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Partial observability
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Partial observability
A POMDP is described by a model # = (8, 4,0, P,0,T, R, 7).

+ States s, € S, + Perception O(o, | s,),

+ Actions a, € A, « Transition T'(s, . | s;,a,),
+ Observations o, € 0, « Reward r, = R(s;,a,),

« Initialisation P(s,), « Discount v € [0, 1[.

States satisfy the Markov property but are not available,

p(3t+1 | 30?a07"'73t>at) :p<5t+1 | St?at) = T(3t+1 | Staat)-

Observations do not satisty the Markov property,
P(0s41 | 00, g, - 04,0,) F D041 | 045 a4)-

= Contrary to MDP, selecting a, based on o, only is suboptimal.
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Partial observability (ii)
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Figure 1: Bayesian graph of a POMDP execution.

training

The history at time ¢ is h, = (0, ag, ..., 0,) € J, with { the set of histories.
Includes all information available to select action a,.

Notation: (h,a,r,0") = (hy, a;, 7,0, ) for arbitrary ¢.
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History-dependent policies

Definition 1: History-dependent stochastic policy.
A history-dependent stochastic policy n € H = H — A(A) is a mapping
from histories to distributions over the actions, whose density writes 7(a | h).

Definition 2: Value function of a policy.
The value function of a history-dependent stochastic policy gives the ex-
pected return of the policy starting from a given history,

V(h) = i [thR(suat) | ho = h} so ~p(S | h).

! t=0

Definition 3: Q-function of a policy.
The Q-function of a history-dependent stochastic policy gives the expected
return of the policy starting from a given history and a given action,

Q”(h,a) = yI)En [ZVtR(Stvat) ‘ ho = h,aq = a:| » S0 Np(S ‘ h)
’ t=0
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Optimal history-dependent policies

Definition 4: Optimal value function.
The optimal Q-function gives the optimal expected return starting from a
given history,

V(h) = max V" (h).
neH
Definition 5: Optimal Q-function.

The optimal Q-function gives the optimal expected return starting from a
given history and a given action,

Q(h,a) = max Q" (h, a).
neH

Definition 6: Optimal policy.
A policy n* is optimal when its value function is maximised in every history,
VT = max Vi(h) =V (h).

ne
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History-dependent RL
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History-dependent RL

Substitute the history h to the state s in the value function or policy.

Requires function approximators able to process variable-size histories:
+ Sliding window (window size)

 Recurrent neural network (truncated BPTT)

« Transformer (window size)

They all suffer from the unbounded growth of the history, but RNN are able
to process histories indefinitely and efficiently.

Function approximator @

Figure 2: Sequence approximator for history-dependent policy or Q-function.
9/36



Belief-dependent RL

Definition 7: Belief of a history.
The belief b = f(h) € A(S) of a history h € H is defined as the posterior
probability distribution over the states given the history: b(s) = p(s | h).

Theorem 1: Sufficiency of the belief.

The Q-function can be written as a function of the belief,

Q(h,a) = 9(b,a), b= f(h).

Moreover, the belief is recurrent: f(h') = u(f(h),a,0"), b’ = (h,a,0").
b (3 ): P(SO)O(OO ‘ SO)
O [ P(s6)0(0q | s6) dsp’
_ O(o | St)fg T(s; | 81,05 1)by 1 (5p1)ds;
fg O(oy | Si)f(s T(sy | s4-1,a-1)b_1(51) ds,_y s}

by (s)

=> If the belief is known, we can discard the history.
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Recurrent RL

Recurrent Q-learning learns Q,(h, a) = gy(fy(h), a) where f, is an RNN,
fo(R') = ug(fo(h), a,0"), VI = (h,a,0’).

Reminder: the belief filter is recurrent,

f(h')=u(f(h),a,0"), Vh' = (h,a,0").

T Q\T o\j T o\j Q\T
o © © © 0
Figure 3: Belief and Q-function. Figure 4: RNN state and Q-function.

=> Should RNN states encode the belief?
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Recurrent RL (ii)

Lambrechts, Bolland, and Ernst (2022) highlights that beliefs emerge in RNN
states during model-free recurrent Q-learning (LSTM, GRU, BRC, NBRC, MGU).
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Figure 5: Return and mutual information throughout training.

1(0) ~ I(z,b) under stationary distribution p" (h).
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Recurrent RL (iii)

The informativeness of states about the belief is correlated with the perfor-
mance (LSTM, GRU, BRC, NBRC, MGU).
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Figure 6: Correlation between return and mutual information.

1(0) ~ I(z,b) under stationary distribution p" (h).
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Recurrent RL (iv)

The belief of irrelevant state variable is not encoded in RNN states (
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Figure 7: Return and mutual information (belief of relevant and irrelevant state
variables) throughout training.

