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Abstract

We present a discrete adjoint approach to aerodynamic shape optimization

(ASO) based on a hybridized discontinuous Galerkin (HDG) discretization.

Our implementation is designed to tie in as seamlessly as possible into a

solver architecture written for general balance laws, thus adding design ca-

pability to a tool with a wide range of applicability. Design variables are

introduced on designated surfaces using the knots of a spline-based geometry

representation, while gradients are computed from the adjoint solution using

a difference approximation of residual perturbations. A suitable optimiza-

tion algorithm, such as an in-house steepest descent or the Preconditioned

Sequential Quadratic Programming (PSQP) approach from the pyOpt frame-

work, is then employed to find an improved geometry. The resulting ASO

module is currently set up for 2D test cases governed by balance laws, in-

cluding linear scalar equations or nonlinear systems of equations. We present

verification of the implementation, including drag or heat flux minimization
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in compressible flows, as well as inverse design.

Keywords: Aerodynamic shape optimization, Hybridized Discontinuous

Galerkin, Discrete adjoint, Rational splines parameterization, Inverse

design, Compressible flows

1. Introduction

Aerodynamic shape optimization (ASO) has become increasingly impor-

tant over recent years and is now used for the design of many different techno-

logical products such as aircraft, trains, cars, turbomachinery or pipes [1, 2].

In ASO, a geometry to be improved is parametrized through a set of design

variables. A target objective (also called cost function) to be optimized is

subsequently chosen, and the fluid flow equations are expressed as a con-

straint linking the target objective to the design variables [3]. Within the

context of gradient-based optimization, the gradient is then defined as the

derivative of the target objective with respect to the design variables. The

gradient computation represents a critical part of the optimization process:

it can be particularly costly to evaluate if the number of design variables is

high and it can also lead to bad geometries if it is not computed accurately

enough [4]. The adjoint approach, as first proposed by Pironneau [5], ade-

quately combines low computational cost and high accuracy. In fact, its cost

is virtually independent of the number of design variables.

In parallel, promising results in flow simulation have been obtained with

high-order numerical methods [6, 7]. These methods potentially achieve

higher accuracy per computational degree of freedom (DOF), compared to

their low-order counterparts. This prospect of increased computational effi-
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ciency has led to an increased research effort towards further improvement

and wider application of high-order schemes. A well-known high-order finite

element (FE) technique is the discontinuous Galerkin (DG) method, firstly

introduced by Reed and Hill [8]. Several extensions of the DG method have

been developed, most notably the hybridized discontinuous Galerkin (HDG)

variant [9], which we use in our approach.

However, only a handful of research efforts implementing ASO in a high-

order DG framework are reported in the literature: a discrete adjoint formu-

lation in a DG framework for time-dependent flow problems has notably been

developed, with applications in aeroacoustic noise minimization [10]. More

recently, a unified strategy to perform shape optimization in both conform-

ing FE and DG contexts, using a certified descent algorithm [11], has been

proposed. Finally, an adjoint-based ASO tool has been developed for airfoil

drag minimization within an isogeometric DG framework [12]. No pairing of

adjoint-based ASO with HDG schemes are known to the authors.

The tool that will be used throughout this project has been developed

by Woopen, Balan, and May [13]. It includes an HDG solver, which has

been validated with respect to various compressible flow models such as Eu-

ler, Navier-Stokes and RANS. The framework also includes a discrete adjoint

solver, currently used for goal-oriented anisotropic mesh refinement [14, 15].

It has already been shown that the HDG discretization of the primal prob-

lem is adjoint consistent once some simple rules are respected [16, 17]. The

solver is written in C++, has an object-oriented structure, and is designed

to be modular. The different components of the framework have indepen-

dent implementations that are connected through general interfaces. This
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decoupling makes the solver very flexible, and new features can be added

without extensive modification of the existing code. Moreover, the HDG

tool interfaces to Netgen/NGSolve, an open source FE library which handles

geometries and provides a mesh generation tool [18]. The HDG solver also

interfaces to the library Mutation++ for high-enthalpy simulations [19]. An

overview of the HDG framework structure is given in Fig. 1.

Figure 1: Structure of the HDG framework, adapted from [20]

Within this context, the present paper is based on a technical report

presented at the AIAA SciTech Forum 2023 [21]. The objective of this work

is actually threefold:

4



• Implement an efficient and modular method for computing the gradi-

ent, using the existing discrete adjoint solver.

• Develop a robust shape and mesh deformation strategy which will pre-

serve the validity of the cells and the quality of the initial grid.

• Create and interface to optimizers able to perform automatically several

optimization cycles, leading to an improved geometry.

