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Controlling liquid landscape with 3D-printed spines:

A tool for micromanipulation

M.Delens,∗ A.Franckart, and N.Vandewalle
GRASP, Institute of Physics B5a, University of Liège, B4000 Liège, Belgium.

Manipulation of floating objects, whether solid

or liquid, spanning from microscopic to meso-

scopic sizes, is crucial in various microfluidics

and microfabrication applications. While capil-

lary menisci naturally self-assemble and transport

floating particles, their shapes and sizes are lim-

ited by the properties of the fluid and the ob-

jects involved. We herein introduce an innovative

and versatile method that harnesses the super-

position of capillary menisci to curve liquid in-

terfaces without size limit. By using 3D-printed

spines piercing the interface, we can finely adjust

height gradients across the liquid surface to cre-

ate any liquid topography at low cost. Thus, our

method becomes a powerful tool for manipulating

floating objects of all sizes. Combining experi-

mental demonstrations and theoretical modeling,

we study the liquid elevation created by specific

spine dispositions and the three-dimensional ma-

nipulation of submillimetric particles. Multiple

examples showcase the method’s potential appli-

cations, including sorting and capturing particles,

which could pave the way for cleaning fluid inter-

faces.

Under gravity, a liquid maintains a flat profile. How-
ever, when in contact with other bodies, whether liq-
uid or solid, or the container walls, it exhibits a char-
acteristic curvature known as the meniscus. This curva-
ture is governed by the delicate interplay between surface
tension and gravity and is constrained by the capillary
length λ, approximately 2.7 mm for the water-air inter-
face. The occurrence of capillary menisci represents a
prevalent phenomenon extensively discussed in physics
textbooks [1]. In nature, they serve various purposes.
Menisci enhance the aggregation of objects at liquid in-
terfaces, like mosquito eggs [2], bubbles [3], or even cere-
als [4]. Water-walking insects also utilize menisci to fa-
cilitate their motion to reach the shore [5]. The menisci
created by surface-piercing vegetation serve to capture
particles on water surfaces [6, 7]. All these natural phe-
nomena have inspired scientists to use specific menisci to
self-assemble [8–14], transport [15–17], or manipulate [18]
floating objects. Curved interfaces have also been pro-
posed to self-assemble and manipulate particles, spheri-
cal or anisotropic, into specific structures [18–27]. While
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for colloidal and submillimetric particles, the curvature
only needs to have a short extent, specific aggregations
and manipulations of larger floating particles, like bub-
bles, droplets or solid bodies, requires much larger liquid
deformations. Whereas the meniscus extension is limited
by λ, when multiple menisci are close together, i.e., with
a spacing smaller than λ, all these deformations super-
impose. Therefore, we propose herein to superpose nu-
merous menisci, each forming around regularly arranged
3D-printed spines to create any kind of liquid deforma-
tion, from specific microfluidics devices to artistic shapes,
without limitations in size or extent. Additionally, we
prove that the giant and versatile menisci created by
this low-cost method can also achieve 3D manipulation
of floating particles. We also highlight the wide variety
of applications that could benefit from this work, ranging
from particle sorting to interface cleaning.

FIG. 1. (a) Sketch of a single conical spine crossing the liquid-
air interface. The geometrical characteristics of the spine H

and R and the associated meniscus height h are emphasized.
The dashed horizontal line denotes the undisturbed interface
z = 0. (b) Picture of a 3D-printed conical spine illustrating
the formation of the meniscus. (c) Sketch of the edge of a
square array of spines separated by a. The water profile is
shown to highlight the slight undulation of the interface be-
tween the spines from a maximal height h to a lower liquid
height hv between spines. (d) A closeup of the liquid menisci
at the edge of a square lattice. The liquid interface is 3.5 mm
above the undisturbed interface. Scale bars: 1 mm
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SINGLE SPINE

