

Learning to Remember the Past by Learning to Predict the Future

VUB Reinforcement Learning Talks - November 17th, 2023

Gaspard Lambrechts

Outline

Partial observability	
History-dependent RL	8
Sufficient statistic	15
Asymmetric learning	
Future works	

Partial observability

Partial observability

A **POMDP** is described by a model $\mathcal{P} = (\mathcal{S}, \mathcal{A}, \mathcal{O}, P, O, T, R, \gamma)$.

- States $s_t \in \mathcal{S}$,
- Actions $a_t \in \mathcal{A}$,
- Observations $o_t \in \mathcal{O}$,
- Initialisation $P(s_0)$,

- Perception $O(o_t \mid s_t)$,
- Transition $T(s_{t+1} \mid s_t, a_t)$,
- + Reward $r_t = R(s_t, a_t)$,
- Discount $\gamma \in [0, 1[.$

States satisfy the Markov property but are not available,

 $p(s_{t+1} \mid s_0, a_0, ..., s_t, a_t) = p(s_{t+1} \mid s_t, a_t) = T(s_{t+1} \mid s_t, a_t).$

Observations do not satisfy the Markov property,

 $p(o_{t+1} \mid o_0, a_0, ..., o_t, a_t) \neq p(o_{t+1} \mid o_t, a_t).$

 \Rightarrow Contrary to MDP, selecting a_t based on o_t only is **suboptimal**.

Partial observability (ii)

Fig. 1: Bayesian graph of a POMDP execution.

The **history** at time t is $h_t = (o_0, a_0, ..., o_t) \in \mathcal{H}$, with \mathcal{H} the set of histories. Includes all information available to select action a_t .

Notation: $(h, a, r, o') \equiv (h_t, a_t, r_t, o_{t+1})$ for arbitrary *t*.

History-dependent policies

Definition 1: History-dependent stochastic policy.

A history-dependent stochastic policy $\eta \in \mathbf{H} = \mathcal{H} \to \Delta(\mathcal{A})$ is a mapping from histories to distributions over the actions, whose density writes $\eta(a \mid h)$.

Definition 2: Value function of a policy.

The value function of a history-dependent stochastic policy gives the expected return of the policy starting from a given history,

$$V^{\eta}(h) = \mathop{\mathbb{E}}_{\mathcal{P},\eta} \Bigg[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) ~|~ h_0 = h \Bigg], ~s_0 \sim p(S \mid h).$$

Definition 3: Q-function of a policy.

The Q-function of a history-dependent stochastic policy gives the expected return of the policy starting from a given history and a given action,

$$Q^{\eta}(h,a) = \mathop{\mathbb{E}}_{\mathcal{P},\eta} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t,a_t) \mid h_0 = h, a_0 = a \right], \ s_0 \sim p(S \mid h).$$

Optimal history-dependent policies

Definition 4: Optimal value function.

The optimal Q-function gives the optimal expected return starting from a given history,

 $V(h) = \max_{\eta \in \mathcal{H}} V^{\eta}(h).$

Definition 5: Optimal Q-function.

The optimal Q-function gives the optimal expected return starting from a given history and a given action,

$$Q(h,a) = \max_{\eta \in \mathcal{H}} Q^{\eta}(h,a).$$

Definition 6: Optimal policy.

A policy η^* is optimal when its value function is maximised in every history,

$$V^{\eta^*} = \max_{\eta \in \mathcal{H}} V^{\eta}(h) = V(h).$$

History-dependent RL

History-dependent RL

Substitute the history *h* **to the state** *s* in the value function or policy.

Requires **function approximators** able to process **variable-size histories**:

- Sliding window (window size)
- Recurrent neural network (truncated BPTT)
- Transformer (window size)

They all suffer from the **unbounded growth of the history**, but RNN are able to process histories indefinitely and efficiently.

Fig. 2: Sequence approximator for history-dependent policy or Q-function.

Belief-dependent RL

Definition 7: Belief of a history.

The belief $b = f(h) \in \Delta(S)$ of a history $h \in \mathcal{H}$ is defined as the posterior probability distribution over the states given the history: $b(s) = p(s \mid h)$.

Theorem 1: Sufficiency of the belief.

