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In nature, metachronal coordination is an efficient strategy for fluid pumping and self-propulsion.
Yet, mimetic systems for this type of organization are scarce. Recently, metachronal motion was ob-
served in a bead-based magnetocapillary mesoswimmer, but the mechanism of such device’s behavior
remained unclear. Here, we combine theory and experiments to explain two swimming regimes that
we identify by modulation of the driving frequency. In the linear, low-frequency regime, the swim-
mer motion originates from individual bead rotations. However, the high-frequency, metachronal
regime is dominated by deformations of the device near a mechanical resonance, which highlights
the role of bead inertia for optimized self-propulsion.

Metachronal coordination is when the moving parts
of an organism, like limbs or appendages, move in a se-
quence with a slight delay between each, creating a wave-
like pattern [1]. Such behavior is observed for the cilia
covering a variety of microorganisms, including Parame-
cium [2, 3] and Volvox alga colonies [4]. Metachronal
waves were also found to be exhibited by filaments cov-
ering the interior of the mammal lung [5, 6] or in the ex-
tremities of crustaceans or insects [7, 8]. The underlying
evolutionary principle promoting the metachronal beat is
likely its significantly larger fluid pumping velocity and
the energetic efficiency compared to a synchronized beat
[9, 10]. Understanding this principle, and establishing a
minimal system displaying metachronal waves has there-
fore attracted considerable attention in the last decade
[11–16].

Building on our expertise in magnetocapillary swim-
mers [17–20], we have recently shown that it is possi-
ble to reconstitute the metachronal organization by driv-
ing ferromagnetic beads deposited on the water-air in-
terface with magnetic fields [16]. However, we did not
yet elucidate the mechanism that yields such dynamics,
and therefore the optimization of the device remains an
open problem. An important hint about the underlying
physics is provided by the theoretical generalization of
bead assemblies [21–27]. Namely, by quantitative com-
parison of analytic approaches and experiments [20, 28–
30], we showed that magnetocapillary assemblies belong
to the class of mesoscale swimmers, where the bead in-
ertia has a considerable impact on its motion, while the
fluid inertia remains subordinate [29, 31, 32]. We, there-
fore, hypothesize that precisely bead inertia plays an im-
portant role in metachronal coordination for our magne-
tocapillary system. The verification of this idea is pre-
sented in the current paper.

System design and equilibrium configuration Our de-
vice (Fig. 1) consists of a central bead of 800 µm in
diameter, pinned at a water-air interface thanks to cap-
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FIG. 1. The magneto-capillary seven-bead swimmer. (a)
Photography of the experimental swimmer. (b) Sketch of
the model for the seven-bead swimmer. (c) Cut through the
swimmer along the x-direction illustrating the vertical dis-
placement of the central bead and the left-right asymmetric
dipole-dipole interactions. (d) Equilibrium distance between
two neighboring beads in the seven-bead swimmer in the sim-
ulations.

illary effects. It is surrounded by six beads of 500 µm in
diameter. All beads are made of chrome steel alloy AISI
52100 at density ρb = 7.8 103 kg/m3. Although the al-
loy is considered to be a soft ferromagnetic, the particles
exhibit a small remanent magnetization of the order of
100 Am−1 [33]. Therefore, the total moment of bead i is
µi = µrem,i + 4πa3iχB/(3µ0), with ai and χ = 3 being
the bead’s radius and susceptibility, µ0 the vacuum per-
meability, and µrem,i the remanent moment. The mag-
netic induction field B is applied on the device by three
pairs of orthogonal Helmholtz coils, each providing up to
8 mT. The currents in the x- and y-coils are produced by
an arbitrary function generator and a pair of amplifiers,
to eventually propel the swimmer. The vertical field is
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typically kept constant at Bv = 4.9 mT. The imposed B

field, therefore, yields a magnetic potential Um between
the beads

Um = −
∑

i

µi ·B (1)

+
µ0

8π

∑

i

∑

j 6=i

µi · µj − 3(µi · eij)(µj · eij)

|rij |3
,

with eij the unit vector along rij := rj − ri, and i, j
bead indices. Capillary effects bind the beads strongly
at the contact line with the liquid interface [20]. As a
result, the beads mostly move in the xy-plane and rotate
around the z-axis (with a relative orientation to the x-
axis described by φi, see Fig. 1(b)), while experiencing
repulsive magnetic interactions.