Let us consider a conical spine crossing the water-air
interface. Figure 1(a) presents a sketch of the conical
spine defining its geometrical characteristics: the radius
R at the undisturbed water level z = 0 and the height H.
A meniscus is forming around such a spine and its height
at the contact line is given by h. Figure 1(b) presents
a picture of the typical meniscus forming around a 3D
printed spine with a half opening angle α = arctan(R/H)
being α = 3◦. The shape of the meniscus z(x, y) is de-
termined by the condition that the surface overpressure,
which arises from surface tension and is directly related
to the curvature of the interface, matches the hydrostatic
pressure difference caused by the interface’s deformation
[1]. In an approach where interface slopes are considered
small enough, this condition is mathematically written
as the linearized Laplace-Young equation

ρgz = γ∇2z, (1)

defining the capillary length

λ =

√

γ

ρg
(2)

which represents the distance over which capillary forces
dominate gravitational forces. Several research studies,
including those conducted by Lo [28], Kralchevsky [29],
and Cooray [30], among others, have been undertaken to
investigate the formation of the meniscus around a ver-
tical cylinder. Far from the cylinder or when R ≪ λ,
Eq.(1) can be rewritten in cylindrical coordinates thanks
to the cylinder’s axisymmetry. Its solution gives the pro-
file z as a function of the radial distance r counted from
the center of the cylinder. One has

z(r) = QK0

( r

λ

)

, (3)

where K0 is a decaying zero-order modified Bessel func-
tion of the second kind and Q is a constant of integration
usually called the capillary charge of the cylinder and has
a crucial importance for capillary interactions [31]. For
a cylinder piercing a liquid-fluid interface, Cooray et al.
[30] have determined Q by using Archimedes principle
stating that, at equilibrium, the weight of the liquid lifted
in the meniscus must equal the capillary force acting on
the contact line. For the cylinder, this characteristic el-
evation is Qcyl = R cos θ, where θ is the contact angle.
For the conical spine studied herein, all of the previous
assumptions still hold since the contact line keeps ax-
isymmetry. Yet, the contact line radius changes with the
liquid height. For the conical spine, we, therefore, assume
a characteristic elevation

Q = (R− h tanα) cos(θ + α). (4)

The above general description (3) of the meniscus tells us
that the horizontal extension of the meniscus is limited
by the capillary length λ.

REGULARLY ARRANGED SPINES

A major motivation of the present work is to defy this
limitation by creating giant menisci with a horizontal ex-
tension much larger than λ. In other words, we would like
to obtain a steady situation in which the interface is tilted
over the entire container size. To reach this challenging
situation, we consider an array of identical conical spines.
Each spine crossing the interface is the origin of a menis-
cus, described by Eq.(3). When they are close to each
other, i.e., when the lattice spacing a < λ, the menisci
created on neighboring spines superimpose. Regular mi-
crostructures are also notably used to mimic the wetting
of specific surfaces [32, 33], like porous materials [34, 35]
or super-hydrophobic surfaces [36]. Figure 1(c,d) shows
a sketch and a picture of the edge of a square lattice of
spines. Inside the lattice, the liquid is seen to rise above
the undisturbed interface, proving that the effect is quite
significant. On average, the interface on the whole lattice
is nearly flat. Nevertheless, small valleys are seen in be-
tween neighboring spines. In these valleys, the interface
height hv is slightly smaller than h.
Measurements of the interface position have been done by
optical means. Figure 2(a) plots the heights h and hv as a
function of unit cell area A for 42 different lattices where
the colors distinguish square (blue), triangular (red) and
hexagonal lattices (green). All lattices are 3D printed
with fixed spine shapes (R = 0.2 mm and α = 1.15◦).
The contact angle is fixed by the 3D-printed material
and is θ = 60◦. Only the lattice spacing a and symme-
try were modified (see Materials for fabrication details).
In the plot of Figure 2(a), the darker dot represents the
highest measurement h at the contact line while the light-
colored dot represents the lowest elevation hv found in
between two adjacent spines. For small lattice spacing a,
h and hv are quite similar, while the difference between
those couples of points seems to increase with the unit
cell area A. One should remark that similar behavior is
obtained for all lattice types, whatever their symmetrical
features. The relevant parameter is the unit cell area A.
A last remark concerns high water elevations h up to 5-6
mm that can be reached with short lattice spacing. This
order of magnitude is comparable to the capillary rise in
a millimeter tube as given by Jurin’s law [37].
To model the liquid elevation within the capillary lat-