The Q-function can be written as a function of the belief,

 $Q(h,a)=\mathcal{Q}(b,a), \ b=f(h).$

Moreover, the belief is **recurrent**: f(h') = u(f(h), a, o'), h' = (h, a, o').

$$\begin{split} b_0(s_0) &= \frac{P(s_0)O(o_0 \mid s_0)}{\int_{\mathcal{S}} P(s'_0)O(o_0 \mid s'_0) \, \mathrm{d}s'_0}, \\ b_t(s_t) &= \frac{O(o_t \mid s_t) \int_{\mathcal{S}} T(s_t \mid s_{t-1}, a_{t-1}) b_{t-1}(s_{t-1}) \, \mathrm{d}s_{t-1}}{\int_{\mathcal{S}} O(o_t \mid s'_t) \int_{\mathcal{S}} T(s'_t \mid s_{t-1}, a_{t-1}) b_{t-1}(s_{t-1}) \, \mathrm{d}s_{t-1} \, \mathrm{d}s'_t} \end{split}$$

 \Rightarrow If the belief is known, we can discard the history.

Recurrent RL

Recurrent Q-learning learns $Q_{\theta}(h, a) = g_{\theta}(f_{\theta}(h), a)$ where f_{θ} is an RNN,

$$f_\theta(h') = u_\theta(f_\theta(h), a, o'), \ \forall h' = (h, a, o').$$

Reminder: the belief filter is recurrent,

$$f(h')=u(f(h),a,o'), \ \forall h'=(h,a,o').$$

 \Rightarrow Should RNN states encode the belief?

Recurrent RL (ii)

Lambrechts, Bolland, and Ernst (2022) highlights that **beliefs emerge** in RNN states during model-free recurrent Q-learning (LSTM, GRU, BRC, NBRC, MGU).

Fig. 5: Return and mutual information throughout training.

 $\hat{I}(\theta) \approx I(z, b)$ under stationary distribution $p^{\eta_{\theta}}(h)$.

Recurrent RL (iii)

The **informativeness** of states about the belief is **correlated** with the **performance** (LSTM, GRU, BRC, NBRC, MGU).

Fig. 6: Correlation between return and mutual information.

 $\hat{I}(\theta) \approx I(z, b)$ under stationary distribution $p^{\eta_{\theta}}(h)$.

Recurrent RL (iv)

The belief of irrelevant state variable is not encoded in RNN states (GRU).

Fig. 7: Return and mutual information (belief of relevant and irrelevant state variables) throughout training.

 $\hat{I}(\theta) \approx I(z, b)$ under stationary distribution $p^{\eta_{\theta}}(h)$.

Sufficient statistic

Sufficient statistic

Notation: $g \circ f$ is the policy $\eta(a \mid h) = g(a \mid f(h))$.

Definition 8: Sufficient statistic.

A statistic $f:\mathcal{H}\to\mathcal{Z}$ of the history is sufficient for the optimal control iff,

$$\max_{g:\mathcal{Z} \to \Delta(\mathcal{A})} J(g \circ f) = \max_{\eta \in \mathcal{H} \to \Delta(\mathcal{A})} J(\eta).$$

Corollary 1: Sufficiency of optimal policies. If a policy $\eta = g \circ f$ is optimal, then the statistic $f : \mathcal{H} \to \mathcal{Z}$ is sufficient for the optimal control.

NB: The **belief** is a sufficient statistic of the history for the optimal control.

Sufficiency of recurrent predictive statistics

Theorem 2: Sufficiency of recurrent predictive statistics (Subramanian et al. 2022). A statistic of the history $f : \mathcal{H} \to \mathcal{Z}$ is **sufficient for the optimal control** if it is (i) **recurrent** and (ii) **predictive** of the reward and next observation given the action,

> (i) $f(h') = u(f(h), a, o'), \forall h' = (h, a, o'),$ (ii) $p(r, o' \mid h, a) = p(r, o' \mid f(h), a), \forall (h, a, r, o').$

Intuitively, if a statistic encodes the distribution of the reward and next observation given an action, and can be updated using this observation, then it is **virtually able to simulate all future execution** of the POMDP.

Fig. 9: Sufficiency of recurrent and predictive statistics.

Learning recurrent predictive statistics

Under mild assumptions (e.g., p(h, a) > 0), any statistic $f : \mathcal{H} \to \mathcal{Z}$ satisfying

$$\max_{\substack{f:\mathcal{H}\to\mathcal{Z}\\q:\mathcal{Z}\times\mathcal{A}\to\Delta(\mathbb{R}\times\mathcal{O})}} \mathbb{E}_{p(h,a,r,o')} \log q(r,o' \mid f(h),a),$$
(1)

is **predictive** of the reward and next observation given the action (ii). If in addition, the statistic is **recurrent** (i), then it is **sufficient for the optimal control**.

Algorithm 1: Sufficient statistic learning.

- 1. Select a recurrent universal dynamical system approximator f_{θ} (e.g., RNN).
- 2. Select a universal density approximator q_{θ} (e.g., GM).
- 3. Repeat:
 - 1. Sample trajectories and store transitions (h, a, r, o').
 - 2. Maximize the log likelihood of (1) using SGD.