Because the beads deform the water-air interface, they
also experience an attractive capillary potential U c [34],
which takes the form

U c = −πσ
∑

i

∑

j 6=i

qiqjK0

(

|r
‖
ij |/lc

)

. (2)

Here σ = 72 mN/m is the water surface tension, K0 is

the modified Bessel function of the second kind, and r
‖
ij

is the projection of rij on the xy-plane. Moreover, with
g being the gravitational constant, and ρ the fluid den-
sity, lc =

√

σ/gρ is the capillary length, which, for the
water-air interface, is lc ≈ 2.7 mm. Finally, the capil-
lary charge qi represents the characteristic length of the
vertical deformation of the liquid interface around each
particle, which for the current case is around 12 µm for
500 µm beads and 45 µm for 800 µm beads [35]. This
difference in qi contributes to the overall deformation of
the interface as comprised in z1 (Fig. 1(c)), which will
lead to asymmetric swimmer deformation in a horizontal
field (Fig. 1(c)), inducing locomotion.

Application of only the vertical field relaxes the seven-
bead system to its equilibrium configuration with a six-
fold symmetry, as shown in Fig. 1(a). The equilibrium
configuration, characterized by the center-center distance
between the outer beads and the central bead, is mea-
sured to be 1293 µm for Bv = 4.98 mT and 1386 µm for
Bv = 5.31 mT. Similar values are obtained theoretically,
with the approximation that capillary interactions de-

pend only on the projection r
‖
ij onto the liquid interface

(Fig. 1(d)). Under these circumstances, we find that the
equilibrium distance increases quasi-linearly with Bv as
a result of the increasing magnetic repulsion (Fig. 1(d)).

A theoretical model for magnetocapillary devices In or-
der to model the behavior of our mesoswimmer, we con-
sider the hydrodynamic interactions between the beads
using the bulk Rotne-Prager tensor, as well as magnetic
and capillary interactions as shown in Eqs. (1) and (2).
Following the strategy for mesoswimmers presented in
our earlier work [29], we also include the beads’ masses

mi = 4/3a3iρbπ and moments of inertia Ii = 2/5a2imi.
The ensuing equations of motion are given by

(

mir̈i

Iiφ̈i

)

=
7
∑

j=1

(

R̂tt
ij R̂tr

ij

R̂rt
ij R̂rr

ij

)

·

(

ṙj

φ̇j

)

+

(

F c
i

0

)

+

(

Fm
i

Tm
i

)

,

(3)
with R̂ the resistance matrix (see SI Section I for the
details), F c

i the capillary forces, and Fm
i and Tm

i mag-
netic forces and torques. This equation is solved numeri-
cally using an algorithm with adaptive step size as imple-
mented in Mathematica [36]. We perform the full eigen-
mode analysis where we find 11 deformation modes with
eigenfrequencies between 1 Hz and 5.5 Hz (SI Section II).

Device in the rotational field To reconstitute the
metachronal motion we start with a simple rotating mag-
netic field of the form

Bx = Bh cos(2πft), By = Bh sin(2πft), (4)

with f the frequency and Bh = 0.742 mT the magni-
tude of the horizontal field. As a result, we observe
metachronal arm compressions and extensions, traveling
in a rotating fashion around the swimmer. Thereby, the
outer beads move both inward and toward the next outer
bead in the direction of rotation of the magnetic field
(Fig. 2(a) and 2(b)). Notably, the vertical depth z1 of
the central bead breaks the axis-symmetry of the dipole-
dipole interactions, giving rise to only one metachronal
wave instead of two (Fig. 1(c)). Furthermore, our cal-
culations reveal that each bead rotates around the z-
axis as a consequence of their remanent magnetic mo-
ment coupling to the external B-field (Fig. 2(a)). Ac-
tually, these bead rotations transform the overall torque
applied by the field into the overall mesoswimmer rota-
tion via hydrodynamic interactions, while bead displace-
ments play little role. The obtained angular velocity of
the mesoswimmer Ω is in the direction of the B-field and
increases for larger z1 (compare green stars and red x
symbols in Fig. 2). Translations are not present as there
is no net force and because the device is rotationally sym-
metric.

