there was an increase in the 
number of blaCMY genes after the ceftiofur treatment (day 6) in the fecal 
microbiota compared with those present in the control cattle (Lowrance et al., 
2007). On day 14, the gene copy numbers recovered to baseline levels (Alali et al., 
2009). These results were also supported by a recently published microbiome 
study by Weinroth et al., which showed there were no significant differences in 
the β-lactamase resistant genes in the fecal microbiome collected before (day 0) 
and after (day 26) ceftiofur treatment in the obtained beef cattle (Weinroth et al., 
2018). Therefore, the potential public health risk associated with the selection of 
ESBL-resistant microorganisms in cattle may depend largely on the time between 
the antibiotic treatment and slaughter. These studies support our results. In our 
study, we also observed a significant increase of the relative abundance of β-
lactamase resistant genes in milk (blaTEM) and feces (blaTEM and cfxA) at the 
period of withdrawal (Chapter 3 & 4). The relative abundance of these two kinds 
of genes both decreased at the period of recovery (day 9 to day 15), but neither 
decreased to the level of day 0. Therefore, the long-term (>15 days) effect of the 
cephalosporin treatment on the fecal microbiota and resistome are worthy of 
further investigation. 

Besides controlling the ARGs, it is also important to develop the appropriate 
management to control the transfer of ARGs. Levent et al. identified Inc class 
plasmids, which have been proven to transfer ESBL and AmpC resistance 
elements between Salmonella and E. coli (Levent et al., 2022). The IncA/C 
plasmid is one of the main plasmids carrying blaCMY-2, while the blaCTX-M-32 gene 
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was previously found in the IncN plasmid of beef cattle-derived E. coli (Call et al., 
2010; Cottell et al., 2013). Under the selective pressure of ceftiofur, it was 
demonstrated that the Inc A/C plasmid displayed a high degree of stability 
(Subbiah et al., 2011). The proliferation of resistant endogenous 
Enterobacteriaceae after ceftiofur treatment may lead to refractory or even 
untreatable infections in the future. Furthermore, the gut microbiota may serve as 
a repository for these resistance genes (Penders et al., 2013). Conjugal transfer of 
plasmids carrying antibiotic resistance genes has been shown to occur frequently 
among Enterobacteriaceae in diverse environments such as milk, meat, and feces. 
This transfer can arise even in the absence of antibiotic pressure (Warnes et al., 
2012). Moreover, studies have indicated that plasmids harboring bla genes can 
readily transfer from invasive Enterobacteriaceae to those residing in the gut of 
animals and humans (Goren et al., 2010). In our study, we did not find plasmids 
with the bla gene. However, we did detect antibiotic resistance genes coding for 
tetracycline resistance (tet(W) and tet(Q)) in the fecal samples while none of the 
cattle received tetracyclines during the study. This may be because the antibiotic 
use can provide selective pressure to maintain other unassociated resistance genes 
by linking to mobile genetic elements (MGEs), such as a plasmid (Enne et al., 
2004). It has been reported that MGEs promote the mobilization and spread of 
ARGs in bacteria. Plasmids play an important role in the accumulation and 
transfer of ARGs, and are involved in the acquisition of resistance to most 
antibiotic classes including β-lactams (Shintani et al., 2015). Pig manure can also 
be a reservoir for the blaTEM genes, which are often embedded in IncN plasmids 
(Binh et al., 2008). IncN plasimids are also related to blaCTX-M genes, which 
have been observed in bacteria from pigs, farmers and manure (Moodley et al., 
2009). Plasmid-mediated horizontal transfer of blaTEM genes has been reported 
between poultry and humans with high conjugative mobility (Singh et al., 2018). 
Our research allows for a visual assessment of the impact of cephalosporin usage 
in dairy cows with mastitis, specifically on the microbiota and ARGs of raw milk 
and feces. Of particular interest is the influence on raw milk, as there has been 
limited prior investigation into the effects of antibiotic usage on the microbial 
community and ARGs within raw milk. So, the resistant bacteria and resistance 
genes in the feces can also be seen as a serious problem because they may transfer 
among cattle herds and result in antibiotic treatment failure. Therefore, the 
appropriate use of antibiotics in dairy cattle is an important process to avoid the 
spread of ARBs and ARGs. 