tice, we assume that the interface is a linear superposition
of all menisci formed around all spines. This superposi-
tion approximation is due to Nicolson [3] and is com-
monly used to estimate the capillary interactions acting
between floating bodies [2–4, 12, 14, 29–31, 38–42]. Vas-
sileva and co-workers [42] showed that using the linear
superposition principle to estimate the capillary interac-
tion between two cylinders of radius R at distance d is
valid when d > 4R. Extending this result to our study,
we assume the superposition approximation to be valid
when a > 4(R−h tanα). Inside the lattice, the liquid el-
evation at horizontal position ~r = (x, y) is therefore given
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FIG. 2. (a) Measured height at meniscus h and in between spines hv of water in 42 different lattices as a function of the area of
the Voronoi cell. Square, triangular, and hexagonal lattices are illustrated in different colors. Dark colors and light colors are
respectively h and hv measurements. Spines’ characteristics are R = 0.2 mm and α = 1.15◦. The dashed curves are predictions
of Eq.(6) and (7). The grey region is the region over which the superposition approximation is no longer valid for every lattice
symmetry. (b) Elevations h and hv of the interface in a square lattice as a function of the spine radius R when α = 3◦ and
A = 2.25 mm2. The light-blue area represents the limit of the superposition principle. (c) Height h and hv as a function of the
angle α for spines of radius R = 0.5 mm and A = 2.25 mm2.

by

z(x, y) = Q
∑

k,ℓ

K0

( |~r − ~rk,ℓ|
λ

)

= Qσ(x, y)

(5)

where k and ℓ are lattice indices running over the en-
tire structure, with ~rk,ℓ = (ka, ℓa) for the square lattice.
Looking around the central spine, i.e. when k = ℓ = 0,
and replacing Q by its expression in Eq.(4), one founds
the expression of the liquid elevation h at the meniscus:

h = z(R, 0) = R

(

1

cos(θ + α)σ(R, 0)
+ tan(α)

)

−1

(6)

and the liquid elevation of the valley in between neigh-
boring spines:

hv = z(a/2, 0) = (R− h tanα) cos(θ + α)σ(a/2, 0) (7)

The profiles in the sketch of Figure 1(c) were drawn us-
ing this model. The equilibrium height of the meniscus
around the spines is therefore driven by three main ge-
ometrical parameters : (i) the lattice spacing a, (ii) the
spine radius R at z = 0, and (iii) the opening angle α.
One should remark that the physical parameters are the
capillary length λ and the contact angle θ which are ma-
terials/liquid dependent. The dashed curves in Figure
2(a) represent the h and hv heights predicted by Eqs.(6)
and (7) with the geometrical and wetting properties of
the spines. One observes that this simple approach cap-
tures remarkably well the behavior of both h and hv for
all lattice spacings. As expected, the difference between

h and hv is getting closer as the lattice spacing decreases,
meaning that the liquid inside the lattice is getting more
flat. Note that the data and the expressions of h and hv

have been plotted as a function of the unit cell area A
to compare the different lattice symmetries easily. For
regular arrays, the Voronoi cell area is A = a2 for the
square lattice, A =