We now explore in experiments and in calculations the
way in which the angular velocity of the mesoswimmer
Ω depends on the driving frequency f . We systemat-
ically observe a low- and a high-frequency regime. At
low frequencies, we find a linear increase of Ω towards
a peak, which in experiments appears at f ≈ 1 − 2 Hz
(black crosses in Fig. 2). The calculations reveal that at
low frequencies, the rotations of the individual beads in-
stantaneously follow the field, producing hydrodynamic
interactions which induce the device rotation. The higher
the field, the stronger the interactions and the faster the
swimmer rotation. As the frequency increases further,
the bead rotations can no longer follow the field, and
Ω drops. We, therefore, find that the position of the
low-frequency peak can be associated with the step-out
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FIG. 2. Seven-bead swimmer in a rotating magnetic field. (a) Numerical bead trajectories measured over two periods of the
field, the bead rotation is depicted by black arrows. (b) Time-dependent arm lengths of the swimmer in the experiments (left)
and in the simulations (right). The color corresponds to the bead color in (a). (c) Frequency-dependent angular velocity of the
swimmer in the experiments (black pluses) and in the simulations for different values of the depth of the central bead z1 (red
crosses and green starts) as well as for zero mass (blue points). The extrapolated lines are a guide for the eye. (d) The two
most excited degenerate eigenmodes in the case of the rotating field.

frequency [37]

fso,i =
1

2π

|µrem,i|Bh

8πηa3i
, (5)

which, for the theoretical model, is calculated as fso ≈
0.7 Hz for both bead sizes. The higher step-out frequency
observed experimentally is a result of the decreased hy-
drodynamic friction due to partial bead immersion in the
fluid. Indeed by theoretically scaling down the hydrody-
namic friction (first term in Eq. (3)), the linear regime
is extended also numerically (SI Fig. 2). Furthermore,
to check if the bead mass plays a role in this regime, we
set mi = 0 in Eq. (3) and find no effect of inertia (blue
dots in Fig. 2).

At high frequencies, we experimentally find another
peak at around 5 Hz (Fig. 2(c)). Notably, this peak
is absent when setting the bead masses to zero in the
simulations (Fig. 2(c)), but is present even when the re-
manent magnetic moments are set to zero (SI Fig. 3).
This suggests that this peak is the consequence of the
translations of the beads in the xy-plane. We, therefore,
revert to the natural frequency analysis of the device (SI
Section II). We find that two main deformation modes,
associated with the eigenfrequency of 5.5 Hz, are excited
near the high-frequency peak (SI Fig. 4). This is in
excellent agreement with the maximal swimming speed
observed in both experiments and calculations. We con-
clude that this regime is indeed associated with a me-
chanical inertia-induced resonance of the magnetocapil-
lary system.

Efficient metachronal device While the simple rota-
tional field was able to provide a minimal model for
metachronal organization, very low pumping, and no
swimming were achieved. To improve on this point, we
apply a Lissajous-type field