1(0) ~ I(z,b) under stationary distribution p" (h).
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Sufficient statistic
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Sufficient statistic
Notation: g o f is the policy (a | h) = g(a | f(h)).
Definition 8: Sufficient statistic.
A statistic f : 7{ — Z of the history is sufficient for the optimal control iff,
J(go = J .
R 79T = K T

Corollary 1: Sufficiency of optimal policies.

If a policy n = g o f is optimal, then the statistic f : 7 — 2 is sufficient for
the optimal control.

f g
®© 06 06 0 O © o

Figure 8: Statistic and policy.

NB: The belief is a sufficient statistic of the history for the optimal control.
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Sufficiency of recurrent predictive statistics

Theorem 2: Sufficiency of recurrent predictive statistics (Subramanian et al. 2022).
A statistic of the history f : /' — 2 is sufficient for the optimal control
if it is (i) recurrent and (ii) predictive of the reward and next observation
given the action,

(@) f(r') =u(f(h),a,0"), YA' = (h,a,0’),

(i) p(r,o" | hya) =p(r,0o" | f(h),a), V(h,a,r,0").

Intuitively, if a statistic encodes the distribution of the reward and next obser-
vation given an action, and can be updated using this observation, then it is
virtually able to simulate all future execution of the POMDP.

Figure 9: Sufficiency of recurrent and predictive statistics.
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Learning recurrent predictive statistics
Under mild assumptions (e.g., p(h, a) > 0), any statistic f : 7 — 2 satisfying

E 1 ! h
FHSZ plhaird) ogq(r,o" [ (k) a),
q:Z2x A—A(RX0O)

(1)

is predictive of the reward and next observation given the action (ii). If in addi-
tion, the statistic is recurrent (i), then it is sufficient for the optimal control.

Algorithm 1: Sufficient statistic learning.

1. Select a recurrent universal dynamical system approximator f, (e.g., RNN).
2. Select a universal density approximator g, (e.g., GM).
3. Repeat:

1. Sample trajectories and store transitions (h, a,r,0").

2. Maximize the log likelihood of (1) using SGD.

NB: If f, and g, are expressive enough and satisfy objective (1), then
q9(r,0" | fo(h),a) =p(r,0" | h,a).
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Jointly learning statistics and policies

The statistic and the policy can be learned jointly,

H}ZXJ(go f)+ L(f). (2)

where J(n) = E [V'(sy)] and L(f) =max E  loggq(r,o’ | f(h),a).

so~P q p(h,a,r,0’)

Choices for this objective and its optimization:

« The distribution p(h, a) in L(f) may be that of g o f or another policy 7.
+ The RL algorithm maximizing J may optimize f or not.

f g
®© 06 06 0 O ~@ -0

Figure 10: Joint optimization of the statistic and policy.
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Jointly learning statistics and policies (ii)

We have a generic algorithm for optimizing both sufficiency and optimality.

Algorithm 2: Sufficient statistic and policy learning.

1. Select a recurrent universal dynamical system approximator f, (e.g., RNN).
2. Select universal density approximators g, and g,, (e.g., GM).
3. Repeat
1. Interact (policy 1 or n, , = g,, © fp) and store transitions (h,a,,0").
2. Maximize objective (2) using SGD (off- or on-policy RL algorithm).
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Sufficiency of recurrent world models

The model gy(r,0" | fo(h),a) =~ p(r,o" | h,a) is a world model.
= Trajectories can be sampled for free.

It can be exploited in a Dyna / Dreamer algorithm adapted to POMDP.

Algorithm 3: Dyna with sufficient statistic for POMDP.
1. Select a recurrent universal dynamical system approximator f, (e.g., RNN).
2. Select universal density approximators gy and g,, (e.g., GM).
3. Repeat
1. Interact (policy 1 or n, , = g,, © f,) and store transitions (h,a,r,0").
2. Maximize the log likelihood of objective (1) using SGD.
3. Repeat:
1. Imagine trajectories using policy 7, ,, = g,, © fo-
2. Optimize policy to maximize imagined rewards. NB: V, Z:i 0 V7,
is computable since the world model g, o f, is differentiable.
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Asymmetric learning
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Asymmetric learning
Asymmetric learning consists of exploiting state information at training.
Motivation: assuming the same partial observability at training is restrictive.

We generalise asymmetric learning to non Markovian additional information.

The informed POMDP is described by P = (cS’, A,T7,0,P, .7, 6, T,R, ’y),

+ States s, € 8, . Supervision I(i, | s,),

+ Actions a, € A, + Perception 6(ot | 7;),

« Information i, € J, « Transition T'(s,.; | s;,a;),
+ Observations o, € 0O, « Reward r, = R(s,, a,),

+ Initialisation P(s), « Discount v € [0, 1[.

