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Partial observability



Partial observability
A POMDP is described by a model 𝒫 = (𝒮, 𝒜, 𝒪, 𝑃 , 𝑂, 𝑇 , 𝑅, 𝛾).

• States 𝑠𝑡 ∈ 𝒮,
• Actions 𝑎𝑡 ∈ 𝒜,
• Observations 𝑜𝑡 ∈ 𝒪,
• Initialisation 𝑃(𝑠0),

• Perception 𝑂(𝑜𝑡 | 𝑠𝑡),
• Transition 𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡),
• Reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡),
• Discount 𝛾 ∈ [0, 1[.

States satisfy the Markov property but are not available,

𝑝(𝑠𝑡+1 | 𝑠0, 𝑎0, …, 𝑠𝑡, 𝑎𝑡) = 𝑝(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡) = 𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡).

Observations do not satisfy the Markov property,

𝑝(𝑜𝑡+1 | 𝑜0, 𝑎0, …, 𝑜𝑡, 𝑎𝑡) ≠ 𝑝(𝑜𝑡+1 | 𝑜𝑡, 𝑎𝑡).

⇒ Contrary to MDP, selecting 𝑎𝑡 based on 𝑜𝑡 only is suboptimal.
4/36



Partial observability (ii)

Fig. 1: Bayesian graph of a POMDP execution.

The history at time 𝑡 is ℎ𝑡 = (𝑜0, 𝑎0, …, 𝑜𝑡) ∈ ℋ, with ℋ the set of histories.
Includes all information available to select action 𝑎𝑡.

Notation: (ℎ, 𝑎, 𝑟, 𝑜′) ≡ (ℎ𝑡, 𝑎𝑡, 𝑟𝑡, 𝑜𝑡+1) for arbitrary 𝑡.
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History-dependent policies
Definition 1: History-dependent stochastic policy.
A history-dependent stochastic policy 𝜂 ∈ Η = ℋ → Δ(𝒜) is a mapping
from histories to distributions over the actions, whose density writes 𝜂(𝑎 | ℎ).

Definition 2: Value function of a policy.
The value function of a history-dependent stochastic policy gives the
expected return of the policy starting from a given history,

𝑉 𝜂(ℎ) = 𝔼
𝒫,𝜂

[∑
∞

𝑡=0
𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡) | ℎ0 = ℎ],  𝑠0 ∼ 𝑝(𝑆 | ℎ).

Definition 3: Q-function of a policy.
The Q-function of a history-dependent stochastic policy gives the expected
return of the policy starting from a given history and a given action,

𝑄𝜂(ℎ, 𝑎) = 𝔼
𝒫,𝜂

[∑
∞

𝑡=0
𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡) | ℎ0 = ℎ, 𝑎0 = 𝑎],  𝑠0 ∼ 𝑝(𝑆 | ℎ).
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Optimal history-dependent policies
Definition 4: Optimal value function.
The optimal Q-function gives the optimal expected return starting from a
given history,

𝑉 (ℎ) = max
𝜂∈Η

𝑉 𝜂(ℎ).

Definition 5: Optimal Q-function.
The optimal Q-function gives the optimal expected return starting from a
given history and a given action,

𝑄(ℎ, 𝑎) = max
𝜂∈Η

𝑄𝜂(ℎ, 𝑎).

Definition 6: Optimal policy.
A policy 𝜂∗ is optimal when its value function is maximised in every history,

𝑉 𝜂∗ = max
𝜂∈Η

𝑉 𝜂(ℎ) = 𝑉 (ℎ).
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History-dependent RL



History-dependent RL
Substitute the history ℎ to the state 𝑠 in the value function or policy.

Requires function approximators able to process variable-size histories:
• Sliding window (window size)
• Recurrent neural network (truncated BPTT)
• Transformer (window size)

They all suffer from the unbounded growth of the history, but RNN are able
to process histories indefinitely and efficiently.

Fig. 2: Sequence approximator for history-dependent policy or Q-function.
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Belief-dependent RL
Definition 7: Belief of a history.
The belief 𝑏 = 𝑓(ℎ) ∈ Δ(𝒮) of a history ℎ ∈ ℋ is defined as the posterior
probability distribution over the states given the history: 𝑏(𝑠) = 𝑝(𝑠 | ℎ).