Bx = Bh cos(2πft), By = Bh sin(4πft), (6)

with Bh = 1.2 mT. Doubling the frequency along the

y-axis leads to very efficient translational locomotion at
speeds up to tens of µm/s along the y-direction, in a
force-free manner. This driving also produces a vanishing
average torque, hence no net rotations of the device are
observed. We again recover the low- and high-frequencies
response (Fig. 3(c)). In the low-frequency, linear regime
(up to 1 Hz), the self-propulsion is again a result of bead
rotations. The strongest contribution comes from the
four beads on the sides of the swimmer oriented in the di-
rection of motion along the y-axis (green and blue beads
with indicated rotations in Fig. 3(a)). These four beads
rotate continuously in the same direction because of the
alternating action of (i) the magnetic torques induced by
the external field, and (ii) torques due to dipole-dipole
interactions (SI Section IV and SI Fig. 5). The induced
rotlets add up to a flow in the positive y-direction re-
sulting in the self-propulsion of the swimmer. Given the
linear response of beads, the strength of the rotlet is pro-
portional to frequency, and consequently, an increase in
the swimming speed is observed (Fig. 3(c) and SI Fig.
6). Despite not being related to swimmer deformations,
the latter reaches up to 35 µm/s, before the beads stop
responding instantaneously to the field changes.

In the high-frequency regime (3 − 5 Hz), the motion
of the device is a direct consequence of a metachronal
organization of the beads’ motions. With Lissajous driv-
ing, the compressions of the swimmer side arms (blue
and green beads) travel from the back to the front of
the device alternately on both sides of the swimmer with
the frequency f , i.e. the frequency of Bx (Eq. (6) and
Fig. 3(a) and (b)). In contrast, the distances of the
front (red) and the back (orange) beads to the central
one oscillate with 2f , the frequency of By. Like with
the rotational field, the first two eigenmodes contribute
the most. However, due to stronger driving fields, the
excitation of two additional degenerate mode pairs is ob-
served (see SI Fig. 1 for modes 4 and 5, as well as 10
and 11, and SI Fig. 7 for the decomposition). The peak
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FIG. 3. Seven-bead swimmer in a Lissajous-type magnetic field. (a) Simulated bead trajectories for three periods of the
field ((i) and (ii)). Inset (iii) shows the dependence of swimming speed in y-direction on the average angular velocities of
the four side beads. At low frequencies, a linear relation is observed suggesting that swimming speed and bead rotation are
proportional. (b) Time-dependent arm lengths of the swimmer in the experiments (left) and in the simulations (right) for
f = 1.0 Hz, Bh = 0.5 mT, colors are identical to (a). (c) Comparison of the frequency-dependent swimming speed of the
swimmer in the experiments and simulations for Bh = 1.2 mT.

in the high-frequency regime is recovered in simulations
with zero remanent moments (SI Fig. 6), i.e. at no bead
rotations. This demonstrates that those modes are in-
deed responsible for the locomotion of the device in the
high-frequency regime.

The observed peaks are, notably, at lower frequencies
than with rotational B-fields, because of the frequency
doubling of the magnetic field in y-direction. Further-
more, given the considerable speed of the device, it is
instructive to verify the characteristic Reynolds num-
bers [29, 38]. For the fluid, with L being the total
length of the swimmer, and η the fluid viscosity, Ref =
ρLv/η ≈ 0.09, which is well within the low Re regime.
On the other hand, the swimmer’s Reynolds number is
Res = 2πρba

2

i f/η ≈ 10 − 30 near the resonance. This
highlights the mesoscale nature of the swimmer. To il-
lustrate this result, we show that the high-frequency peak
is lost in calculations with zero bead masses (Fig. 3(c)),
while metachronal coordination, although at lower am-
plitude, persists. Consequently, we conclude that the
beads’ inertia can amplify the metachronal stroke. The
consequences are enhanced rotational and translational
locomotion.

Conclusions In this paper we clearly identified the
mechanisms by which magnetic, capillary, and hydrody-
namic forces acting on seven beads on an interface in-
duce self-propulsion. Our bead assembly generally shows
two regimes of locomotion depending on the driving fre-
quency. At low frequencies, the linear coupling of the
B-field to the remanent magnetic moments of the beads
induces rotations where beads perfectly follow the oscil-
lating field. Depending on the driving protocol, this may
give rise to both efficient rotation and translation. By
type, this mechanism falls into the class of theoretically
suggested microswimmers with components that act on
passive parts of the assembly by creating flow fields that
ultimately drive the device [39, 40]. Our results, how-
ever, show that such a mechanism can also be exploited

in an experimental setting and used to efficiently gener-
ate translations and rotations of the device.