During execution, the information is unavailable and we obtain the POMDP
P=(5A0,P,0,T,R,~), where O(o, | s,) = fj O(o, | 9)I(i | s;)di.
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Asymmetric learning (ii)

training
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Figure 11: Bayesian graph of a POMDP execution.

execution

NB: The information is designed such that o, is independent of s, given 1,.
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Asymmetric learning of sufficient statistics

Usually, the state information is exploited through either
+ (constrained) imitation learning,
+ (unbiased) asymmetric actor-critic approaches.

Lambrechts, Bolland, and Ernst (2023) propose to leverage the additional infor-
mation in the learning of sufficient statistic.

« Exploits additional information only through the objective.

» Handles partial additional information about the state.

Theorem 3: Sufficiency of recurrent informed predictive statistics.

A statistic of the history f : /{’ — 2 is sufficient for the optimal control
if it is (i) recurrent and (ii) predictive of the reward and next information
given the action,

(@) f(h') =u(f(h),a,0), Vh' = (h,a,0"),
(i) p(r,é’ | hya) =p(r,é" | f(h),a), Y(h,a,r,%").
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Asymmetric learning of sufficient statistics (ii)

The resulting informed learning objective is

E 1 i’ | £(h),a).
FI52 plharrd) ogq(r,¢" | f(h),a)
q:Zx A—A(RxT)

(3)
Motivation: i is more informative than o: I(s",i" | h,a) > I(s’,0" | h,a).

Algorithm 4: Informed sufficient statistic learning.

1. Select a recurrent universal dynamical system approximator f, (e.g., RNN).
2. Select a universal density approximator g, (e.g., GM).
3. Repeat

1. Sample trajectories and store transitions (h, a,r, 7).

2. Maximize the log likelihood of (3) using SGD.

NB: If f, and g, are expressive enough and satisfy objective (3), then
ao(r, 7" | fo(h),a) =p(r,?" | h,a).
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Informed world-model

We use a Dyna / Dreamer algorithm with an informed world model using a
variational RNN (VRNN or RSSM). Formally, we have,

€n qg( ‘ Zva)a

T~ qf,f( | 2 é)v

¥~ G| 2,0),
where € is the latent variable of the VRNN when generating trajectories. The
prior ¢}, and decoders g, and ¢}, are jointly trained with the encoder,

€ N’Qg('|z>aao/%

to maximise likelihood of (r,¢"). The latent representation e ~ ¢ (- | z,a,0") of
the next observation 0" can be used to update the statistic to 2/,

z' =wuy(z,a,e).

A The statistic is no longer deterministic, instead we have z ~ f(-| h).
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Informed world-model (ii)

In practice, we maximize the evidence lower bound (ELBO), a variational
lower bound on the likelihood,

E  loggy(r,i'|za)>2 E E  [loggy(i' | 2 e) +loggy(r | z¢)]
p(h,a,r,i’) p(h,a,r,i",0") | q5(e | z,a,0’
fo(z | h) folz | h)

reconstruction

_KL(qg(' | z7a70,) ” qg( | 2, CI,)) :

regularization

Figure 12: Informed world model training.
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Informed Dreamer

The informed world model allows sampling in latent space.

KKKKK
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Figure 13: Informed world model imagination.

The policy is executed on the latent representations of the observations.
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Figure 14: Informed world model imagination
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Informed Dreamer (ii)
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Figure 15: Informed and Uninformed Dreamer in Mountain Hike.
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Informed Dreamer (iii)
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Figure 16: Informed and Uninformed Dreamer in Velocity Control.
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Informed Dreamer (iv)
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Figure 17: Informed and Uninformed Dreamer in Pop Gym.
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Limitations

+ In theory:
« No theoretical support for stochastic statistics.
+ Guarantees are for the maximisers only, bounds are missing.

« In practice:
+ Approximating the conditional information distribution sometimes hurts
performance.

« Others:
+ Ill-posed ELBO objective: the encoder is not conditioned on i’ (only the
distribution of o/, encoded in the distribution of ¢/, and the informational
content of i’ that is encoded in h are approximated).
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Future works
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Future works

+ In model-based RL:
« Fixing the ELBO learning objective.
+ Generalizing the theory to stochastic statistic.
+ Proposing an efficient deterministic (and latent) world model.

+ In model-free RL:
» Comparing asymmetric actor-critic to the statistic learning approach.

+ In multi-agent RL:
+ Considering model-free statistic learning from the local histories of agents.

+ In theory:
« Studying generalization when using state supervision.
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