Theorem 1: Sufficiency of the belief.
The Q-function can be written as a function of the belief,

𝑄(ℎ, 𝑎) = 𝒬(𝑏, 𝑎),  𝑏 = 𝑓(ℎ).

Moreover, the belief is recurrent: 𝑓(ℎ′) = 𝑢(𝑓(ℎ), 𝑎, 𝑜′),  ℎ′ = (ℎ, 𝑎, 𝑜′).

𝑏0(𝑠0) = 𝑃(𝑠0)𝑂(𝑜0 | 𝑠0)
∫

𝒮
𝑃(𝑠′

0)𝑂(𝑜0 | 𝑠′
0) d𝑠′

0
,

𝑏𝑡(𝑠𝑡) =
𝑂(𝑜𝑡 | 𝑠𝑡) ∫

𝒮
𝑇 (𝑠𝑡 | 𝑠𝑡−1, 𝑎𝑡−1)𝑏𝑡−1(𝑠𝑡−1) d𝑠𝑡−1

∫
𝒮

𝑂(𝑜𝑡 | 𝑠′
𝑡) ∫

𝒮
𝑇 (𝑠′

𝑡 | 𝑠𝑡−1, 𝑎𝑡−1)𝑏𝑡−1(𝑠𝑡−1) d𝑠𝑡−1 d𝑠′
𝑡
.

⇒ If the belief is known, we can discard the history.
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Recurrent RL
Recurrent Q-learning learns 𝑄𝜃(ℎ, 𝑎) = 𝑔𝜃(𝑓𝜃(ℎ), 𝑎) where 𝑓𝜃 is an RNN,

𝑓𝜃(ℎ′) = 𝑢𝜃(𝑓𝜃(ℎ), 𝑎, 𝑜′),  ∀ℎ′ = (ℎ, 𝑎, 𝑜′).

Reminder: the belief filter is recurrent,

𝑓(ℎ′) = 𝑢(𝑓(ℎ), 𝑎, 𝑜′),  ∀ℎ′ = (ℎ, 𝑎, 𝑜′).

Fig. 3: Belief and Q-function. Fig. 4: RNN state and Q-function.

⇒ Should RNN states encode the belief?
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Recurrent RL (ii)
Lambrechts, Bolland, and Ernst (2022) highlights that beliefs emerge in RNN
states during model-free recurrent Q-learning (LSTM, GRU, BRC, NBRC, MGU).
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Fig. 5: Return and mutual information throughout training.

𝐼(𝜃) ≈ 𝐼(𝑧, 𝑏) under stationary distribution 𝑝𝜂𝜃(ℎ).
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Recurrent RL (iii)
The informativeness of states about the belief is correlated with the perfor-
mance (LSTM, GRU, BRC, NBRC, MGU).
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Fig. 6: Correlation between return and mutual information.

𝐼(𝜃) ≈ 𝐼(𝑧, 𝑏) under stationary distribution 𝑝𝜂𝜃(ℎ).
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Recurrent RL (iv)
The belief of irrelevant state variable is not encoded in RNN states (GRU).
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variables) throughout training.

𝐼(𝜃) ≈ 𝐼(𝑧, 𝑏) under stationary distribution 𝑝𝜂𝜃(ℎ).
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Sufficient statistic



Sufficient statistic
Notation: 𝑔 ∘ 𝑓  is the policy 𝜂(𝑎 | ℎ) = 𝑔(𝑎 | 𝑓(ℎ)).

Definition 8: Sufficient statistic.
A statistic 𝑓 : ℋ → 𝒵 of the history is sufficient for the optimal control iff,

max
𝑔:𝒵→Δ(𝒜)

𝐽(𝑔 ∘ 𝑓) = max
𝜂∈ℋ→Δ(𝒜)

𝐽(𝜂).

Corollary 1: Sufficiency of optimal policies.
If a policy 𝜂 = 𝑔 ∘ 𝑓  is optimal, then the statistic 𝑓 : ℋ → 𝒵 is sufficient for
the optimal control.

Fig. 8: Statistic and policy.