The metachronal organization represented by oscilla-
tory consecutive translations of beads is, however, re-
constituted at high driving frequencies. By quantita-
tive comparison of experiments and theory, we show that
these bead motions strongly depend on the mesoscale na-
ture of the swimmer. Specifically, the inertia of the beads
is found to enhance the swimming stroke while the natu-
ral mechanical resonances of the swimmer are excited.
This clearly demonstrates that exploiting high-density
constituents in yet small-scale swimmers presents a path-
way to circumvent the often observed slow locomotion of
massless swimmers. Our results may also be relevant
to understand the common occurrence of metachronal
coordination in a number of mesoscale organisms such
as crustaceans. A nice example comes from krill, which
exploit metachronal coordination, while clearly being in
the mesoswimming regime [41]. Additional investiga-
tion is, however, necessary to explore the relation be-
tween metachronal organization and inertial effects on
a broader variety of living species. Furthermore, both
swimming mechanisms unveiled in this work might prove
useful in the future design of artificial microswimmers or
microscopic pumps in technological applications.

This work is financially supported by the FNRS CDR
project number J.0186.23 entitled “Magnetocapillary In-
teractions for Locomotion at Liquid Interfaces" (MILLI).
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I. DETAILS ON THE NUMERICAL

CALCULATIONS

In the simulations, the bulk low Reynolds number hy-
drodynamics at the level of the Rotne-Prager approxima-
tion, i.e. including all terms up to the order O (a/r)

3
, is

used. Since at the Rotne-Prager level, the expressions for
the mobility matrix µ̂ are simpler than for the resistance
matrix R̂ = −µ̂−1 [1], we implement in the simulations
the mobility matrix and invert it later. The correspond-
ing expressions for components of the mobility matrix are
[2, 3]:

µ̂tt
ij =

1

8πη|rij |

(

1̂ +
rij ⊗ rij

|rij |2
)

+

a2i + a2j
24πη|rij |3

(

1̂− 3
rij ⊗ rij

|rij |2
)

(i 6= j),

µ̂tt
ii =

1̂

6πηai
, (1)

µ̂tr
ij =

1

8πη|rij |3
(rij×) (i 6= j), µ̂tr

ii = 0̂, µ̂rt
ij =

(

µ̂tr
ji

)T
,

µ̂rr
ij = 0 (i 6= j), µ̂rr

ii =
1

8πηa3i
.

Here, upper indices t and r denote translation and rota-
tion, i and j refer to two swimmer beads. The symbol ⊗
denotes the tensor product of two vectors and (rij×) is
a rank-two tensor defined as

(rij×) := ǫpqr (rij)q eper, (2)

with ǫ the Levi-Civita symbol, p, q, r spatial indices, and
ep the unit vector in the direction associated with the in-
dex p. The water viscosity η is assumed as η = 1.0 mPa s.

Since we consider rotations only around the z-axis, we
use for the components of the mobility matrix of the form
µ̂tr
ij , µ̂

rt
ij and µ̂rr

ij only the entries associated with rotation
about the z-axis. For instance, µ̂rr

ij then becomes a scalar

while µ̂tr
ij and µ̂rt

ij are represented as tensors of dimension-
ality 3× 1 and 1× 3, respectively.
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We then define the full mobility matrix as

µ̂ =





















µ̂tt
11 . . . µ̂tt

17 µ̂tr
11 . . . µ̂tr

17

...
. . .

...
...

. . .
...

µ̂tt
71 . . . µ̂tt

77 µ̂tr
71 . . . µ̂tr

77

µ̂rt
11

. . . µ̂rt
17

µ̂rr
11

. . . µ̂rr
17

...
. . .

...
...

. . .
...