In Section 2, the HDG approach to primal and adjoint discretization

is described. In Section 3, a detailed discussion about our design choices

in terms of shape parametrization and gradient computation is given. In

Section 4, the inverse distance weighted procedure for the mesh deformation

is described. In Section 5, we discuss the smoothed gradient descent approach

[3] implemented within our code, as well as the coupling with the pyOpt

package [22]. In Section 6, results on several test cases are presented, ranging

from thermal and aerodynamic shape optimization to inverse design.

2. HDG Discretization

Among the different types of high-order schemes, DG methods have re-

ceived considerable attention since their introduction by Reed and Hill in

1973 [8]. However, DG methods often lead to high computational cost due to

the large number of DOF. Moreover, the global coupling of equations across

elements interfaces leads to large stencils and hence significant memory re-

quirements, especially with implicit methods. To alleviate these drawbacks, a

significant effort has been directed towards the development of HDG schemes
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in the past decade [9]. These schemes are based on hybridization, i.e., decou-

pling the system through the introduction of trace unknowns at the element

interfaces. This idea is depicted in Fig. 2.

Figure 2: Comparison of DG (a) and HDG (b) methods. The triangles represent the

elements, and the circles are the local unknowns. The red circles represent the trace.

The yellow arrows symbolize the numerical fluxes for DG in (a) and the trace acting as

boundary conditions for HDG in (b).

The elements are only indirectly coupled and the degrees of freedom corre-

sponding to the elements can be efficiently eliminated from the global system

by the Schur complement technique. As a result, the global system is much

less expensive to solve, due to both a decrease in size and better sparsity.

In the next section, we summarize the HDG-discretized equations, similar

to the account given by Woopen et al. [23]. The adjoint presentation given

in [14] is slightly adapted and presented afterward. The general system of

balance laws can be written as:

∇ · (fc(w)− fv(w,∇w)) = s(w,∇w) (1)
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with given convective and diffusive fluxes,

fc : Rm → Rm×d, fv : Rm × Rm×d → Rm×d, (2)

and a state-dependent source term,

s : Rm × Rm×d → Rm, (3)

where the spatial dimension is denoted by d and the number of conservative

variables by m. For fv ̸= 0, or a gradient-dependent source term s, Eq. (1)

can be rewritten as:

q = ∇w,

∇ · (fc(w)− fv(w,q)) = s(w,q).
(4)

The mixed formulation (4) is frequently applied when motivating viscous

discontinuous Galerkin discretization [24, 25].

2.1. Notation

The domain Ω is tessellated into a collection of non-overlapping elements,

Th = {K}, such that
⋃

K∈Th K = Ω. We define two sets on the element edges.

They are, respectively, element-oriented and edge- or face-oriented:

∂Th := {∂K\∂Ω : K ∈ Th}, (5)

Γh := {e : e = K ∩K ′ for K,K ′ ∈ Th; measd−1(e) ̸= 0}. (6)

Note that neither of these sets includes edges or faces lying on the domain

boundary: the set of boundary edges is instead denoted by Γb
h.
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Let Πp(D) be the set of polynomials of degree at most p on some domain

D. Discontinuous function spaces are defined as:

Vh = {v ∈ L2(Ω) : v|K ∈ ΠpK (K), K ∈ Th}m×d, (7)

Wh = {w ∈ L2(Ω) : w|K ∈ ΠpK (K), K ∈ Th}m, (8)

Mh = {µ ∈ L2 (Γh) : µ|e ∈ Πpe(e), e ∈ Γh}m. (9)

In the present work, pK = p for all K ∈ Th. Thus, v ∈ Vh,w ∈ Wh

and µ ∈ Mh are piecewise polynomials of degree p, which are discontinuous

across edges (for v, w) or vertices (for µ), respectively.

A distinction is made between element-oriented integration (defined with

Th or ∂Th),∫
Th

· dx :=
∑
K∈Th

∫
K

· dx,
∫
∂Th

· ds :=
∑
K∈Th

∫
∂K\Γb

h

· ds,

and edge- or face-oriented integrals (defined with Γh),∫
Γh

· ds :=
∑
e∈Γh

∫
e

· ds. (10)

For boundary edges or faces, no such distinction is necessary, as each of

these is on the boundary of only one element. We write boundary integrals

as in (10) with Γh replaced by Γb
h.

2.2. Method

Defining Xh := Vh×Wh×Mh, the HDG method is written as a variational

equation

xh ∈ Xh : Nh(xh;yh) = 0 ∀yh ∈ Xh. (11)
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The semilinear form Nh is obtained from DG discretization of (4) on each

element, using the trace DOF as a boundary condition, and enforcing con-

servation by continuity of the normal flux across elements. Setting xh =

(qh,wh,λh) and yh = (τ h,φh,µh), one obtains

Nh (xh;yh) :=

∫
Th
τ h : qh dx+

∫
Th
(wh ⊗∇) : τ h dx−

∫
Γh

(λh ⊗ n) : τ h ds

−
∫
Th

∇φh : (fc (wh)− fv (wh,qh)) dx−
∫
Th
φh · s (wh,qh) dx

+

∫
∂Th
φh · (f̂c − f̂v) ds+

∫
Γh

µh · [[f̂c − f̂v]] ds

+Nh,∂Ω (qh,wh; τ h,φh) +Nh,sc (qh,wh;φh)

(12)

In the present work, the numerical (normal) convective flux f̂c is of the Lax-

Friedrichs type, while a local discontinuous Galerkin scheme is employed for

the diffusive flux f̂v.