NB: The belief is a sufficient statistic of the history for the optimal control.
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Sufficiency of recurrent predictive statistics
Theorem 2: Sufficiency of recurrent predictive statistics (Subramanian et al. 2022).
A statistic of the history 𝑓 : ℋ → 𝒵 is sufficient for the optimal control
if it is (i) recurrent and (ii) predictive of the reward and next observation
given the action,

(i) 𝑓(ℎ′) = 𝑢(𝑓(ℎ), 𝑎, 𝑜′),  ∀ℎ′ = (ℎ, 𝑎, 𝑜′),
(ii) 𝑝(𝑟, 𝑜′ | ℎ, 𝑎) = 𝑝(𝑟, 𝑜′ | 𝑓(ℎ), 𝑎),  ∀(ℎ, 𝑎, 𝑟, 𝑜′).

Intuitively, if a statistic encodes the distribution of the reward and next obser-
vation given an action, and can be updated using this observation, then it is
virtually able to simulate all future execution of the POMDP.

Fig. 9: Sufficiency of recurrent and predictive statistics.
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Learning recurrent predictive statistics
Under mild assumptions (e.g., 𝑝(ℎ, 𝑎) > 0), any statistic 𝑓 : ℋ → 𝒵 satisfying

max
𝑓:ℋ→𝒵

𝑞:𝒵×𝒜→Δ(ℝ×𝒪)

𝔼
𝑝(ℎ,𝑎,𝑟,𝑜′)

log 𝑞(𝑟, 𝑜′ | 𝑓(ℎ), 𝑎), (1)

is predictive of the reward and next observation given the action (ii). If in
addition, the statistic is recurrent (i), then it is sufficient for the optimal
control.
Algorithm 1: Sufficient statistic learning.
1. Select a recurrent universal dynamical system approximator 𝑓𝜃 (e.g., RNN).
2. Select a universal density approximator 𝑞𝜃 (e.g., GM).
3. Repeat:

1. Sample trajectories and store transitions (ℎ, 𝑎, 𝑟, 𝑜′).
2. Maximize the log likelihood of (1) using SGD.

NB: If 𝑓𝜃 and 𝑞𝜃 are expressive enough and satisfy objective (1), then
𝑞𝜃(𝑟, 𝑜′ | 𝑓𝜃(ℎ), 𝑎) = 𝑝(𝑟, 𝑜′ | ℎ, 𝑎).
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Jointly learning statistics and policies
The statistic and the policy can be learned jointly,

max
𝑓,𝑔

𝐽(𝑔 ∘ 𝑓) + 𝐿(𝑓). (2)

where 𝐽(𝜂) = 𝔼
𝑠0∼𝑃

[𝑉 𝜂(𝑠0)] and 𝐿(𝑓) = max
𝑞

𝔼
𝑝(ℎ,𝑎,𝑟,𝑜′)

log 𝑞(𝑟, 𝑜′ | 𝑓(ℎ), 𝑎).

Choices for this objective and its optimization:
• The distribution 𝑝(ℎ, 𝑎) in 𝐿(𝑓) may be that of 𝑔 ∘ 𝑓  or another policy 𝜂.
• The RL algorithm maximizing 𝐽  may optimize 𝑓  or not.

Fig. 10: Joint optimization of the statistic and policy.
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Jointly learning statistics and policies (ii)

We have a generic algorithm for optimizing both sufficiency and optimality.

Algorithm 2: Sufficient statistic and policy learning.
1. Select a recurrent universal dynamical system approximator 𝑓𝜃 (e.g., RNN).
2. Select universal density approximators 𝑞𝜃 and 𝑔𝜑 (e.g., GM).
3. Repeat

1. Interact (policy 𝜂 or 𝜂𝜃,𝜑 = 𝑔𝜑 ∘ 𝑓𝜃) and store transitions (ℎ, 𝑎, 𝑟, 𝑜′).
2. Maximize objective (2) using SGD (off- or on-policy RL algorithm).
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Sufficiency of recurrent world models
The model 𝑞𝜃(𝑟, 𝑜′ | 𝑓𝜃(ℎ), 𝑎) ≈ 𝑝(𝑟, 𝑜′ | ℎ, 𝑎) is a world model.
⇒ Trajectories can be sampled for free.

It can be exploited in a Dyna / Dreamer algorithm adapted to POMDP.