µ̂rt
71

. . . µ̂rt
77

µ̂rr
71

. . . µ̂rr
77





















. (3)

Inverting this expression gives rise to the components of
the resistance matrix R̂ that are used in Eq. (3) of the
main text.

The magnetic forces derive from the potential given
in Eq. (1) in the main text. As a result, the mag-
netic forces Fm

i generally would also have a component
in z-direction. However, under the assumption that the
capillary forces bind the particles at their contact line
with the liquid interface, we neglect the z-component
of the magnetic forces in our simulations. The rema-
nent magnetic moments are set in the simulations to
µrem = 9.35 · 10−9 Am2 for the bead of diameter 800 µm
and to µrem = 2.34 · 10−9 Am2 for the beads of diame-
ter 500 µm [4]. Importantly, these experimental values
represent the in-plane components of the remanent mag-
netic moments. Consistently, we impose in the simula-
tions that the remanent moment is parallel to the inter-
face plane by choosing in-plane initial conditions and the
assumption that the beads can only rotate in-plane. The
capillary forces, as defined from the potential in Eq. (2)
of the main text, act only within the xy-plane.

All beads are initialized with zero velocities in a six-fold
symmetric structure with the large central bead in the
origin. The initial remanent moments of the beads are
oriented parallel to the initial horizontal magnetic field.
The equation of motion for magnetocapillary swimmers
is given by Eq. (3) in the main text. This equation of
motion is then solved numerically using Mathematica’s
[5] NDSolve method, which is using an algorithm with
adaptive step size.

II. EIGENMODE DECOMPOSITION OF THE

SWIMMER DEFORMATION

To determine the eigenmodes of the magnetocapillary
seven-bead swimmer, we consider the swimmer in a ver-

http://arxiv.org/abs/2311.03269v1
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FIG. 1. Sketch of the eigenmodes of the magnetocapillary swimmer with the respective eigenfrequencies of the modes.

tical magnetic field of Bv = 4.9 mT. After the swimmer
has been simulated for 10 s to reach the equilibrium con-
figuration, the linear magnetocapillary forces associated
with an infinitesimal bead displacement in the xy-plane
are calculated, returning a 14× 14 matrix M , to be con-
tracted with the bead displacements. To obtain the as-
sociated bead accelerations, we calculate

K :=













m1 0 . . . 0 0
0 m1 0 . . . 0
...

...
. . .

...
...

0 . . . 0 m7 0
0 . . . 0 0 m7













·M, (4)

the matrix relating a bead displacement with the cor-
responding restoring accelerations experienced by the
beads. The eigenvectors of the matrix K are then the
eigenmodes of the system, while the associated eigenval-
ues λ give rise to corresponding eigenfrequencies f =√
−λ/(2π).

The resulting eigenmodes and the associated eigenfre-
quencies are shown in Fig. 1. The first 11 modes cor-
respond to swimmer deformations and thus to non-zero
eigenfrequencies, while the remaining three modes cor-
respond to translation and rotation. There exist four
pairs of degenerate deformation eigenmodes associated
with the same eigenfrequency, of which each pair spans
a two-dimensional subspace of degenerate eigenmodes.



3

For each of these degenerate subspaces, the eigenmodes
shown in Fig. 1 have been chosen as two linearly inde-
pendent modes of highest possible symmetry.

For the decomposition of the swimmer deformation in
eigenmodes, the displacement of each bead in the swim-
mer’s frame of reference is required for each instant of
time. Since the beads cannot move in the z-direction
by assumption, we restrict our focus to the x- and y-
components of the bead position vectors rk. We calculate
the swimmer orientation for each time step by

αs = arg

(

7
∑

k=2

exp

(

i(αk −
2π

6
(k − 2)

)

)

, (5)

with αk the orientation of rk − r1, i.e. the orientation
of the arm associated with bead k, with k ∈ {2, ..., 7},
and arg the argument of a complex number. We then
calculate the center of mass

rCOM :=

∑7

k=1
mkrk

∑

7

k=1
mk

, (6)

as well as the rotated bead positions such that the aver-
age swimmer orientation is zero and the center of mass
is in the origin of the coordinate system,

r′
k = R̂(−αs) · (rk − rCOM ). (7)