In order to obtain an adjoint-consistent scheme, the boundary terms

have to be discretized properly. Following an approach proposed by Schütz

and May in [16], the boundary terms are discretized using boundary states

w∂Ω(wh) and qh,∂Ω (wh,qh):

Nh,∂Ω (qh,wh; τ h,φh) :=

∫
Γb
h

(w∂Ω ⊗ n) : τ h ds

+

∫
Γb
h

(φh ⊗ n) : (fc (w∂Ω)− fv (w∂Ω,qh,∂Ω)) ds.

(13)

It is important to note that λh does not appear in the boundary terms, as it

is only defined on interior faces. We omit discussion of the shock-capturing

operator and refer instead to [20].
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2.3. Adjoint system

The discrete adjoint system of equations is derived from the presented

primal system. The adjoint may be used for computing gradients, notably in

the context of mesh adaptation or shape optimization. The exact Jacobian

of the nonlinear primal system is available from our Newton solver and,

upon transposition, may be used directly to solve the adjoint problem. This

is suitable, as our HDG discretization is adjoint consistent with respect to

admissible target functionals [17]. However, in the present HDG framework,

the adjoint is already used for goal-oriented anisotropic mesh refinement.

In this context, the adjoint is solved in a richer space to avoid identically

vanishing error estimates. For the sake of maximizing code re-usage, this

approach has been taken for shape optimization as well.

More precisely, we prolongate a given primal solution xh ∈ Xh to the

space X̃h, obtained by incrementing all polynomial degrees by one. Then, for

given admissible target functional Jh, we solve the adjoint problem

N ′
h [xh] (yh,ψh) = J ′

h [xh] (yh) ∀yh ∈ X̃h. (14)

The adjoint solution ψh ∈ X̃h represents how residual variations lead to

target functional variations.

For more information about the HDG solver, the reader is encouraged to

read [13]. For further discussion about the adjoint and its applications in

mesh adaptation, [17, 23] can be consulted. Here, we discuss the use of the

adjoint solution in an ASO context, i.e., the computation of gradients with

respect to the design variables.
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3. Design Variables and Gradient Computation

Before implementing the required ASO routines, it is important to make

a choice regarding shape parametrization. Netgen offers several geometry

formats to represent 2D and 3D geometries, such as Constructive Solid Ge-

ometry (CSG), StereoLithography (STL), or 2D spline geometries [18]. In

this work, the focus is directed toward curved 2D profiles described by piece-

wise rational splines.

Each rational spline built by Netgen is described by 3 control points: the

two endpoints of the spline, denoted p⃗i = (xi, yi) and p⃗f = (xf , yf ), and the

point at which the tangents to the geometry at these two end points meet,

denoted p⃗t = (xt, yt). This latter point will be called ”mid point” in the rest

of this section. The situation is represented for one spline in Fig. 3.

Figure 3: Rational spline represented by two end points and one mid point

With this body representation, each point p⃗θ located on the geometry

surface between p⃗i and p⃗f can be uniquely identified by a parameter θ varying

between 0 and 1 through:

p⃗θ =
((1− θ)2p⃗i + wθ(1− θ)p⃗t + θ2p⃗f )

(1− θ)2 + wθ(1− θ) + θ2
, (15)
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where

w =
∥p⃗i − p⃗f∥√

0.5
(
∥p⃗i − p⃗t∥2 + ∥p⃗f − p⃗t∥2

) , (16)

and ∥ · ∥ is the usual Euclidean distance between two points. Along with its

simplicity, a significant advantage of such a geometry representation is that

the spline endpoints can be directly chosen as design variables: they uniquely

represent the geometry as the midpoint locations can be deduced from the

knowledge of the endpoint positions and from smoothness constraints.

The gradient G represents the sensitivity of the target objective J with

respect to the design variables F , i.e., δJ = GδF . Since a discrete ad-

joint solver is already available in the HDG framework, the gradient can be

evaluated using the adjoint solution:

G =

[
∂Jh

∂F

]T
− ψT

[
∂R

∂F

]
. (17)

Here ψ is the discrete adjoint coefficient vector and R contains the flow

field residuals. The mathematical derivation of this this expression can be

found in [3].