 

6.4 Bacterial heteroresistance is a problem that cannot be 
ignored 

HR is characterized by the ability of a preexisting subpopulation of resistant 
cells that have rapid replication when exposed to specific antibiotics, while the 
majority of the susceptible cell population is killed (Band et al., 2019). HR differs 
from other forms of subpopulation-mediated resistance, such as persistent 
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resistance, in which a small number of transiently quiescent or very slow-growing 
bacterial subpopulations exhibit increased resistance to multiple antibiotics 
(Brauner et al., 2016). Persistence is thought to lead to the recurrence of infection 
after cessation of antibiotic therapy, but not to failure of acute therapy. HR is also 
distinct from tolerance, in which the entire bacterial population is able to survive 
temporary exposure to high concentrations of antibiotics, even in the absence of 
preexisting resistant cells prior to antibiotic exposure (Brauner et al., 2016). 

The phenomenon of HR is very common and is considered to be a precursor 
stage, which may lead to the emergence of ARB (Falagas et al., 2008). 
Furthermore, HR is considered a natural evolutionary strategy for antimicrobial 
resistance, as it provides bacteria with the opportunity to explore growth in the 
presence of antibiotics before the acquisition of resistance by the major microbial 
populations (Morand et al., 2007). The HR phenomenon has emerged among 
clinical pathogens such as Helicobacter pylori (Kouhsari et al., 2022), 
Pseudomonas aeruginosa (Lu et al., 2022), Staphylococcus aureus (Bai et al., 
2019), Mycobacterium tuberculosis (Werngren et al., 2021), Acinetobacter 
baumannii (Jo et al., 2021), Streptococcus pneumoniae (Lohsen et al., 2023), and 
Klebsiella pneumoniae (Cheong et al., 2019). 

Currently, research on the mechanism of bacterial HR mainly concentrates on 
point mutations. Bacteria can generate subpopulations at a high fitness cost 
through point mutations under the selective pressure of antibiotic exposure or 
through compensatory secondary mutations in the absence of antibiotics 
(Kouhsari et al., 2022). In the case of HR, antibiotic susceptibility testing of pure 
clones would result in the detection of a fully sensitive or fully resistant 
phenotype, depending on which of the two populations (resistant or sensitive) the 
purified clones were derived from (EI-Halfawy et al., 2015). Genomic mutations 
often result in stable HR, in which the resistant phenotype remains stable and 
does not quickly revert to susceptibility even in the absence of antibiotic pressure. 
However, genomic mutations may also induce unstable HR, a very common kind 
of HR. This happens when the mutations are inherently unstable and gene tandem 
amplification or the resistance mutations confer a high adaptation cost, which 
drives the resistant subpopulation to regain susceptibility (Li et al., 2022). The 
stable HR can be attributed to low fitness-cost mutations that accumulated and 
evolved over many generations through selection processes. The cost of resistance 
must be compensated by reducing the growth of antibiotic-induced sensitive 
strains (Wang et al., 2021). The study by Kuang et al., identified that in E. coli 
showing colistin-HR, sampled from swine in China, mutations in PmrB and/or 
PhoQ were observed to be the major mechanisms of colistin-HR. The authors also 
found the presence of the R93P mutation within the PmrB HAMP domain resulted 
in its continuous activation, leading to the overexpression of pmrB, pmrA, pmrC, 
and pmrHFIJKLM, which is related to the formation of stable resistant 
subpopulations in colistin-HR E. coli (Kuang et al., 2020). Wang et al., found that 
HR observed in pure cyanobacterial isolates resulted in the frequent formation of 
spontaneous subpopulations of sensitive and resistant cells, and this when grown 
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without antibiotics, due to the reversibility of the resistance phenotype that 
attributed to an unstable genetic mechanism. Their results showed that more than 
97% of HR cases observed in environmental isolates selected from PAP were 
unstable (Wang et al., 2021). A recent study exhibited that HR caused by the 
amplification of ARG is the most common type of HR in Gram-negative bacteria 
(Hjort et al., 2016). It was reported among 766 bacteria-antibiotic combinations 
tested, 27.4% showed HR, 88% of which showed unstable HR related to tandem 
gene amplification of known ARG (Nicoloff et al., 2019). Jayol et al., (Jayol et al., 
2015) and Lee et al., (Lee et al., 2015) proposed two potential genetic 
explanations for HR to colistin, both of which involve stable genetic mutations. In 
a recent report, Band et al., highlighted the problem of unstable colistin 
heteroresistant clinical Enterobacter cloacae isolates that were misclassified as 
sensitive and resulted in treatment failure in a mouse model (Band et al., 2016). 
The antibiotic-resistant subpopulation appeared to be genetically identical to the 
sensitive cell population, but with increased transcript levels of the arn operon 
and pmrC, resulting in the increase of resistance. Other studies have shown that 
the unstable tobramycin resistance in Acinetobacter baumannii arises from 
extensive RecA-dependent amplification of the aadB gene encoding the 
aminoglycoside adenosyltransferase (Anderson et al., 2018). 