√
3a2/2 for the triangular lattice,

and A = 3
√
3a2/4 for the hexagonal lattice. For all lat-

tice symmetry, the grey area in Figure 2(a) represents
the limit of the superposition approximation being the
region where a < 4(R − h tanα). One observes that all
the experimental data fall within the range of validity of
our model.
To modify the liquid height of the interface, one can also
adjust other geometrical parameters such as the base ra-
dius of the cone R, or the opening angle α. Figure 2(b)
presents plots of the experimental measurements of the
liquid heights h and hv in a square lattice when the spine
radius R increases keeping A = 2.25 mm2 and α = 3◦

fixed. The dashed curves represent the h and hv heights
as a function of R predicted by our model. The light
blue area represents the region where the superposition
principle is no longer considered valid. The experimental
data exhibit good agreement with our model outside this
region. When the superposition approximation reaches
its limit, our model tends to underestimate the liquid el-
evation, which is consistent with the work of Vasilleva
et al [42]. Figure 2(c) presents similar measurements for
square arrays as a function of α and with other parame-
ters fixed (R = 0.5 mm and A = 2.25 mm2). Once again,
the model matches well the data within its limit, i.e. for
larger angles α. Indeed, the contact line radius must be
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small compared to the lattice spacing for the model to
be accurate and the contact line radius decreases as α
increases.

SPECIFIC LIQUID TOPOGRAPHY

From the above results, we prove that the liquid height
can be controlled by the geometrical characteristics A,
R, and α, of an array of conical spines. The horizontal
expansion of the menisci is no longer limited by the capil-
lary length. Indeed, as the menisci superimpose, the size
of the total deformation is only limited by the dimension
of the array. Moreover, the geometry of each spine or the
lattice spacing can be adjusted for pinning the interface
at different heights within a unique array. Having effec-
tively captured the impact of these parameters on the
liquid elevation, we can employ this method to program
unique liquid topography.
Elementary topographies can be simply programmed by
varying, gradually or not, the lattice spacing a or the
total height of the spine H along one direction, radially
or else. Figure 3 shows various examples to showcase
the method’s versatility and the wide range of menisci
that can be generated. In Figure 3(a) and (b), two tilted
interfaces are produced: (a) the first one is by gradu-
ally decreasing the total height H, which is equivalent
to modifying the radius of the contact line while keep-
ing the other parameters fixed, and (b) the second slope
is obtained by increasing the lattice spacing a from left
to right. Figures 3(c) and (d) display respectively a
parabolic and a sinusoidal liquid interface produced by
varying H quadratically and sinusoidally. Conical spines
are truncated above the contact line to highlight the liq-
uid interface. Figure 3(e) displays a hemispherical menis-
cus created by decreasing radially the total height H.
Finally, Figure 3(f) shows the meniscus created by two
adjacent inclines with perpendicular slopes thus creating
a 90◦ turn in the height gradient. This meniscus is cre-
ated by decreasing H and keeping R fixed to 0.5 mm.
To program arbitrary and complex liquid topographies,
we solve the inverse problem of Eq.(6): starting from
the desired liquid height, we calculate the corresponding
spines and lattice parameters. This allows us to create
any liquid landscape from a given target shape, as ex-
emplified in Figure 4. From the grayscale image of the
Atomium, the famous Belgian monument, shown in (a),
we designed a lattice of truncated conical spines where
each spine represents a pixel and of different total height
H. The values of H were determined based on the de-
sired liquid elevation h, which is linked to each pixel value
ranging from 0 to 255. As the liquid invades the lattice, it
rises to different heights, resulting in a three-dimensional
representation of the Atomium, as shown in Figure 4(b),
which offers a perspective view of the experiment. Our
method to design the device that creates artistic liquid
landscapes from any 2D images or 3D coordinates has
been implemented in a Mathematica code which is made

FIG. 3. Various examples of elementary topographies. Scale
bars: 10 mm. (a) A liquid incline providing a tilted giant
meniscus at equilibrium. The total height H of the spines
gradually decreases along the lattice from left to right while
the radius R = 0.2 mm is constant. (b) The same incline cre-
ated by another lattice where the lattice spacing a gradually
increases from left to right. (c) A quadratic well created by
varying quadratically the height H of spines of radius R = 0.3
mm. (d) A sine wave topography created by sinusoidally vary-
ing the total height H of the spines of radius R = 0.2 mm. (e)
A hemisphere created by radially decreasing the total height
H of spines of the same radius R = 0.3 mm. (f) Two adja-
cent inclines with perpendicular slopes, therefore, creating a
90◦ turn in the height gradient. The inclines are created by
varying the height H of spines of radius R = 0.5 mm.

available on GitHub (see Code Availability).