Here,

R̂(α) :=

(

cos(α) − sin(α)
sin(α) cos(α)

)

, (8)

denotes the general 2× 2 rotation matrix.
The bead displacement is then calculated as the differ-

ence between each r′
k and the symmetric six-fold struc-

ture with the central bead in the origin and all other bead
positions defined by

r
eq
k = leq

(

cos

(

2π

6
(k − 2)

)

, sin

(

2π

6
(k − 2)

))T

. (9)

Here, leq denotes the swimmers time-averaged arm
length.

III. THE MAGNETOCAPILLARY SWIMMER

IN A ROTATING MAGNETIC FIELD

The peak in the linearly growing low-frequency regime
is determined by the step-out frequency fso (Eq. (5) in
the main text). As expected from the analytical expres-
sion, the low-frequency regime extends to higher frequen-
cies when the viscosity of the fluid is decreased (Fig. 2).
Since in the experiments the beads are only partially im-
mersed in the fluid, the corresponding effective viscosity
is lower. As a consequence, the low-frequency regime ex-
tends to higher frequencies in the experiments than in
our simulations which assume bulk hydrodynamics.
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FIG. 2. Frequency-dependent rotation speed of different val-
ues of the viscosity. A decrease in viscosity is accompanied
by an increasing step-out frequency fso
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FIG. 3. Frequency-dependent rotation speed of the magne-
tocapillary swimmer in the rotating magnetic field in the full
simulations (black dots), in the absence of forces deforming
the swimmer (green left-pointing triangles) and in the absence
of remnant moments (red right-pointing triangles).

To illustrate the origin of swimmer rotation in a rotat-
ing magnetic field, we perform simulations of the mag-
netocapillary system with zero remanent magnetic mo-
ments (red right-pointing triangles in Fig. 3), as well as
without deforming forces (green left-pointing triangles in
Fig. 3). The latter case was achieved by setting the hor-
izontal magnetic field strength to zero for the particle
forces, while keeping the non-zero field strength for the
particle torques. We observe that the swimmer rotation
in the full simulations (black dots in Fig. 3) is reproduced
in the low frequency regime in the case of no deforming
forces, while the first peak is lost in the case of zero re-
manent moments. For frequencies above 2 Hz, the main
contribution to the swimmer’s rotation is recovered in the
simulations with absent remanent moments. Thus, in the
high-frequency regime, the rotations of single beads are
subordinate and the swimmer rotation emerges from the
metachronal motion of the beads in the interface plane.

In the high-frequency regime, the swimmer deforma-
tions are associated primarily to the first two eigenmodes
(see Fig. 1). To show this, we decompose in Fig. 4 the
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FIG. 4. Excitation of the eigenmodes of the magnetocapillary
swimmer in the rotating magnetic field in the experiments,
degenerate eigenmodes associated to the same eigenvalue are
combined into a single curve. The lines are a guide for the
eye.

excitation of the experimental magneto-capillary swim-
mer’s deformation in the eigenmodes in dependence of
the frequency of the rotating magnetic field f . While at
low f , several modes are excited, the degenerate pair of
eigenmodes 1 and 2 is dominant in the high-frequency
regime and in particular near the mechanical resonance
at f ≈ 5 Hz. The position of the high-frequency peak
as well as the position of maximal mode excitation is
in good agreement with the eigenfrequency associated to
these two modes, which is f ≈ 5.5 Hz.

