Emerging polyhydroxyurethane as sustainable thermosets: a structure-property relationship

Guillem Seychal^{1,2}, Connie Ocando^{*1}, Leila Bonnaud³, Julien De Winter⁴, Bruno Grignard⁵, Christophe Detrembleur⁵, Haritz Sardon², Nora Aramburu², and Jean-Marie Raquez^{†1}

¹Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, Mons, 7000, Belgium

²POLYMAT and Department of Advanced Polymers and Materials: Physics, Chemistry, and Technology,

Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain

³Materia Nova asbl. Parc Initialis, Avenue Copernic 1, Mons, 7000, Belgium

⁴Organic Synthesis and Mass Spectrometry Laboratory, CIRMAP, University of Mons, Place du Parc 23, Mons, 7000, Belgium

⁵Department of Chemistry, Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6A, Liège, 4000, Belgium

Supporting Informations

Additional experimental details, materials, and methods, including monomer mass and 1H-NMR spectra, FTIR results, representative tensile stress-strain curves, and photographs of the reprocessed samples.

Contents

1	Carbonate Precursors	S-3
	1.1 Cyclic Carbonates properties	S-3
	1.2 ¹ H-NMR	S-3
	1.3 Mass Spectrometry	S-6
	1.4 Thermophysical properties of the carbonates	S-9
2	Rheology of curing polyhydroxyurethanes	S-10
3	Cured polyhydroxyurethanes, complementary characterizations	S-11
3	Cured polyhydroxyurethanes, complementary characterizations 3.1 Polymers Pictures	S-11 S-11
3	Cured polyhydroxyurethanes, complementary characterizations3.1Polymers Pictures3.2FTIR	S-11 S-11 S-11
3	Cured polyhydroxyurethanes, complementary characterizations 3.1 Polymers Pictures 3.2 FTIR 3.3 Swelling and Gel Content	S-11 S-11 S-11 S-14
3	Cured polyhydroxyurethanes, complementary characterizations 3.1 Polymers Pictures 3.2 FTIR 3.3 Swelling and Gel Content 3.4 DSC and TGA	S-11 S-11 S-11 S-14 S-14
3	Cured polyhydroxyurethanes, complementary characterizations 3.1 Polymers Pictures 3.2 FTIR 3.3 Swelling and Gel Content 3.4 DSC and TGA 3.5 Monotonic Tensile Strain-Stress Curves	S-11 S-11 S-11 S-14 S-14 S-15

* connie.ocandocordero@umons.ac.be

[†]jean-marie.raquez@umons.ac.be

List of Figures

1	¹ H-NMR of the Trimethylol Propane Triglycidyl Ether (TMPTGE) and the Trimethylol	
	Propane Carbonate (TMC)	S-3
2	¹ H-NMR of the Pentaerythritol Polyglycidyl Ether (PEPGE) and the Pentaerythritol	
	Carbonate (PEC)	S-4
3	¹ H-NMR of the Glycerol Polyglycidyl Ether (GPGE) and the Glycerol Carbonate (GEC) S-4
4	¹ H-NMR of the Sorbitol PolyGlycidyl Ether (SPGE) and the Sorbitol Carbonate (SBC) S-5
5	¹ H-NMR of the Epoxidized SoyBean Oil (ESBO) and the Carbonated SoyBean Oil	
	(CSBO)	S-5
6	Mass spectrometry of the Trimethylol Propane Triglycidyl Ether (TMPTGE) and the	
	Trimethylol Propane Carbonate (TMC)	S-6
7	Mass spectrometry of the Pentaerythritol Polyglycidyl Ether (PEPGE) and the Pen-	
	taerythritol Carbonate (PEC)	S-6
8	Mass spectrometry of the Glycerol Polyglycidyl Ether (GPGE) and the Glycerol Car-	
	bonate (GEC)	S-7
9	Mass spectrometry of the Sorbitol PolyGlycidyl Ether (SPGE) and the Sorbitol Carbon-	
	ate (SBC)	S-7
10	Mass spectrometry of the Epoxidized SoyBean Oil (ESBO) and the Carbonated SoyBean	
	Oil (CSBO)	S-8
11	TGA of the synthesised cyclic carbonates	S-9
12	DSC of the synthesised cyclic carbonates	S-10
13	Two step (80°C & 100°C) isothermal curing of the GEC-MX formulation. a)Complex	
	viscosity, and b) Storage and Loss Modulus evolution with gel point	S-10
14	Photos of polymerized PHUs a) p(TMC-MX) b) p(PEC-MX) c) p(GEC-MX) d) p(SBC-	
	MX) and e) p(CSBO-MX)	S-11
15	FTIR of the p(TMC-MX) and its corresponding monomers	S-11
16	FTIR of the p(PEC-MX) and its corresponding monomers	S-12
17	FTIR of the p(GEC-MX) and its corresponding monomers	S-12
18	FTIR of the p(SBC-MX) and its corresponding monomers	S-13
19	FTIR of the p(CSBO-MX) and its corresponding monomers	S-13
20	a) DSC heating ramp of the cured PHU formulations b) TGA under N_2 flow \ldots	S-14
21	Tensile strain-stress curves of the PHUs formulations. a) p(TMC-MX) b)p(PEC-MX)	
	c)p(GEC-MX) d)p(SBC-MX) e)p(CSBO-MX) and f) representative tensile curve of all	
	PHUs	S-15
22	Isothermal TGA of p(PEC-MX) and p(TMC-MX) thermoset at 160°C for 15h \ldots	S-16
23	Reprocessed PHU a) p(TMC-MX) b)p(PEC-MX)	S-16
24	Reprocessed PHU samples in THF solvent a) p(TMC-MX) t=0, b) TMC-MX t=3 weeks,	
	c) p(PEC-MX) t=0, and d) p(PEC-MX) t=3 weeks $\ldots \ldots \ldots$	S-17

