

"BIDSme, please" + Electromagnetic head modelling for EEG & tDCS

Christophe Phillips On behalf of Martin Grignard & Nikita Beliy

Acquisition:

- #subjects
- #modalities

Processing:PreprocessingStatistical analysis

Acquisition:

- #subjects
- #modalities
- #sessions/visits

Processing:PreprocessingStatistical analysis

"Data complexity" then & now:

- Past "vanilla fMRI & sMRI" : 1.5 x 2 x 1 = 3
- Current "big studies": 2.5 x 5 x 2 = 25
- \Rightarrow Multiplied by ~10

"DIY manual" handling of data not possible anymore...

"Data complexity" then & now:

- Past "vanilla fMRI & sMRI" : 1.5 x 2 x 1 = 3
- Current "big studies": 2.5 x 5 x 2 = 25
- \Rightarrow Multiplied by ~10

"DIY manual" handling of data not possible anymore... Data curation & safe storage are now critical !!!

Brain Imaging Data Structure

- Fixed specific file naming
- Fixed specific file organization in subfolders
- Complete representation of data set, incl.
 - Experimental design & project information
 - Subject specific information, data types & acquisition parameters
 - Raw data, intermediate/derivative & final results + processing information
- understand the whole experiment & data
- reprocess the whole dataset
- → reuse/share (part of) the data

BIDSme to rule them all...

- Python package to BIDSify "any" data type (MRI, EEG, PET,...)
- Fully parameterized through config/schema files
- Supports plugin for data conversion or metadata extraction
 - **map** (once):
 - creates a bidsification schema
 - prepare:
 - Put source dataset into standardized folder structure
 - Identifies subjects, sessions, modalities and series
 - (Plugin) Retrieve metadata from exterior sources
 - **process** (optional):
 - Test for various errors and inconsistencies
 - (Plugin) Transform prepared dataset (e.g. 3D to 4D merging)
 - bidsify:
 - Bidsifies prepared dataset
 - Manages *participants.tsv* and *scans.tsv*
 - (Plugin) Creates behavioural and derived data

Beliy et al., https://github.com/CyclotronResearchCentre/bidsme

BIDSme to rule them all...

Beliy *et al.*, <u>https://github.com/CyclotronResearchCentre/bidsme</u>

What about the consortium data?

- Can we do better?
 - Hosting solutions exist
 - ...need to wrap up curated data
- Any incentive ? More resources (IT & €) available ?

shamo, Stochastic HeAd MOdelling

Calculate forward problem solution for **EEG** and **tDCS**

build FEM head model(s), based on segmented MRI

Grignard et al., <u>https://github.com/CyclotronResearchCentre/shamo</u>

shamo, Stochastic HeAd MOdelling

Calculate forward problem solution for **EEG** and **tDCS**

- build FEM head model(s), based on segmented MRI
- tissue conductivity σ ? (considered as stochastic variable)

shamo, Stochastic HeAd MOdelling

- Use getDP to solve the FEM problem, given conductivity values σ
- Build surrogate model to explore the N-D conductivity space.
- Sensitivity analysis with Sobol indices based on scalar $m(\sigma)$

EEG forward solution, sensitivity of the whole leadfield $m(\sigma) = \|L(\sigma) - L_{ref}\|_{r}$

tDCS current density, sensitivity in target region of interest $m(\sigma) = mean(||j||_2)_{ROI}$

Low response rate (~50%) \rightarrow Potential causes?

- Subject variability?
 - Function vs. anatomy ? Individual subject's functional organization ?
- Target region actually stimulated?
 - How do we know ? Where does the current flows?
- Head model?
 - subject's anatomy ? Segmentation is not easy...
 - electrodes positioning ? How reliable is the 10-20 system ?
 - **tissue properties ?** Conductivity values and anisotropy ?

tDCS models

Calculate forward problem solution for **tDCS**

- build FEM head model(s), based on
 - 20 (synthetic) segmented MRI
 - simulated electrode positions
- solve forward problem, based on
 - tissue properties, conductivity value or distribution
 - injected current

Example of simulation

Inject 2 mA at anode,

- "aim" for ROI, e.g. motor cortex with C3-C4 electrode montage
- whole brain current density j (mA/m²) & electric field e (mV/m)
- Check average absolute values |e| in ROI

Opitz et al., https://doi.org/10.1038/srep31236

Results for 6 simulated montages

Check source of variability

- "informed" conductivity value distribution
- 20 simulated individuals (slightly different anatomy)
- small electrode position variability

Large range of |e| values!

Note: tDCS effectivity in litterature/models → lower bound ~ 0.5mV/mm = 500mV/m

→ observed values are "just sufficient to too small!"

Future...

Optimize individualised setup

- "more accurate" head model
 - anatomy & segmentation,
 - functional localisation
 - tissue anisotropy (from DWI)

optimize electrode placement & adjust current intensity

measure (relative) tissue properties, e.g. with "magnetic resonance electric properties tomography" (MR-EPT)

Future...

Acquire preliminary dataset

- full MRI characterization
- precise electrode localization
- standard vs optimized set up
- sham vs active "working memory" stimulation

To be continued...

CRC references

- N. Beliy et al., BIDSme, a user friendly open-source python toolkit to "bidsify" source-level neuroimaging data-sets to BIDS-conformed. 2019. <u>https://github.com/CyclotronResearchCentre/bidsme</u>
- N. Beliy et al., *BIDSme*, soon published in "Journal of Open Source Software". 2023(?). <u>https://zenodo.org/records/10185300</u>
- M. Grignard et al., shamo: A tool for electromagnetic modelling, simulation and sensitivity analysis of the head. 2021. <u>https://doi.org/10.1007/s12021-022-</u> 09574-7 & <u>https://github.com/CyclotronResearchCentre/shamo</u>
- M. Grignard et al., Why tDCS models cannot be trusted yet? A simulation study. 2022. Preprint, <u>https://hdl.handle.net/2268/294662</u>
- M. Sepehr et al., tDCS optimization, MRI-based (more) precise modelling. Open dataset + preliminary results, planned for 2024.

Thank you for your attention!