IV. THE MAGNETOCAPILLARY SWIMMER

IN A LISSAJOUS-TYPE MAGNETIC FIELD

Our simulations allow to better understand the self-
propulsion mechanism at low frequencies, as they enable
us to observe the orientation of each bead, which is very
difficult to implement in the experiments. At low fre-
quencies, we find that the swimmer rotation results from
continuous rotations of outer beads around the z-axis. In
Fig. 5, we sketch the mechanism that leads to the single
bead rotations in the simulations. Here, the black arrows
indicate the current bead orientation while the green ar-
rows indicate the cumulative rotation since step 1. The
pale gray arrows indicate the initial bead orientation and
the blue arrows indicate dipole-dipole torques.

Within the Lissajous magnetic field, periods during
which the beads’ orientations follow the magnetic field
alternate with periods where the Lissajous field is weak
and the bead rotations result from the magnetic dipole-
dipole interactions of the beads. While a strong external
magnetic field leads to bead rotations in the same di-
rection for all beads, the dipole-dipole interactions at in-
stants of a weak external field are roughly axis-symmetric
with respect to the preceding orientation of the external
magnetic field. This leads to a breaking of the rotational
symmetry and enables swimmer translation.

B
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FIG. 5. Swimming mechanism of the seven-bead swimmer in
the low-frequency regime. (a) Sketch of the orientations of the
remanent moments during one full cycle of the Lissajous-type
horizontal magnetic field. (b) Plot of the Lissajous field, with
the B-field of the different snap shots in part (a) indicated.

In detail, when the horizontal magnetic field switches
direction, the three beads on the lower left side rotate
counterclockwise (CCW), while the others rotate clock-
wise (CW) (Fig. 5, step 2). After the external field as
switched direction (step 3), all beads follow the CCW ro-
tation of the external field (step 5). When the horizontal
field switches direction again (steps 6 and 7), the orienta-
tion of the remanent bead moments is again aligned with
the preceding orientation of the magnetic field, which is,
however, different from that of the first switching event.
As a consequence, the three beads on the upper left side
rotate CCW while the beads on the lower left side rotate
CW. After the horizontal field has switched direction, all
beads again follow the CW rotation of the magnetic field.
After a full cycle of the Lissajous-type magnetic field, the
two beads on the swimmer’s left side have performed a
full CCW rotation, while the beads on the right side have
undergone a full CW rotation. The resulting flow field
points upwards at the central bead as well as at the beads
above and below it. Consequently, this leads to upwards
swimming of the magnetocapillary ensemble.

Similarly to the case of the rotating magnetic field, the
efficient propulsion is observed in both the low-frequency
regime detailed above as well as a high-frequency regime,
here at f ≈ 3 − 5 Hz. To identify the relevant swimmer
properties of both regimes, we simulate the magnetocap-
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illary system within a Lissajous-type magnetic field in the
absence of remanent magnetic moments as well as with-
out deforming forces (Fig. 6). As in the case of a rotating
magnetic field, the low-frequency peak is well recovered
in the absence of swimmer deformations, while the high-
frequency peak is recovered in the case of absent rema-

nent moments. Consequently, the high-frequency regime
must result from the metachronal swimmer deformations.

In contrast to the experiments with a rotating mag-
netic field, in the case of the Lissajous field more eigen-
modes are excited (Fig. 7). This is a result of the higher
horizontal magnetic field amplitude, Bh = 1.2 mT, used
in these experiments. The three pairs of degenerate
modes formed by modes 1 and 2, 4 and 5 as well as
modes 10 and 11 are typically excited strongest.

Comparing the eigenmode excitation amplitudes be-
tween experiments and simulations, we observe a qual-
itative agreement in Fig. 8. Both the order of magni-
tude and the trend of the mode amplitude with respect
to the frequency are recovered. Quantitative differences
between the experiments and the simulations may arise
from the restricted time resolution of the experimental
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FIG. 8. Comparison of the excitation of the three main
modes between experiments (pluses, solid lines) and simu-
lations (crosses, dashed lines). The lines are a guide for the
eye.

video tracking as well as from effects of the liquid in-
terface. In particular, the interface leads to a reduced
effective viscosity of the system, explaining why the ex-
perimental system generally shows higher excitation am-
plitudes than the simulated system assuming bulk vis-
cosity.
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