MENISCUS-INDUCED MICROMANIPULATIONS

The broad variety of menisci that can be created by
specific arrangements of spines gives direct inspiration
for micromanipulation. Indeed, when a particle floats
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FIG. 4. From this simplified 2D-image of the Atomium monument in grey levels (a), a lattice of truncated conical spines has
been designed and 3D-printed (b). As the liquid invades the device, it rises to reproduce the Atomium. Scale bar: 10 mm.

on a surface that is tilted either by the presence of
another particle, a wall meniscus, or, in our case, some
spines, the resulting force is no longer perpendicular
to the surface, which results in a net movement along
the surface. Therefore, light particles, such as bubbles,
move upward along the meniscus, following the height
gradient, while heavier particles denser than the liquid
move downward along the interface slope [3, 4]. This
simple assumption, first proposed by Nicolson [3], allows
to evaluate the capillary interaction between a particle
and another meniscus by computing the gravitational
potential energy of the particle at a specific height z
in the latter meniscus. Thus, the interaction potential
simply takes the shape of the liquid profile z(x, y) in
which the particle sits. In 2022, Peng et al. have notably
achieved directional bubble transport on a few slippery
oil-infused pillars with height-gradient [16]. Being aware
that complex tridimensional capillary transport can only
be achieved by complexifying the liquid topography,
we herein propose the use of specific arrays of spines
as an effective strategy for particle transport at liquid
interfaces.
To test our strategy, we conducted transport experiments
of a heavy submillimeter bead floating on desired liquid
topographies. As a first experiment, we successfully
achieved unidirectional micromanipulation using the
array shown in Figure 3(a) forming a giant slope along
the interface. Figure 5(a) presents a 3D plot illustrating
the z(x, y) profile of the meniscus, calculated using
Eq.(5), superimposed on the 3D STL file of the device.
This plot effectively illustrates a liquid slope of 4◦.
The grayscale image within the same figure provides
a top-down view of the device, with trajectories of
400 µm diameter beads color-coded according to their
instantaneous speed. Similar motions are observed in
each row, following the slope of the tilted interface. By
varying the particle size, the steepness of the slope, or
the lattice spacing, we observed similar behaviors, but
at different speeds. For instance, under the same incline,
a 500 µm bead is faster than an 800 µm bead which

is also faster than a 400µm bead. When testing slope
varying from 1◦ to 5◦ in increments of 0.5 ◦, we observe
a maximal speed for the slope of 3 ◦ for all bead sizes.
These counter-intuitive observations emphasize the
complexity of the forces acting on the beads. The drag
force on spherical particles trapped at liquid interfaces
depends on various factors, including the shape of the
interface, whether the three-phase contact line is pinned
or not, the immersion depth, and the driving force
[43–46]. In our case, the liquid interface is not only
tilted but also slightly undulated following the periodic
structure of the array, which highly complicates the
bead’s dynamics. Therefore, the precise dynamics of
particles manipulated in our device will be studied in
future works. However, it should be noted that because
the particles reach different speeds depending on their
size, when the beads leave the device they come to rest
at distinct positions. This observation opens up exciting
possibilities for sorting particles based on their size or
wettability.
More strikingly, the multi-directional transport of parti-
cles can also be performed by other liquid topographies.
Two examples are shown in Figure 5(b) and (c). Figure
5(b) presents the calculated liquid profile of the array
displayed in Figure 3(f) and the trajectory of an 800 µm
bead descending the slope. The bead first falls down the
slope along the x-direction. When the height gradient
in the x-direction vanishes, the bead briefly stops and
then continues its descent along the y-direction gradient.
The 800 µm stops permanently inside the device when
the height gradient and the bead’s inertia can no longer
overcome the drag force and the slight undulation of
the interface. We note that smaller beads (400 µm and
500 µm) came to rest outside this device. Once again,
different particles are sorted and the array controls the
final positions. In Figure 5(c), we display a particular
lattice forming a sinusoidal valley with a slight slope,
allowing the bead to make a series of turns while
descending the hill. Unlike the constant speed measured
on the liquid slope of Figure 5(a), one can observe from
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FIG. 5. The 3D plots, calculated using Eq.(5), display the
liquid landscape created by an arrangement of spines piercing
the liquid. The plot is rainbow-colored according to the liq-
uid elevation and the spines are colored in light blue. In each
subfigure, trajectories of heavy submillimeter beads inside the
same arrangement are represented and are color-coded ac-
cording to their speed from purple to yellow.