1 Carbonate Precursors

1.1 Cyclic Carbonates properties

Name	Ref	$CEW~({\rm g/eq})$	$M_n~({\rm g/mol})$	Functionnality	$T_{d_{5\%}}$ (°C)	$T_g \ (^{\rm o}{\rm C})$	$\eta_{25\circ C}$ (Pa.s)	$\eta_{50\circ C}$ (Pa.s)
TriMethylol propane triCarbonate	TMC	175	530	2.9	236	-19	148	6
PentaErythritol Carbonate	PEC	180	709	3.9	232	-7	863	30
GlycErol Carbonate	GEC	170	495	2.9	224	-25	30	2.4
SorBitol Carbonate	SBC	260	-	-	239	3	65000	2050
Carbonated SoyBean Oil	CSBO	310	1083	3.5	336	-23	120	7

Supp. Tab. 1: Characteristics of the synthesized cyclic carbonates

1.2 ¹H-NMR

Supp. Fig. 1: ¹H-NMR of the Trimethylol Propane Triglycidyl Ether (TMPTGE) and the Trimethylol Propane Carbonate (TMC)

Supp. Fig. 2: ¹H-NMR of the Pentaerythritol Polyglycidyl Ether (PEPGE) and the Pentaerythritol Carbonate (PEC)

Supp. Fig. 3: ¹H-NMR of the Glycerol Polyglycidyl Ether (GPGE) and the Glycerol Carbonate (GEC)

Supp. Fig. 4: ¹H-NMR of the Sorbitol PolyGlycidyl Ether (SPGE) and the Sorbitol Carbonate (SBC)

Supp. Fig. 5: ¹H-NMR of the Epoxidized SoyBean Oil (ESBO) and the Carbonated SoyBean Oil (CSBO)

1.3 Mass Spectrometry

Supp. Fig. 6: Mass spectrometry of the Trimethylol Propane Triglycidyl Ether (TMPTGE) and the Trimethylol Propane Carbonate (TMC)

Supp. Fig. 7: Mass spectrometry of the Pentaerythritol Polyglycidyl Ether (PEPGE) and the Pentaerythritol Carbonate (PEC)

Supp. Fig. 8: Mass spectrometry of the Glycerol Polyglycidyl Ether (GPGE) and the Glycerol Carbonate (GEC)

Supp. Fig. 9: Mass spectrometry of the Sorbitol PolyGlycidyl Ether (SPGE) and the Sorbitol Carbonate (SBC)

Supp. Fig. 10: Mass spectrometry of the Epoxidized SoyBean Oil (ESBO) and the Carbonated SoyBean Oil (CSBO)