Another mechanism leading to HR is the hyperproduction of efflux pumps and 
reduced expression of porins (Zheng et al., 2018; Chen et al., 2017). Zheng et al., 
found the overexpression of the periplasmic adapter MacAB in eravacycline HR 
in clinical K. pneumoniae isolates. The significant MacA expression levels 
detectedd in 12 eravacycline-heteroresistant bacteria indicated a potentially 
crucial role of the MacAB-TolC multidrug efflux pump in eravacycline HR within 
K. pneumoniae, as does OqxAB (Zheng et al., 2018). Chen et al. discovered that 
elevated levels of the RamA transcriptional factor resulted in the upregulation of 
both the AcrAB-TolC and OqxAB efflux pump systems. This cascade finally 
culminated in HR to tigecycline within Salmonella enterica (Chen et al., 2017). 
Similarly, it was reported that the reduction in OprD porin expression and the 
overexpression of efflux systems contribute to HR against carbapenems and 
imipenem in Pseudomonas aeruginosa. (Ikonomidis et al., 2008; Xu et al., 2020).  

To survive treatment, the HR phenotype must be at least partially transmitted to 
daughter cells. For phenotypic HR without any genetic basis, it is unclear how 
this is achieved. Epigenetics may explain the maintenance of HR phenotypes over 
multiple generations. In fact, epigenetic inheritance of phenotypic traits has been 
shown to occur across generations (Ram et al., 2013; Sorg et al., 2015). However, 
this unstable phenotype is not maintained indefinitely, and the populations again 
accumulate antibiotic-sensitive cells and will revert to their initial phenotypic 
variation without antibiotic. When initiating antibiotic therapy, it is assumed that a 
single compound that is effective for all populations can easily eradicate the 
causative infectious agent. If the immune system fails to eradicate heteroresistant 
bacteria, the heteroresistant bacteria can readily survive antibiotic treatment and 



Chapter 6 General discussion, conclusion and perspectives 

131 

 

prevent clearance of the infection. For example, the Klebsiella pneumoniae 
showed HR in vitro but cause therapy failure in vivo models (Band et al., 2016). 
Therefore, diagnostics should not only assess resistance but also consider 
population heterogeneity in heteroresistant forms. Currently, the most reliable 
method for assessing HR is performing the PAP assay. In the PAP assay, growth is 
measured at different antibiotic concentrations and compared to growth without 
antibiotic. A gradual decrease in growth rather than a single-step response 
indicates the presence of subpopulations with higher MIC values, namely 
heteroresistant subpopulation (Andersson et al., 2019). Unfortunately, PAP assay 
is very labor-intensive and thus not feasible to implement in clinical practice. 
There is currently no reliable, less labor-intensive method to detect HR 
(Andersson et al., 2019).  