A modification of the body geometry (by changing the design variables)

necessitates a corresponding modification of the mesh. When the mesh topol-

ogy is perturbed, the volumes of the cells increase or decrease and the integral

weights change. Moreover, the face normals are impacted and the quadrature

points move along with the mesh vertices. These successive modifications can

be summarized with the well-known chain rule of differentiation:

∂

∂F
=

∂

∂XV

· ∂XV

∂XS

· ∂XS

∂F
, (18)
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where XS are the surface vertices and XV are the volume vertices. Hence,

the gradient can be obtained by evaluating each partial derivative one by one

and then by multiplying them.

In the context of this project, a significant implementation difficulty is

that these derivatives concern the residuals and the target objective (which

are evaluated in the HDG framework) with respect to the design variables,

which represent the geometry defined in Netgen. Therefore, the method of

automatic differentiation used inside the HDG framework, albeit attractive

for its efficiency and exactness properties [20], was dismissed after a thorough

analysis. It was deemed against our objective of modularity, raising obvious

maintainability issues, to adapt routines inside external tools (Netgen in this

case) to the needs of the design module. More recently, the Netgen library

has provided a way to differentiate the geometry and mesh routines [26],

which may be considered in the future.

With these considerations in mind, the method preferred for this project is

to use the adjoint solution and to evaluate the partial derivatives with respect

to the design variables of Eq. (17) with a finite difference scheme1. This

approach gives the following expression for the differentiation with respect

to the design variable m:

δJh

δFm

=
Jh

(
x,α(+δFm)

)
− Jh(x,α)

δFm

− ψT R
(
x,α(+δFm)

)
−R(x,α)

δFm

. (19)

Here we have written Jh = Jh(x,α), where x is the HDG approximation of

the flow field, see Section 2, α represents the geometry and mesh topology,

1Complex step methods were rejected for similar reasons as automatic differentiation,

as implementation would have required to change Netgen routines.
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and δ is a small perturbation step.

It is important to note that the numerical solution x is not reevaluated

for computing the gradient. The target objective and the residuals are eval-

uated on both initial and perturbed configurations with the same flow field.

Therefore, despite the fact that the cost of this approach scales linearly with

the number of design variables, it is still relatively cheap.

4. Mesh Deformation

Once the geometry is modified, the mesh needs to be adapted accord-

ingly. Netgen offers the possibility to regenerate a mesh from an updated

spline geometry. However, mesh regeneration algorithms can change the

mesh topology and connectivity. This is an undesirable feature as it could

impact the convergence of the optimization loop.

Therefore, a mesh deformation approach is preferred. For that purpose,

the surface mesh needs to be adapted first. In fact, once the geometry is

modified, the mesh vertices which belonged to the body must remain on the

body. This projection can be achieved in two ways: the first is to perform a

minimum distance projection which is already implemented in Netgen. The

second possibility is to get the θ value of each surface mesh point and to keep

it constant on the deformed configuration. Indeed, since the weight of the

spline will be modified after the geometry perturbation, keeping constant θ

value will nonetheless lead to new coordinates through Eq. (15). Both ways

have been tested and compared: the differences appeared to be rather small

for small geometry deformations. Consequently, the simplicity of the latter

approach is preferred for this work.
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Once the surface mesh has been projected onto the deformed geome-

try, the volume has to be modified accordingly. For that purpose, a direct

interpolation-based method inspired from [27] and later reworked in [28] is

employed. In that algorithm, each surface node displacement is represented

as a rigid body motion, and the volume mesh is deformed as an inverse

distance weighted average of the surface motion.

If the position of surface mesh point i in the initial configuration is noted

x
(0)
s,i , its position xs,i in the deformed configuration can be written as:

xs,i = x
(0)
s,i + si, (20)

where si defines the translation applied to this surface mesh point from the

initial to the deformed configuration.

Figure 4: Volume mesh deformation as a weighted average of the surface mesh deformation,

adapted from [28].

Then, each volume point motion is computed as a weighted average of the

deformation of all surface mesh points, as illustrated in Fig. 4. Denoting xv
(0)
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the position of the volume point in the initial configuration and xv its position

in the deformed configuration, the deformation ∆xv can be computed with:

∆x
(
xv

(0)
)
= xv − xv

(0) =

∑
iwi

(
xv

(0)
)
· si∑

iwi (xv
(0))

. (21)

The weights wi used in this process are inversely proportional to the distance

between the volume point and the surface point:

wi

(
xv

(0)
)
=


 Ldef∣∣∣xv

(0) − x
(0)
s,i

∣∣∣
a

+

 αLdef∣∣∣xv
(0) − x

(0)
s,i

∣∣∣
b

 . (22)

The parameter Ldef controls how far surface deformations propagate in the

computational domain. It is automatically set to the maximum distance

between the mesh centroid and the furthest surface mesh point. Finally,

α, a, and b are tuned parameters that create a near-field body influence

where nearby surface mesh points have a much more significant impact on

the deformation process than distant mesh points. Following the guidelines

of [27, 28], the following values are chosen: α = 0.25, a = 3 and b = 5.