the color-coded trajectory of a 500 µm bead that it is
always decelerated in the turns, i.e., when the direction
of motion changes, just as in the 90◦ turn of Figure 5(b).
These illustrating examples offer promising prospects
for precise object transport, such as positioning objects
beneath a microscope lens, the utilization of liquid
curvature as a ’capillary tweezer’ [15], or favoring
specific structures on capillary self-assemblies, such as
the side-by-side assembly of cylindrical particles on a
curved interface [19, 20, 23, 27]. It is worth noting that
this method of manipulation works for objects of any
nature, solid or liquid, as long as they are attached to
the liquid interface. Furthermore, as long as the distance
between the spines is on the order of the capillary
length, even microscopic objects can be controlled [18].
As the total size of the device is unlimited, one major
and crucial application of our method could be the
cleaning of interfaces from specific oil microdroplets and
microscopic objects.

The innovative approach proposed herein utilizes ar-

rays of 3D-printed conical spines to manipulate liquid
surfaces in unique ways. By controlling the arrangement,
height, and geometry of these spines, we successfully cre-
ated diverse liquid landscapes, from tilted surfaces to
artistic 3D structures. This cost-effective and quick-to-
implement method allows for precise micromanipulation
of floating particles, exploiting the interaction between
particles and menisci. We highlight the potential of our
technique for sorting and trapping mesoscopic to micro-
scopic objects but also for cleaning liquid interfaces from
microdroplets. While our devices are currently static, the
next step could be to actuate each spine to dynamically
program the interface curvature. We can imagine spines
that can vertically move to change the contact line ra-
dius and therefore dynamically change the liquid height
h [15]. We might also consider using other types of mate-
rials like magnetic [47] and magnetoelastic materials [48]
or shape-shifting [33] and shape memory polymers [41]
to actuate the capillary meniscus locally.
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METHODS

Design and 3D printing The devices have been
designed using a Mathematica script that creates all
the spines with specific characteristics and in the
desired arrangement with a 2 mm base. The script
then exports the 3D graphics in an STL file (See Code
Availability). Since the lattice spacing a and the shape
of the spines can be modified, about 60 different devices
were printed using a PolyJet 3D printer (Stratasys
Object Prime 30). The PolyJet method consists of
jetting out droplets of resin onto the platform which
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are then cured using UV light. It results in an excel-
lent announced resolution of up to 16 µm. We used a
resin similar to ABS plastic (Vero Blue) in a glossy finish.

Experimental measurements The lattice was
placed in the center of a Petri dish. The amount of water
added to the system was controlled to define z = 0. The
water level has been determined by optical means with a
camera taking pictures from the side. The height h of the
liquid above the undisturbed interface was measured by
image analysis. For the experiments with solid particles,
we took videos from above the device and then tracked
the particles.

DATA AVAILABILITY

The data supporting the findings of this study are
available from the corresponding author upon reasonable
request.

CODE AVAILABILITY

The code for creating an arrangement of truncated con-
ical spines that reproduces a gray-scale image is imple-
mented in Mathematica (Version 13.3). This code and
CAD files for 3D printing the devices presented in this pa-
per can be found at https://github.com/GRASP-LAB/
3D-printed-spines.
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faces A: Physicochemical and Engineering Aspects 206,
41 (2002).
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