Until now, there are almost no reports on HR to ceftiofur in Staphylococcus spp. 
in food. As far as we know, our study is the first to investigate HR to ceftiofur in 
Staphylococcus spp. in milk. The Staphylococcus strains investigated in some 
previous reports were collected from people (Ma et al., 2016). It is also important 
and necessary to monitor the presence of HR when performing diagnostic 
susceptibility testing of Staphylococcus isolates in animals. Our study can draw 
attention to the use of ceftiofur as a treatment for mastitis in dairy cows and guide 
the appropriate use of antibiotics in animal husbandry. In our study, there were 15 
isolates showing the possibility of inducible resistance to CEF using the disc 
diffusion method. Only three Staphylococcus strains that were determined to be 
sensitive to ceftiofur were subsequently identified as ceftiofur heteroresistant by 
the PAP method, as mentioned before, the most reliable method for determining 
HR. In the three HR strains, we found that only one strain was stable but the other 
two subpopulations were unstable and transient, and the MIC reverted to a lower 
level. Recently, studies have shown that HR often occurs in clinical isolates and 
that the majority of these strains are heteroresistant to more than one antibiotic 
(Nicoloff et al., 2019). Against this background, a combination of different 
antibiotics can be used to eradicate bacterial infections so that no subpopulation 
becomes resistant to all the antibiotics administered. This has proven to be an 
effective strategy (Band et al., 2019).  

6.5 General conclusion and perspectives 
The objective of this PhD research was to investigate the effect of 2 commonly 

used cephalosporins on the microbiota and the antibiotic resistance genes in the 
milk and feces of dairy cows, and to research the presence of heteroresistance 
Staphylococcus to ceftiofur in raw milk. We found that the treatment with 
cephalosporins lead to a change in the milk microbiota and an increase of the 
presence of the β-lactamase resistance gene in the milk at the time of withdrawal 
period.  The cephalosporin treatment decreased the microbial diversity and 
richness at the medication period, and increased the relative abundance of two β-
lactamase resistance genes at the withdrawal period. We also found three strains 
that exhibited heteroresistant phenotypes by the PAP method. One of these 
heteroresistant strains was stable, and there were two extra mutations in the 
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heteroresistant stable isolate, which might have resulted in the formation of a 
stable resistant subpopulation in heteroresistant Staphylococcus. These findings 
enhance concerns about the emergence of ceftiofur-heteroresistant Staphylococcus 
isolates and the application of ceftiofur as therapy for the treatment for mastitis in 
dairy cows. 

The study of antibiotic resistance development and resistance mechanisms must 
be a mandatory requirement in the early stages of drug development. Knowledge 
of how and when resistance occurs, and potential synergies with antibiotic 
combinations, will also promote the development of dosing regimens that can 
help minimize resistance to current and new antibiotics, enabling these drugs 
work best. This is very important in the short term, as new drugs are unlikely to 
enter widespread clinical practice in the near future. The challenge now facing the 
field is to make full use of existing technology, information and expertise to 
ensure that the impact of resistance is fully taken into account in the urgent 
development of next-generation antibiotics. Newly developed antibiotics should 
also facilitate therapeutics that completely eradicate infectious pathogens in vivo, 
including subpopulations that are refractory to conventional antibiotic therapy. 

To enhance our understanding of heteroresistance mechanisms, future studies 
should focus on several key areas. Firstly, comprehensive investigations can 
explore the specific genetic and molecular mechanisms that underlie antibiotic 
heteroresistance in pathogens. This could involve whole-genome sequencing and 
metagenomic analyses to identify genetic determinants and resistance genes 
associated with heteroresistance. Secondly, to identify specific bacterial strains or 
resistance mechanisms that are of particular concern due to their ability to 
maintain high fitness while carrying ARGs. Such strains may be more challenging 
to control and may require unique strategies. Additionally, research focused on the 
temporal dynamics of heteroresistance development can reveal how and when 
heteroresistance occurs during treatment. By exploring these avenues, we can 
develop a more profound understanding of heteroresistance and potentially 
identify novel strategies for its mitigation in antibiotic treatment. 
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