5. Optimization Algorithms

5.1. Smoothed gradient descent

We implement a smoothed gradient descent method similar to the ap-

proach described by Jameson et al. [3]. The gradient descent method takes

a small step in the direction of the negative gradient, such that

δF = −λG. (23)

However, this raw approach is generally unsatisfying, because the gradient

usually has a lower smoothness than the initial shape. This can lead to the
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creation of irregular geometries as the optimization process is performed, or

to a crash of the optimization process at worst. To avoid this, the core idea

is to define a smoothed gradient G such that:

δJh = ⟨G, δF⟩, (24)

where ⟨u, v⟩ indicates a weighted Sobolev inner product defined as:

⟨u, v⟩ =
∫ (

uv + ε
∂u

∂ξ

∂v

∂ξ

)
dξ. (25)

In our case, all the design variables live on a 1D curve, and the smoothed

gradient G is determined through the smoothing equation:

G − ∂

∂ξ1
ε
∂

∂ξ1
G = G, (26)

where ε is a smoothing parameter, ξ1 is the variable describing the position

on the design surface, and G is the gradient computed through Eq. (19).

Then, by setting

δF = −λG, (27)

the variation in target functional after an optimization cycle is:

δJh = −λ⟨G,G⟩, (28)

which is strictly negative except when G and G are equal to 0.

We solve Eq. (26) for the smoothed gradient using a simple second-order

central difference approximation

Gi − ϵ
(
Gi+1 − 2Gi + Gi−1

)
= Gi 1 ≤ i ≤ n, (29)

where Gi and Gi are the smoothed and unsmoothed gradient at the design

variable i and n is the number of design variables used on the chosen design

surface. The discrete smoothing parameter ϵ is an input to the design module.
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5.2. Coupling with pyOpt

Despite its simplicity, steepest descent is generally not the preferred ap-

proach: other optimization methodologies are better suited for aerodynamic

shape optimization [29]. We use the open-source software pyOpt [22] to

couple our solver to external optimization algorithms. The gradient is thus

calculated within the HDG framework and then passed to the optimizer,

together with the current target value.

The external optimizers can use very large deformation during line search-

es. This might result in a non-converging solution, in which case a flag is

passed to the optimizer, indicating that the flow solution is not successful.

For less sensitive cases, such as Euler solutions described in Section 6, no

step limit is used. However, for the Navier-Stokes solutions, the step size

taken by the optimizer is limited based on a case-by-case analysis.

For the steepest descent methods, the solution from the previous opti-

mization step is reused. This allows starting the computation of the primal

solution from the previous high-order solution. Because the external opti-

mizers can use large deformations to find the optimum, we observed that it

was not possible to reuse the flow field solution of the previous iteration as

the initial state. Therefore, each optimization step takes more time to be

performed. This is however countered by the fact that the convergence rate

of the external optimizers is usually faster, as we discuss in Section 6.
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6. Results

6.1. Scalar heat transfer

This test case simulates a 2D steady heat equation in a square domain.

The external walls are set at a constant temperature of 100◦C. An ellipsoid

body with an aspect ratio of 2 is placed at the center of the domain, and its

walls are set at a constant temperature of 1◦C. The temperature field inside

the computational domain is governed by Laplace’s equation, i.e. there is

no heat production nor heat extraction. The objective chosen for this test

case is to minimize the heat transfer across the walls of the ellipsoid body.

The advantage of this configuration is that the theoretical solution of this

problem is known: if we fix the area of the 2D body, the minimization of heat

transfer is obtained when the geometry is a circle. This result has already

been verified for scalar transport problems in [30].

The target functional is defined as the temperature gradient (which is pro-

portional to the heat flux) across the body walls. However, an area penalty is

added as to avoid the geometry simply shrinking to a single point to minimize

the target. The objective is thus

J =

∫
body

|∇T | · nds+ c(Vol(Ω)− Vol (Ω0))
2, (30)

where Ω is the computational domain at a given optimization cycle, Ω0 is the

initial domain, and c is the penalty coefficient that has to be fine-tuned. A

too-low value of c makes the ASO routine reduce the size of the ellipsoid to a

point. On the other hand, a too-high value of c makes the process unstable

as the gradient become very large due to a disproportionate impact of the

area penalty compared to the main target.
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A mesh of 397 elements is used, as depicted in Fig. 5. The initial tem-

perature field is shown in Fig. 6. The 40 geometry points of the ellipse are

chosen as design variables.