NB: If f_{θ} and q_{θ} are expressive enough and satisfy objective (1), then $q_{\theta}(r,o' \mid f_{\theta}(h),a) = p(r,o' \mid h,a).$

Jointly learning statistics and policies

The statistic and the policy can be learned jointly,

$$\max_{f,g} J(g \circ f) + L(f).$$
(2)

where $J(\eta) = \mathop{\mathbb{E}}_{s_0 \sim P}[V^\eta(s_0)]$ and $L(f) = \max_q \mathop{\mathbb{E}}_{p(h,a,r,o')} \log q(r,o' \mid f(h),a).$

Choices for this objective and its optimization:

- The distribution p(h, a) in L(f) may be that of $g \circ f$ or another policy η .
- The RL algorithm maximizing J may optimize f or not.

Fig. 10: Joint optimization of the statistic and policy.

Jointly learning statistics and policies (ii)

We have a generic algorithm for optimizing both **sufficiency** and **optimality**.

Algorithm 2: Sufficient statistic and policy learning.

- 1. Select a recurrent universal dynamical system approximator f_{θ} (e.g., RNN).
- 2. Select universal density approximators q_{θ} and g_{φ} (e.g., GM).
- 3. Repeat
 - 1. Interact (policy η or $\eta_{\theta,\varphi} = g_{\varphi} \circ f_{\theta}$) and store transitions (h, a, r, o').
 - 2. Maximize objective (2) using SGD (off- or on-policy RL algorithm).

Sufficiency of recurrent world models

The model $q_{\theta}(r, o' \mid f_{\theta}(h), a) \approx p(r, o' \mid h, a)$ is a **world model**. \Rightarrow Trajectories can be sampled for free.

It can be exploited in a Dyna / Dreamer algorithm adapted to POMDP.

Algorithm 3: Dyna with sufficient statistic for POMDP.

- 1. Select a recurrent universal dynamical system approximator f_{θ} (e.g., RNN).
- 2. Select universal density approximators q_{θ} and g_{φ} (e.g., GM).
- 3. Repeat
 - 1. Interact (policy η or $\eta_{\theta,\varphi} = g_{\varphi} \circ f_{\theta}$) and store transitions (h, a, r, o').
 - 2. Maximize the log likelihood of objective (1) using SGD.
 - 3. Repeat:
 - 1. Imagine trajectories using policy $\eta_{\theta,\varphi} = g_{\varphi} \circ f_{\theta}$.
 - 2. Optimize policy to maximize imagined rewards. **NB**: $\nabla_{\varphi} \sum_{t=0}^{\infty} \gamma^t \hat{r}_t$ is computable since the world model $q_{\theta} \circ f_{\theta}$ is differentiable.

Asymmetric learning

Asymmetric learning

Asymmetric learning consists of **exploiting state information** at training. **Motivation:** assuming the same partial observability at training is restrictive.

We generalise asymmetric learning to non Markovian additional information.

The **informed POMDP** is described by $\tilde{\mathcal{P}} = (\mathcal{S}, \mathcal{A}, \mathcal{I}, \mathcal{O}, P, \tilde{I}, \tilde{O}, T, R, \gamma)$,

- States $s_t \in \mathcal{S}$,
- Actions $a_t \in \mathcal{A}$,
- Information $i_t \in \mathcal{I}$,
- Observations $o_t \in \mathcal{O}$,
- Initialisation $P(s_0)$,

- Supervision $\tilde{I}(i_t \mid s_t)$,
- Perception $\tilde{O}(o_t \mid i_t)$,
- Transition $T(s_{t+1} \mid s_t, a_t)$,
- + Reward $r_t = R(s_t, a_t)$,
- Discount $\gamma \in [0, 1[.$

During execution, the information is unavailable and we obtain the POMDP $\mathcal{P} = (\mathcal{S}, \mathcal{A}, \mathcal{O}, P, O, T, R, \gamma)$, where $O(o_t \mid s_t) = \int_{\mathcal{I}} \tilde{O}(o_t \mid i)\tilde{I}(i \mid s_t) \,\mathrm{d}i$.

Asymmetric learning (ii)

Fig. 11: Bayesian graph of an informed POMDP execution.

NB: The information is designed such that o_t is independent of s_t given i_t .

Asymmetric learning of sufficient statistics

Usually, the state information is exploited through either

- (constrained) imitation learning,
- (unbiased) asymmetric actor-critic approaches.

Lambrechts, Bolland, and Ernst (2023) propose to leverage the additional information in the learning of sufficient statistic.

- Exploits additional information **only through the objective**.
- Handles partial additional information about the state.

Theorem 3: Sufficiency of recurrent informed predictive statistics.