Algorithm 3: Dyna with sufficient statistic for POMDP.
1. Select a recurrent universal dynamical system approximator 𝑓𝜃 (e.g., RNN).
2. Select universal density approximators 𝑞𝜃 and 𝑔𝜑 (e.g., GM).
3. Repeat

1. Interact (policy 𝜂 or 𝜂𝜃,𝜑 = 𝑔𝜑 ∘ 𝑓𝜃) and store transitions (ℎ, 𝑎, 𝑟, 𝑜′).
2. Maximize the log likelihood of objective (1) using SGD.
3. Repeat:

1. Imagine trajectories using policy 𝜂𝜃,𝜑 = 𝑔𝜑 ∘ 𝑓𝜃.
2. Optimize policy to maximize imagined rewards. NB: ∇𝜑 ∑∞

𝑡=0 𝛾𝑡�̂�𝑡
is computable since the world model 𝑞𝜃 ∘ 𝑓𝜃 is differentiable.
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Asymmetric learning
Asymmetric learning consists of exploiting state information at training.
Motivation: assuming the same partial observability at training is restrictive.

We generalise asymmetric learning to non Markovian additional information.

The informed POMDP is described by 𝒫 = (𝒮, 𝒜, ℐ, 𝒪, 𝑃 , 𝐼, �̃�, 𝑇 , 𝑅, 𝛾),

• States 𝑠𝑡 ∈ 𝒮,
• Actions 𝑎𝑡 ∈ 𝒜,
• Information 𝑖𝑡 ∈ ℐ,
• Observations 𝑜𝑡 ∈ 𝒪,
• Initialisation 𝑃(𝑠0),

• Supervision 𝐼(𝑖𝑡 | 𝑠𝑡),
• Perception �̃�(𝑜𝑡 | 𝑖𝑡),
• Transition 𝑇(𝑠𝑡+1 | 𝑠𝑡, 𝑎𝑡),
• Reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡),
• Discount 𝛾 ∈ [0, 1[.

During execution, the information is unavailable and we obtain the POMDP
𝒫 = (𝒮, 𝒜, 𝒪, 𝑃 , 𝑂, 𝑇 , 𝑅, 𝛾), where 𝑂(𝑜𝑡 | 𝑠𝑡) = ∫

ℐ
�̃�(𝑜𝑡 | 𝑖)𝐼(𝑖 | 𝑠𝑡) d𝑖.
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Asymmetric learning (ii)

Fig. 11: Bayesian graph of an informed POMDP execution.

NB: The information is designed such that 𝑜𝑡 is independent of 𝑠𝑡 given 𝑖𝑡.
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Asymmetric learning of sufficient statistics
Usually, the state information is exploited through either
• (constrained) imitation learning,
• (unbiased) asymmetric actor-critic approaches.

Lambrechts, Bolland, and Ernst (2023) propose to leverage the additional infor-
mation in the learning of sufficient statistic.
• Exploits additional information only through the objective.
• Handles partial additional information about the state.

Theorem 3: Sufficiency of recurrent informed predictive statistics.
A statistic of the history 𝑓 : ℋ → 𝒵 is sufficient for the optimal control
if it is (i) recurrent and (ii) predictive of the reward and next information
given the action,

(i) 𝑓(ℎ′) = 𝑢(𝑓(ℎ), 𝑎, 𝑜′),  ∀ℎ′ = (ℎ, 𝑎, 𝑜′),
(ii) 𝑝(𝑟, 𝒊′ | ℎ, 𝑎) = 𝑝(𝑟, 𝒊′ | 𝑓(ℎ), 𝑎),  ∀(ℎ, 𝑎, 𝑟, 𝒊′).
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Asymmetric learning of sufficient statistics (ii)
The resulting informed learning objective is

max
𝑓:ℋ→𝒵

𝑞:𝒵×𝒜→Δ(ℝ×𝓘)

𝔼
𝑝(ℎ,𝑎,𝑟,𝒊′)

log 𝑞(𝑟, 𝒊′ | 𝑓(ℎ), 𝑎). (3)

Motivation: 𝑖 is more informative than 𝑜: 𝐼(𝑠′, 𝑖′ | ℎ, 𝑎) ≥ 𝐼(𝑠′, 𝑜′ | ℎ, 𝑎).