Figure 5: Initial mesh (397 elements) Figure 6: Initial temperature field

6.1.1. Gradient validation

The verification of the gradient with respect to the design variables is

made by comparing the gradient obtained with the adjoint approach given

in Eq. (19) with a total finite difference approach where the gradient is com-

puted as
δJh

δFm

=
Jh

(
x(+δFm),α(+δFm)

)
− Jh(x,α)

δFm

. (31)

The difference between the gradients computed with Eq. (19) and (31)

for different perturbation steps δ from 10−15 to 100 is shown in Fig. 7. The

gradients obtained at each design variable for δ = 10−2, 10−6, and 10−12 are

shown in Fig. 8, Fig. 9, and Fig. 10, respectively.
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Figure 7: Difference between Eq. (19) and

(31)
Figure 8: Gradients for δ = 10−2

Figure 9: Gradients for δ = 10−6 Figure 10: Gradients for δ = 10−12

From Fig. 7, it appears that the optimal range of perturbation steps δ is

between 10−6 and 10−8 for this test case. This can be easily understood as this

interval gives the best trade-off between the round-off error (whose relative

impact increases when δ decreases) and the finite difference discretization er-

ror (which increases when δ increases). This observation is further reinforced

by the actual plot of the gradients: the overlap is perfect for a perturbation
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step equal to 10−6 while the agreement is much less convincing for 10−2 and

10−12.

6.1.2. Heat transfer minimization

The final mesh obtained with grid deformation and regeneration are re-

spectively shown in Fig. 11 and Fig. 12. A comparison between the initial

ellipsoid geometry and the converged design is also given in Fig. 13, while

the final temperature field is displayed in Fig. 14. These were obtained after

40 optimization cycles on a temperature field described by quadratic poly-

nomials (p = 2), using steepest descent with a smoothing parameter ϵ = 10

and a constant step size λ = 0.02.

Figure 11: Final deformed mesh (397 ele-

ments)

Figure 12: Final regenerated mesh (375 el-

ements)
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Figure 13: Initial ellipse and final design
Figure 14: Final temperature field

The ASO routine demonstrates its ability to yield the correct geometry

after 40 optimization cycles. Despite the required large geometry deforma-

tions, the mesh manipulation algorithms manage to preserve the validity of

the elements. It is interesting to note that both the mesh deformation and

regeneration approaches lead to a non-uniformly distributed mesh over the

geometry. This is to be expected as the initial ellipsoid is not radially sym-

metric and as the design variables are only allowed to move normally to the

surface. Nonetheless, this variation in nodal density along the geometry does

not cause any issues for the ASO routine as it is able to converge toward the

optimal geometry.

The evolution of the dimensionless target objective with mesh deforma-

tion and mesh regeneration is shown in Fig. 15. The shape modification

reduces the heat flux across the body by almost 7%. It also appears that

both approaches exhibit the same convergence behavior. Therefore, in the

following test cases, only the mesh deformation strategy is employed. Indeed,
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as the gradient is computed through this approach, it will also be favored for

performing the actual shape update.

Figure 15: Evolution of the target objective with mesh deformation and with mesh regen-

eration

6.2. Inverse airfoil design

This test case simulates a NACA 0012 airfoil in a Mach 0.4 flow governed

by the inviscid Euler equations. The airfoil is at an angle of attack α = 2°

with respect to the incoming flow. The mesh is made of 2560 elements and the

simulation uses p = 2. For this inverse problem, the objective is to retrieve

a NACA 0013 geometry, starting from this initial NACA 0012. This is done

by minimizing the pressure difference from a target pressure distribution.

To obtain the target pressure distribution, a forward problem is first run

on the NACA 0013 with an order p = 2 on a fine mesh made of 13,464

elements. This gives the pressure coefficient curve defined as

Cp(x) =
p(x)− p∞

1
2
ρ∞V 2

∞
, (32)
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where x is the direction along the chord. In this expression, p(x) is the local

pressure at the surface of the airfoil while p∞, ρ∞ and V∞ are respectively

the farfield pressure, density, and velocity.

Then, the inverse design problem is run, starting from the NACA 0012

geometry. This initial shape is described by 80 design variables. The target

objective to minimize is computed as:

J =

∫
airfoil

(Cp,target(x)− Cp(x))
2dx. (33)

The simulations are performed with a steepest descent step λ = 0.05 for

the 25 first cycles. Then, to avoid oscillations around the optimal geometry,

the descent step is reduced to λ = 0.04 for the rest of the 400 cycles. The

other parameters chosen for the optimization loop are a quadratic polynomial

reconstruction, a finite difference perturbation δ = 10−6 and a smoothing

ϵ = 100.