1.4 Thermophysical properties of the carbonates

Supp. Fig. 11: TGA of the synthesised cyclic carbonates

Supp. Fig. 12: DSC of the synthesised cyclic carbonates

Supp. Fig. 13: Two step (80°C & 100°C) isothermal curing of the GEC-MX formulation. a)Complex viscosity, and b) Storage and Loss Modulus evolution with gel point

3 Cured polyhydroxyurethanes, complementary characterizations

3.1 Polymers Pictures

Supp. Fig. 14: Photos of polymerized PHUs a) p(TMC-MX) b) p(PEC-MX) c) p(GEC-MX) d) p(SBC-MX) and e) p(CSBO-MX)

3.2 FTIR

Supp. Fig. 15: FTIR of the $\mathrm{p}(\mathrm{TMC}\text{-}\mathrm{MX})$ and its corresponding monomers

Supp. Fig. 16: FTIR of the p(PEC-MX) and its corresponding monomers

Supp. Fig. 17: FTIR of the p(GEC-MX) and its corresponding monomers

Supp. Fig. 18: FTIR of the p(SBC-MX) and its corresponding monomers

Supp. Fig. 19: FTIR of the p(CSBO-MX) and its corresponding monomers

3.3 Swelling and Gel Content

Formulation	SITUE (%)	SI_{Taluma} (%)	GCTHE (%)	$GC_{Taluma}(\%)$	MU (%)	WU (%)
- i or intulation	01/HF (70)	Silouene (70)	GCTHF (70)	GCT bluene (70)	1110 (70)	11 C (70)
p(TMC-MX)	$56.6 \pm 1.73\%$	$0.14 \pm 0.12\%$	$99.76\pm0.44\%$	$98.43 \pm 0.8\%$	$2.6\pm0.1\%$	$13 \pm 1\%$
p(PEC-MX)	$0.72\pm0.16\%$	$0.87\pm0.61\%$	$98.24\pm0.17\%$	$98.62 \pm 0.65\%$	$3.5\pm0.4\%$	$25\pm1\%$
p(GEC-MX)	$3.14 \pm 0.88\%$	$0.76\pm0.16\%$	$99.76\pm0.41\%$	$98.88 \pm 0.8\%$	$2.5\pm0.5\%$	$47\pm2\%$
p(SBC-MX)	$0.81\pm0.66\%$	$0.44\pm0.56\%$	$99.03 \pm 0.39\%$	$98.76\pm0.46\%$	$3.3\pm0.3\%$	$30\pm4\%$
p(CSBO-MX)	$239.28\pm18.04\%$	$54.04\pm1.03\%$	$74.59\pm1.6\%$	$93.67\pm0.97\%$	$1.1\pm0.7\%$	$5\pm1\%$

Supp. Tab. 2: Gel content and swelling index of the PHU thermosets

3.4 DSC and TGA

Supp. Fig. 20: a) DSC heating ramp of the cured PHU formulations b) TGA under N_2 flow

Supp. Fig. 21: Tensile strain-stress curves of the PHUs formulations. a) p(TMC-MX) b)p(PEC-MX) c)p(GEC-MX) d)p(SBC-MX) e)p(CSBO-MX) and f) representative tensile curve of all PHUs

Supp. Fig. 22: Isothermal TGA of p(PEC-MX) and p(TMC-MX) thermoset at 160°C for 15h

Supp. Fig. 23: Reprocessed PHU a) p(TMC-MX) b)p(PEC-MX)

S-16

Supp. Fig. 24: Reprocessed PHU samples in THF solvent a) p(TMC-MX) t=0, b) TMC-MX t=3 weeks, c) p(PEC-MX) t=0, and d) p(PEC-MX) t=3 weeks

Sample		T_{α} (°C)	$E_{glassy}^{\prime}25^{\circ}C({\rm MPa})$	$E'_{rubbery}({ m MPa})$	$\nu_{E'}'(mol/m^3)$	Recovered E' (%)
p(TMC-MX)	original	68	3120	5.3	559	-
p(TMC-MX)	reprocessed	81	1600	7.2	712	51.3
p(PEC-MX)	original	92	3996	13.8	1335	-
p(PEC-MX)	reprocessed	107	3921	11.1	1036	98.1

Supp. Tab. 3: Thermo-mechanical properties of reprocessed p(TMC-MX) and p(PEC-MX) formulations