A statistic of the history $f : \mathcal{H} \to \mathcal{Z}$ is **sufficient for the optimal control** if it is (i) **recurrent** and (ii) **predictive** of the reward and next **information** given the action,

(i) $f(h') = u(f(h), a, o'), \forall h' = (h, a, o'),$ (ii) $p(r, i' \mid h, a) = p(r, i' \mid f(h), a), \forall (h, a, r, i').$

Asymmetric learning of sufficient statistics (ii)

The resulting **informed** learning objective is

 $\max_{\substack{f:\mathcal{H}\to\mathcal{Z}\\q:\mathcal{Z}\times\mathcal{A}\to\Delta(\mathbb{R}\times\mathcal{I})}} \mathbb{E}_{p(h,a,r,i')} \log q(r,i' \mid f(h),a).$ (3)

Motivation: *i* is more informative than $o: I(s', i' \mid h, a) \ge I(s', o' \mid h, a)$.

Algorithm 4: Informed sufficient statistic learning.

- 1. Select a recurrent universal dynamical system approximator f_{θ} (e.g., RNN).
- 2. Select a universal density approximator q_{θ} (e.g., GM).
- 3. Repeat
 - 1. Sample trajectories and store transitions (h, a, r, i').
 - 2. Maximize the log likelihood of (3) using SGD.

NB: If f_{θ} and q_{θ} are expressive enough and satisfy objective (3), then $q_{\theta}(r, i' \mid f_{\theta}(h), a) = p(r, i' \mid h, a).$

Informed world-model

We use a Dyna / Dreamer algorithm with an **informed world model** using a variational RNN (VRNN or RSSM). Formally, we have,

$$\begin{split} \hat{e} &\sim q_{\theta}^{p}(\cdot \mid z, a), \\ \hat{r} &\sim q_{\theta}^{r}(\cdot \mid z, \hat{e}), \\ \hat{i}' &\sim q_{\theta}^{i}(\cdot \mid z, \hat{e}), \end{split}$$

where \hat{e} is the latent variable of the VRNN when generating trajectories. The prior q_{θ}^{p} and decoders q_{θ}^{r} and q_{θ}^{i} are jointly trained with the encoder,

 $e \sim q_{\theta}^e(\cdot \mid z, a, o'),$

to maximise likelihood of (r, i'). The latent representation $e \sim q_{\theta}^{e}(\cdot \mid z, a, o')$ of the next observation o' can be used to update the statistic to z',

 $z' = u_{\theta}(z, a, e).$

 \bigtriangleup The statistic is no longer deterministic, instead we have $z \sim f(\cdot \mid h).$

Informed world-model (ii)

In practice, we maximize the **evidence lower bound** (ELBO), a variational lower bound on the likelihood,

Fig. 12: Informed world model training.

Informed Dreamer

The informed world model allows sampling in latent space.

Fig. 13: Informed world model imagination.

The policy is executed on the **latent representations** of the observations.

Fig. 14: Informed world model imagination

Informed Dreamer (ii)

Fig. 15: Informed and Uninformed Dreamer in Mountain Hike.

Informed Dreamer (iii)

Fig. 16: Informed and Uninformed Dreamer in Velocity Control.

Informed Dreamer (iv)

Fig. 17: Informed and Uninformed Dreamer in Pop Gym.

Limitations

- In **theory**:
 - No theoretical support for **stochastic statistics**.
 - Guarantees are for the maximisers only, **bounds are missing**.
- In practice:
 - Approximating the conditional information distribution **sometimes hurts performance**.
- Others:
 - Ill-posed ELBO objective: the encoder is not conditioned on *i*' (only the distribution of *o*', encoded in the distribution of *i*', and the informational content of *i*' that is encoded in *h* are approximated).

Future works

Future works

- In model-based RL:
 - ► Fixing the ELBO learning objective.
 - Generalizing the theory to stochastic statistic.
 - Proposing an efficient deterministic (and latent) world model.
- In model-free RL:
 - Comparing asymmetric actor-critic to the statistic learning approach.
- In multi-agent RL:
 - Considering model-free statistic learning from the local histories of agents.
- In **theory**:
 - Studying generalization when using state supervision.

Bibliography

- Lambrechts, G., Bolland, A., & Ernst, D. (2022, August). *Recurrent networks, hidden states and beliefs in partially observable environments.*
- Lambrechts, G., Bolland, A., & Ernst, D. (2023, July). Informed POMDP: Leveraging additional information in model-based RL.
- Subramanian, J., Sinha, A., Seraj, R., & Mahajan, A. (2022, January). Approximate information state for approximate planning and reinforcement learning in partially observed systems.

For other related works, see Section 2 of (Lambrechts, Bolland, and Ernst 2023).

A warm thank to my coauthors Adrien Bolland and Damien Ernst.