The evolution of this pressure difference throughout the optimization cy-

cles is shown in Fig. 16 and compared with the results obtained with the

Preconditioned Sequential Quadratic Programming (PSQP) optimizer from

pyOpt [22]. It can be seen that both approaches exhibit a similar convergence

behavior. However, the best step size for the steepest descent is determined

manually, which is very time-consuming. On the other hand, the standard

settings of the PSQP optimizer are used, leading to significant time-saving

in setting up the test case.
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Figure 16: Evolution of the inverse target objective for steepest descent and PSQP

In Fig. 17, the initial, final, and target pressure coefficients along the

airfoil are plotted. Good convergence is reached, which was already suggested

by the low residual. Some difference is still present near the trailing edge,

possibly due to the fast change in pressure between the top and the bottom

at that location. Taking a look at Fig. 18, it can be seen that the geometrical

shape shows a high degree of similarity: the end geometry is a redesign of

the NACA 0013 as the maximum thickness has been adequately increased

from 12% to 13% of the chord.
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Figure 17: Initial Cp curve and target Cp

curve
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Figure 18: Initial NACA 0012 and con-

verged designs

An inverse design performed with PSQP towards the NACA 0013, but

starting from the NACA 1408, is shown in Figures 19 and 20. It can be

seen that a small difference on the bottom is still present, but the pressure

coefficient distribution is showing good agreement with the target pressure

distribution. This demonstrates once again the potential of the coupling with

external optimizers.
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Figure 19: Initial Cp curve and target Cp

curve
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Figure 20: Initial NACA 1408 and con-

verged designs
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6.3. Transonic drag minimization

For this test case, a NACA 0012 airfoil is now placed at an angle of attack

α = 0° with respect to an inviscid and transonic Mach 0.8 flow, described

by quadratic polynomials. In these transonic conditions, a shock wave de-

velops on both the suction and pressure side. These shock waves lead to a

considerable amount of drag despite the flow being inviscid.

As a result, the target objective chosen for this test case is the drag

coefficient:

Cd =
D

1
2
ρ∞V 2

∞c
(34)

where D is the drag experienced by the airfoil and c is its chord. The ASO

routine has to find a novel geometry configuration which should get rid of

the shock waves or at least attenuate their strength.

In Fig. 21, the convergence behavior of steepest descent and PSQP is

shown. For the steepest descent case, an adaptive step size is used to initially

drive down the remaining drag quickly, and afterwards reduce it to prevent

taking too large steps.
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Figure 21: Evolution of the transonic drag of a NACA0012 airfoil for steepest descent and

PSQP

The remaining drag is not going to zero when the airfoil is becoming

shock-free, which is due to the addition of artificial viscosity. For this tran-

sonic flow, a fine-tuned artificial viscosity is indeed used for shock-capturing

purposes: decreasing its value reduces the artificial diffusion around the

shocks and therefore makes the convergence of the simulations more diffi-

cult to reach. A too-high value, on the other hand, leads to a highly stable

simulation but to a numerical solution further away from the true physical

solution.

It can be seen that the PSQP algorithm has a final drag coefficient similar

to the steepest descent. This method makes the airfoil completely shock-free,

as depicted in Fig. 22. There, the initial pressure distribution is compared

with the final distributions obtained with steepest descent and PSQP.

The remaining small oscillations in the PSQP airfoil pressure distribution
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can be explained by the fact that the mesh is deformed from the initial mesh

in every step. The large deformations of the geometry can indeed lead to a

degradation of the mesh quality. An interesting area of improvement would

be to completely restart the optimization with a regenerated mesh based on

the final obtained geometry, in order to further optimize the airfoil shape.

While the flow does only speed up before the shock on the initial con-

figuration, it speeds up more at the start for the final configuration, but

then decelerates. This deceleration before mid-chord allows for a slow pres-

sure build-up on the final airfoil. As a result, instead of the shock that we

observe for the initial geometry, it is rather a steep pressure recovery at the

mid-chord for the final geometry. This modification allows reducing the total

drag coefficient by a factor of 54, from CD = 8.69 · 10−3 to CD = 1.60 · 10−4.
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Figure 22: Comparison of the pressure dis-

tribution over the airfoil between steepest

descent and PSQP
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Figure 23: Comparison of the final shape

of the airfoil between steepest descent and

PSQP

The initial and final geometries obtained with steepest descent and PSQP

are shown in Fig. 23, while Fig. 24 and Fig. 25 show respectively the initial

and final meshes obtained with the steepest descent method. Looking at
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both meshes, it appears that the ASO loop has preserved the quality of the

initial mesh. It is interesting to note that the ASO loop has led to practically

no modification on the aft part of the airfoil (from mid-chord to the trailing

edge). The reason for this modification can be better understood by looking

at Fig. 26 and Fig. 27, which show the Mach contours on the initial and final

geometries.