Algorithm 4: Informed sufficient statistic learning.
1. Select a recurrent universal dynamical system approximator 𝑓𝜃 (e.g., RNN).
2. Select a universal density approximator 𝑞𝜃 (e.g., GM).
3. Repeat

1. Sample trajectories and store transitions (ℎ, 𝑎, 𝑟, 𝒊′).
2. Maximize the log likelihood of (3) using SGD.

NB: If 𝑓𝜃 and 𝑞𝜃 are expressive enough and satisfy objective (3), then
𝑞𝜃(𝑟, 𝒊′ | 𝑓𝜃(ℎ), 𝑎) = 𝑝(𝑟, 𝒊′ | ℎ, 𝑎).
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Informed world-model
We use a Dyna / Dreamer algorithm with an informed world model using a
variational RNN (VRNN or RSSM). Formally, we have,

𝑒 ∼ 𝑞𝑝
𝜃 (· | 𝑧, 𝑎),

�̂� ∼ 𝑞𝑟
𝜃(· | 𝑧, 𝑒),

�̂�′ ∼ 𝑞𝑖
𝜃(· | 𝑧, 𝑒),

where 𝑒 is the latent variable of the VRNN when generating trajectories. The
prior 𝑞𝑝

𝜃  and decoders 𝑞𝑟
𝜃  and 𝑞𝑖

𝜃 are jointly trained with the encoder,

𝑒 ∼ 𝑞𝑒
𝜃(· | 𝑧, 𝑎, 𝑜′),

to maximise likelihood of (𝑟, 𝑖′). The latent representation 𝑒 ∼ 𝑞𝑒
𝜃(· | 𝑧, 𝑎, 𝑜′)

of the next observation 𝑜′ can be used to update the statistic to 𝑧′,

𝑧′ = 𝑢𝜃(𝑧, 𝑎, 𝑒).

⟁ The statistic is no longer deterministic, instead we have 𝑧 ∼ 𝑓(· | ℎ).
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Informed world-model (ii)
In practice, we maximize the evidence lower bound (ELBO), a variational
lower bound on the likelihood,

𝔼
𝑝(ℎ,𝑎,𝑟,𝑖′)
𝑓𝜃(𝑧 | ℎ)

log 𝑞𝜃(𝑟, 𝑖′ | 𝑧, 𝑎) ≥ 𝔼
𝑝(ℎ,𝑎,𝑟,𝑖′,𝑜′)

𝑓𝜃(𝑧 | ℎ) [
[
[
[

𝔼
𝑞𝑒

𝜃(𝑒 | 𝑧,𝑎,𝑜′)
[log 𝑞𝑖

𝜃(𝑖′ | 𝑧, 𝑒) + log 𝑞𝑟
𝜃(𝑟 | 𝑧, 𝑒)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
reconstruction

− KL(𝑞𝑒
𝜃(· | 𝑧, 𝑎, 𝑜′) ∥ 𝑞𝑝

𝜃 (· | 𝑧, 𝑎))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
regularization ]

]
]
]

.

Fig. 12: Informed world model training.
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Informed Dreamer
The informed world model allows sampling in latent space.

Fig. 13: Informed world model imagination.

The policy is executed on the latent representations of the observations.

Fig. 14: Informed world model imagination
29/36



Informed Dreamer (ii)
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Fig. 15: Informed and Uninformed Dreamer in Mountain Hike.
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Informed Dreamer (iii)
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Fig. 16: Informed and Uninformed Dreamer in Velocity Control.
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Fig. 17: Informed and Uninformed Dreamer in Pop Gym.
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Limitations
• In theory:

‣ No theoretical support for stochastic statistics.
‣ Guarantees are for the maximisers only, bounds are missing.

• In practice:
‣ Approximating the conditional information distribution sometimes hurts

performance.

• Others:
‣ Ill-posed ELBO objective: the encoder is not conditioned on 𝑖′ (only the

distribution of 𝑜′, encoded in the distribution of 𝑖′, and the informational
content of 𝑖′ that is encoded in ℎ are approximated).
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Future works
• In model-based RL:

‣ Fixing the ELBO learning objective.
‣ Generalizing the theory to stochastic statistic.
‣ Proposing an efficient deterministic (and latent) world model.

• In model-free RL:
‣ Comparing asymmetric actor-critic to the statistic learning approach.

• In multi-agent RL:
‣ Considering model-free statistic learning from the local histories of agents.

• In theory:
‣ Studying generalization when using state supervision.
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