Figure 24: Initial transonic mesh Figure 25: Final transonic mesh

Figure 26: Initial transonic Mach contours Figure 27: Final transonic Mach contours

Despite the seemingly small geometry changes, the flow field appears to

have drastically changed. The initial Mach contours show a shock wave a bit

downstream of mid-chord, creating a large amount of wave drag. Thanks to

the reduction of thickness in the first 40% of the airfoil chord length, expan-

sion waves develop near the leading edge. These expansion waves increase
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the flow speed in this region but lead to strong attenuation of the shock wave

downstream.

6.4. Heat transfer

In this section, the analysis of heat transfer into two different initial bodies

is performed. We study subsonic flows governed by the steady Navier-Stokes

equations. The optimizer used for this section is PSQP.

6.4.1. Blunt wedge

The first test case is a blunt wedge with an opening angle of 9°. The

nose is rounded with a radius of 1 and the total length is equal to 6. An

initial mesh of 3068 elements (as shown in Fig. 28) is used in a Mach 0.5 flow,

with a Reynolds number equal to 100. The wall temperature of the body is

taken as 75% of the freestream temperature. Both endpoints of the geometry

are fixed throughout the optimization cycles. Three target objectives to

minimize are used: the heat transfer Q
Q0

(where the subscript 0 indicates

initial values), the heat transfer minus the drag Q
Q0

− D
D0

and the heat-over-

drag-ratio Q
D
/Q0

D0
. The motivation for this simultaneous minimization of heat

transfer and maximization of drag is taken from planetary entry problems.

However, since we lack the shock-capturing capabilities for such applications,

we content ourselves with subsonic computations.

The target evolution for the heat minimization, as well as the heat-over-

drag-ratio, are shown in Fig. 29. It can be seen that the heat is reduced

by more than 50% and the heat-over-drag-ratio by more than 30%. For the

heat-minus-drag case, the value starts at 0 (due to the target definition) and

goes to −0.32.

32



Figure 28: Initial mesh for the blunt wedge
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Figure 29: Targets evolution for the blunt

wedge

In Fig. 30, we can observe that the three targets result in very similar

final geometries. This can be easily understood since minimizing the heat

already increases the drag. Therefore, adding the drag contribution to the

target objective only drives the target further down. This heat minimization

is notably achieved through the expansion that appears after the location of

maximum thickness, as well as increased nose radius.

It is important to mention that these results are in agreement with liter-

ature [31]. They compare a similar shape in hypersonic flow using second-

order finite volume methods and minimize the heat-over-drag-ratio. Due

to the shock being present in front of the hypersonic body, a large subsonic

region is present downstream, allowing a comparison with our Mach 0.5 flow.
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Figure 30: Optimized designs for the blunt wedge

6.4.2. Droplet

A second test case, using a completely closed shape, is performed using

a droplet as the initial shape. The mesh consists of 1, 515 elements and the

total length of the droplet is equal to 5. The same flow and wall conditions

as for the blunt wedge are used. The initial mesh and Mach contours can

be seen in Fig. 31. Here, two minimization targets are used: Q
Q0

− D
D0

and

Q
D
/Q0

D0
. Their evolution is shown in Fig. 32, where it appears that the target

objective is decreased by about 35% for both cases.

The final geometries for the heat-minus-drag and the heat-over-drag-ratio

are displayed in Fig. 33. It can be seen that the converged design obtained

with both targets is again very similar.
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Figure 31: Initial mesh and Mach contours

for the droplet
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Figure 32: Targets evolution for the

droplet
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Figure 33: Optimized designs for the droplet

7. Conclusion and Outlook

Only a handful of references have tackled the problem of shape opti-

mization for high-order methods. To the authors’ knowledge, this project

is the first combination of hybridized discontinuous Galerkin methods with

aerodynamic shape optimization routines.

Starting from rational splines for geometry representation, we use a gra-

dient computation based on a combination of the adjoint approach with
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finite difference approximations of mesh sensitivities. The volume mesh mo-

tion ensuing from the perturbation of design variables is carried out by an

interpolation-based approach. An in-house smoothed gradient descent algo-

rithm or an external optimizer from the pyOpt framework [22] are used to

find a locally optimal geometry.

Results have been obtained on a variety of test cases. Where applicable,

analytical results verify the implementation (Laplacian heat transfer, inverse

design, shock-free airfoil). For the remaining cases, plausible results have

been obtained, showing a significant reduction in the target functional. The

presented tests demonstrate the modularity of our tool. Different sets of

conservation laws and compatible target objectives can be chosen.

Future work could be aimed at further improving the gradient compu-

tation. Recent references on shape differentiation within Netgen might be

useful for this purpose [26]. Moreover, more alternatives to carry out the op-

timization are available, such as one-shot optimization methods. However,

these require a substantial amount of development work. Finally, to use the

developed tool in hypersonic flows, an improved shock-capturing scheme is

needed.
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